
Determinant Versus Permanent

Manindra Agrawal

Abstract. We study the problem of expressing permanent of matrices as determinant
of (possibly larger) matrices. This problem has close connections with complexity of
arithmetic computations: complexities of computing permanent and determinant roughly
correspond to arithmetic versions of the classes NP and P respectively. We survey known
results about their relative complexity and describe two recently developed approaches
that might lead to a proof of the conjecture that permanent can only be expressed as
determinant of exponential-sized matrices.

Mathematics Subject Classification (2000). Primary 68Q17; Secondary 68W30.

Keywords. Arithmetic computation, complexity classes, determinant, permanent.

1. Introduction

Determinant of square matrices plays a fundamental role in linear algebra. It
is a linear function on rows (and columns) of the matrix, and has several nice
interpretations. Geometrically, it is the volume of the parallelopied defined by rows
(or columns) of the matrix, and algebraically, it is the product of all eigenvalues,
with multiplicity, of the matrix. It also satisfies a number of other interesting
properties, e.g., it is multiplicative, invariant under linear combinations of rows
(and columns) etc. Permanent of a square matrix is a number that is defined in a
way similar to the determinant. For matrix X = [xi,j]1≤i,j≤n,

perX =
∑

π∈Sn

n∏
i=1

xi,π(i),

where Sn is the symmetric group on n elements. The only difference with deter-
minant is in the signs of terms:

det X =
∑

π∈Sn

sgn(π) ·
n∏

i=1

xi,π(i),

where sgn(π) ∈ {1,−1} is the sign of permutation π.1 Despite the similarity
in definition, permanent has much fewer properties than determinant. No nice

1Both permanent and determinant are special forms of immanents defined as immχ X =P
π∈Sn

χ(π) ·
Qn

i=1 xi,π(i) where χ : Sn 7→ C is a character of Sn. For permanent, χ = id and
for determinant, χ equals sign of permutation.

2 Manindra Agrawal

geometric or algebraic interpretation is known for permanent; and it is neither
multiplicative nor invariant under linear combinations of rows or columns. Perhaps
for this reason, permanent did not get much attention until late 1970s, and just
about everything known about it until then is in the book [10]. In 1979, Leslie
Valiant [24] completely changed the view on permanent by showing that complexity
of computing permanent precisely captures the arithmetic version of class NP,
called VNP. Since then, properties of permanent have been extensively studied by
complexity theorists.

One of the most natural question about permanent is to investigate its rela-
tionship with determinant. It is easy to see that determinant of matrix X can be
expressed as permanent of a related matrix X̂ whose entries are 0, 1, or xi,js and
size is O(n) (set up entries of X̂ such that det X̂ = det X and the product corre-
sponding to every permutation that has an even cycle is zero). For the converse,
the best known bound on the size of matrix X̂ whose entries are constants and
xi,js, and det X̂ = perX is 2Ω(n). This suggests that complexity of computing
permanent is much higher than that of determinant. Although widely believed,
this remains a conjecture. This conjecture has a close connection to the conjec-
tured separation of arithmetic NP from arithmetic P (the class of all functions that
can be efficiently computed by arithmetic operations, see next section for a precise
definition). It is known that complexity of determinant is close to the complexity
of arithmetic P: every function computed by n arithmetic operations can be ex-
pressed as determinant of a matrix of size nO(log n). This lends more importance
to the problem of settling the conjecture.

There have been some attempts to answer the conjecture positively [14, 6, 15, 8].
A sequence of arithmetic operations can be modeled as an arithmetic circuit, and
the size of arithmetic circuit denotes the number of arithmetic operations in the
sequence. In [8], monotone circuits were considered, these are circuits in which no
constant is negative. For computability by such restricted circuits, an exponential
lower bound was shown for the complexity of permanent. A different restriction
on arithmetic circuits is that of depth – the number of layers of operations. These
circuits were considered in [14, 19, 6] and lower bounds were shown on the com-
plexity of computing permanent by depth three circuits. Finally, [15] considers
yet another restriction. In this restriction, every gate of the circuit is required to
compute a multi-linear polynomial. A superpolynomial lower bound is shown on
formulas (circuits with outdegree one) of this kind computing permanent.

