Fermat's Last Theorem: From Integers to Elliptic Curves

Manindra Agarwal

IIT Kanpur

December 2005

Fermat's Last Theorem

Theorem

There are no non-zero integer solutions of the equation $x^{n}+y^{n}=z^{n}$ when $n>2$.

Fermat's Last Theorem

Towards the end of his life, Pierre de Fermat (1601-1665) wrote in the margin of a book:

I have discovered a truely remarkable proof of this theorem, but this margin is too small to write it down.

After more than 300 years, when the proof was finally written, it did take a little more than a margin to write.

Fermat's Last Theorem

Towards the end of his life, Pierre de Fermat (1601-1665) wrote in the margin of a book:

I have discovered a truely remarkable proof of this theorem, but this margin is too small to write it down.

After more than 300 years, when the proof was finally written, it did take a little more than a margin to write.

A Brief History

1660s: Fermat proved the theorem for $n=4$.
1753: Euler proved the theorem for $n=3$.
1825: Dirichlet and Legendre proved the theorem for $n=5$.
1839: Lame proved the theorem for $n=7$.
1857: Kummer proved the theorem for all $n \leq 100$.

A Brief History

1660s: Fermat proved the theorem for $n=4$.
1753: Euler proved the theorem for $n=3$.
1825: Dirichlet and Legendre proved the theorem for $n=5$.
1839: Lame proved the theorem for $n=7$.
1857: Kummer proved the theorem for all $n<100$.

A Brief History

1660s: Fermat proved the theorem for $n=4$.
1753: Euler proved the theorem for $n=3$.
1825: Dirichlet and Legendre proved the theorem for $n=5$.
1839: Lame proved the theorem for $n=7$.
1857: Kummer proved the theorem for all $n \leq 100$.

A Brief History

1660s: Fermat proved the theorem for $n=4$.
1753: Euler proved the theorem for $n=3$.
1825: Dirichlet and Legendre proved the theorem for $n=5$.
1839: Lame proved the theorem for $n=7$.
1857: Kummer proved the theorem for all $n \leq 100$.

A Brief History

1660s: Fermat proved the theorem for $n=4$.
1753: Euler proved the theorem for $n=3$.
1825: Dirichlet and Legendre proved the theorem for $n=5$.
1839: Lame proved the theorem for $n=7$.
1857: Kummer proved the theorem for all $n \leq 100$.

A Brief History

1983: Faltings proved that for any $n>2$, the equation $x^{n}+y^{n}=z^{n}$ can have at most finitely many integer solutions.
1994: Wiles proved the theorem.

A Brief History

1983: Faltings proved that for any $n>2$, the equation $x^{n}+y^{n}=z^{n}$ can have at most finitely many integer solutions.
1994: Wiles proved the theorem.

When $n=2$

- The equation is $x^{2}+y^{2}=z^{2}$.
- The solutions to this equation are Pythagorian triples.
- The smallest one is $x=3, y=4$ and $z=5$.

The general solution is given by $x=2 a b, y=a^{2}-b^{2}, z=a^{2}+b^{2}$ for integers $a>b>0$.

When $n=2$

- The equation is $x^{2}+y^{2}=z^{2}$.
- The solutions to this equation are Pythagorian triples.
- The smallest one is $x=3, y=4$ and $z=5$.

When $n=2$

- The equation is $x^{2}+y^{2}=z^{2}$.
- The solutions to this equation are Pythagorian triples.
- The smallest one is $x=3, y=4$ and $z=5$.

The general solution is given by $x=2 a b, y=a^{2}-b^{2}, z=a^{2}+b^{2}$ for integers $a>b>0$.

When $n=4$

- Suppose $u^{4}+v^{4}=w^{4}$ for some relatively prime integers u, v, w.
- So we must have coprime integers a and b such that $u^{2}=2 a b$, $v^{2}=a^{2}-b^{2}$ and $w^{2}=a^{2}+b^{2}$.
- Since a, b are coprime, there exist coprime integers α and β such that $u=\alpha \beta$ and
- Similarly, there exist coprime integers γ and δ such that $v=\gamma \delta$ and

When $n=4$

- Suppose $u^{4}+v^{4}=w^{4}$ for some relatively prime integers u, v, w.
- So we must have coprime integers a and b such that $u^{2}=2 a b$, $v^{2}=a^{2}-b^{2}$ and $w^{2}=a^{2}+b^{2}$.
- Since a, b are coprime, there exist coprime integers α and β such that $u=\alpha \beta$ and

$$
2 a=\alpha^{2}, b=\beta^{2} \text { or } a=\alpha^{2}, 2 b=\beta^{2} .
$$

- Similarly, there exist coprime integers γ and δ such that $\boldsymbol{v}=\gamma \delta$ and

