FERMAT'S LAST THEOREM: FROM INTEGERS TO ELLIPTIC CURVES

Manindra Agarwal

IIT Kanpur

December 2005

MANINDRA AGARWAL (IIT KANPUR)

Fermat's Last Theorem

December 2005 1 / 30

FERMAT'S LAST THEOREM

Theorem

There are no non-zero integer solutions of the equation $x^n + y^n = z^n$ when n > 2.

3 1 4 3

Towards the end of his life, Pierre de Fermat (1601-1665) wrote in the margin of a book:

I have discovered a truely remarkable proof of this theorem, but this margin is too small to write it down.

After more than 300 years, when the proof was finally written, it did take a little more than a margin to write.

Towards the end of his life, Pierre de Fermat (1601-1665) wrote in the margin of a book:

I have discovered a truely remarkable proof of this theorem, but this margin is too small to write it down.

After more than 300 years, when the proof was finally written, it did take a little more than a margin to write.

1660s: Fermat proved the theorem for n = 4.

1753: Euler proved the theorem for n = 3.

- 1825: Dirichlet and Legendre proved the theorem for n = 5.
- 1839: Lame proved the theorem for n = 7.
- 1857: Kummer proved the theorem for all $n \leq 100$.

- 1660s: Fermat proved the theorem for n = 4.
 - 1753: Euler proved the theorem for n = 3.
 - 1825: Dirichlet and Legendre proved the theorem for n = 5.
 - 1839: Lame proved the theorem for n = 7.
 - 1857: Kummer proved the theorem for all $n \leq 100$.

- 1660s: Fermat proved the theorem for n = 4.
 - 1753: Euler proved the theorem for n = 3.
 - 1825: Dirichlet and Legendre proved the theorem for n = 5.

1839: Lame proved the theorem for n = 7.

1857: Kummer proved the theorem for all $n \leq 100$.

- 1660s: Fermat proved the theorem for n = 4.
 - 1753: Euler proved the theorem for n = 3.
 - 1825: Dirichlet and Legendre proved the theorem for n = 5.
 - 1839: Lame proved the theorem for n = 7.
 - 1857: Kummer proved the theorem for all $n \leq 100$.

- 1660s: Fermat proved the theorem for n = 4.
 - 1753: Euler proved the theorem for n = 3.
 - 1825: Dirichlet and Legendre proved the theorem for n = 5.
 - 1839: Lame proved the theorem for n = 7.
 - 1857: Kummer proved the theorem for all $n \leq 100$.

1983: Faltings proved that for any n > 2, the equation $x^n + y^n = z^n$ can have at most finitely many integer solutions.

1994: Wiles proved the theorem.

- 1983: Faltings proved that for any n > 2, the equation $x^n + y^n = z^n$ can have at most finitely many integer solutions.
- 1994: Wiles proved the theorem.

• The equation is $x^2 + y^2 = z^2$.

• The solutions to this equation are Pythagorian triples.

• The smallest one is x = 3, y = 4 and z = 5.

The general solution is given by x = 2ab, $y = a^2 - b^2$, $z = a^2 + b^2$ for integers a > b > 0.

・同下 ・ ヨト ・ ヨ

- The equation is $x^2 + y^2 = z^2$.
- The solutions to this equation are Pythagorian triples.
- The smallest one is x = 3, y = 4 and z = 5.

The general solution is given by x = 2ab, $y = a^2 - b^2$, $z = a^2 + b^2$ for integers a > b > 0.

- The equation is $x^2 + y^2 = z^2$.
- The solutions to this equation are Pythagorian triples.
- The smallest one is x = 3, y = 4 and z = 5.

The general solution is given by x = 2ab, $y = a^2 - b^2$, $z = a^2 + b^2$ for integers a > b > 0.

- Suppose $u^4 + v^4 = w^4$ for some relatively prime integers u, v, w.
- So we must have coprime integers *a* and *b* such that $u^2 = 2ab$, $v^2 = a^2 b^2$ and $w^2 = a^2 + b^2$.
- Since *a*, *b* are coprime, there exist coprime integers α and β such that $u = \alpha \beta$ and

$$2a = \alpha^2, b = \beta^2$$
 or $a = \alpha^2, 2b = \beta^2$.

