Numbers of Strange Kind and Their Applications

Manindra Agrawal

IIT Kanpur
BII, Singapore 2007

Overview

(1) Numbers
(2) Essential Properties of Numbers
(3) Numbers of Strange Kind: Finite Fields
(4) Numbers of Stranger Kind: Extension Rings

Outline

(1) Numbers

(2) Essential Properties of Numbers

(3) Numbers of Strange Kind: Finite Fields

C1 Numbers of Stranger Kind: Extension Rings

Numbers

- $0,1,-2,6, \frac{1}{2}, 1.713, \ldots$
- There are several types of numbers that we generally encounter.

Numbers

- $0,1,-2,6, \frac{1}{2}, 1.713, \ldots$
- There are several types of numbers that we generally encounter.

Natural Numbers

$$
0,1,2,3,4,5,6,7,8,9,10,11, \ldots
$$

- Closed under addition and multiplication.
- Not closed under subtraction.

Natural Numbers

$$
0,1,2,3,4,5,6,7,8,9,10,11, \ldots
$$

- Closed under addition and multiplication.
- Not closed under subtraction.

Natural Numbers

$$
0,1,2,3,4,5,6,7,8,9,10,11, \ldots
$$

- Closed under addition and multiplication.
- Not closed under subtraction.

Integers

$$
\ldots,-5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots
$$

- Closed under subtraction also.
- Not closed under division.

Integers

$$
\ldots,-5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots
$$

- Closed under subtraction also.
- Not closed under division.

Integers

$$
\ldots,-5,-4,-3,-2,-1,0,1,2,3,4,5, \ldots
$$

- Closed under subtraction also.
- Not closed under division.

Rational Numbers

All numbers of the form $\frac{a}{b}$ where a and b are integers and $b \neq 0$.

- Closed under division by non-zero numbers.
- Called a field.
- Does not contain $\pi=3.1415 \cdots$

Rational Numbers

All numbers of the form $\frac{a}{b}$ where a and b are integers and $b \neq 0$.

- Closed under division by non-zero numbers.
- Called a field.
- Does not contain $\pi=3.1415$

Rational Numbers

All numbers of the form $\frac{a}{b}$ where a and b are integers and $b \neq 0$.

- Closed under division by non-zero numbers.
- Called a field.
- Does not contain $\pi=3.1415 \ldots$

Real Numbers

All numbers of the form a. $d_{1} d_{2} d_{3} d_{4} \cdots$ where a is an integer and d_{1}, d_{2}, d_{3}, d_{4}, \ldots is a possibly infinite sequence of digits.

- Contains numbers such as π, golden ratio.
- Still closed under all the basic operations.

Real Numbers

All numbers of the form a. $d_{1} d_{2} d_{3} d_{4} \ldots$ where a is an integer and d_{1}, d_{2}, d_{3}, d_{4}, \ldots is a possibly infinite sequence of digits.

- Contains numbers such as π, golden ratio.
- Still closed under all the basic operations.

Outline

(1) Numbers

(2) Essential Properties of Numbers

(3) Numbers of Strange Kind: Finite Fields

44 Numbers of Stranger Kind: Extension Rings

Identifying Numbers

- Symbols used to represent numbers cannot always identify numbers:

$$
\begin{array}{r}
0+2=1 \\
1 * 3=4
\end{array}
$$

- Different symbols may also represent numbers:

Identifying Numbers

- Symbols used to represent numbers cannot always identify numbers:

$$
\begin{aligned}
0+2 & =1 \\
1 * 3 & =4
\end{aligned}
$$

- Different symbols may also represent numbers:

Identifying Numbers

- "Addition" and "multiplication" operations are required for identifying numbers.
- With respect to these operations, numbers should satisfy certain properties.
- What properties should the numbers satisfy?
- It should be a minimal set of properties that are essential for our understanding of numbers.

Identifying Numbers

- "Addition" and "multiplication" operations are required for identifying numbers.
- With respect to these operations, numbers should satisfy certain properties.
- What properties should the numbers satisfy?
- It should be a minimal set of properties that are essential for our understanding of numbers.