All the above lower bounds hold for very restricted settings, and the techniques
used do not seem to generalize. Over the last few years, however, two new tech-
niques have been proposed that hold some promise. The first of these was proposed
by Mulmuley and Sohoni [11]. They transform the problem to algebraic geometry
domain where it is reduced to showing that the permanent polynomial does not
lie in the closure of a certain orbit of determinant polynomial.

The second approach was proposed by Kabanets and Impagliazzo [9]. They
reduced the problem to that of finding a deterministic, subexponential-time algo-
rithm for the Identity Testing. Identity Testing problem is defined as follows: given
an arithmetic circuit computing polynomial p over n variables, test if p = 0. There

Determinant Versus Permanent 3

exist several randomized polynomial-time algorithms for solving this. Kabanets
and Impagliazzo show that any deterministic, subexponential-time algorithm for
the problem will imply either a superpolynomial lower bound for arithmetic cir-
cuits computing permanent, or a boolean lower bound on the class NEXP. This
connection was strengthened in [1] to show that if there exist special kinds of deter-
ministic algorithms for testing identities given by superconstant depth arithmetic
circuits, then permanent requires superpolynomial sized arithmetic circuits.

In this article, we will describe the known results on lower bounds on permanent
as well as the two new approaches outlined above.

2. Definitions

Q, R, and C are respectively fields of rational numbers, real numbers, and complex
numbers.

An arithmetic circuit over field F is a directed, acyclic graph with labelled
vertices. Vertices of indegree zero are labelled with either a variable xi or a constant
from F . Vertices labelled with variables are called input gates. The remaining
vertices are labelled with either ‘+’ or ‘*’ and are called addition or multiplication
gates respectively. Vertices with outdegree zero are also called output gates. We
restrict our attention to circuits with exactly one output gate. The fanin of a
gate equals the number of edges incident to the gate. In this article, gates have
unbounded fanin when not mentioned otherwise. The size of circuit C equals the
number of gates in it. The depth of circuit C equals the length of the longest path
from an input gate to output gate. The degree of C is inductively defined as: the
degree of an input gate is one or zero depending on whether it is labelled by a
variable or constant; degree of an addition gate is the maximum of the degree of
the gate whose edges are incident to the gate; degree of a multiplication gate is
the sum of the degrees of the gate whose edges are incident to the gate; finally, the
degree of C is the degree of its output gate.

An arithmetic circuit C computes a polynomial as follows. The polynomial
computed at an input gate equals the label of the gate. For any other gate g,
let g1, . . ., gk be all the gates that have an edge incident to g and let pgi

be the
polynomial computed at gate gi. Then the polynomial computed at the gate g
equals

∑k
i=1 pgi if g is an addition gate, and equals

∏k
i=1 pgi if g is a multiplication

gate. The polynomial computed by the circuit is the polynomial computed at its
output gate.

Let {pn}n>0 be a family of polynomials with pn a polynomial of degree d(n)
over n variables. A circuit family {Cn}n>0 is said to compute {pn} if for every n,
the polynomial computed by Cn equals pn. In the following, we will write a family
{pn}n>0 simply as {pn}.

Arithmetic branching programs are a restricted form of arithmetic circuits in
which every multiplication gate has fanin exactly two, and in addition, at least one
of the two gates, from which edges are incident to the multiplication gate, is an
input gate. Such circuits are also called skew circuits.

4 Manindra Agrawal

The class VPF , the arithmetic analog of class P, is defined to be the set of
polynomial families {pn} over field F such that (1) each pn is of degree nO(1),
(2) there exists a circuit family {Cn} computing {pn} such that Cn is of size
nO(1).2 The class VNPF , the arithmetic analog of class NP, is defined to be the
set of polynomial families {pn} over field F such that (1) each pn is of degree nO(1),
(2) there exists a family of polynomials {qn} ∈ VPF such that for every n,

pn(x1, x2, . . . , xn) =
1∑

y1=0

1∑
y2=0

· · ·
1∑

ym=0

qn+m(x1, x2, . . . , xn, y1, y2, . . . , ym)

with m = nO(1).3

Given two polynomials p(x1, x2, . . . , xn) and q(y1, y2, · · · , ym) over field F , we
say that p is a projection of q if p(x1, x2, . . . , xn) = q(α1, α2, · · · , αm) where each
αi ∈ F ∪ {x1, x2, . . . , xn}. Given two polynomial families {pn} and {qn}, we say
that {pn} is a p-projection of {qn} if for every n there exists an m = nO(1) such
that pn is a projection of qm.4

Let perF = {perF,n} and detF = {detF,n} denote the families of permanent
and determinant polynomials over field F respectively. Both these families have
polynomials over n2 variables for each n.