• Similarly, there exist coprime integers γ and δ such that $v = \gamma \delta$ and

$$a-b=\gamma^2, a+b=\delta^2.$$

- Suppose $u^4 + v^4 = w^4$ for some relatively prime integers u, v, w.
- So we must have coprime integers *a* and *b* such that $u^2 = 2ab$, $v^2 = a^2 b^2$ and $w^2 = a^2 + b^2$.
- Since *a*, *b* are coprime, there exist coprime integers α and β such that $u = \alpha \beta$ and

$$2a = \alpha^2, b = \beta^2$$
 or $a = \alpha^2, 2b = \beta^2$.

• Similarly, there exist coprime integers γ and δ such that $v = \gamma \delta$ and

$$a-b=\gamma^2, a+b=\delta^2.$$

- Suppose $u^4 + v^4 = w^4$ for some relatively prime integers u, v, w.
- So we must have coprime integers *a* and *b* such that $u^2 = 2ab$, $v^2 = a^2 b^2$ and $w^2 = a^2 + b^2$.
- Since *a*, *b* are coprime, there exist coprime integers α and β such that $u = \alpha \beta$ and

$$2a = \alpha^2, b = \beta^2$$
 or $a = \alpha^2, 2b = \beta^2$.

• Similarly, there exist coprime integers γ and δ such that $\mathbf{v} = \gamma \delta$ and

$$\mathbf{a} - \mathbf{b} = \gamma^2, \mathbf{a} + \mathbf{b} = \delta^2.$$

- Suppose the first case: $2a = \alpha^2$.
- Then,

$$\gamma^2 + \delta^2 = (a - b) + (a + b) = 2a = \alpha^2.$$

- In addition, 2 divides α and α , γ , δ are coprime to each other.
- So both γ and δ are odd numbers.
- Let $\gamma = 2k + 1$ and $\delta = 2\ell + 1$ and consider the equation modulo 4:

 $0 = \alpha^2 \pmod{4} = (2k+1)^2 + (2\ell+1)^2 \pmod{4} = 2 \pmod{4}.$

- This is impossible.
- The second case can be handled similarly, using infinite descent method. [Try it!]

- Suppose the first case: $2a = \alpha^2$.
- Then,

$$\gamma^2 + \delta^2 = (a - b) + (a + b) = 2a = \alpha^2.$$

- In addition, 2 divides α and α , γ , δ are coprime to each other.
- So both γ and δ are odd numbers.
- Let $\gamma = 2k + 1$ and $\delta = 2\ell + 1$ and consider the equation modulo 4:

 $0 = \alpha^2 \pmod{4} = (2k+1)^2 + (2\ell+1)^2 \pmod{4} = 2 \pmod{4}.$

- This is impossible.
- The second case can be handled similarly, using infinite descent method. [Try it!]

- Suppose the first case: $2a = \alpha^2$.
- Then,

$$\gamma^2 + \delta^2 = (a - b) + (a + b) = 2a = \alpha^2.$$

- In addition, 2 divides α and α , γ , δ are coprime to each other.
- So both γ and δ are odd numbers.
- Let $\gamma = 2k + 1$ and $\delta = 2\ell + 1$ and consider the equation modulo 4:

$$0 = \alpha^2 \pmod{4} = (2k+1)^2 + (2\ell+1)^2 \pmod{4} = 2 \pmod{4}.$$

This is impossible.

• The second case can be handled similarly, using infinite descent method. [Try it!]

- Suppose the first case: $2a = \alpha^2$.
- Then,

$$\gamma^2 + \delta^2 = (a - b) + (a + b) = 2a = \alpha^2.$$

- In addition, 2 divides α and α , γ , δ are coprime to each other.
- So both γ and δ are odd numbers.
- Let $\gamma = 2k + 1$ and $\delta = 2\ell + 1$ and consider the equation modulo 4:

$$0 = \alpha^2 \pmod{4} = (2k+1)^2 + (2\ell+1)^2 \pmod{4} = 2 \pmod{4}.$$

- This is impossible.
- The second case can be handled similarly, using infinite descent method. [Try it!]

A More General Approach

- Approach for n = 4 does not generalize.
- Different approaches can be used to prove $n = 3, 5, \ldots$ cases.
- However, none of these approaches generalized.
- A different idea was needed to make it work for all *n*.
- This came in the form of rational points on curves.

A More General Approach

- Approach for n = 4 does not generalize.
- Different approaches can be used to prove $n = 3, 5, \ldots$ cases.
- However, none of these approaches generalized.
- A different idea was needed to make it work for all *n*.
- This came in the form of rational points on curves.

