
DESIGN OF A CMOS LINK ADAPTER FOR
CIRCUIT SWITCHED MULTICOMPUTER NETWORKS

Indraneel Sarkar
Wipro Information Technology Ltd.,

88, MG Road, Banglore, India

Rajat Moona
Department of Computer Science and Engineering

Indian Institute of Technology, Kanpur, India

Abstract – Communication speed and mode of

communication are critical factors that determine

the effectiveness of a multicomputer network sys-

tem. The Link Adapter (LA), presented in this pa-

per, aims to provide a simple and efficient way of

interconnecting processors in a variety of multicom-

puter systems. It has been designed as a custom

VLSI CMOS chip and supports many features like

selective multicast, high scalability and a simple in-

terface. The LA is versatile enough to be used in

any multicomputer configuration with point to point

communication links. This is illustrated by an exam-

ple in this paper.

Introduction
Multicomputer systems provide a way of achieving

high performance by exploiting parallelism inherent in
applications. A variety of message passing multicom-
puter configurations have been proposed for various
applications[1, 2, 3]. Many systems with point-to-
point interconnection use coprocessors to handle the
communication[3]. In this paper we present the design of
a communication coprocessor for message passing mul-
ticomputers. The coprocessor provides four communi-
cation channels, one of which is attached to the host
processor. Other channels are used to form the point-
to-point interconnection network of processors. Multi-
ple coprocessors can be used to expand the number of
communication links at each processor. This coproces-
sor, called link adapter (LA), is versatile enough to be
used in a number of configurations and can serve as a
general purpose interconnection module in a multicom-
puter network.

Much work has been done on switch-controllers,
routers and buffers primarily for packet-switched com-
puter networks. MCN[4] and Nectar[5] are examples of
crossbar switch controllers. MCN is based on the high
performance parallel interface (HIPPI)[6, 7]. It uses a
separate protocol processor and RAM buffers to store
and forward packets on the network. Nectar[5] employs
RISC processor based communication boards (CABs)
to handle the protocol processing and transfer of data
on its optic-fibre network and supports both, circuit-
switched and packet-switched, data transfers. DAMQ[8]
was proposed as a solution to some of the problems faced

in routing and buffering of data in a packet switched net-
work. It uses first-in first-out buffer with a single read
port and a single write port to store packets at interme-
diate nodes. Apart from DAMQ, three other approaches
have also been discussed and their relative performances
analysed in [8].

The LA, presented in this paper, is designed for a
circuit-switched network where data in transit is not
stored anywhere at intermediate nodes. A first-in first-
out (FIFO) buffer is used at each node to hold incoming
data intended for it. For reasons like simplicity of de-
sign and ease of use, these buffers have been treated as
external devices and are not considered a part of the
LA. Any FIFO buffer that meets a simple data transfer
protocol, may be used. This protocol is also discussed
in this paper. A protocol used for connection set-up be-
tween the source and the destination processors, is very
simple and naturally supports selective multicast.

The rest of the paper is organized as follows. In the
next section, we describe block-level organization of the
LA and signals required to interface it with other re-
sources on the network. In this section, we also discuss
various design issues, requirements to be met by the
FIFO buffer, circuit setup and release protocol. Follow-
ing this section, we present the implementation details,
the simulation results and an example, illustrating the
usefulness of the LA.

Design of the LA
As described earlier, LA supports four communication

ports, called channels, numbered 0 to 3. A channel,
apart from channel 0, is connected to another channel on
a different LA via half-duplex links. Channel 0 of each
LA provides interface to connect with the host. A FIFO
buffer “sits” on the link connecting channel 0 of the LA
to its host and stores the incoming communication data
intended for the host. The host can use this data as
and when required by it. Other channels are identical
in all respect except for the priority used in resolving
the conflicting requests.

The interface between two LAs requires 13 lines per
channel summarized below.

• 8 bidirectional lines for the data. These lines also
carry the control bits required during the circuit-

`

-

-

-

-

-

�

�

-

?

�

?

-

..........
..........
.

..........
..........
.