Identifying Numbers

- "Addition" and "multiplication" operations are required for identifying numbers.
- With respect to these operations, numbers should satisfy certain properties.
- What properties should the numbers satisfy?
- It should be a minimal set of properties that are essential for our understanding of numbers.

Addition

- Numbers should be closed under addition.
- There should be an identity of addition, i.e., number 0: for every number $a, a+0=a$.
- It is useful to have negative numbers, i.e., for every number a there should be a number b such that $a+b=0$.

Addition

- Numbers should be closed under addition.
- There should be an identity of addition, i.e., number 0: for every number $a, a+0=a$.
- It is useful to have negative numbers, i.e., for every number a there should be a number b such that $a+b=0$.

Addition

- Numbers should be closed under addition.
- There should be an identity of addition, i.e., number 0: for every number $a, a+0=a$.
- It is useful to have negative numbers, i.e., for every number a there should be a number b such that $a+b=0$.

Multiplication

- Numbers should be closed under multiplication.
- There should be an identity of multiplication, i.e., number 1: for every number $a, a * 1=a$.
- It is useful to have closure under division, i.e., for every number a except 0 , there should be a number b such that $a * b=1$.
- Multiplication should distribute over addition, i.e., for every a, b and $c, a *(b+c)=a * b+a * c$.

Multiplication

- Numbers should be closed under multiplication.
- There should be an identity of multiplication, i.e., number 1: for every number $a, a * 1=a$.
- It is useful to have closure under division, i.e., for every number a except 0 , there should be a number b such that $a * b=1$.
- Multiplication should distribute over addition, i.e., for every a, b and

Multiplication

- Numbers should be closed under multiplication.
- There should be an identity of multiplication, i.e., number 1: for every number $a, a * 1=a$.
- It is useful to have closure under division, i.e., for every number a except 0 , there should be a number b such that $a * b=1$.
- Multiplication should distribute over addition, i.e., for every a, b and

Multiplication

- Numbers should be closed under multiplication.
- There should be an identity of multiplication, i.e., number 1: for every number $a, a * 1=a$.
- It is useful to have closure under division, i.e., for every number a except 0 , there should be a number b such that $a * b=1$.
- Multiplication should distribute over addition, i.e., for every a, b and $c, a *(b+c)=a * b+a * c$.

Are There Other Kind of Numbers?

- If a set of "elements" admits two "operations" satisfying the above properties, these "elements" can be called numbers.
- And the two "operations" can be called addition and multiplication respectively.
- Do there exist such "elements" and "operations"?
- Even if they do, are they of any use?

Are There Other Kind of Numbers?

- If a set of "elements" admits two "operations" satisfying the above properties, these "elements" can be called numbers.
- And the two "operations" can be called addition and multiplication respectively.
- Do there exist such "elements" and "operations"?
- Even if they do, are they of any use?

Are There Other Kind of Numbers?

- If a set of "elements" admits two "operations" satisfying the above properties, these "elements" can be called numbers.
- And the two "operations" can be called addition and multiplication respectively.
- Do there exist such "elements" and "operations"?
- Even if they do, are they of any use?

Yes!

- There are many "strange" ways of defining numbers, addition and multiplication.
- Some of these strange numbers play a fundamental role in solving both practical and theoretical problems:

Yes!

- There are many "strange" ways of defining numbers, addition and multiplication.
- Some of these strange numbers play a fundamental role in solving both practical and theoretical problems:
- All the data stored in a CD/DVD is in the form of strange numbers.
- A lot of properties of integers can be understood using strange numbers!

Yes!

- There are many "strange" ways of defining numbers, addition and multiplication.
- Some of these strange numbers play a fundamental role in solving both practical and theoretical problems:
- All the data stored in a CD/DVD is in the form of strange numbers.
- A lot of properties of integers can be understood using strange numbers!
- There are many "strange" ways of defining numbers, addition and multiplication.
- Some of these strange numbers play a fundamental role in solving both practical and theoretical problems:
- All the data stored in a CD/DVD is in the form of strange numbers.
- A lot of properties of integers can be understood using strange numbers!