A More General Approach

- Approach for n = 4 does not generalize.
- Different approaches can be used to prove $n = 3, 5, \ldots$ cases.
- However, none of these approaches generalized.
- A different idea was needed to make it work for all *n*.
- This came in the form of rational points on curves.

RATIONAL POINTS ON CURVES

- Let f(x, y) = 0 be a curve of degree *n* with rational coefficients.
- We wish to know how many rational points lie on this curve.
- Consider the curve $F_n(x, y) = x^n + y^n 1 = 0$.
- Let $F_n(\alpha, \beta) = 0$ where $\alpha = \frac{a}{c}$ and $\beta = \frac{b}{c}$ are rational numbers.
- Then, $a^n + b^n = c^n$ giving an integer solution to Fermat's equation.
- Conversely, any integer solution to Fermat's equation yields a rational point on the curve $F_n(x, y) = 0$.

RATIONAL POINTS ON CURVES

- Let f(x, y) = 0 be a curve of degree *n* with rational coefficients.
- We wish to know how many rational points lie on this curve.
- Consider the curve $F_n(x, y) = x^n + y^n 1 = 0$.
- Let $F_n(\alpha, \beta) = 0$ where $\alpha = \frac{a}{c}$ and $\beta = \frac{b}{c}$ are rational numbers.
- Then, $a^n + b^n = c^n$ giving an integer solution to Fermat's equation.
- Conversely, any integer solution to Fermat's equation yields a rational point on the curve $F_n(x, y) = 0$.

RATIONAL POINTS ON CURVES

- Let f(x, y) = 0 be a curve of degree *n* with rational coefficients.
- We wish to know how many rational points lie on this curve.
- Consider the curve $F_n(x, y) = x^n + y^n 1 = 0$.
- Let $F_n(\alpha, \beta) = 0$ where $\alpha = \frac{a}{c}$ and $\beta = \frac{b}{c}$ are rational numbers.
- Then, $a^n + b^n = c^n$ giving an integer solution to Fermat's equation.
- Conversely, any integer solution to Fermat's equation yields a rational point on the curve $F_n(x, y) = 0$.

FALTINGS THEOREM

THEOREM (FALTINGS)

For any curve except for lines, conic sections, and elliptic curves, the number of rational points on the curve is finite.

- This implies that the equation $x^n + y^n = z^n$ will have at most finitely many solutions for any n > 4 (equations for n = 3, 4 can be transformed to elliptic curves).
- Not strong enough!

FALTINGS THEOREM

THEOREM (FALTINGS)

For any curve except for lines, conic sections, and elliptic curves, the number of rational points on the curve is finite.

- This implies that the equation $x^n + y^n = z^n$ will have at most finitely many solutions for any n > 4 (equations for n = 3, 4 can be transformed to elliptic curves).
- Not strong enough!

A DIFFERENT APPROACH

- One idea is to transform the curves xⁿ + yⁿ = 1 to a family of curves that have no rational points on it.
- The eventual solution came by a similar approach the problem was transformed to a problem on elliptic curves.
- Interestingly, elliptic curves can have infinitely many rational points!

A DIFFERENT APPROACH

- One idea is to transform the curves xⁿ + yⁿ = 1 to a family of curves that have no rational points on it.
- The eventual solution came by a similar approach the problem was transformed to a problem on elliptic curves.
- Interestingly, elliptic curves can have infinitely many rational points!

A DIFFERENT APPROACH

- One idea is to transform the curves xⁿ + yⁿ = 1 to a family of curves that have no rational points on it.
- The eventual solution came by a similar approach the problem was transformed to a problem on elliptic curves.
- Interestingly, elliptic curves can have infinitely many rational points!

Elliptic Curves

DEFINITION

An elliptic curve is given by equation:

$$y^2 = x^3 + Ax + B$$

for numbers A and B satisfying $4A^3 + 27B^2 \neq 0$.

- We will be interested in curves for which both A and B are rational numbers.
- Elliptic curves have truly amazing properties as we shall see.

Elliptic Curves

DEFINITION

An elliptic curve is given by equation:

$$y^2 = x^3 + Ax + B$$

for numbers A and B satisfying $4A^3 + 27B^2 \neq 0$.

- We will be interested in curves for which both *A* and *B* are rational numbers.
- Elliptic curves have truly amazing properties as we shall see.

Elliptic Curves

DEFINITION

An elliptic curve is given by equation:

$$y^2 = x^3 + Ax + B$$

for numbers A and B satisfying $4A^3 + 27B^2 \neq 0$.

