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Abstract

The design of modern complex embedded systems re-
quire a high level of abstraction of the design. The Sim-
nML[1] is a specification language to model processors for
such designs. Several software generation tools have been
developed that take ISA specifications in Sim-nML as input.

In this paper we present a tool Sim-HS that implements
high level behavioral and structural synthesis of processors
from their ISA specifications in Sim-nML. Behavioral Sim-
HS transforms Sim-nML specifications of a processor to
the corresponding behavioral Verilog model that is suitable
for fast functional simulation. Structural Sim-HS generates
structural synthesizable Verilog processor model from its
Sim-nML specifications.

1 Introduction

Today VLSI technology is providing multiple mil-
lion gates per chip to support the design of several pro-
grammable and non-programmable processor cores. High
level synthesis (HLS) technology enables the fast error free
design of such complex circuits. Among all active re-
searches in this area of HLS, one important research direc-
tion is to synthesize programmable processors from their
ISA specifications. In this work, we have developed a HLS
system,Sim-HS, that generates behavioral and structural
Verilog descriptions of the processors from theSim-nML
[1] processor ISA specifications. The generated structural
descriptions are accepted by various logic synthesis tools.

2 Sim-nML, A brief overview

Sim-nML[1] is a behavioral specification language that
is used to specify the instruction set architecture of a pro-
grammable processor. The language is an extension of nML�This work was primarily supported by Cadence Design System (India)
Pvt. Ltd. and done at Cadence Research Center at IIT Kanpur, India.
http://www.cse.iitk.ac.in/sim-nml

[11] machine description formalism, for the purpose of effi-
cient simulation. The hierarchical processor models inSim-
nML are specified usingattribute grammar, where the se-
mantic actions of the instructions are distributed over the
whole specification tree. Thus, the common behavior of
a class of instructions is captured at the top level and the
specialized behaviors are captured at the subsequent lower
levels. Root node of the specification tree is namedinstruc-
tion. The specifications have two types of productions,and
andor productions. Each of these productions can beop-
productionor mode-production, which specify the proces-
sor instructions and addressing modes respectively. There
are four pre-defined attributes for theand-production– syn-
tax, image, actionanduses. Thesyntaxandimageattributes
captures the textual assembly language syntax and bit image
of the instructions. Theactionattribute captures the opera-
tions performed by the instructions, including any side ef-
fects. Theusesattribute captures the resource use model
for the instruction that can be used to determine the timing
and execution relationship with other instructions. The lan-
guage provides‘reg’ , ‘mem’ and ‘var’ data types that are
used to specify the registers, memories and temporary vari-
ables respectively.

An integrated development environment has been devel-
oped aroundSim-nMLprocessor specification language at
IIT Kanpur. This includes the tools for generation of as-
semblers [3], disassemblers [4], compiler back-ends [5, 6],
functional simulators [7] [8], cache simulators [9] etc.

An example of a small processor that supports ALU op-
erations, memory load-store operation and branch opera-
tion is given below. The processor operations are specified
using theop-productions. Their are four ALU operations
in the example; AND, ADD, SUB and MUL. The proces-
sor has four addressing modes specified using themode-
productions. These are the register, memory indirect, mem-
ory post increment and memory absolute addressing modes.

type word = card(16)
type absa = card(9)
type disp = int(4)
type off = int(6)
mem PC[1,word]



mem R[16,word]
mem M[65536,word]
var L1[1,word]
var L2[1,word]
var L3[1,word]
mode register(i:card(4)) = R[i]

syntax = format(”R%s”, i)
image = format(”%4b”, i)

mode memory = indj postj abs
mode ind(r:register, d:disp) = M[r+d]

update =fg
syntax = format(”@%s(%d)”, r.syntax, d)
image = format(”0%4b%4b0”, r.image, d)

mode post(r:register, d:disp) = M[r+d]
update =fr = r + 1;g
syntax = format(”@%s++(%d)”, r.syntax, d)
image = format(”0%4b%4b1”, r.image, d)