Valiant [24] proved that:

Theorem 2.1 ([24]). For any F , perF ∈ VNPF . In addition, for any F , char(F) 6=
2, for any polynomial family {pn} in VNPF , {pn} is a p-projection of perF .

So permanent is as hard to compute as any polynomial family in VNP. In
contrast, determinant can be computed efficiently. A nice characterization of de-
terminant was shown in [4, 21, 25]:

Theorem 2.2 ([4, 21, 25]). For any F , detF can be computed by polynomial-sized
arithmetic branching programs. In addition, for any F and for any polynomial
family {pn} computed by polynomial-sized arithmetic branching programs, {pn} is
a p-projection of detF .

In fact, all families in VP are almost p-projections of determinant.

Theorem 2.3 ([23]). Let C be a circuit of size s computing a polynomial of degree
d. There exists another circuit computing the same polynomial of size sO(1) and
depth O(log s + log d).

Corollary 2.4. Any circuit family in VPF can be computed by circuit families of
polynomial size and logarithmic depth.

Corollary 2.5. For every circuit family {pn} ∈ VPF and for every n, pn is a
projection of detF,m where m = nO(log n).

2In addition, circuit Cn must be efficiently computable given 1n. This property does not seem
to play any role in obtaining lower bounds.

3The class #PF is the ‘functional’ version of class VNPF : a polynomial family {pn} ∈ VNPF

belongs to #PF when for each n, pn is viewed as a map from F n to F .
4Again, given 1n, the projection specified by (α1, α2, . . . , αm) should be efficiently computable.

Determinant Versus Permanent 5

The above characterizations of complexities of determinant and permanent im-
ply that, in order to separate VPF from VNPF , it is enough to show that perF is
not an almost p-projection of detF (in the sense above).

3. Known Lower Bounds on Permanent

Lower bounds are known on permanent only for restricted circuits. In this section,
we describe important lower bounds of this kind. Three major restrictions have
been considered for proving such lower bounds: monotone circuits, constant depth
circuits, and multilinear formulas.

3.1. Monotone Circuits. A circuit over Q or R is monotone if all the con-
stants in the circuit are non-negative. This is a very restricted class of circuits since
no cancellations can occur in it. Jerrum and Snir [8] showed that any monotone
circuit family that computes permanent must have exponential size.

3.2. Constant Depth Circuits. In this restriction, the depth of a circuit
family is fixed, i.e., it is independent of n. Permanent (or any polynomial of degree
nO(1) for that matter) can be computed by an exponential size depth two circuit
family. Conversely, it is easy to see that any depth two circuit family computing
permanent must have exponential size.

Depth three circuit families are, however, non-trivial. A depth three circuit can
be of the form “sum-of-products-of-sums” or “product-of-sums-of-products.” The
latter form can easily be seen to require exponential size to compute permanent
(the topmost multiplication gate can be shown to be redundant transforming the
circuit to a depth two circuit). Circuit families of the first form are powerful: Ben
Or observed that they can efficiently compute all symmetric polynomials of degree
nO(1) over fields of characteristic zero.

The best known lower bound in fields of characteristic zero is by Shpilka and
Wigderson [19] who prove that permanent (and determinant) requires a circuit
family of size Ω(n2). Their idea is to consider the space spanned by all partial
derivatives of the polynomials computed at each gate of a given circuit. They show
that for a depth three circuit with small size, the space spanned by the derivatives
of output polynomial would be of small dimension while the space spanned by
derivatives of permanent is of large dimension.

Over finite fields, the situation is better. Grigoriev and Razborov [6] showed
an exponential lower bound on the size of depth three circuit families computing
determinant and permanent. Their approach was to show that polynomial com-
puted by a depth three circuit of small size can be ‘approximated’ by a low-degree
polynomial (approximated in the sense that the two polynomials agree on large
set of points from the field). Then they observed that determinant and permanent
cannot be approximated by low-degree polynomials.

6 Manindra Agrawal

3.3. Multilinear Formulas. Multilinear formulas are circuits such that
(1) the outdegree of every gate is at most one, and (2) the polynomial computed
at every gate is multilinear. Such circuits have severely limited multiplication
gates—the polynomials input to a multiplication gate must be over disjoint sets
of variables. Using a combination of partial derivative technique and random
restrictions (setting some input variables to random values), Raz [15] proved a
lower bound of nΩ(log n) on the size of families of multilinear formulas computing
permanent and determinant.