.....................
�

Sel Sel

ChBusy

NRW

Clock

Reset

Disc

ACK

WR

INTR2

INTR1

RD

Data

Host - Processor LA - Channel

FIFO

Disc

Reset

Clock

NRW

Busy

ACKout

WRin

Data

ACKin

WRout

8 8

8

BFDBE

RD WR

Figure 1: The LA–Host–FIFO Interface

set-up phase of the communication.

• 1 WRin line. Each channel of the LA receives the
WR pulse on this line (from the adjacent LA).

• 1 WRout line, over which the WR pulse from the
source is relayed on to the next LA.

• 1 ACKin line, required for accepting the ACK signal
from the destination LA channel.

• 1 ACKout line for sending ACK signal to the source
LA.

• 1 DISC line to signal the release of the circuit.

The LA-Host-FIFO interface (see figure 1) needs few ad-
ditional lines apart from the above. A message sent from
one computer to another may have to pass through var-
ious intermediate LAs. After the circuit has been setup
between the source and the destination processors, in-
termediate LAs merely act as relays for the message and
the control signals. Transfer of data is carried out under
the supervision of the source host computer. At the des-
tination node data gets stored in the FIFO buffer which
can later be used by its host. It is the responsibility
of this destination FIFO buffer to supply necessary sig-
nals for flow-control and prevention of buffer overflow.
This information is carried over the chain of ACKin and
ACKout lines. A graphic description of the movement of
data and the associated control signals from the source
to the destination is provided in figure 2.

Figure 3 gives an overview of the LA. Primary com-
ponents of a channel in the LA are as follows.

ff
f -�

?

C : Data being read by the Destination
B : Flow of control from Destination to Source
A: Flow of data from Source to Destination

(Dest)(Source)
HostHost

LALA

FIFOFIFO

CB

A

Figure 2: Flow of data and signals on the network

?

666

?

666 66

?

6

?

666

?

6

?

6

?

6

?

6

PR/SM PR/SM PR/SM PR/SM

FCS FCS FCS FCS

Channel0 Channel1 Channel2 Channel3

Figure 3: The LA overview

• Fully Connected Switch (FCS), through which the
channel gets connected to one or more channels.

• Priority Resolver or the arbitration logic (PR), re-
quired in case of two different requests arriving si-
multaneously at a channel, and

• State Machine (SM), necessary to keep track of the
present state of the channel.

Design Considerations
The factors which influenced the design of the LA are

as follows.

• Our belief that a circuit-switched point-to-point
network has lower delays than its corresponding
packet-switched equivalent. Communication in
message-passing environment being bursty in na-
ture, it is preferable to allow the transfer to pro-
ceed to its completion before another is permitted
access to the same buffer. This also prevents the in-
terleaving of messages from different sources at the
destination. Moreover, a circuit-switched approach
obviates the need of buffers at intermediate nodes.

• The need to provide an efficient and natural way of
multicasting. In multicast, a message is sent from
a source processor to a set of processors on the net-
work. Broadcast is a special case of multicast in
which all processors on the network other than the
source are included in this set.

• The necessity to keep the interface with the LA as
simple as possible. Since the objective was to de-
sign a general purpose interconnection module, LA

to host interface is designed such that the signals
needed can be provided by any computer. This
ensures the adaptability of our design to various
processors.

• The restriction placed by the maximum permissi-
ble number of pins for the chip. As the LA was
conceived as a single chip device, we had to multi-
plex the data and the control lines to keep the pin
number within an acceptable limit. Each channel
requires 13 pins. In addition, channel 0 requires
four lines for Reset, Clock and LA-Host bidirec-
tional handshake (figure 1). Thus the LA chip can
be packaged in a 68 pin die.

The FIFO buffer in LA-Host interface has to meet
two very simple requirements. The data path should be
8-bit wide and apart from the usual RD and WR, two
signals, BF (buffer-full) and BE (buffer-empty), should
be available externally. BF is connected to the ACKin

line of channel 0 of the LA, while BE is interpreted by
the processor to find the presence of a packet in the
buffer. These requirements are easily met by most of
the commercially available FIFO buffers.
Circuit Set-up and Release

In circuit-switching, entire path from the source to the
destination has to be set up before an attempt is made
to transfer data. When a host needs to send message, it
first sends request for connection to all intermediate LAs
on the path. As a LA provides four channels, 4 bit con-
trol information is used which also enables a multicast.
Thus circuit set-up within a LA is achieved by means
of control nibbles. A ‘1’ in bit position i of the control
nibble indicates a request for connection with channel
3 − i. Initially, path between the host and the channel
0 of LA is established. A control nibble sent on this es-
tablishes a path between channel 0 and other channels.
This, therefore, sets up the path till the next LA. Using
a succession of control nibbles, the entire path from the
source to the destination is established.