mode abs(a : absa) = M[a]
update =fg
syntax = format(”%d”, a)
image = format(”1%9b”, a)

op instruction( i : instr )
syntax = i.syntax
image = i.image
action =f

PC = PC + 1;
i.action;g

op instr = movej alu j jump
op move(lore:card(1), r:register, m:memory)

syntax = format(”MOVE%d %s %s”, lore, r.syntax, m.syntax)
image = format(”0%1b%4b%10b”, lore, r.image, m.image)
action =f

if ( lore ) then r = m;
else m = r;
endif;
m.update;g

op alu(s1:register, s2:register, d:reg, a:aluop)
syntax = format(”%s %s %s %s”, a.syntax, s1.syntax, s2.syntax,

d.syntax)
image = format(”10%4b%4b%4b%2b”, s1.image, s2.image,

d.image, a.image)
action =f

L1 = s1; L2 = s2; a.action; d = L3;g
op jump(s1:register, s2:register, o:off)

syntax = format(”JUMP %s %s %d”, s1.syntax, s2.syntax, o)
image = format(”11%4b%4b%6b”, s1.image, s2.image, o)
action =f

if ( s1>= S2 ) then PC = PC + o;
endif;g

op aluop = andj addj subj shift
op and() syntax = ”and” image = ”00” action =f L3 = L1 & L2; g
op add() syntax = ”add” image = ”10” action =f L3 = L1 + L2; g
op sub() syntax = ”sub” image = ”01” action =f L3 = L1 � L2; g
op mul() syntax = ”mul” image = ”11” action =f L3 = L1 * L2;g
3 Related Works

Several processor ISA specification languages have been
designed that can be used for hardware-software co-design.

ISDL [10], developed at MIT LCS is a programmable
processor ISA specification language that is used to de-
scribe the behavior of a processor using attribute grammar.
A special emphasis has been given for VLIW architecture
based processor specifications. A synthesis tool HGEN has
been developed that generates structural synthesizable Ver-
ilog code for the underlying VLIW architecture from the
ISDL specifications. nML [11] processor instruction set
specification language, developed at TU Berlin is an at-
tribute grammar based language used for processor specifi-
cation. From a nML based processor description, the hard-
ware elements have been generated [12]. The language used
in our work Sim-nMLis derived from the nML language.
MIMOLA [13] hardware specification language, developed
at University of Dortmund, Germany is used to write struc-
tural specification of a programmable processor at low level,
exposing several hardware details. Using MSS [14] syn-
thesis tool, hardware can be synthesized from MIMOLA
specifications. LISA [15] processor specification language,
developed at Aachen University of Technology, Germany is
used to specify programmable processors. VHDL hardware
models have been synthesized from LISA for four stage
pipelined ICORE architecture. ISPS [18] is an ISA speci-
fication language developed at Carnegie-Mellon University.
CMUDA [19] and System Architect’s Workbench [20] are
the HLS systems that take the ISPS specifications as input
and generate hardware. TRS [21], developed at MIT LCS
is used to describe hardware at the micro-architecture level
in functional language form. Hardware synthesis compiler
TARC has been developed that takes the concurrent TRS
specifications and generates synthesizable Verilog code.

There are several other languages to specify processor
ISA, like SLED [16], EXPRESSION [17] etc. Though there
is a potential of processor synthesis from these languages,
no such work has been reported in the literature.

4 Behavioral Sim-HS

The overall design of theSim-HSHLS system consists
of two parts, the front-end and the back-end (figure 1). The
same front-end is used for both behavioral and structural
Sim-HS.
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4.1 Design of the Front-end ofSim-HS

The front-end ofSim-HS(figure 1A) takesSim-nML
processor specifications as input and produces their flat-
tened representations. First the input specifications are con-
verted to an intermediate representation (IR). Next the in-
formation is gathered for all instructions by traversing the
the path from the root node to all leaf nodes with proper
parameter substitution at all levels.