When $n=4$

- Suppose $u^{4}+v^{4}=w^{4}$ for some relatively prime integers u, v, w.
- So we must have coprime integers a and b such that $u^{2}=2 a b$, $v^{2}=a^{2}-b^{2}$ and $w^{2}=a^{2}+b^{2}$.
- Since a, b are coprime, there exist coprime integers α and β such that $u=\alpha \beta$ and

$$
2 a=\alpha^{2}, b=\beta^{2} \text { or } a=\alpha^{2}, 2 b=\beta^{2} .
$$

- Similarly, there exist coprime integers γ and δ such that $v=\gamma \delta$ and

$$
a-b=\gamma^{2}, a+b=\delta^{2} .
$$

When $n=4$

- Suppose the first case: $2 a=\alpha^{2}$.
- Then,

$$
\gamma^{2}+\delta^{2}=(a-b)+(a+b)=2 a=\alpha^{2} .
$$

- In addition, 2 divides α and α, γ, δ are coprime to each other.
- So both γ and δ are odd numbers.
- Let $\gamma=2 k+1$ and $\delta=2 \ell+1$ and consider the equation modulo 4:

$$
0=\alpha^{2}(\bmod 4)=(2 k+1)^{2}+(2 \ell+1)^{2}(\bmod 4)=2(\bmod 4) .
$$

- This is impossible.
- The second case can be handled similarly, using infinite descent method. [Try it!]

When $n=4$

- Suppose the first case: $2 a=\alpha^{2}$.
- Then,

$$
\gamma^{2}+\delta^{2}=(a-b)+(a+b)=2 a=\alpha^{2} .
$$

- In addition, 2 divides α and α, γ, δ are coprime to each other.
- So both γ and δ are odd numbers.
- Let $\gamma=2 k+1$ and $\delta=2 \ell+1$ and consider the equation modulo 4:

- This is impossible.
- The second case can be handled similarly, using infinite descent method. [Try it!]

When $n=4$

- Suppose the first case: $2 a=\alpha^{2}$.
- Then,

$$
\gamma^{2}+\delta^{2}=(a-b)+(a+b)=2 a=\alpha^{2} .
$$

- In addition, 2 divides α and α, γ, δ are coprime to each other.
- So both γ and δ are odd numbers.
- Let $\gamma=2 k+1$ and $\delta=2 \ell+1$ and consider the equation modulo 4:

$$
0=\alpha^{2}(\bmod 4)=(2 k+1)^{2}+(2 \ell+1)^{2}(\bmod 4)=2(\bmod 4) .
$$

- This is impossible.
- The second case can be handled similarly, using infinite descent method. [Try it!]

When $n=4$

- Suppose the first case: $2 a=\alpha^{2}$.
- Then,

$$
\gamma^{2}+\delta^{2}=(a-b)+(a+b)=2 a=\alpha^{2} .
$$

- In addition, 2 divides α and α, γ, δ are coprime to each other.
- So both γ and δ are odd numbers.
- Let $\gamma=2 k+1$ and $\delta=2 \ell+1$ and consider the equation modulo 4 :

$$
0=\alpha^{2}(\bmod 4)=(2 k+1)^{2}+(2 \ell+1)^{2}(\bmod 4)=2(\bmod 4) .
$$

- This is impossible.
- The second case can be handled similarly, using infinite descent method. [Try it!]

A More General Approach

- Approach for $n=4$ does not generalize.
- Different approaches can be used to prove $n=3,5, \ldots$ cases.
- However, none of these approaches generalized.
- A different idea was needed to make it work for all n.
- This came in the form of rational points on curves.

A More General Approach

- Approach for $n=4$ does not generalize.
- Different approaches can be used to prove $n=3,5, \ldots$ cases.
- However, none of these approaches generalized.
- A different idea was needed to make it work for all n.
- This came in the form of rational points on curves.

A More General Approach

- Approach for $n=4$ does not generalize.
- Different approaches can be used to prove $n=3,5, \ldots$ cases.
- However, none of these approaches generalized.
- A different idea was needed to make it work for all n.
- This came in the form of rational points on curves.