- We will be interested in curves for which both *A* and *B* are rational numbers.
- Elliptic curves have truly amazing properties as we shall see.

Elliptic Curve Examples

3
Elliptic Curve Examples

Elliptic Curve Examples

DISCRIMINANT OF AN ELLIPTIC CURVE

- Let *E* be an elliptic curve given by equation $y^2 = x^3 + Ax + B$.
- Discriminant Δ of *E* is the number $4A^3 + 27B^2$.
- We require the discriminant of *E* to be non-zero.
- This condition is equivalent to the condition that the three (perhaps complex) roots of the polynomial x³ + Ax + B are distinct. [Verify!]
- If $x^3 + Ax + B = (x \alpha)(x \beta)(x \gamma)$ then

$$\Delta = (\alpha - \beta)^2 (\beta - \gamma)^2 (\gamma - \alpha)^2.$$

DISCRIMINANT OF AN ELLIPTIC CURVE

- Let *E* be an elliptic curve given by equation $y^2 = x^3 + Ax + B$.
- Discriminant Δ of *E* is the number $4A^3 + 27B^2$.
- We require the discriminant of *E* to be non-zero.
- This condition is equivalent to the condition that the three (perhaps complex) roots of the polynomial x³ + Ax + B are distinct. [Verify!]
- If $x^3 + Ax + B = (x \alpha)(x \beta)(x \gamma)$ then

$$\Delta = (\alpha - \beta)^2 (\beta - \gamma)^2 (\gamma - \alpha)^2.$$

Let (a, b, c) be a solution of the equation $x^n + y^n = z^n$ for some n > 2.

DEFINITION

Define an elliptic curve E_n by the equation:

$$y^2 = x(x - a^n)(x + b^n).$$

$$\Delta_n = (a^n)^2 \cdot (b^n)^2 \cdot (a^n + b^n)^2 = (abc)^{2n}.$$

- So the discriminant is 2*n*th power of an integer.
- We aim to show that no elliptic curve exists whose discriminant is a 6th or higher power.

Let (a, b, c) be a solution of the equation $x^n + y^n = z^n$ for some n > 2.

DEFINITION

Define an elliptic curve E_n by the equation:

$$y^2 = x(x-a^n)(x+b^n).$$

$$\Delta_n = (a^n)^2 \cdot (b^n)^2 \cdot (a^n + b^n)^2 = (abc)^{2n}.$$

- So the discriminant is 2*n*th power of an integer.
- We aim to show that no elliptic curve exists whose discriminant is a 6th or higher power.

Let (a, b, c) be a solution of the equation $x^n + y^n = z^n$ for some n > 2.

DEFINITION

Define an elliptic curve E_n by the equation:

$$y^2 = x(x-a^n)(x+b^n).$$

$$\Delta_n = (a^n)^2 \cdot (b^n)^2 \cdot (a^n + b^n)^2 = (abc)^{2n}.$$

- So the discriminant is 2*n*th power of an integer.
- We aim to show that no elliptic curve exists whose discriminant is a 6th or higher power.

Let (a, b, c) be a solution of the equation $x^n + y^n = z^n$ for some n > 2.

DEFINITION

Define an elliptic curve E_n by the equation:

$$y^2 = x(x-a^n)(x+b^n).$$

$$\Delta_n=(a^n)^2\cdot(b^n)^2\cdot(a^n+b^n)^2=(abc)^{2n}.$$

- So the discriminant is 2*n*th power of an integer.
- We aim to show that no elliptic curve exists whose discriminant is a 6th or higher power.

RATIONAL POINTS ON AN ELLIPTIC CURVE

- Let $E(\mathbb{Q})$ be the set of rational points on the curve E.
- We add a "point at infinity," called O, to this set.

AMAZING FACT.

We can define an "addition" operation on the set of points in $E(\mathbb{Q})$ just like integer addition.

RATIONAL POINTS ON AN ELLIPTIC CURVE

- Let $E(\mathbb{Q})$ be the set of rational points on the curve E.
- We add a "point at infinity," called O, to this set.

AMAZING FACT.

We can define an "addition" operation on the set of points in $E(\mathbb{Q})$ just like integer addition.

Adding points P & Q on curve $y^2 = x^3 - x$

MANINDRA AGARWAL (IIT KANPUR)

・ロト ・回ト ・ヨト ・ヨト

イロト イヨト イヨト

イロト イヨト イヨト

- * 同 * * ミ * * ミ *

- Observe that if points P and Q on E are rational, then point P + Q is also rational. [Verify!]
- The point addition obeys same laws as integer addition with point at infinity *O* acting as the "zero" of point addition.
- The point addition has some additional interesting properties too.