4.2 Design of the Back-end of BehavioralSim-HS

The back-end of the behavioralSim-HS(figure 1B) takes
the flattened IR as input and for each machine instruction,
generates the behavioral Verilog code to simulate its action.
After this generation, a top level simulation module is gen-
erated to facilitate the functional simulation process.

4.3 Implementation of Back-end

All Sim-nMLvariables of‘reg’ , ‘mem’ and ‘var’ data
types are converted to Verilog variables. The scalar vari-
ables ofSim-nMLare translated to Verilogreg data types
and theSim-nMLarrays are translated to Verilogregarrays.
An example of variable translations is given below.
SIM -NML: reg B[100,card(32)] VERILOG: reg[0:31] B[0:99]

The language constructs, like control flow statements are
similar in theSim-nML actionsequences and Verilog lan-
guage, and therefore the translation is straight forward. In

the generated behavioral model instruction decoding is im-
plemented by Verilogcasestatements. To store the instruc-
tion being executed, a new registerIR is added. The width
of IR is equal to the maximum width among all the instruc-
tions. The parameters of the instructions are identified and
used as the bit strings of registerIR. For this the information
in the image attribute is used.

An example translation of an instruction fromSim-nML
specification of Motorola 68HC11 micro-controller is given
below. After execution of the instruction, theIR is left
shifted by the size of the instruction (and later filled by more
instruction bytes from the memory).
Sim-nML Action Sequence
op LDAA Imm(Src : Imm8)
image = format(”10000110%s”, Src.image)
action =f

R = Src; CCR<3..3> = R<7..7>;
if R == 0 then CCR<2..2> = 1;
else CCR<2..2> = 0;
endif;
CCR<1..1> = 0; A = R;g

Behavioral Verilog Code
always @(posedge clock) begin
case (IR[0:23]) 24’b10000110XXXXXXXXXXXXXXXX :
begin

R = IR[8:15]; CCR[3:3] = R[7:7];
if( (R == 0) ) CCR[2:2] = 1;
else CCR[2:2] = 0;
end
CCR[1:1] = 0; A = R;
IR = IR<< 16;

end
In the behavioral module, a simulation clock is also

added. As instructions execute, the simulation clock is ap-
propriately incremented.

In the last step of the generation of the behavioral Ver-
ilog code for the processor, the Verilog simulation monitor
module is added. The simulator monitor module continu-
ously probes the various Verilog variables that represent the
external signals on the pins, or the internal signals (figure
2).

5 Structural Sim-HS

5.1 Design of the Back-end of StructuralSim-HS

The back-end design involves four major steps (figure
1C) – optimizations of the flattened intermediate represen-
tation; scheduling of the optimized specifications; resource
allocation and interconnection of resources; and finally the
control path generation. The data path is generated in
scheduling and resource allocation steps.
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5.1.1 Architecture of the Synthesized Processor

We synthesize theSim-nML specifications to a non-
pipelined processor architecture (figure 3). The different
units of the architecture are: fetch unit; decode and register
storage unit; execution unit and write-back unit. Execution
unit is a collection of several functional units where the in-
put and output ports of the functional units are common to
the input and output ports of the execution unit. In our de-
sign, the memory is external to the processor core.

5.1.2 Optimizations of the Flattened IR

The actions of each instruction in theSim-nMLspecifica-
tions can be written in a convenient way using temporary
variables across the hierarchies. This makes the specifi-
cation writing easier and elegant looking. Such temporary
variables are declared usingvar keyword inSim-nML.

In order to get the area-optimized hardware, it is neces-
sary to minimize the use of‘var’ type temporary variables.
Optimizations are performed on each flattened instruction
actions. The instructions are assumed to be independent of
each other in a non-pipelined processor. Therefore, we do
not perform any inter-instruction optimizations. Temporary
variable elimination and dead code elimination are two opti-

mizations performed in structuralSim-HSthat give reason-
ably good amount of area reduction for the temporary stor-
age units. The‘reg’ and‘mem’variables represent the state
of the processor and the removal of these variables in the
process of optimization can change the semantic meaning
of the overall ISA specification. Hence, no optimizations
are performed around‘reg’ and‘mem’ type variables.