Outline

(1) Numbers

(2) Essential Properties of Numbers
(3) Numbers of Strange Kind: Finite Fields

Ca Numbers of Stranger Kind: Extension Rings

Residues

- Fix r to be a positive integer, $r>0$.
- Consider the set R_{r} of numbers $0,1, \ldots, r-1$.
- Define addition operation \oplus on these numbers as:

$$
a \oplus b=a+b(\bmod r),
$$

where $c(\bmod r)$ is the residue of c on division by r.

- Similarly, define multiplication operation \otimes as:

$$
a \otimes b=a * b(\bmod r) .
$$

- It is easily seen that these operations, on set R_{r}, satisfy all the required properties except closure under division.

Residues

- Fix r to be a positive integer, $r>0$.
- Consider the set R_{r} of numbers $0,1, \ldots, r-1$.
- Define addition operation \oplus on these numbers as:

$$
a \oplus b=a+b(\bmod r)
$$

where $c(\bmod r)$ is the residue of c on division by r.

- Similarly, define multiplication operation \otimes as: $a \otimes b=a * b(\bmod r)$.
- It is easily seen that these operations, on set R_{r}, satisfy all the required properties except closure under division.

Residues

- Fix r to be a positive integer, $r>0$.
- Consider the set R_{r} of numbers $0,1, \ldots, r-1$.
- Define addition operation \oplus on these numbers as:

$$
a \oplus b=a+b(\bmod r)
$$

where $c(\bmod r)$ is the residue of c on division by r.

- Similarly, define multiplication operation \otimes as:

$$
a \otimes b=a * b(\bmod r)
$$

Residues

- Fix r to be a positive integer, $r>0$.
- Consider the set R_{r} of numbers $0,1, \ldots, r-1$.
- Define addition operation \oplus on these numbers as:

$$
a \oplus b=a+b(\bmod r)
$$

where $c(\bmod r)$ is the residue of c on division by r.

- Similarly, define multiplication operation \otimes as:

$$
a \otimes b=a * b(\bmod r)
$$

- It is easily seen that these operations, on set R_{r}, satisfy all the required properties except closure under division.

Example: R_{7}

- $1 \oplus 6=0,5 \oplus 5=3,6 \oplus 3=2$ etc.
- $2 \otimes 6=5,5 \otimes 3=1,4 \otimes 4=2$ etc.
- $1 \oplus 6=0,2 \oplus 5=0,3 \oplus 4=0$; so "negative" numbers do exist!

Example: R_{7}

- $1 \oplus 6=0,5 \oplus 5=3,6 \oplus 3=2$ etc.
- $2 \otimes 6=5,5 \otimes 3=1,4 \otimes 4=2$ etc.
- $1 \oplus 6=0,2 \oplus 5=0,3 \oplus 4=0$; so "negative" numbers do exist!

Example: R_{7}

- $1 \oplus 6=0,5 \oplus 5=3,6 \oplus 3=2$ etc.
- $2 \otimes 6=5,5 \otimes 3=1,4 \otimes 4=2$ etc.
- $1 \oplus 6=0,2 \oplus 5=0,3 \oplus 4=0$; so "negative" numbers do exist!

Finite Fields

- Suppose r is a prime number.
- Then, closure under division also holds!!
- Why?
- Consider any non-zero number a from R_{r}.
- Consider $a \otimes 1, a \otimes 2, \ldots, a \otimes(r-1)$.
- None of the $a \otimes i$ is zero since $a \otimes i=a * i(\bmod r)$ and r is a prime greater than a and i.
- Therefore, $a \otimes i$ different for different i.
- Since there are $r-1$ numbers of the form $a \otimes i$ and $r-1$ non-zero numbers in R_{r}, there must be an i such that $a \otimes i=1$.

Finite Fields

- Suppose r is a prime number.
- Then, closure under division also holds!!
- Why?
- Consider any non-zero number a from R_{r}.
- Consider $a \otimes 1, a \otimes 2, \ldots, a \otimes(r-1)$.
- None of the $a \otimes i$ is zero since $a \otimes i=a * i(\bmod r)$ and r is a prime greater than a and i.
- Therefore, $a \otimes i$ different for different i.
- Since there are $r-1$ numbers of the form $a \otimes i$ and $r-1$ non-zero numbers in R_{r}, there must be an i such that $a \otimes i=1$.