Specifically, a source processor carries out the follow-
ing steps in order to establish the path.

1. Activate the NRW (No Read Write) line (see fig-
ure 1). Internally, two signals, NRW from the host
and BF from the FIFO buffer, are used at chan-
nel 0 to produce ACKout signal. The activation of
the NRW line causes a temporary cessation in data
transmission.

2. Poll the ChBusy signal. When data is being written
to the FIFO buffer, channel 0 asserts this signal in-
dicating the use of the LA-Host-FIFO interface by
the LA. If this interface is not in use by the LA,
source processor proceeds with its set-up bid; oth-
erwise it deactivates its NRW line and withdraws,
to try later.

3. After getting the ‘go-ahead’ write the first control
nibble on the link to the LA. The FCS(s) of the

channel(s) whose bits have been set in the control
nibble attempt to set up a connection with the re-
questing channel. The succeeding nibbles are for-
warded to all enabled channels.

A channel in the LA receives control nibble on the
lower four lines of its data bus and forwards the
succeeding ones on the upper. Thus the data lines
are crossed over to interconnect two LAs. For data
transmission, however this poses no problem as the
cross-over occurs on both, the input and the output
channel.

Once all control nibbles have been written, destina-
tion channel 0 relays the status of its ACKin(BF bit
of the FIFO) and NRW lines to the channel request-
ing the connection, which in turn, is relayed to the
source computer. The entire path gets locked after
an affirmative ACK is received. The data trans-
fer may now proceed. If the FIFO overflows before
the end of trasnsmission (BF=0), the destination
computer is notified and the transmission is tem-
porarily suspended. In such a condition, the des-
tination computer should activate its NRW line to
ensure temporary cessation of data communication
and read the FIFO buffer to create space.

4. After sending all data bytes, the source processor
produces a DISC (disconnect) pulse. Following this
the path gets unlocked giving access to other re-
quests.

Multicast follows naturally by setting the required
bits in the control nibble. Since there is possibility that
more than one request for a channel might arrive si-
multaneously, a priority resolver is built into the switch
controller of every channel. We have implemented it as
a fixed priority arbiter. Due to such arbitration, a con-
nection set-up bid might get preempted in case the cor-
responding ACK signal has not yet arrived. The source
processor relinquishes its demand by generating a DISC
pulse if it does not receive the ACK signal from the
destination LA(s) immediately after sending all control
nibbles. This clears the intermediate LAs in the path to
allow other connection bids.

Implementation and Simulation Results
The LA discussed in this paper was designed on Nelsis

IC Design System[9] using 1.6µ scalable CMOS process.
Total area occupied by a LA design without the pads is
0.72mm × 0.52mm(0.37mm2). We carried out the sim-
ulation using switch level simulators. In the simulation
setup, only a single channel is simulated due to the CPU
constraints. The results are extrapolated to analyse the
performance of the entire circuit.

• ts and th : Set-up and hold times for the path reg-
isters of each channel of the LA = 5ns and 10ns
respectively. This demands that a control nibble
should be stable for a minimum of 15ns.

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

..........................
.....

..........................
.....

.....................
.....

.....................
.....

�
�
��

�
�

B
B
B B

B
B �

�
��

�
�

B
B
B B

B
B

13 12

15 14

11 10

9 8

6 7

54

32

10

11

1 1

1

1

1

1

11

1 1

1

11

1

33

33

33

33

2

22

2 1
1

110

0

0

0

0

0

0

0

0

0

0

0

0

0

0

01 1

1
12

2 2

2 0

0

0

0

0

0

0

011

1
1 2

22

2

2

2 2

21
1

1 10

0

0

0

0

0

0

0

3

33

3

33

33

Figure 4: An example of a 16 node hypercube network

• tdwr : Time delay between the appearance of the
first WR pulse on the WRin line of the channel and
generation of a request for connection to the desired
channel = 4.74ns. Thus to send control nibble to
the second LA, it should be stable for ≈ 20ns.