4. The Algebraic Geometry Approach

Mulmuley and Sohoni [11] have offered a completely new approach to the problem
of proving a lower bound on permanent for unrestricted circuits by transforming
the problem to geometric settings. In this section, we give a brief overview of their
approach.

Suppose, for F = Q, perF,n is a projection of detF,m, m > n. Define p̂erF,m =
xm−n

m2 · perF,n. It follows that p̂erF,m is also a projection of detF,m (just multiply
all constants of the projection by xm2). This can be written as

p̂erF,m(x1, x2, . . . , xm2) = A · detF,m = detF,m((x1, x2, . . . , xm2) ·A),

where A is a m2 × m2 matrix over Q. Matrix A would be singular whenever
m > n since the variables xn2+1, . . ., xm2−1 do not occur in p̂erF,m. Let Aε̄

be a slight ‘perturbation’ of A obtained by adding εi,j to the (i, j)th entry of A.
For nearly all values of ε̄ close to zero, Aε̄ is non-singular and the polynomial
Aε̄ · detF,m approximates the polynomial p̂erF,m very well (all the coefficients of
two polynomials are close to each other). Now consider the space V = CM with
M =

(
m2+m−1

m

)
. Every homogeneous polynomial of degree m over m2 variables

can be viewed as a point in this space (degree m monomials forming the basis). So
both detF,m and p̂erF,m are points in V (since F = Q and both polynomials are
of degree m over m2 variables). Let O be the orbit of detF,m under the action of
GLm2(C), i.e.,

O = {B · detF,m | B is an invertible matrix over C}.

Set O can be viewed as a set of points in V . The above argument shows the
following:

Lemma 4.1 ([11]). If perF,n is a projection of detF,m then the point corresponding
to p̂erF,m in V lies in the closure of the set O in V . Conversely, if p̂erF,m lies in
the closure of O then perF,n can be approximated by projections of detF,m to any
desired accuracy.

This (near) characterization is the staring point of their approach. Instead
of V , we can work in the projective space P (V) too since both the polynomials
are homogeneous. The same near characterization holds in P (V) as well with

Determinant Versus Permanent 7

GLm2(C) replaced by SLm2(C), the group of all matrices with determinant one.
The advantage of working in P (V) is that the closure of O (under the classical
Euclidean topology) coincides with the closure of O under Zariski topology [12].
In Zariski topology, there is the well-studied notion of stability that captures this
problem: detF,m is p̂erF,m-stable under SLm2(C) if p̂erF,m lies in the closure of
the orbit O (we abuse the notation here by using the same names as in V for
polynomials and sets in P (V)).

Points in the orbit O have a useful property. For any point p ∈ P (V), let

Gp = {A ∈ SLm2(C) | A · p = p}.

Group Gp is called the stabilizer of p.

Lemma 4.2. For any point p ∈ O, Gp is a conjugate of GdetF,m
.

Proof. Let p = B · detF,m ∈ O. Then Gp = B ·GdetF,m
·B−1.

Suppose the orbit of polynomial p̂erF,m under SLm2(C) is a closed set (such
polynomial are called stable). Let Q be the orbit of p̂erF,m under SLm2(C). By
Luna’s slice theorem, there is a neighborhood N of Q such that for any point
p ∈ N , Gp is a conjugate of a subgroup of G

cperF,m
. Since closure of O contains

p̂erF,m, there is a point in N , say q, such that q = B · detF,m. This means Gq

is a conjugate of GdetF,m
. Therefore, GdetF,m

is a conjugate of a subgroup of
G
cperF,m

. On the other hand, it is well known that GdetF,m
is ‘larger’ than G

cperF,m
:

GdetF,m
is characterized by the transformations of the kind X 7→ A ·X ·B−1 where

A,B ∈ GLm(C) while G
cperF,m

is characterized by the transformations of the kind
X 7→ A ·X ·B−1 where A,B ∈ GLm(C) and both A and B are either diagonal or
permutation matrices. Therefore, GdetF,m

cannot be a conjugate of a subgroup of
G
cperF,m

. (This is a rough argument; to make it precise, more work is needed.)
Unfortunately, p̂erF,m is not stable (interestingly, perF,n is stable in the smaller

dimensional space defined by degree n homogeneous polynomials over n2 variables;
the translation to higher dimensional space ruins the stability). Mulmuley and
Sohoni define the notion of partial stability and show that p̂erF,m is partially stable.
Now their aim is to make the above argument work even for partially stable points.
A more detailed explanation of their approach is in [16].