Finite Fields

- Suppose r is a prime number.
- Then, closure under division also holds!!
- Why?
- Consider any non-zero number a from R_{r}.
- Consider $a \otimes 1, a \otimes 2, \ldots, a \otimes(r-1)$.
- None of the $a \otimes i$ is zero since $a \otimes i=a * i(\bmod r)$ and r is a prime greater than a and i.
- Therefore, $a \otimes i$ different for different i.
- Since there are $r-1$ numbers of the form $a \otimes i$ and $r-1$ non-zero numbers in R_{r}, there must be an i such that $a \otimes i=1$.

Finite Fields

- Suppose r is a prime number.
- Then, closure under division also holds!!
- Why?
- Consider any non-zero number a from R_{r}.
- Consider $a \otimes 1, a \otimes 2, \ldots, a \otimes(r-1)$.
- None of the $a \otimes i$ is zero since $a \otimes i=a * i(\bmod r)$ and r is a prime greater than a and i.
- Therefore, $a \otimes i$ different for different i.
- Since there are $r-1$ numbers of the form $a \otimes i$ and $r-1$ non-zero numbers in R_{r}, there must be an i such that $a \otimes i=1$.

Example: R_{7}

- $1 \otimes 1=1,2 \otimes 4=1,3 \otimes 5=1,6 \otimes 6=1$.
- So closure under division holds: for example, $\frac{1}{6}=6$.

Example: R_{7}

- $1 \otimes 1=1,2 \otimes 4=1,3 \otimes 5=1,6 \otimes 6=1$.
- So closure under division holds: for example, $\frac{1}{6}=6$.

Finite Fields

- The set R_{r} for prime r is called a finite field.
- Finite fields are very useful.
- For example, in coding theory, finite fields are extensively used: Reed-Solomon codes are based on finite fields.
- These codes are used in storing data on a CD/DVD.

Finite Fields

- The set R_{r} for prime r is called a finite field.
- Finite fields are very useful.
- For example, in coding theory, finite fields are extensively used: Reed-Solomon codes are based on finite fields.
- These codes are used in storing data on a CD/DVD.

Finite Fields

- The set R_{r} for prime r is called a finite field.
- Finite fields are very useful.
- For example, in coding theory, finite fields are extensively used: Reed-Solomon codes are based on finite fields.
- These codes are used in storing data on a CD/DVD.

A Reed-Soloman Code

- Suppose input number is 245 .
- Let $P(x)=2 x^{2} \oplus 4 x \oplus 5$ treating P as polynomial over R_{7}.
- We have $P(0)=5, P(1)=4, P(2)=0, P(3)=0, P(4)=4$, $P(5)=5$, and $P(6)=3$.
- Code the number 245 as the number 5400453 .

A Reed-Soloman Code

- Suppose input number is 245 .
- Let $P(x)=2 x^{2} \oplus 4 x \oplus 5$ treating P as polynomial over R_{7}.
- We have $P(0)=5, P(1)=4, P(2)=0, P(3)=0, P(4)=4$, $P(5)=5$, and $P(6)=3$.
- Code the number 245 as the number 5400453

A Reed-Soloman Code

- Suppose input number is 245 .
- Let $P(x)=2 x^{2} \oplus 4 x \oplus 5$ treating P as polynomial over R_{7}.
- We have $P(0)=5, P(1)=4, P(2)=0, P(3)=0, P(4)=4$, $P(5)=5$, and $P(6)=3$.
- Code the number 245 as the number 5400453 .

A Reed-Soloman Code

- Even if the number 5400453 gets corrupted in two digits, we can recover the number 245.
- For example, 245 can be recovered from 541056 or 240013.
- This is due to a property of polynomials over fields:

If we start with any other number than 245 and construct
the code for that, then it will agree with the code for 245 at
a maximum of two digits.

