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Numbers

0, 1, −2, 6, 1
2 , 1.713, . . .

There are several types of numbers that we generally encounter.
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Natural Numbers

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . .

Closed under addition and multiplication.

Not closed under subtraction.
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Integers

. . ., −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, . . .

Closed under subtraction also.

Not closed under division.
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Rational Numbers

All numbers of the form a
b where a and b are integers and b 6= 0.

Closed under division by non-zero numbers.

Called a field.

Does not contain π = 3.1415 · · ·
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Real Numbers

All numbers of the form a.d1d2d3d4 · · · where a is an integer and d1, d2,
d3, d4, . . . is a possibly infinite sequence of digits.

Contains numbers such as π, golden ratio.

Still closed under all the basic operations.
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Identifying Numbers

Symbols used to represent numbers cannot always identify numbers:

0 + 2 = 1

1 ∗ 3 = 4

Different symbols may also represent numbers:

♠+ N = ♠
F + N = F

♠ ∗F = F

♠ ∗ N = N
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Identifying Numbers

“Addition” and “multiplication” operations are required for
identifying numbers.

With respect to these operations, numbers should satisfy certain
properties.

What properties should the numbers satisfy?

It should be a minimal set of properties that are essential for our
understanding of numbers.
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Addition

Numbers should be closed under addition.

There should be an identity of addition, i.e., number 0: for every
number a, a + 0 = a.

It is useful to have negative numbers, i.e., for every number a there
should be a number b such that a + b = 0.
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Multiplication

Numbers should be closed under multiplication.

There should be an identity of multiplication, i.e., number 1: for
every number a, a ∗ 1 = a.

It is useful to have closure under division, i.e., for every number a
except 0, there should be a number b such that a ∗ b = 1.

Multiplication should distribute over addition, i.e., for every a, b and
c , a ∗ (b + c) = a ∗ b + a ∗ c .
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Are There Other Kind of Numbers?

If a set of “elements” admits two “operations” satisfying the above
properties, these “elements” can be called numbers.

And the two “operations” can be called addition and multiplication
respectively.

Do there exist such “elements” and “operations”?

Even if they do, are they of any use?
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Yes!

There are many “strange” ways of defining numbers, addition and
multiplication.

Some of these strange numbers play a fundamental role in solving
both practical and theoretical problems:

I All the data stored in a CD/DVD is in the form of strange numbers.
I A lot of properties of integers can be understood using strange

numbers!
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Residues

Fix r to be a positive integer, r > 0.

Consider the set Rr of numbers 0, 1, . . ., r − 1.

Define addition operation ⊕ on these numbers as:

a⊕ b = a + b (mod r),

where c (mod r) is the residue of c on division by r .

Similarly, define multiplication operation ⊗ as:

a⊗ b = a ∗ b (mod r).

It is easily seen that these operations, on set Rr , satisfy all the
required properties except closure under division.
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Example: R7

1⊕ 6 = 0, 5⊕ 5 = 3, 6⊕ 3 = 2 etc.

2⊗ 6 = 5, 5⊗ 3 = 1, 4⊗ 4 = 2 etc.

1⊕ 6 = 0, 2⊕ 5 = 0, 3⊕ 4 = 0; so “negative” numbers do exist!
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Finite Fields

Suppose r is a prime number.

Then, closure under division also holds!!

Why?

Consider any non-zero number a from Rr .

Consider a⊗ 1, a⊗ 2, . . ., a⊗ (r − 1).

None of the a⊗ i is zero since a⊗ i = a ∗ i (mod r) and r is a prime
greater than a and i .

Therefore, a⊗ i different for different i .

Since there are r − 1 numbers of the form a⊗ i and r − 1 non-zero
numbers in Rr , there must be an i such that a⊗ i = 1.

Manindra Agrawal (IIT Kanpur) Strange Numbers BII, Singapore 2007 19 / 33



Finite Fields

Suppose r is a prime number.

Then, closure under division also holds!!

Why?

Consider any non-zero number a from Rr .

Consider a⊗ 1, a⊗ 2, . . ., a⊗ (r − 1).

None of the a⊗ i is zero since a⊗ i = a ∗ i (mod r) and r is a prime
greater than a and i .

Therefore, a⊗ i different for different i .

Since there are r − 1 numbers of the form a⊗ i and r − 1 non-zero
numbers in Rr , there must be an i such that a⊗ i = 1.

Manindra Agrawal (IIT Kanpur) Strange Numbers BII, Singapore 2007 19 / 33



Finite Fields

Suppose r is a prime number.

Then, closure under division also holds!!

Why?

Consider any non-zero number a from Rr .

Consider a⊗ 1, a⊗ 2, . . ., a⊗ (r − 1).

None of the a⊗ i is zero since a⊗ i = a ∗ i (mod r) and r is a prime
greater than a and i .

Therefore, a⊗ i different for different i .

Since there are r − 1 numbers of the form a⊗ i and r − 1 non-zero
numbers in Rr , there must be an i such that a⊗ i = 1.

Manindra Agrawal (IIT Kanpur) Strange Numbers BII, Singapore 2007 19 / 33



Finite Fields

Suppose r is a prime number.

Then, closure under division also holds!!

Why?

Consider any non-zero number a from Rr .

Consider a⊗ 1, a⊗ 2, . . ., a⊗ (r − 1).

None of the a⊗ i is zero since a⊗ i = a ∗ i (mod r) and r is a prime
greater than a and i .

Therefore, a⊗ i different for different i .

Since there are r − 1 numbers of the form a⊗ i and r − 1 non-zero
numbers in Rr , there must be an i such that a⊗ i = 1.