5. The Derandomization Approach

Kabanets and Impagliazzo [9] have discovered another new approach for proving
lower bounds on permanent. Unlike the previous one, this approach is based on
arithmetic circuits. In this section, we outline their approach and its variation
in [1].

The Identity Testing problem is defined as follows: given an arithmetic circuit
C over field F as input, decide if the polynomial computed by the circuit is the zero
polynomial. This is a classical problem in computational algebra and there exist

8 Manindra Agrawal

several randomized polynomial-time algorithms for it. Perhaps the simplest one is
by Schwartz and Zippel [17, 26]: randomly choose values for variables of C from a
set in F of size 2d, here d is the degree of C (if |F | < 2d then extend F slightly);
output ZERO if C evaluates to zero, otherwise NON-ZERO. An easy argument
shows that this test is correct with probability at least 1

2 when C computes a
non-zero polynomial and always correct when C computes a zero polynomial.

Kabanets and Impagliazzo show that if there exists a deterministic subexpo-
nential (= 2no(1)

) time algorithm for solving Identity Testing problem then at least
one of the following two lower bounds hold:

1. NEXP requires superpolynomial sized boolean circuits.

2. Permanent requires superpolynomial sized arithmetic circuits.

To see this, suppose that permanent has polynomial sized arithmetic circuits
for some field F of characteristic different from two. Consider a non-deterministic
machine that, on input 1n, guesses the circuit that computes perF,n and verifies it
to be correct. It does this by inductively verifying that the circuit, under appro-
priate settings of its inputs, computes perF,n−1 correctly and then verifying the
equation for perF,n that expresses it in terms of perF,n−1. Verifying the equation is
an instance of Identity Testing problem and so can be done in subexponential time
by assumption. Therefore, given any matrix A ∈ Fn2

, perA can be computed in
non-deterministic subexponential time. Now assume that NEXP has polynomial
sized boolean circuits. By [3, 22], it follows that NEXP ⊆ P#P. Since complexity
of #P is exactly the complexity of computing permanent, it follows that NEXP is
in non-deterministic subexponential time contradicting the non-deterministic time
hierarchy theorem [18].

This result falls short of pointing a way for proving lower bounds on permanent—
besides finding a deterministic algorithm for Identity Testing, one needs to assume
NEXP has polynomial sized boolean circuits which is very unlikely to be true.
However, it does point to a connection between Identity Testing problem and
permanent lower bounds. This connection was strengthened in [1] by defining
pseudo-random generators for arithmetic circuits. Pseudo-random generators in
the boolean settings have been studied intensively (see, e.g., [5, 13, 7, 20]). It is
known that constructing pseudo-random generators is equivalent to proving lower
bounds in the boolean settings. In [1], pseudo-random generators are defined in
arithmetic settings and a similar equivalence is observed.

Let ACF be the class of all arithmetic circuits over F and AF ⊆ ACF .

Definition 5.1. Function f : N 7→ (F [y])∗ is a (`(n), n)-pseudo-random generator
against AF if:

• f(n) ∈ (F [y])n+1 for every n > 0.

• Let f(n) = (f1(y), . . . , fn(y), g(y)). Then each fi(y) as well as g(y) is a
polynomial of degree at most 2`(n).

• For any circuit C ∈ AF of size n with m ≤ n inputs:

C(x1, x2, . . . , xm) = 0 iff C(f1(y), f2(y), . . . , fm(y)) = 0 (mod g(y)).

Determinant Versus Permanent 9

A direct application of Schwartz-Zippel lemma [17, 26] shows that there always
exist (O(log n), n)-pseudo-random generators against ACF . Call such generators
optimal pseudo-random generators. Pseudo-random generators that can be effi-
ciently computed are of special interest.

Definition 5.2. A (`(n), n)-pseudo-random generator f against AF is efficiently
computable if f(n) is computable in time 2O(`(n)).