Rational Points on Curves

- Let $f(x, y)=0$ be a curve of degree n with rational coefficients.
- We wish to know how many rational points lie on this curve.
- Consider the curve $F_{n}(x, y)=x^{n}+y^{n}-1=0$.
- Let $F_{n}(\alpha, \beta)=0$ where $\alpha=\frac{a}{c}$ and $\beta=\frac{b}{c}$ are rational numbers.
- Then, $a^{n}+b^{n}=c^{n}$ giving an integer solution to Fermat's equation.
- Conversely, any integer solution to Fermat's equation yields a rational point on the curve $F_{n}(x, y)=0$.

Rational Points on Curves

- Let $f(x, y)=0$ be a curve of degree n with rational coefficients.
- We wish to know how many rational points lie on this curve.
- Consider the curve $F_{n}(x, y)=x^{n}+y^{n}-1=0$.
- Let $F_{n}(\alpha, \beta)=0$ where $\alpha=\frac{a}{c}$ and $\beta=\frac{b}{c}$ are rational numbers.
- Then, $a^{n}+b^{n}=c^{n}$ giving an integer solution to Fermat's equation.
- Conversely, any integer solution to Fermat's equation yields a rational point on the curve $F_{n}(x, y)=0$.

Rational Points on Curves

- Let $f(x, y)=0$ be a curve of degree n with rational coefficients.
- We wish to know how many rational points lie on this curve.
- Consider the curve $F_{n}(x, y)=x^{n}+y^{n}-1=0$.
- Let $F_{n}(\alpha, \beta)=0$ where $\alpha=\frac{a}{c}$ and $\beta=\frac{b}{c}$ are rational numbers.
- Then, $a^{n}+b^{n}=c^{n}$ giving an integer solution to Fermat's equation.
- Conversely, any integer solution to Fermat's equation yields a rational point on the curve $F_{n}(x, y)=0$.

Faltings Theorem

Theorem (Faltings)

For any curve except for lines, conic sections, and elliptic curves, the number of rational points on the curve is finite.

- This implies that the equation $x^{n}+y^{n}=z^{n}$ will have at most finitely many solutions for any $n>4$ (equations for $n=3,4$ can be transformed to elliptic curves).
- Not strong enough!

Faltings Theorem

Theorem (Faltings)

For any curve except for lines, conic sections, and elliptic curves, the number of rational points on the curve is finite.

- This implies that the equation $x^{n}+y^{n}=z^{n}$ will have at most finitely many solutions for any $n>4$ (equations for $n=3,4$ can be transformed to elliptic curves).
- Not strong enough!

A Different Approach

- One idea is to transform the curves $x^{n}+y^{n}=1$ to a family of curves that have no rational points on it.
- The eventual solution came by a similar approach - the problem was transformed to a problem on elliptic curves.
- Interestingly, elliptic curves can have infinitely many rational points!

A Different Approach

- One idea is to transform the curves $x^{n}+y^{n}=1$ to a family of curves that have no rational points on it.
- The eventual solution came by a similar approach - the problem was transformed to a problem on elliptic curves.
- Interestingly, elliptic curves can have infinitely many rational points!

A Different Approach

- One idea is to transform the curves $x^{n}+y^{n}=1$ to a family of curves that have no rational points on it.
- The eventual solution came by a similar approach - the problem was transformed to a problem on elliptic curves.
- Interestingly, elliptic curves can have infinitely many rational points!

Elliptic Curves

Definition

An elliptic curve is given by equation:

$$
y^{2}=x^{3}+A x+B
$$

for numbers A and B satisfying $4 A^{3}+27 B^{2} \neq 0$.

- We will be interested in curves for which both A and B are rational numbers.
- Elliptic curves have truly amazing properties as we shall see.

Elliptic Curves

Definition

An elliptic curve is given by equation:

$$
y^{2}=x^{3}+A x+B
$$

for numbers A and B satisfying $4 A^{3}+27 B^{2} \neq 0$.

- We will be interested in curves for which both A and B are rational numbers.
- Elliptic curves have truly amazing properties as we shall see.

Elliptic Curves

Definition

An elliptic curve is given by equation:

$$
y^{2}=x^{3}+A x+B
$$

for numbers A and B satisfying $4 A^{3}+27 B^{2} \neq 0$.

- We will be interested in curves for which both A and B are rational numbers.
- Elliptic curves have truly amazing properties as we shall see.