- So a corrputed codeword will match the right codeword at 5 digits while it can match any wrong codeword at a maximum of 4 digits.

A Reed-Soloman Code

- Even if the number 5400453 gets corrupted in two digits, we can recover the number 245.
- For example, 245 can be recovered from 541056 or 240013.
- This is due to a property of polynomials over fields:

If we start with any other number than 245 and construct the code for that, then it will agree with the code for 245 at a maximum of two digits.

- So a corrputed codeword will match the right codeword at 5 digits while it can match any wrong codeword at a maximum of 4 digits.

A Reed-Soloman Code

- Even if the number 5400453 gets corrupted in two digits, we can recover the number 245.
- For example, 245 can be recovered from 541056 or 240013.
- This is due to a property of polynomials over fields:

If we start with any other number than 245 and construct the code for that, then it will agree with the code for 245 at a maximum of two digits.

- So a corrputed codeword will match the right codeword at 5 digits while it can match any wrong codeword at a maximum of 4 digits.

Finite Rings

- The set R_{r} for composite r is called a finite ring.
- These "numbers" are also very useful.
- For example, a fundamental problem in number theory is to find out if a given integer n is prime.
- To decide this, we study the properties of the finite ring R_{n}.

Finite Rings

- The set R_{r} for composite r is called a finite ring.
- These "numbers" are also very useful.
- For example, a fundamental problem in number theory is to find out if a given integer n is prime.
- To decide this, we study the properties of the finite ring R_{n}.

Finite Rings

- The set R_{r} for composite r is called a finite ring.
- These "numbers" are also very useful.
- For example, a fundamental problem in number theory is to find out if a given integer n is prime.
- To decide this, we study the properties of the finite ring R_{n}.

Outline

(1) Numbers

(2) Essential Properties of Numbers
(3) Numbers of Strange Kind: Finite Fields
(4) Numbers of Stranger Kind: Extension Rings

Polynomials Over Rings

- A polynomial in x over R_{n} is an expression of the form

$$
a_{d} x^{d} \oplus a_{d-1} x^{d-1} \oplus \cdots \oplus a_{1} x \oplus a_{0}
$$

where $a_{i} \in R_{n}$.

- x is a variable.
- d is the degree of the polynomial.
- We will use the notation
to shorthand the polynomial.

Polynomials Over Rings

- A polynomial in x over R_{n} is an expression of the form

$$
a_{d} x^{d} \oplus a_{d-1} x^{d-1} \oplus \cdots \oplus a_{1} x \oplus a_{0}
$$

where $a_{i} \in R_{n}$.

- x is a variable.
- d is the degree of the polynomial.
- We will use the notation

$$
\sum_{i=0}^{d} a_{i} x^{i}
$$

to shorthand the polynomial.

Finite Extension Rings

- Fix a degree d polynomial:

$$
P=x^{d} \oplus a_{d-1} x^{d-1} \oplus \cdots \oplus a_{1} x \oplus a_{0} .
$$

- Let $R_{n, P}$ be the set of all polynomials in x over R_{n} of degree less than d.
- Define addition of elements of $R_{n, P}$ as:

- Define multiplication of elements of $R_{n, P}$ as:

Finite Extension Rings

- Fix a degree d polynomial:

$$
P=x^{d} \oplus a_{d-1} x^{d-1} \oplus \cdots \oplus a_{1} x \oplus a_{0} .
$$

- Let $R_{n, P}$ be the set of all polynomials in x over R_{n} of degree less than d.
- Define addition of elements of $R_{n, P}$ as:

$$
\sum_{i=0}^{d-1} b_{i} x^{i} \oplus \sum_{i=0}^{d-1} c_{i} x^{i}=\sum_{i=0}^{d-1}\left(b_{i} \oplus c_{i}\right) x^{i}
$$

- Define multiplication of elements of $R_{n, P}$ as:

Finite Extension Rings

- Fix a degree d polynomial:

$$
P=x^{d} \oplus a_{d-1} x^{d-1} \oplus \cdots \oplus a_{1} x \oplus a_{0} .
$$

- Let $R_{n, P}$ be the set of all polynomials in x over R_{n} of degree less than d.
- Define addition of elements of $R_{n, P}$ as:

$$
\sum_{i=0}^{d-1} b_{i} x^{i} \oplus \sum_{i=0}^{d-1} c_{i} x^{i}=\sum_{i=0}^{d-1}\left(b_{i} \oplus c_{i}\right) x^{i}
$$

- Define multiplication of elements of $R_{n, P}$ as:

$$
\sum_{i=0}^{d-1} b_{i} x^{i} \otimes \sum_{i=0}^{d-1} c_{i} x^{i}=\sum_{i=0}^{d-1} \sum_{j=0}^{d-1}\left(b_{i} \otimes c_{j}\right) x^{i+j}
$$

EXAMPLE: $R_{7, x^{3}-1}$

- The members of $R_{7, x^{3}-1}$ are all degree zero, one, or two polynomials, a total of $7^{3}=343$ polynomials.
- $\left(2 x^{2} \oplus x\right) \oplus\left(5 x^{2} \oplus 3 x \oplus 1\right)=0 x^{2} \oplus 4 x \oplus 1$.
- The result is not an element of $R_{7, x^{3}-1}$ since its degree is more than 2 .

Example: $R_{7, x^{3}-1}$

- The members of $R_{7, x^{3}-1}$ are all degree zero, one, or two polynomials, a total of $7^{3}=343$ polynomials.
- $\left(2 x^{2} \oplus x\right) \oplus\left(5 x^{2} \oplus 3 x \oplus 1\right)=0 x^{2} \oplus 4 x \oplus 1$.

Example: $R_{7, x^{3}-1}$

- The members of $R_{7, x^{3}-1}$ are all degree zero, one, or two polynomials, a total of $7^{3}=343$ polynomials.
- $\left(2 x^{2} \oplus x\right) \oplus\left(5 x^{2} \oplus 3 x \oplus 1\right)=0 x^{2} \oplus 4 x \oplus 1$.
- $\left(2 x^{2} \oplus x\right) \otimes\left(5 x^{2} \oplus 3 x \oplus 1\right)=3 x^{4} \oplus 6 x^{3} \oplus 2 x^{2} \oplus 5 x^{3} \oplus 3 x^{2} \oplus x=$ $3 x^{4} \oplus 4 x^{3} \oplus 5 x^{2} \oplus x$.

Example: $R_{7, x^{3}-1}$

- The members of $R_{7, x^{3}-1}$ are all degree zero, one, or two polynomials, a total of $7^{3}=343$ polynomials.
- $\left(2 x^{2} \oplus x\right) \oplus\left(5 x^{2} \oplus 3 x \oplus 1\right)=0 x^{2} \oplus 4 x \oplus 1$.
- $\left(2 x^{2} \oplus x\right) \otimes\left(5 x^{2} \oplus 3 x \oplus 1\right)=3 x^{4} \oplus 6 x^{3} \oplus 2 x^{2} \oplus 5 x^{3} \oplus 3 x^{2} \oplus x=$ $3 x^{4} \oplus 4 x^{3} \oplus 5 x^{2} \oplus x$.
- The result is not an element of $R_{7, x^{3}-1}$ since its degree is more than 2 .

Finite Extension Rings

- To define multiplication correctly, we reduce the result by the polynomial P and take the remainder.
- For example, in $R_{7, x^{3}-1}$ instead of
we define
- Now we can treat polynomials in $R_{n, P}$ as "numbers" with their addition and multiplication operations satisfying usual properties.
- $R_{n, P}$ is called a finite extension ring.

Finite Extension Rings

- To define multiplication correctly, we reduce the result by the polynomial P and take the remainder.
- For example, in $R_{7, x^{3}-1}$ instead of

$$
\left(2 x^{2} \oplus x\right) \otimes\left(5 x^{2} \oplus 3 x \oplus 1\right)=3 x^{4} \oplus 4 x^{3} \oplus 5 x^{2} \oplus x
$$

we define

$$
\left(2 x^{2} \oplus x\right) \otimes\left(5 x^{2} \oplus 3 x \oplus 1\right)=3 x \oplus 4 \oplus 5 x^{2} \oplus x=5 x^{2} \oplus 4 x \oplus 4
$$

- Now we can treat polynomials in $R_{n, P}$ as "numbers" with their addition and multiplication operations satisfying usual properties.
- $R_{n, P}$ is called a finite extension ring.