• tdr : Time delay between the appearance of an in-
ternal connection request (i.e., a request from a
channel of the same LA) and its acceptance1 =
26ns. Thus two control nibbles should be spaced
at least 26ns apart.

• tdack : Time required for the processing of the col-
lected ACK signals to be relayed to the previous
LA2 = 3.07ns.

• tsw : Switching time of the FCS = 1.0ns.

If the longest path in the circuit contain k LAs, then
the control nibble to the last LA will require to be sta-
ble for (15+5(k−1))ns or (10+5k)ns. Assuming a 60ns
write cycle of the processor and presence of buffers in
between the LA and processor, a conservative estimate
allows upto 5 or 6 LAs in the path. With such restric-
tions, LA can prove itself useful in moderate sized high
speed multicomputer networks. The dynamic power dis-
sipation of each channel is 2.196mW3.

Applications
The LA can be used in any message passing multi-

computer using point to point communication links. In
figure 4, we demonstrate its utility in a 16 node hyper-
cube network. In this system, two LAs are used at each
processor thus providing upto 6 communication links to
the other processors. Channel 0 of each LA is connected
to the FIFO buffer and the processor. Two nodes in our
implementation of the hypercube are connected, using
channel 1 of first LA, in dimension 0; using channel 2
of first LA, in dimension 1; using channel 3 of first LA,
in dimension 2; and using channel 1 of second LA in

1if not preempted by a higher priority request
2measured from the time the last ACK was received
3obtained from switch-level simulation[10]

dimension 3. Control nibbles can be found easily. As an
example, to establish a path from node 0000 to nodes
0100 and 0001 simultaneously, successive control nibbles
will be 0101 and 1000.

Conclusion
The LA has been designed using CMOS technology.

It supports a fast circuit setup and communication in
circuit switched networks. Extensive simulations car-
ried out at the Indian Institute of Technology, Kanpur,
have revealed the usefulness of the LA in multicomputer
networks.

References

1. Crowther, W. et.al. “The Butterfly Parallel Pro-
cessor,” IEEE Comp. Arch. Newsletter, Sep./Dec.
1985, pp. 18–45.

2. Gottlieb, A. et.al. “The NYU Ultracomputer - De-
signing an MIMD Shared Memory Parallel Com-
puter,” IEEE Trans. on Comp., C-32(2), Feb.
1983, pp. 175–189.

3. Seitz, C. L., “The Cosmic Cube,” CACM, 28(1),
Jan. 1985, pp. 22–33.

4. DuBois, A. J. and J. Rasure, “Design and Evalu-
ation of a Distributed Asynchronous VLSI Cross-
bar Switch Controller for a Packet Switched Su-
percomputer Network,” SIGARCH Comp. Arch.
News, 19(4), 1991, pp. 69–79.

5. Arnould, E. A., et.al. “The Design of Nectar:A
Network Backplane for Heteregeneous Multicom-
puters,” Proc. of the 3rd Int. Conf. on Architectural
Support for Programming Languages and Operating
Systems, Boston, Mass. Apr. 3-6, 1989, pp. 205–
216.

6. High Performance Parallel Interface (HIPPI) Me-
chanical, Electrical and Signalling Requirements,
ANSI X3T9/88-127 Rev 7.1.

7. High Performance Parallel Interface (HIPPI) Data
Frame Control Requirements, ANSI X3T9/89-146
Rev 2.3.

8. Tamir, Y. and G. L. Frazier, “High-performance
Multi-queue Buffers for VLSI Communication
Switches,” Comp. Arch. News, 6(2), May 1988, pp.
343–354.

9. “The Nelsis IC Design System Users’ Manual,” TU
Delft Software Distribution, TU Delft, 1989.

10. de Graaf, A. C., A. J. van Genderen, “SLS: Switch-
Level Simulator,” The Nelsis IC Design System
Documentation, TU Delft, 1988.