Elliptic Curve Examples

Elliptic Curve Examples

Elliptic Curve Examples

Discriminant of an Elliptic Curve

- Let E be an elliptic curve given by equation $y^{2}=x^{3}+A x+B$.
- Discriminant Δ of E is the number $4 A^{3}+27 B^{2}$.
- We require the discriminant of E to be non-zero.
- This condition is equivalent to the condition that the three (perhaps complex) roots of the polynomial $x^{3}+A x+B$ are distinct. [Verify!]
- If $x^{3}+A x+B=(x-\alpha)(x-\beta)(x-\gamma)$ then

Discriminant of an Elliptic Curve

- Let E be an elliptic curve given by equation $y^{2}=x^{3}+A x+B$.
- Discriminant Δ of E is the number $4 A^{3}+27 B^{2}$.
- We require the discriminant of E to be non-zero.
- This condition is equivalent to the condition that the three (perhaps complex) roots of the polynomial $x^{3}+A x+B$ are distinct. [Verify!]
- If $x^{3}+A x+B=(x-\alpha)(x-\beta)(x-\gamma)$ then

$$
\Delta=(\alpha-\beta)^{2}(\beta-\gamma)^{2}(\gamma-\alpha)^{2}
$$

A Special Elliptic Curve

Let (a, b, c) be a solution of the equation $x^{n}+y^{n}=z^{n}$ for some $n>2$.

DEFINITION
 Define an elliptic curve E_{n} by the equation:

- Discriminant of this curve is:

- So the discriminant is $2 n$th power of an integer.
- We aim to show that no elliptic curve exists whose discriminant is a 6th or higher power.

A Special Elliptic Curve

Let (a, b, c) be a solution of the equation $x^{n}+y^{n}=z^{n}$ for some $n>2$.
DEfinition
Define an elliptic curve E_{n} by the equation:

$$
y^{2}=x\left(x-a^{n}\right)\left(x+b^{n}\right) .
$$

- Discriminant of this curve is:

- So the discriminant is $2 n$th power of an integer.
- We aim to show that no elliptic curve exists whose discriminant is a 6th or higher power.

A Special Elliptic Curve

Let (a, b, c) be a solution of the equation $x^{n}+y^{n}=z^{n}$ for some $n>2$.

DEFINITION

Define an elliptic curve E_{n} by the equation:

$$
y^{2}=x\left(x-a^{n}\right)\left(x+b^{n}\right)
$$

- Discriminant of this curve is:

$$
\Delta_{n}=\left(a^{n}\right)^{2} \cdot\left(b^{n}\right)^{2} \cdot\left(a^{n}+b^{n}\right)^{2}=(a b c)^{2 n}
$$

- So the discriminant is $2 n$th power of an integer.
- We aim to show that no elliptic curve exists whose discriminant is a 6 th or higher power.

A Special Elliptic Curve

Let (a, b, c) be a solution of the equation $x^{n}+y^{n}=z^{n}$ for some $n>2$.

DEFINITION

Define an elliptic curve E_{n} by the equation:

$$
y^{2}=x\left(x-a^{n}\right)\left(x+b^{n}\right)
$$

- Discriminant of this curve is:

$$
\Delta_{n}=\left(a^{n}\right)^{2} \cdot\left(b^{n}\right)^{2} \cdot\left(a^{n}+b^{n}\right)^{2}=(a b c)^{2 n}
$$

- So the discriminant is $2 n$th power of an integer.
- We aim to show that no elliptic curve exists whose discriminant is a 6th or higher power.

Rational Points on an Elliptic Curve

- Let $E(\mathbb{Q})$ be the set of rational points on the curve E.
- We add a "point at infinity," called O, to this set.

Rational Points on an Elliptic Curve

- Let $E(\mathbb{Q})$ be the set of rational points on the curve E.
- We add a "point at infinity," called O, to this set.

Amazing Fact.

We can define an "addition" operation on the set of points in $E(\mathbb{Q})$ just like integer addition.

Addition of Points on E

Adding points P \& Q on curve $\mathrm{y}^{2}=\mathrm{x}^{3}-\mathrm{x}$

Addition of Points on E

Addition of Points on E

- Observe that if points P and Q on E are rational, then point $P+Q$ is also rational. [Verify!]
- The point addition obeys same laws as integer addition with point at infinity O acting as the "zero" of point addition.
- The point addition has some additional interesting properties too.

Addition of Points on E

- Observe that if points P and Q on E are rational, then point $P+Q$ is also rational. [Verify!]
- The point addition obeys same laws as integer addition with point at infinity O acting as the "zero" of point addition.
- The point addition has some additional interesting properties too.