Finite Extension Rings

- To define multiplication correctly, we reduce the result by the polynomial P and take the remainder.
- For example, in $R_{7, x^{3}-1}$ instead of

$$
\left(2 x^{2} \oplus x\right) \otimes\left(5 x^{2} \oplus 3 x \oplus 1\right)=3 x^{4} \oplus 4 x^{3} \oplus 5 x^{2} \oplus x
$$

we define

$$
\left(2 x^{2} \oplus x\right) \otimes\left(5 x^{2} \oplus 3 x \oplus 1\right)=3 x \oplus 4 \oplus 5 x^{2} \oplus x=5 x^{2} \oplus 4 x \oplus 4
$$

- Now we can treat polynomials in $R_{n, P}$ as "numbers" with their addition and multiplication operations satisfying usual properties.

Finite Extension Rings

- To define multiplication correctly, we reduce the result by the polynomial P and take the remainder.
- For example, in $R_{7, x^{3}-1}$ instead of

$$
\left(2 x^{2} \oplus x\right) \otimes\left(5 x^{2} \oplus 3 x \oplus 1\right)=3 x^{4} \oplus 4 x^{3} \oplus 5 x^{2} \oplus x
$$

we define

$$
\left(2 x^{2} \oplus x\right) \otimes\left(5 x^{2} \oplus 3 x \oplus 1\right)=3 x \oplus 4 \oplus 5 x^{2} \oplus x=5 x^{2} \oplus 4 x \oplus 4
$$

- Now we can treat polynomials in $R_{n, P}$ as "numbers" with their addition and multiplication operations satisfying usual properties.
- $R_{n, P}$ is called a finite extension ring.

Primality Test Using Finite Extension Rings

- Given a number n, we wish to know if it is a prime number.
- The number n may be a very large number, say 200 digits long!
- Such large prime numbers are used extensively in cryptography.
- The trial division method will take a very long time on such numbers: about 10^{200} operations.
- Even on the fastest computers available, this will take more than the life of the universe!

Primality Test Using Finite Extension Rings

- Given a number n, we wish to know if it is a prime number.
- The number n may be a very large number, say 200 digits long!
- Such large prime numbers are used extensively in cryptography.
- The trial division method will take a very long time on such numbers: about 10^{200} operations.
- Even on the fastest computers available, this will take more than the life of the universe!

Primality Test Using Finite Extension Rings

- Given a number n, we wish to know if it is a prime number.
- The number n may be a very large number, say 200 digits long!
- Such large prime numbers are used extensively in cryptography.
- The trial division method will take a very long time on such numbers: about 10^{200} operations.
- Even on the fastest computers available, this will take more than the life of the universe!

Primality Test Using Finite Extension Rings

- To quickly decide if a given number n is prime, we study the finite extension ring $R_{n, x^{r}-1}$.
- It was shown by Pierre de Fermat in 17th century that if n is prime then
for every a in R_{n}.
- This, however, cannot be used for quickly testing if n is prime since:

Primality Test Using Finite Extension Rings

- To quickly decide if a given number n is prime, we study the finite extension ring $R_{n, x^{r}-1}$.
- It was shown by Pierre de Fermat in 17 th century that if n is prime then

$$
\underbrace{(x \oplus a) \otimes(x \oplus a) \otimes \cdots \otimes(x \oplus a)}_{n \text { times }}=\underbrace{x \otimes x \otimes \cdots \otimes x}_{n \text { times }} \oplus a
$$

for every a in R_{n}.

