Primality Tests Based on Fermat's Little Theorem

Manindra Agrawal
Department of Computer Science
Indian Institute of Technology, Kanpur
manindra@iitk.ac.in

Abstract

In this survey, we describe three algorithms for testing primality of numbers that use Fermat's Little Theorem.

1 Introduction

Pierre de Fermat, a 17th century mathematician, is famous for the Fermat's Last Theorem:

Theorem (Fermat's Last Theorem) For any number $n>2$, there is no integer solution of the equation $x^{n}+y^{n}=z^{n}$.

Fermat did not give a proof of this theorem and it remained a conjecture for more than three hundred years. The quest for a proof of this theorem resulted in the development of several branches of mathematics. The eventual proof of the theorem is more than a hundred pages long [6]. A less well known contribution of Fermat is the Fermat's Little Theorem:

Theorem (Fermat's Little Theorem) For any prime number n, and for any number $a, 0<a<n, a^{n-1}=1(\bmod n)$.

Unlike Fermat's Last Theorem, this theorem has a very simple proof. At the same time, the theorem has had a great influence in algorithmic number theory as it has been the basis for some of the most well-known algorithms for primality testing - one of the fundamental problems in algorithmic number theory. In this article, we describe three such algorithms: Solovay-Strassen Test, Miller-Rabin Test, and AKS Test. The first two are randomized polynomial time algorithms and are widely used in practice while the third one is the only known deterministic polynomial time algorithm.

2 Preliminaries

The proofs in next section use basic properies of finite groups and rings which can be found in any book on finite fields (see, e.g., [2]). For numbers r and n, (r, n) equals the gcd of r and n. If $(r, n)=1$ then $O_{r}(n)$ equals the order of
r modulo n, or, in other words, $O_{r}(n)$ is the smallest number $\ell>0$ such that $n^{\ell}=1(\bmod r)$.

For number $n, \phi(n)$ denotes Euler's totient function which equals the number of a 's between 1 and n that are relatively prime to n. If $n=p^{k}$ for some prime p then $\phi(n)=p^{k-1}(p-1)$.

3 Solovay-Strassen Test

The test was proposed by Solovay and Strassen [5] and was the first efficient algorithm for primality testing. Its starting point is a restatement of Fermat's Little Theorem:

Theorem (Fermat's Little Theorem, Restatement 1) For any odd prime number n, and for any number $a, 0<a<n$, $a^{\frac{n-1}{2}}= \pm 1(\bmod n)$.

It is an easy observation that for prime n, a is a quadratic residue (in other words, $a=b^{2}(\bmod n)$ for some $\left.b\right)$ if and only if $a^{\frac{n-1}{2}}=1(\bmod n)$. The Legendre $\operatorname{symbol}\left(\frac{a}{n}\right)$ equals 1 if a is a quadratic residue modulo n else equals -1 for prime n. Therefore, for prime n,

$$
\left(\frac{a}{n}\right)=a^{\frac{n-1}{2}}(\bmod n)
$$

Legendre symbol can be generalized to composite numbers by defining:

$$
\left(\frac{a}{n}\right)=\prod_{i=1}^{k}\left(\frac{a}{p_{i}}\right)^{e_{i}}
$$

where $n=\prod_{i=1}^{k} p_{i}^{e_{i}}, p_{i}$ is prime for each i. This generalization is called Jacobi symbol. Jacobi symbol satisfies quadratic reciprocity law:

$$
\left(\frac{a}{n}\right) \cdot\left(\frac{n}{a}\right)=(-1)^{\frac{(a-1)(n-1)}{4}} .
$$

This, along with the property that $\left(\frac{a}{n}\right)=\left(\frac{a+n}{n}\right)$ gives an algorithm to compute $\left(\frac{a}{n}\right)$ that takes only $O(\log n)$ arithmetic operations.

For composite n, it is no longer neccessary that $\left(\frac{a}{n}\right)=1$ iff a is a quadraric residue modulo n or that $\left(\frac{a}{n}\right)=a^{\frac{n-1}{2}}(\bmod n)$. This suggests that checking if $\left(\frac{a}{n}\right)=a^{\frac{n-1}{2}}(\bmod n)$ may be a test for primality of n. Solovay and Strassen showed that this works with high probability when a is chosen randomly. To see this, let n have at least two prime divisors and $n=p^{k} \cdot m$ with $(p, m)=1, p$ a prime, and k odd. (If every prime divisor of n occurs with even exponent then n is a perfect square and can be handled easily.) Let