Addition of Points on E

- Observe that if points P and Q on E are rational, then point $P+Q$ is also rational. [Verify!]
- The point addition obeys same laws as integer addition with point at infinity O acting as the "zero" of point addition.
- The point addition has some additional interesting properties too.

Addition of Points on E

Counting Rational Points on E

- The nice additive structure of rational points in $E(\mathbb{Q})$ allows us to "count" them.
- For each prime p, define $E\left(F_{p}\right)$ to be the set of points (u, v) such that $0 \leq u, v<p$ and

$$
v^{2}=u^{3}+A u+B(\bmod p) .
$$

- A point in $E(\mathbb{Q})$ yields a point in $E\left(F_{p}\right)$.
- The set $E\left(F_{p}\right)$ is clearly finite: $\left|E\left(F_{p}\right)\right| \leq p^{2}$

Counting Rational Points on E

- The nice additive structure of rational points in $E(\mathbb{Q})$ allows us to "count" them.
- For each prime p, define $E\left(F_{p}\right)$ to be the set of points (u, v) such that $0 \leq u, v<p$ and

$$
v^{2}=u^{3}+A u+B(\bmod p)
$$

- A point in $E(\mathbb{Q})$ yields a point in $E\left(F_{p}\right)$.
- The set $E\left(F_{p}\right)$ is clearly finite: $\left|E\left(F_{p}\right)\right| \leq p^{2}$.

Counting Rational Points on E

- The nice additive structure of rational points in $E(\mathbb{Q})$ allows us to "count" them.
- For each prime p, define $E\left(F_{p}\right)$ to be the set of points (u, v) such that $0 \leq u, v<p$ and

$$
v^{2}=u^{3}+A u+B(\bmod p)
$$

- A point in $E(\mathbb{Q})$ yields a point in $E\left(F_{p}\right)$.
- The set $E\left(F_{p}\right)$ is clearly finite: $\left|E\left(F_{p}\right)\right| \leq p^{2}$.

Hasse's Theorem

Theorem (Hasse)
 $p+1-2 \sqrt{p} \leq\left|E\left(F_{p}\right)\right| \leq p+1+2 \sqrt{p}$.

- Let $a_{p}=p+1-\left|E\left(F_{p}\right)\right|$, a_{p} measures the difference from the mean value.
- Thus we get an infinite sequence of numbers $a_{2}, a_{3}, a_{5}, a_{7}, a_{11}, \ldots$, one for each prime.

Hasse's Theorem

Theorem (Hasse)
 $p+1-2 \sqrt{p} \leq\left|E\left(F_{p}\right)\right| \leq p+1+2 \sqrt{p}$.

- Let $a_{p}=p+1-\left|E\left(F_{p}\right)\right|, a_{p}$ measures the difference from the mean value.
- Thus we get an infinite sequence of numbers $a_{2}, a_{3}, a_{5}, a_{7}, a_{11}, \ldots$, one for each prime.

Generating Function for Rational Points

- For the sake of completeness, we define a's for non-prime indices too:

$$
a_{n}=\prod_{i=1}^{k} a_{p_{i}^{e_{i}}}
$$

where $n=\prod_{i=1}^{k} p_{i}^{e_{i}}$.

- Numbers $a_{p} e_{i}$ are defined from a_{p} using certain symmetry considerations, e.g., $a_{p^{2}}=a_{p}^{2}-p$.
- We can now define a generating function for this sequence:

- By studying properties of $G_{E}(z)$, we hope to infer properties of curve

Generating Function for Rational Points

- For the sake of completeness, we define a's for non-prime indices too:

$$
a_{n}=\prod_{i=1}^{k} a_{p_{i}^{e_{i}}}
$$

where $n=\prod_{i=1}^{k} p_{i}^{e_{i}}$.

- Numbers $a_{p} e_{i}$ are defined from a_{p} using certain symmetry considerations, e.g., $a_{p^{2}}=a_{p}^{2}-p$.
- We can now define a generating function for this sequence:

- By studying properties of $G_{E}(z)$, we hope to infer properties of curve

Generating Function for Rational Points

- For the sake of completeness, we define a's for non-prime indices too:

$$
a_{n}=\prod_{i=1}^{k} a_{p_{i}^{e_{i}}}
$$

where $n=\prod_{i=1}^{k} p_{i}^{e_{i}}$.