- This, however, cannot be used for quickly testing if n is prime since:

Primality Test Using Finite Extension Rings

- To quickly decide if a given number n is prime, we study the finite extension ring $R_{n, x^{r}-1}$.
- It was shown by Pierre de Fermat in 17 th century that if n is prime then

$$
\underbrace{(x \oplus a) \otimes(x \oplus a) \otimes \cdots \otimes(x \oplus a)}_{n \text { times }}=\underbrace{x \otimes x \otimes \cdots \otimes x}_{n \text { times }} \oplus a
$$

for every a in R_{n}.

- This, however, cannot be used for quickly testing if n is prime since:
- The property may be satisfied even if n is composite,
- Checking if the property is satisfied is very time consuming as it requires checking for n different a 's and n is large.

Primality Test Using Finite Extension Rings

- To quickly decide if a given number n is prime, we study the finite extension ring $R_{n, x^{r}-1}$.
- It was shown by Pierre de Fermat in 17 th century that if n is prime then

$$
\underbrace{(x \oplus a) \otimes(x \oplus a) \otimes \cdots \otimes(x \oplus a)}_{n \text { times }}=\underbrace{x \otimes x \otimes \cdots \otimes x}_{n \text { times }} \oplus a
$$

for every a in R_{n}.

- This, however, cannot be used for quickly testing if n is prime since:
- The property may be satisfied even if n is composite, requires checking for n different a 's and n is large.

Primality Test Using Finite Extension Rings

- To quickly decide if a given number n is prime, we study the finite extension ring $R_{n, x^{r}-1}$.
- It was shown by Pierre de Fermat in 17 th century that if n is prime then

$$
\underbrace{(x \oplus a) \otimes(x \oplus a) \otimes \cdots \otimes(x \oplus a)}_{n \text { times }}=\underbrace{x \otimes x \otimes \cdots \otimes x}_{n \text { times }} \oplus a
$$

for every a in R_{n}.

- This, however, cannot be used for quickly testing if n is prime since:
- The property may be satisfied even if n is composite,
- Checking if the property is satisfied is very time consuming as it requires checking for n different a^{\prime} s and n is large.

Primality Test Unsing Finite Extension Rings

- A few years ago, we showed that if we choose r carefully for $R_{n, x^{r}-1}$ and if

$$
\underbrace{(x \oplus a) \otimes(x \oplus a) \otimes \cdots \otimes(x \oplus a)}_{n \text { times }}=\underbrace{x \otimes x \otimes \cdots \otimes x}_{n \text { times }} \oplus a
$$

for only a few a's in R_{n} then n must be prime!

- This was the first fast method that guaranteed correctness.
- Earlier, there were fast methods that may go wrong occasionally.

Primality Test Unsing Finite Extension Rings

- A few years ago, we showed that if we choose r carefully for $R_{n, x^{r}-1}$ and if

$$
\underbrace{(x \oplus a) \otimes(x \oplus a) \otimes \cdots \otimes(x \oplus a)}_{n \text { times }}=\underbrace{x \otimes x \otimes \cdots \otimes x}_{n \text { times }} \oplus a
$$

for only a few a's in R_{n} then n must be prime!

- This was the first fast method that guaranteed correctness.
- Earlier, there were fast methods that may go wrong occasionally.

Remarks

- There are several other places where these strange numbers are useful.
- A general principle is:

To understand the solutions of an equation defined over integers, study the solutions of the equation in R_{p} for primes

- Many problems have been solved using this principle including the famous Fermat's Last Theorem: There is no integer solution of the equation $x^{n}+y^{n}=z^{n}$ for $n \geq 3$

REmARKs

- There are several other places where these strange numbers are useful.
- A general principle is:

To understand the solutions of an equation defined over integers, study the solutions of the equation in R_{p} for primes p.

- Many problems have been solved using this principle including the famous Fermat's Last Theorem: There is no integer solution of the equation $x^{n}+y^{n}=z^{n}$

Remarks

- There are several other places where these strange numbers are useful.
- A general principle is:

To understand the solutions of an equation defined over integers, study the solutions of the equation in R_{p} for primes p.

- Many problems have been solved using this principle including the famous Fermat's Last Theorem:

There is no integer solution of the equation $x^{n}+y^{n}=z^{n}$ for $n \geq 3$.