5.1.3 Scheduling of the Optimized Instructions

Scheduling assigns the optimized instruction actions to con-
trol steps according to the following scheduling constraints
and goal.� Architecture of the Processor: The non-pipelined

multi-cycle architecture of the processor permits only
one instruction to be executed at a time.� Number of Functional Units: In our design only one
functional unit of each type is instantiated and is shared
among the operations across and within the instruc-
tions.� Number of Port Resources: The number of data and
address port resources in the storage and functional
units constrains the scheduling of operations inside an
instruction. In our implementation, we have assumed
one multiplexed read and write port for the memory.
The registers are assumed to have two read and one
write ports. All functional units have two input and
one output data ports.� Types of Functional Units: A functional unit can per-
form only one type of operation. Thus, there are no
shared functional units like‘multiplier-adder’ etc. in
the design. Thus there is one to one correspondence
between the operations and functional units.� Minimization of Storage Area: In the structural design,
as the number of‘reg’ and‘mem’ type storage units are
predefined, number of these units can not be reduced.
Thus, minimization of storage area is done by mini-
mizing the number of each types of functional unit in-
stantiated. However, because of the minimization of
number of functional units, extra multiplexers or mul-
tiplexers with large number of inputs may be required
in the design.

in order to synthesize, operations inside the instruction
actions are converted to a sequence ofthree-addresscode
form. From thethree-addressform, control signals are gen-
erated to provide data from the registers to the two input
ports of the functional units and to take the output of the
functional units to a register.

5.1.4 Resource Allocation and Interconnection

After scheduling, all operations are mapped to functional
units and all operands are mapped to storage units to gen-



erate the hardware model. As the functional and storage
unit resources are shared across the instructions, multiplex-
ers are used with appropriate controls for input selection.
Multiple destinations are bussed together.

5.1.5 Control Path Generation

After designing the data path, control path elements are in-
stantiated to design the controller. To control the execu-
tion of an instruction a sequence of control signals specific
to the scheduled operations of an instruction are generated.
An instruction decoding unit decodes the instructions from
the image of the instruction. After flattening image attribute
for an instruction contains a string of 0’s, 1’s and unknown
bits. The image substring containing 0’s and 1’s is used to
identify the instruction and the unknown image substring
typically selects the storage units at the execution time.

5.2 Implementation of Back-end ofSim-HS

Our implementation generates the Verilog code, which
is compliant with the Synopsys Design Compiler. The gen-
erated Verilog code is built upon the Design Ware Library
[22] [24] components, thus saving effort in rebuilding our
own library.

For each‘reg’ and ‘mem’ type variables (except main
memory) registers and register files are instantiated. For
each types of operation, one functional unit is instantiated
inside the execution unit. An example of the generated Ver-
ilog structural execution unit module is given below. The
execution unit contains one instantiation of adder and mul-
tiplier functional units each.
module ExecutionUnit(ExIn0 Mux O ExecutionUnit In0 I,

ExIn1 Mux O ExecutionUnit In1 I, Clk, Sel, Execution
Unit O ExecutionUnit Dmux I);

parameter width=32;
parameter selwidth=1;
input [width-1:0] ExIn0Mux O ExecutionUnit In0 I;
input [width-1:0] ExIn1Mux O ExecutionUnit In1 I;
input Clk;
input [sel width-1:0] Sel;
output [width-1:0] ExecutionUnit O ExecutionUnit Dmux I;
reg [width-1:0] ExecutionUnit O ExecutionUnit Dmux I;
wire [width-1:0] Out1;
wire [width-1:0] Out2;
always @(posedge Clk) begin
DW01 add #(width) Add1(.A(ExIn0Mux O ExecutionUnit In0 I),