- Observe that if points P and Q on E are rational, then point P + Q is also rational. [Verify!]
- The point addition obeys same laws as integer addition with point at infinity *O* acting as the "zero" of point addition.
- The point addition has some additional interesting properties too.

- Observe that if points P and Q on E are rational, then point P + Q is also rational. [Verify!]
- The point addition obeys same laws as integer addition with point at infinity *O* acting as the "zero" of point addition.
- The point addition has some additional interesting properties too.

3

Counting Rational Points on E

- The nice additive structure of rational points in *E*(Q) allows us to "count" them.
- For each prime p, define E(F_p) to be the set of points (u, v) such that 0 ≤ u, v

 $v^2 = u^3 + Au + B \pmod{p}.$

- A point in $E(\mathbb{Q})$ yields a point in $E(F_p)$.
- The set $E(F_p)$ is clearly finite: $|E(F_p)| \le p^2$.

Counting Rational Points on E

- The nice additive structure of rational points in *E*(Q) allows us to "count" them.
- For each prime p, define E(F_p) to be the set of points (u, v) such that 0 ≤ u, v

$$v^2 = u^3 + Au + B \pmod{p}$$
.

A point in E(Q) yields a point in E(F_p).
The set E(F_p) is clearly finite: |E(F_p)| ≤ p².

Counting Rational Points on E

- The nice additive structure of rational points in *E*(Q) allows us to "count" them.
- For each prime p, define E(F_p) to be the set of points (u, v) such that 0 ≤ u, v

$$v^2 = u^3 + Au + B \pmod{p}$$
.

- A point in $E(\mathbb{Q})$ yields a point in $E(F_p)$.
- The set $E(F_p)$ is clearly finite: $|E(F_p)| \le p^2$.

HASSE'S THEOREM

THEOREM (HASSE)

$p+1-2\sqrt{p} \leq |E(F_p)| \leq p+1+2\sqrt{p}.$

- Let $a_p = p + 1 |E(F_p)|$, a_p measures the difference from the mean value.
- Thus we get an infinite sequence of numbers *a*₂, *a*₃, *a*₅, *a*₇, *a*₁₁, ..., one for each prime.

HASSE'S THEOREM

THEOREM (HASSE)

 $|p+1-2\sqrt{p}| \leq |E(F_p)| \leq |p+1+2\sqrt{p}|$

- Let $a_p = p + 1 |E(F_p)|$, a_p measures the difference from the mean value.
- Thus we get an infinite sequence of numbers *a*₂, *a*₃, *a*₅, *a*₇, *a*₁₁, ..., one for each prime.

• For the sake of completeness, we define a's for non-prime indices too:

$$a_n = \prod_{i=1}^k a_{p_i^{e_i}},$$

where $n = \prod_{i=1}^{k} p_i^{e_i}$.

- Numbers $a_{p^{e_i}}$ are defined from a_p using certain symmetry considerations, e.g., $a_{p^2} = a_p^2 p$.
- We can now define a generating function for this sequence:

$$G_E(z)=\sum_{n>0}a_n\cdot z^n.$$

• For the sake of completeness, we define a's for non-prime indices too:

$$a_n = \prod_{i=1}^k a_{p_i^{e_i}},$$

where $n = \prod_{i=1}^{k} p_i^{e_i}$.

- Numbers $a_{p^{e_i}}$ are defined from a_p using certain symmetry considerations, e.g., $a_{p^2} = a_p^2 p$.
- We can now define a generating function for this sequence:

$$G_E(z)=\sum_{n>0}a_n\cdot z^n.$$

• For the sake of completeness, we define a's for non-prime indices too:

$$a_n = \prod_{i=1}^k a_{p_i^{e_i}},$$

where $n = \prod_{i=1}^{k} p_i^{e_i}$.

- Numbers $a_{p^{e_i}}$ are defined from a_p using certain symmetry considerations, e.g., $a_{p^2} = a_p^2 p$.
- We can now define a generating function for this sequence:

$$G_E(z)=\sum_{n>0}a_n\cdot z^n.$$

• For the sake of completeness, we define a's for non-prime indices too:

$$a_n = \prod_{i=1}^k a_{p_i^{e_i}},$$

where $n = \prod_{i=1}^{k} p_i^{e_i}$.