$$
A=\left\{a\left(\bmod p^{k}\right) \mid(a, p)=1\right\}
$$

Clearly, $|A|=p^{k-1}(p-1)$ and exactly $\frac{1}{2} p^{k-1}(p-1)$ numbers in A are quadratic non-residues modulo p. Let $a_{0} \in A$ be a quadratic residue modulo p and $b_{0} \in A$
be a non-residue modulo p. Pick any number $c, 0<c<m$ and $(c, m)=1$, and let a, b be the unique numbers between 0 and n such that $a=b=c(\bmod m)$ and $a=a_{0}\left(\bmod p^{k}\right), b=b_{0}\left(\bmod p^{k}\right)$. Then,

$$
\left(\frac{a}{n}\right)=\left(\frac{a_{0}}{p}\right)^{k} \cdot\left(\frac{c}{m}\right)=\left(\frac{c}{m}\right)=-\left(\frac{b}{n}\right) .
$$

If $a^{\frac{n-1}{2}}=\left(\frac{a}{n}\right)(\bmod n)$ and $b^{\frac{n-1}{2}}=\left(\frac{b}{n}\right)(\bmod n)$ then $a^{\frac{n-1}{2}}=-b^{\frac{n-1}{2}}(\bmod n)$. This implies

$$
c^{\frac{n-1}{2}}(\bmod m)=a^{\frac{n-1}{2}}(\bmod m)=-b^{\frac{n-1}{2}}(\bmod m)=-c^{\frac{n-1}{2}}(\bmod m)
$$

This is impossible since $(c, m)=1$. Hence, either $\left(\frac{a}{n}\right) \neq a^{\frac{n-1}{2}}(\bmod n)$ or $\left(\frac{b}{n}\right) \neq$ $b^{\frac{n-1}{2}}(\bmod n)$. Therefore, for a random choice of a between 0 and n, either $(a, n)>1$ or with probability at least $\frac{1}{2},\left(\frac{a}{n}\right) \neq a^{\frac{n-1}{2}}(\bmod n)$.

The above analysis implies that the following algorithm works.

Input n.

1. If $n=m^{k}$ for some $k>1$ then output COMPOSITE.
2. Randomly select $a, 0<a<n$.
3. If $(a, n)>1$, output COMPOSITE.
4. If $\left(\frac{a}{n}\right)=a^{\frac{n-1}{2}}(\bmod n)$ then output PRIME.
5. Otherwise output COMPOSITE.

The test requires $O(\log n)$ arithmetic operations and hence is polynomial time.

4 Miller-Rabin Test

This test was proposed by MIchael Rabin [4] slightly modifying a test by Miller [3]. The starting point is another restatement of Fermat's Little Theorem:

Theorem (Fermat's Little Theorem, Restatement 2) For any odd prime $n=2^{s} \cdot t$ with t odd, and for any number $a, 0<a<n$, the sequence $a^{t}(\bmod n)$, $a^{2 t}(\bmod n), a^{2^{2} t}(\bmod n), \ldots, a^{2^{s} t}(\bmod n)$ either has all 1 's or the pair $-1,1$ occurs somewhere in the sequence.

If n is composite, then the sequence may not satisfy the above property. Miller proved that, assuming Extended Riemann Hypothesis, for at least one a between 1 and $\log ^{2} n$, the above sequence fails to satisfy the property when n is composite but not a prime power. Miller proved that the same holds with
high probability for a random a without any hypothesis. We will give Miller's argument.

Assume that n is composite but not a prime power. Let p and q be two odd prime divisors of n. Let k be the largest power of p dividing n. Let $p-1=2^{v} \cdot w$ where w is odd.

We first analyze the case when there is a -1 somewhere in the sequence. Define set A_{u} as:

$$
A_{u}=\left\{a \mid(0<a<n) \wedge\left(a^{2^{u} \cdot t}=-1(\bmod n)\right)\right\}
$$

for some $0 \leq u<s$.
Then $a^{2^{u} \cdot t}=-1\left(\bmod p^{k}\right)$ for every $a \in A$. Let