.B(ExIn1 Mux O ExecutionUnit In1 I),.CI(),

.SUM(Out 1),.CO());
DW02 mult #(width,width) Mult1(.A(ExIn0Mux O ExecutionUnit

In0 I), .B(ExIn1 Mux O ExecutionUnit In1 I),
.TC(), .PRODUCT(Out2));

case(Sel)

68HC11 8085
Lines of Codes inSim-nML Specifications 2947 1419
Total Number of Machine Instruction 210 231
Lines of Codes in Generated Behavioral Verilog 3708 2143

Table 1. Statistics of the Behavioral Synthesis

PowerPC 8085 68HC11
Sim-nML Specification 508 lines 1419 lines 2947 lines
Sim-HS Generated Code 656 lines 4679 lines 1752 lines
Synthesized Verilog Code 8478 lines 25783 lines 6698 lines
Synthesis Time (without CT) 220 Sec 910 Sec 300 Sec
Synthesis Time (with CT) 780 Sec 1130 Sec 600 Sec
Chip Area inmm2 0.525 1.05 0.33

Table 2. Statistics of the Structural Synthesis

0 : ExecutionUnit O ExecutionUnit Dmux I <= Out 1;
1 : ExecutionUnit O ExecutionUnit Dmux I <= Out 2;

endcase
end
endmodule

Finally, after the data path and control path generation,
the top-level module is generated, which instantiates the
registers, register files, multiplexers and interconnectsthem.

6 Results and Conclusions

In this work, we have developed techniques to generate
behavioral and structural synthesizable Verilog processor
models from theSim-nMLprocessor specifications. This
method along with the strength ofSim-nMLbased method-
ology can be used in an integrated way, to generate ASIP
and/or other programmable processor hardware and system
level software.

The behavioralSim-HSis tested on the Sim-nML spec-
ifications of Motorola 68HC11 micro-controller and Intel
8085 microprocessor. The statistics are shown in the ta-
ble 1. The size of the behavioralSim-HSgenerated Verilog
code is about the same order as that of the corresponding in-
put Sim-nMLspecifications. The synthesized Verilog code
is simulated using Cadence Inc.’s Verilog-XL simulator [23]
where it ran without any problem.

The structuralSim-HSis tested on specifications of full
instruction sets of Motorola 68HC11 micro-controller, Intel
8085 microprocessor and a subset of instruction set of Pow-
erPC 603 processor. The statistics for the structural synthe-
sis are shown in the table 2.

The generated Verilog code was logic synthesized us-
ing generic ‘class.db’ library of Synopsis Design Compiler.
Time taken for logic synthesis of the generated code with
and without the Clock Tree (CT) are also shown in the table
2. It is observed that there is an increase of about 5% in



Area before Area after
CT insertion CT insertion

8085 Combinatorial Area 12802.00 13263.00
8085 Non-combinatorial Area 20943.00 21943.00
8085 Total Cell Area 33745.00 35206.00

68HC11 Combinatorial Area 4230.00 4473.00
68HC11 Non-Combinatorial Area 6700.00 6800.00
68HC11 Total Cell Area 10930.00 11273.00

PPC603 Combinatorial Area 6102.00 6584.00
PPC603 Non-Combinatorial Area 10878.00 11878.00
PPC603 Total Cell Area 16980.00 17562.00

Table 3. Total Chip Area for some Synthesized
Processors in number of cells

the area for all the processor models due to the clock tree
insertion.

The chip areas in terms of unit cells (the area of unit
cell depends of the lower level technology libraries) for In-
tel 8085, Motorola 68HC11 and PowerPC 603 are shown
in the table 3 separately for both combinatorial and non-
combinatorial logic. Assuming that the size of a unit cell
(say an inverter) is about 15�m2 and 50% of the chip area
is used for the routing, the estimated areas of the processors
are also shown in the table 2.
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