- Numbers $a_{p^{e_i}}$ are defined from a_p using certain symmetry considerations, e.g., $a_{p^2} = a_p^2 p$.
- We can now define a generating function for this sequence:

$$G_E(z)=\sum_{n>0}a_n\cdot z^n.$$

MODULAR FUNCTIONS

DEFINITION

A function f, defined over complex numbers, is modular of level ℓ and conductance N if for every 2×2 matrix $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ such that all its entries are integers, det M = 1 and N divides c,

$$f(\frac{ay+b}{cy+d}) = (cy+d)^{\ell} \cdot f(y)$$

for all complex numbers y with $\Im(y) > 0$.

Some Properties of Modular Functions

• Choose $M = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Then:

f(y+1)=f(y).

• Thus, *f* is periodic.

• Choose $M = \begin{bmatrix} 1 & 0 \\ kN & 1 \end{bmatrix}$. Then:

$$f(\frac{y}{kNy+1}) = (kNy+1)^{\ell} \cdot f(y).$$

• So $f(y) \to \infty$ as $|y| \to 0$.

B N 4 B N

Some Properties of Modular Functions

• Choose $M = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Then:

f(y+1)=f(y).

- Thus, *f* is periodic.
- Choose $M = \begin{bmatrix} 1 & 0 \\ kN & 1 \end{bmatrix}$. Then:

$$f(\frac{y}{kNy+1}) = (kNy+1)^{\ell} \cdot f(y).$$

• So $f(y) \to \infty$ as $|y| \to 0$.

Generating Functions for E_n are Not Modular

• Define a special generating function derived from $G_E(z)$:

$$SG_E(y) = G_E(e^{2\pi i y}) = \sum_{n>0} a_n \cdot e^{2\pi i y}.$$

• Recall that curve E_n was defined by a solution of Fermat's equation:

$$y^2 = x(x - a^n)(x + b^n).$$

THEOREM (RIBET)

Functions SG_{E_n} are not modular for n > 2.

Generating Functions for E_n are Not Modular

• Define a special generating function derived from $G_E(z)$:

$$SG_E(y) = G_E(e^{2\pi i y}) = \sum_{n>0} a_n \cdot e^{2\pi i y}.$$

• Recall that curve E_n was defined by a solution of Fermat's equation:

$$y^2 = x(x-a^n)(x+b^n).$$

THEOREM (RIBET)

Functions SG_{E_n} are not modular for n > 2.

Generating Functions for E_n are Not Modular

• Define a special generating function derived from $G_E(z)$:

$$SG_E(y) = G_E(e^{2\pi i y}) = \sum_{n>0} a_n \cdot e^{2\pi i y}.$$

• Recall that curve E_n was defined by a solution of Fermat's equation:

$$y^2 = x(x-a^n)(x+b^n).$$

THEOREM (RIBET)

Functions SG_{E_n} are not modular for n > 2.

WILES THEOREM

THEOREM (WILES)

Function SG_E for any elliptic curve is modular.

MANINDRA AGARWAL (IIT KANPUR)

A ►

Remarks

- In mathematics, answers to problems are often found in unexpected ways.
- Elliptic curves have found applications in a number of places:
 - In factoring integers.
 - In designing cryptosystems.

・ 同 ト ・ ヨ ト ・ ヨ ト
- In mathematics, answers to problems are often found in unexpected ways.
- Elliptic curves have found applications in a number of places:
 - In factoring integers.
 - In designing cryptosystems.

B N 4 B N

- In mathematics, answers to problems are often found in unexpected ways.
- Elliptic curves have found applications in a number of places:
 - In factoring integers.
 - In designing cryptosystems.

글 🖌 🖌 글

- In mathematics, answers to problems are often found in unexpected ways.
- Elliptic curves have found applications in a number of places:
 - In factoring integers.
 - In designing cryptosystems.

MANINDRA AGARWAL (IIT KANPUR)

Fermat's Last Theorem

December 2005 29

3

(日) (同) (目) (日)

29 / 30

・ロト ・回ト ・ヨト ・ヨト

・ロト ・回ト ・ヨト ・ヨト

MANINDRA AGARWAL (IIT KANPUR)

29 / 30December 2005

・ロト ・回ト ・ヨト ・ヨト

MANINDRA AGARWAL (IIT KANPUR)

Fermat's Last Theorem

December 2005 29

3

・ロト ・回ト ・ヨト ・ヨト

29 / 30

Find a non-trivial value of $n \ (n \neq 0, 1)$ for which the number of balls needed is a perfect square.