An easy argument shows that if there exists an efficiently computable (`(n), n)-
pseudo-random generator against ACF then the Identity Testing problem can
be solved deterministically in time 2O(`(n)): evaluate the given circuit C of size
n modulo g(y) after substituting for ith input variable polynomial fi(y) where
f(n) = (f1(y), . . . , fn(y), g(y)). In particular, if there exist an efficiently com-
putable optimal pseudo-random generator against ACF then Identity Testing can
be solved in polynomial time.

An efficiently computable pseudo-random generator also results in a lower
bound.

Theorem 5.3 ([1]). Let f be an efficiently computable (`(n), n)-pseudo-random
generator against AF . Then there is a multilinear polynomial over 2`(n) variables,
computable in time 2O(`(n)), that cannot be computed by any circuit in AF of size
n.

Proof. For any m = `(n), define polynomial qf (x1, x2, . . . , x2m) as:

qf (x1, x2, . . . , x2m) =
∑

S⊆[1,2m]

cS ·
∏
i∈S

xi.

The coefficients cS satisfy the condition∑
S⊆[1,2m]

cS ·
∏
i∈S

fi(y) = 0

where f(n) = (f1(y), f2(y), . . . , fn(y), g(y)). Such a qf always exists as the follow-
ing argument shows.

The number of coefficients of qf are exactly 22m. These need to satisfy
a polynomial equation of degree at most 2m ·2m. So the equation gives
rise to at most 2m ·2m +1 homogeneous constraints on the coefficients.
Since (2m · 2m + 1) < 22m for m ≥ 3, there is always a non-trivial
polynomial qf satisfying all the conditions.

The polynomial qf can be computed by solving a system of 2O(m) linear equations
in 2O(m) variables over the field F . Each of these equations can be computed
in time 2O(m) using computability of f . Therefore, qf can be computed in time
2O(m). Now suppose qf can be computed by a circuit C ∈ AF of size n. By the
definition of polynomial qf , it follows that C(f1(y), f2(y), . . . , f2m(y)) = 0. The
size of circuit C is n and it computes a non-zero polynomial. This contradicts the
pseudo-randomness of f .

10 Manindra Agrawal

A partial converse of this theorem can also be shown: if there exists a polyno-
mial family computable in time 2O(`(n)) that cannot be computed by any size n
circuit family in AF then there exists an efficiently computable (`2(n), n)-pseudo-
random generator against AF , when the degree of every size n circuit in AF is
bounded by nO(1).

An efficient optimal pseudo-random generator against ACF yields a polynomial
that requires exponential (in the number of variables) sized circuits. However,
it is not clear whether the polynomial qf can be computed as permanent of a
matrix of size mO(1). To get this, one needs to show that all the coefficients cS

of qf are themselves efficiently computable. If this is done, then using the VNP
characterization of permanent, it follows that qf equals permanent of a matrix of
size mO(1). This results in an exponential lower bound on permanent.

For a superpolynomial lower bound, one needs either an (no(1), n)-pseudo ran-
dom generator against ACF or an optimal pseudo-random generators against a
much smaller class of circuits.

Theorem 5.4 ([1]). Let f be an efficiently computable optimal pseudo-random
generator against the class of circuits of depth ω(1) such that the associated poly-
nomial qf is in VNP. Then permanent cannot computed by any polynomial sized
circuit.

Proof. From the previous theorem, it follows that the polynomial qf cannot be
computed by exponential sized circuits of depth ω(1). A size nd, depth d log n
arithmetic circuit with fanin two multiplication gates can be translated to a subex-
ponential sized depth d circuit by “cutting” the circuit into log n layers of depth
d each, and then “flattening” each layer to a subexponential sized circuit of depth
two. Since every polynomial sized circuit computing permanent can be transformed
to a depth O(log n), size nO(1) circuit with fanin two multiplication gates [23], the
theorem follows.

It is not clear at the moment how to construct optimal pseudo-random gener-
ators against constant depth circuits. In [1] a generator is conjectured. Uncondi-
tionally, we only know generators against depth two, polynomial sized circuits (the
proof is easy, see [1]). We know an optimal generator against the following very
special class of circuits too:

A = {Cn(x) | Cn(x) = (1 + x)n − 1− xn over ring Zn}.

Notice that the circuits in the class A are not over a fixed field (or ring), and the
size of the circuit Cn is O(log n) and the degree is n. In [2], the following optimal
generator was constructed against A:

f(m) = (x, 0, . . . , 0, x16m5
·
16m5∏
r=1

4m4∏
a=1

((x− a)r − 1)).