Manindra Agrawal (IIT Kanpur) Strange Numbers BII, Singapore 2007 19 / 33



Example: R7

1⊗ 1 = 1, 2⊗ 4 = 1, 3⊗ 5 = 1, 6⊗ 6 = 1.

So closure under division holds: for example, 1
6 = 6.
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Finite Fields

The set Rr for prime r is called a finite field.

Finite fields are very useful.

For example, in coding theory, finite fields are extensively used:
Reed-Solomon codes are based on finite fields.

These codes are used in storing data on a CD/DVD.
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A Reed-Soloman Code

Suppose input number is 245.

Let P(x) = 2x2 ⊕ 4x ⊕ 5 treating P as polynomial over R7.

We have P(0) = 5, P(1) = 4, P(2) = 0, P(3) = 0, P(4) = 4,
P(5) = 5, and P(6) = 3.

Code the number 245 as the number 5400453.
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A Reed-Soloman Code

Even if the number 5400453 gets corrupted in two digits, we can
recover the number 245.

For example, 245 can be recovered from 541056 or 240013.

This is due to a property of polynomials over fields:

If we start with any other number than 245 and construct
the code for that, then it will agree with the code for 245 at
a maximum of two digits.

So a corrputed codeword will match the right codeword at 5 digits
while it can match any wrong codeword at a maximum of 4 digits.
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Finite Rings

The set Rr for composite r is called a finite ring.

These “numbers” are also very useful.

For example, a fundamental problem in number theory is to find out if
a given integer n is prime.

To decide this, we study the properties of the finite ring Rn.
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Polynomials Over Rings

A polynomial in x over Rn is an expression of the form

adxd ⊕ ad−1x
d−1 ⊕ · · · ⊕ a1x ⊕ a0

where ai ∈ Rn.

x is a variable.

d is the degree of the polynomial.

We will use the notation
d∑

i=0

aix
i

to shorthand the polynomial.
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Finite Extension Rings

Fix a degree d polynomial:

P = xd ⊕ ad−1x
d−1 ⊕ · · · ⊕ a1x ⊕ a0.

Let Rn,P be the set of all polynomials in x over Rn of degree less than
d .

Define addition of elements of Rn,P as:

d−1∑
i=0

bix
i ⊕

d−1∑
i=0

cix
i =

d−1∑
i=0

(bi ⊕ ci )x
i .

Define multiplication of elements of Rn,P as:

d−1∑
i=0

bix
i ⊗

d−1∑
i=0

cix
i =

d−1∑
i=0

d−1∑
j=0

(bi ⊗ cj)x
i+j .
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Example: R7,x3−1

The members of R7,x3−1 are all degree zero, one, or two polynomials,
a total of 73 = 343 polynomials.

(2x2 ⊕ x)⊕ (5x2 ⊕ 3x ⊕ 1) = 0x2 ⊕ 4x ⊕ 1.

(2x2 ⊕ x)⊗ (5x2 ⊕ 3x ⊕ 1) = 3x4 ⊕ 6x3 ⊕ 2x2 ⊕ 5x3 ⊕ 3x2 ⊕ x =
3x4 ⊕ 4x3 ⊕ 5x2 ⊕ x .

The result is not an element of R7,x3−1 since its degree is more than 2.
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Finite Extension Rings

To define multiplication correctly, we reduce the result by the
polynomial P and take the remainder.

For example, in R7,x3−1 instead of

(2x2 ⊕ x)⊗ (5x2 ⊕ 3x ⊕ 1) = 3x4 ⊕ 4x3 ⊕ 5x2 ⊕ x .

we define

(2x2 ⊕ x)⊗ (5x2 ⊕ 3x ⊕ 1) = 3x ⊕ 4⊕ 5x2 ⊕ x = 5x2 ⊕ 4x ⊕ 4.

Now we can treat polynomials in Rn,P as “numbers” with their
addition and multiplication operations satisfying usual properties.

Rn,P is called a finite extension ring.
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Primality Test Using Finite Extension Rings

Given a number n, we wish to know if it is a prime number.

The number n may be a very large number, say 200 digits long!

Such large prime numbers are used extensively in cryptography.

The trial division method will take a very long time on such numbers:
about 10200 operations.

Even on the fastest computers available, this will take more than the
life of the universe!
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Primality Test Using Finite Extension Rings

To quickly decide if a given number n is prime, we study the finite
extension ring Rn,x r−1.

It was shown by Pierre de Fermat in 17th century that if n is prime
then

(x ⊕ a)⊗ (x ⊕ a)⊗ · · · ⊗ (x ⊕ a)︸ ︷︷ ︸
n times

= x ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸
n times

⊕a

for every a in Rn.

This, however, cannot be used for quickly testing if n is prime since:
I The property may be satisfied even if n is composite,
I Checking if the property is satisfied is very time consuming as it

requires checking for n different a’s and n is large.
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Primality Test Unsing Finite Extension Rings

A few years ago, we showed that if we choose r carefully for Rn,x r−1

and if

(x ⊕ a)⊗ (x ⊕ a)⊗ · · · ⊗ (x ⊕ a)︸ ︷︷ ︸
n times

= x ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸
n times

⊕a

for only a few a’s in Rn then n must be prime!

This was the first fast method that guaranteed correctness.

Earlier, there were fast methods that may go wrong occasionally.
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Remarks

There are several other places where these strange numbers are useful.

A general principle is:

To understand the solutions of an equation defined over
integers, study the solutions of the equation in Rp for primes
p.

Many problems have been
solved using this principle including the famous Fermat’s Last Theorem:

There is no integer solution of the equation xn + yn = zn

for n ≥ 3.
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