- Numbers $a_{p} e_{i}$ are defined from a_{p} using certain symmetry considerations, e.g., $a_{p^{2}}=a_{p}^{2}-p$.
- We can now define a generating function for this sequence:

$$
G_{E}(z)=\sum_{n>0} a_{n} \cdot z^{n}
$$

- By studying properties of $G_{E}(z)$, we hope to infer properties of curve

Generating Function for Rational Points

- For the sake of completeness, we define a's for non-prime indices too:

$$
a_{n}=\prod_{i=1}^{k} a_{p_{i}^{e_{i}}}
$$

where $n=\prod_{i=1}^{k} p_{i}^{e_{i}}$.

- Numbers $a_{p} e_{i}$ are defined from a_{p} using certain symmetry considerations, e.g., $a_{p^{2}}=a_{p}^{2}-p$.
- We can now define a generating function for this sequence:

$$
G_{E}(z)=\sum_{n>0} a_{n} \cdot z^{n}
$$

- By studying properties of $G_{E}(z)$, we hope to infer properties of curve E.

Modular Functions

Definition

A function f, defined over complex numbers, is modular of level ℓ and conductance N if for every 2×2 matrix $M=\left[\begin{array}{ccc}a & b \\ c & d\end{array}\right]$ such that all its entries are integers, $\operatorname{det} M=1$ and N divides c,

$$
f\left(\frac{a y+b}{c y+d}\right)=(c y+d)^{\ell} \cdot f(y)
$$

for all complex numbers y with $\Im(y)>0$.

Some Properties of Modular Functions

- Choose $M=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. Then:

$$
f(y+1)=f(y) .
$$

- Thus, f is periodic.
- Choose $M=\left[\begin{array}{cc}1 & 0 \\ k N & 1\end{array}\right]$. Then:

Some Properties of Modular Functions

- Choose $M=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$. Then:

$$
f(y+1)=f(y)
$$

- Thus, f is periodic.
- Choose $M=\left[\begin{array}{cc}1 & 0 \\ k N & 1\end{array}\right]$. Then:

$$
f\left(\frac{y}{k N y+1}\right)=(k N y+1)^{\ell} \cdot f(y)
$$

- So $f(y) \rightarrow \infty$ as $|y| \rightarrow 0$.

Generating Functions for E_{n} are Not Modular

- Define a special generating function derived from $G_{E}(z)$:

$$
S G_{E}(y)=G_{E}\left(e^{2 \pi i y}\right)=\sum_{n>0} a_{n} \cdot e^{2 \pi i y}
$$

- Recall that curve E_{n} was defined by a solution of Fermat's equation:

$$
y^{2}=x\left(x-a^{n}\right)\left(x+b^{n}\right)
$$

> Theorem (Ribet) Functions $S G_{E_{n}}$ are not modular for $n>2$.

Generating Functions for E_{n} are Not Modular

- Define a special generating function derived from $G_{E}(z)$:

$$
S G_{E}(y)=G_{E}\left(e^{2 \pi i y}\right)=\sum_{n>0} a_{n} \cdot e^{2 \pi i y}
$$

- Recall that curve E_{n} was defined by a solution of Fermat's equation:

$$
y^{2}=x\left(x-a^{n}\right)\left(x+b^{n}\right)
$$

Functions $S G_{E_{n}}$ are not modular for $n>2$.

Generating Functions for E_{n} are Not Modular

- Define a special generating function derived from $G_{E}(z)$:

$$
S G_{E}(y)=G_{E}\left(e^{2 \pi i y}\right)=\sum_{n>0} a_{n} \cdot e^{2 \pi i y}
$$

- Recall that curve E_{n} was defined by a solution of Fermat's equation:

$$
y^{2}=x\left(x-a^{n}\right)\left(x+b^{n}\right)
$$

Theorem (Ribet)

Functions $S G_{E_{n}}$ are not modular for $n>2$.

Wiles Theorem

Theorem (Wiles)

Function $S G_{E}$ for any elliptic curve is modular.

REmARKs

- In mathematics, answers to problems are often found in unexpected ways.
- Elliptic curves have found applications in a number of places:

Remarks

- In mathematics, answers to problems are often found in unexpected ways.
- Elliptic curves have found applications in a number of places:
- In factoring integers.
- In designing cryptosystems.

Remarks

- In mathematics, answers to problems are often found in unexpected ways.
- Elliptic curves have found applications in a number of places:
- In factoring integers.

Remarks

- In mathematics, answers to problems are often found in unexpected ways.
- Elliptic curves have found applications in a number of places:
- In factoring integers.
- In designing cryptosystems.

A Fun Problem

A Fun Problem

Find a non-trivial value of $n(n \neq 0,1)$ for which the number of balls needed is a perfect square.