Determinant Versus Permanent 11

6. Concluding Remarks

The problem of proving that permanent of size n matrix cannot be expressed as
determinant of size nO(log n) matrix is of great importance in complexity theory.
While the existing approaches have failed to shed light on this, one hopes that
at least one of the two new approaches will eventually lead to a solution of the
problem.

Acknowledgements

I wish to thank Somenath Biswas for enjoyable discussions and help in preparing
this article.

References

[1] M. Agrawal. Proving lower bounds via pesudo-random generators. In Proceedings
of the FST&TCS, pages 96–105, 2005.

[2] Manindra Agrawal. On derandomizing tests for certain polynomial identities. In
Proceedings of the Conference on Computational Complexity, pages 355–362, 2003.

[3] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time
simulations unless EXPTIME has publishable proofs. Computational Complexity,
3(4):307–318, 1993.

[4] C. Damm. DET=L#L. Technical Report Informatik-preprint 8, Fachbereich Infor-
matik der Humboldt Universität zu Berlin, 1991.

[5] O. Goldreich. Foundation of Cryptography I: Basic Tools. Cambridge University
Press, 2001.

[6] D. Grigoriev and A. Razborov. Exponential lower bounds for depth 3 arithmetic
circuits in algebras of functions over finite fields. Applicable Algebra in Engineering,
Communication and Computing, 10(6):467–487, 2000.

[7] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of Annual ACM Symposium on the
Theory of Computing, pages 220–229, 1997.

[8] M. Jerrum and M. Snir. Some exact complexity results for straight-line computations
over semirings. J. ACM, 29(3):874–897, 1982.

[9] Valentine Kabanets and Russell Impagliazzo. Derandomizing polyonmial identity
tests means proving circuit lower bounds. In Proceedings of Annual ACM Symposium
on the Theory of Computing, pages 355–364, 2003.

[10] H. Minc. Permanents. Addision-Wesley, 1978.

[11] K. Mulmulay and M. Sohoni. Geometric complexity theory, P vs. NP, and explicit
obstructions. SIAM Journal on Computing, 31(2):496–526, 2002.

[12] D. Mumford. Algebraic Geometry I: Complex Projective Varieties. Springer-Verlag,
1976. Volume 221 of Grundlehren der Mathematischen Wissenschaften.

12 Manindra Agrawal

[13] N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. Sys. Sci.,
49(2):149–167, 1994.

[14] N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via partial deriv-
atives. Computational Complexity, 6(3):217–234, 1996/97.

[15] Ran Raz. Multi-linear formulas for permanent and determinant and of super-
polynomial size. In Proceedings of Annual ACM Symposium on the Theory of Com-
puting, pages 633–641, 2004.

[16] K. Regan. Understanding the Mulmuley-Sohoni approach to P vs. NP. Bulletin of
the European Association for Theoretical Computer Science, 78:86–97, 2002. Lance
Fortnow’s Computational Complexity Column.

[17] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980.

[18] J. Seiferas, M. Fischer, and A. Meyer. Separating nondeterministic time complexity
classes. J. ACM, 25(1):146–167, 1978.

[19] A. Shpilka and A. Wigderson. Depth-3 arithmetic formulae over fields of charecter-
istic zero. In Proceedings of the Conference on Computational Complexity, pages
79–96, 1999.

[20] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators without the XOR
lemma. In Proceedings of Annual ACM Symposium on the Theory of Computing,
pages 537–546, 1999.

[21] S. Toda. Counting problems computationally equivalent to the determinant. manu-
script, 1991.

[22] S. Toda. PP is as hard as the polyonmial-time hierarchy. SIAM Journal on Com-
puting, 20:865–877, 1991.

[23] L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of
polynnomials using few processors. SIAM Journal on Computing, 12:641–644, 1983.

[24] L. G. Valiant. Completeness classes in algebra. In Proceedings of Annual ACM
Symposium on the Theory of Computing, pages 249–261, 1979.

[25] V Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic
circuits. In Proceedings of the Structure in Complexity Theory Conference, pages
270–284. Springer LNCS 223, 1991.

[26] R. E. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSCAM’79,
pages 216–226. Springer LNCS 72, 1979.

Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur 208016, India

E-mail: manindra@iitk.ac.in