$$
A_{p, u}=\left\{a\left(\bmod p^{k}\right) \mid a \in A_{u}\right\}
$$

Since the size of the multiplicative group modulo p^{k} is $p^{k-1}(p-1)$, for every $a \in A_{p, u}, a^{p^{k-1} \cdot(p-1)}=1\left(\bmod p^{k}\right)$. Therefore, $a^{\left(p^{k} \cdot(p-1), 2^{u+1} \cdot t\right)}=1\left(\bmod p^{k}\right)$. Prime p does not divide t since otherwise it divides $n-1=-1(\bmod p)$ which is absurd. Hence, $a^{\left(p-1,2^{u+1} \cdot t\right)}=1\left(\bmod p^{k}\right)$. Since t is odd and $p-1=2^{v} \cdot w$, $a^{2^{\min \{v, u+1\}} \cdot(w, t)}=1\left(\bmod p^{k}\right)$. If $v \leq u$ then we get $a^{2^{u} \cdot t}=1\left(\bmod p^{k}\right)$ which is not possible. Hence, $v>u$ implying that $a^{2^{u} \cdot(w, t)}=-1\left(\bmod p^{k}\right)$. It is easy to see that the equation $x^{\ell}= \pm 1\left(\bmod p^{k}\right)$ for $\ell \mid(p-1)$ has at most ℓ solutions. It follows that $\left|A_{p, u}\right| \leq 2^{u} \cdot(w, t) \leq 2^{u} \cdot t \leq \frac{1}{2^{u-v}}(p-1)$.

An identical argument shows that $\left|A_{q, u}\right| \leq \frac{1}{2^{u-v^{\prime}}}(q-1)$ for $u<v^{\prime}$ where $A_{q, u}$ is defined similarly to $A_{p, u}$ and $q-1=2^{v^{\prime}} \cdot w^{\prime}$ for odd w^{\prime}. By Chinese Remainder Theorem, it follows that $\left|A_{u}\right| \leq \frac{1}{4^{u-v^{\prime \prime}}}(n-1)$ if $u<v^{\prime \prime}=\min \left\{v, v^{\prime}\right\}$, 0 otherwise. Hence,

$$
\sum_{0 \leq u<s}\left|A_{u}\right| \leq \sum_{0 \leq u<v^{\prime \prime}} \frac{n-1}{4^{u-v^{\prime \prime}}}=\left(\frac{1}{3}-\frac{1}{3 \cdot 4^{v^{\prime \prime}}}\right) \cdot(n-1) .
$$

For the case when the whole sequence is all 1's, one can argue exactly as above to obtain that the number of a 's giving rise to such a sequence is at most $\frac{1}{4^{v^{\prime \prime}}}(n-1)$. Hence the probability that the sequence generated by a randomly chosen a satisfies either of the two properties is less than $\frac{1}{2}$.

The above analysis implies that the following algorithm works.

Input n.

1. If $n=m^{k}$ for some $k>1$ then output COMPOSITE.
2. Randomly select $a, 0<a<n$.
3. If $(a, n)>1$ output COMPOSITE.
4. Let $n-1=2^{s} \cdot t$.
5. Compute the sequence $a^{t}(\bmod n), a^{2 t}(\bmod n), \ldots, a^{2^{s} \cdot t}(\bmod n)$.
6. If The sequence is all 1's or has a -1 followed by a 1 then output PRIME.
7. Otherwise output COMPOSITE.

The test requires $O(\log n)$ arithmetic operations and hence is polynomial time.

5 AKS Test

This test was proposed by Agrawal, Kayal and Saxena [1]. It is the only known deterministic polynomial time algorithm known for the problem. The starting point of this test is a slight generalization of Fermat's Little Theorem.

Theorem (Fermat's Little Theorem, Generalized) If n is prime then for any $r>0$ and any $a, 0<a<n$,

$$
(x+a)^{n}=x^{n}+a\left(\bmod n, x^{r}-1\right) .
$$

On the other hand, if n is composite and not a prime power, then it appears unlikely that the above equation holds for several a 's. This can be proven formally as follows.

Suppose that n is not a prime power and let p be a prime divisor of n. Suppose that $(x+a)^{n}=x^{n}+a\left(\bmod n, x^{r}-1\right)$ for $0<a \leq 2 \sqrt{r} \log n$ and r is such that $O_{r}(n)>4 \log ^{2} n$. Define the two sets

$$
A=\left\{m \mid(x+a)^{m}=x^{m}+a\left(\bmod p, x^{r}-1\right), 0<a \leq 2 \sqrt{r} \log n\right\}
$$

and

$$
B=\left\{g(x) \mid g(x)^{m}=g\left(x^{m}\right)\left(\bmod p, x^{r}-1\right), m \in A\right\} .
$$

Clearly, $p, n \in A$ and $x+a \in B$ for $0<a \leq 2 \sqrt{r} \log n$. Moreover, it is straightforward to see that both sets A and B are closed under multiplication and hence are infinite. We now define two finite sets associated with A and B. Let

$$
A_{0}=\{m(\bmod r) \mid m \in A\},
$$

and

$$
B_{0}=\{g(x)(\bmod p, h(x)) \mid g(x) \in B\}
$$

where $h(x)$ is an irreducible factor of $x^{r}-1$ over F_{p} such that the field $F=$ $F_{p}[x] /(h(x))$ has x as a primitive r th root of unity.

We now estimate the sizes of these sets. Let $t=\left|A_{0}\right|$. Since elements of A_{0} are residues modulo $r, t \leq \phi(r)<r$. Also, since $O_{r}(n) \geq 4 \log ^{2} n$ and A_{0} contains all powers of $n, t \geq 4 \log ^{2} n$.

Let $T=\left|B_{0}\right|$. Since elements of B_{0} are polynomials modulo $h(x)$ and degree of $h(x) \leq r-1, T \leq p^{r-1}$. The lower bound on T is a little more involved. Consider any two polynomials $f(x), g(x) \in B$ of degree $<t$. Suppose $f(x)=$
$g(x)(\bmod p, h(x))$. Then $f\left(x^{m}\right)=f(x)^{m}=g(x)^{m}=g\left(x^{m}\right)(\bmod p, h(x))$ for any $m \in A_{0}$. Therefore, the polynomial $f(y)-g(y)$ has at least t roots in the field F (as x is a primitive r th root of unity). Since the degree of $f(y)-g(y)$ is less than t, this is possible only if $f(y)=g(y)$. This argument shows that all polynomials of degree $<t$ in B map to distinct elements in B_{0}. The number of polynomials in B of degree $<t$ is at least $\binom{2 \sqrt{r} \log n+t-1}{t-1} \geq\binom{ 4 \sqrt{t} \log n}{2 \sqrt{r} \log n}>2^{2 \sqrt{t} \log n}$. This follows because B_{0} has at least $2 \sqrt{r} \log n$ distinct degree 1 polynomials assuming that $p>2 \sqrt{r} \log n$. Therefore, $T>2^{2 \sqrt{t} \log n}$.

With the above lower bound on T, we can now complete the proof. Since $\left|A_{0}\right|=t$, there exist $\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right), 0 \leq i_{1}, j_{1}, i_{2}, j_{2} \leq \sqrt{t}$ such that $n^{i_{1}} p^{j_{1}}=$ $n^{i_{2}} p^{j_{2}}(\bmod r)$. Let $g(x) \in B_{0}$. Then

$$
g(x)^{n^{i_{1}} p^{j_{1}}}=g\left(x^{n^{i_{1}} p^{j_{1}}}\right)=g\left(x^{n^{i_{2}} p^{j_{2}}}\right)=g(x)^{n^{i_{2}} p^{j_{2}}}(\bmod p, h(x)) .
$$

Hence, the polynomial $y^{n^{i_{1}} p^{j_{1}}}-y^{n^{i_{2}} p^{j_{2}}}$ has at least $\left|B_{0}\right|=T>2^{2 \sqrt{t} \log n}$ roots in the field F. The degree of this polynomial is at most $n^{2 \sqrt{t}}$, and therefore the polynomial is zero. This implies $n^{i_{1}} p^{j_{1}}=n^{i_{2}} p^{j_{2}}$ which means that n is a power of p. This is not possible by assumption.

The above argument shows that the following test works.

Input n.

1. If $n=m^{k}$ for some $k>1$ then output COMPOSITE.
2. Find the smallest r such that $O_{r}(n)>4 \log ^{2} n$.
3. For every $a, 0<a \leq 2 \sqrt{r} \log n$, do

$$
\text { If }(a, n)>1, \text { output COMPOSITE. }
$$

$$
\text { If }(x+a)^{n} \neq x^{n}+a\left(\bmod n, x^{r}-1\right), \text { output COMPOSITE. }
$$

4. Output PRIME.

The test requires $O\left(r^{\frac{3}{2}} \log ^{2} n \log r\right)$ arithmetic operations. An easy counting arguments shows that $r=O\left(\log ^{5} n\right)$ and hence the algorithm works in polynomial time.

References

[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics, 160(2):781-793, 2004.
[2] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge University Press, 1986.
[3] G. L. Miller. Riemann's hypothesis and tests for primality. J. Comput. Sys. Sci., 13:300-317, 1976.
[4] M. O. Rabin. Probabilistic algorithm for testing primality. J. Number Theory, 12:128-138, 1980.
[5] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM Journal on Computing, 6:84-86, 1977.
[6] A. Wiles. Modular elliptic curves and fermat's last theorem. Annals of Mathematics, 141:443-551, 1995.

