Determinant Versus Permanent

Manindra Agrawal

IIT Kanpur
IITK, 2/2007

Overview

(1) Determinant and Permanent
(2) A Computational View
(3) Known Lower Bounds on Complexity of Permanent
(4) Proving Strong Lower Bounds on Determinant Complexity
(5) Proving Strong Lower Bounds on Circuit Complexity
(6) Proving Hardness of Permanent Polynomial

Outline

(1) Determinant and Permanent

(2) A Computational View

3 Known Lower Bounds on Complexity of Permanent

4 Proving Strong Lower Bounds on Determinant Complexity

5 Proving Strong Lower Bounds on Circuit Complexity
(6) Proving Hardness of Permanent Polynomial

Determinant

Determinant of an $n \times n$ matrix $X=\left[x_{i, j}\right]$ is defined as:

$$
\operatorname{det} X=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \cdot \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Here S_{n} is the group of all permutations on $[1, n]$ and $\operatorname{sgn}(\sigma)$ is the sign of the permulation $\sigma, \operatorname{sgn}(\sigma) \in\{1,-1\}$.

Properties of Determinant

$$
\text { Linearity. } \operatorname{det}\left[\begin{array}{cccc}
c_{1}+c_{1}^{\prime} & c_{2} & \cdots & c_{n}
\end{array}\right]=\operatorname{det}\left[\begin{array}{llll}
c_{1} & c_{2} & \cdots & c_{n}
\end{array}\right]+\operatorname{det}\left[\begin{array}{cccc}
c_{1}^{\prime} & c_{2} & \cdots & c_{n}
\end{array}\right] .
$$

$$
\text { Multiplicativity. } \operatorname{det} A B=\operatorname{det} A \cdot \operatorname{det} B .
$$

 parallelopiped defined by vectors $c_{1}, c_{2}, \ldots, c_{n}$.
Algebraic Interpretation. $\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}$ where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of A.

Relation to Multiplication. For any A, there exists an efficiently computable B and number m such that $\operatorname{det} A=\left[B^{m}\right]_{1,1}$.

Properties of Determinant

Linearity. $\operatorname{det}\left[c_{1}+c_{1}^{\prime} c_{2} \cdots c_{n}\right]=\operatorname{det}\left[c_{1} c_{2} \cdots c_{n}\right]+\operatorname{det}\left[c_{1}^{\prime} c_{2} \cdots c_{n}\right]$. Multiplicativity. $\operatorname{det} A B=\operatorname{det} A \cdot \operatorname{det} B$.
GEOMETRIC InTERPRETATION. | $\operatorname{det}\left[c_{1} c_{2} \cdots c_{n}\right] \mid$ is the volume of the
parallelopiped defined by vectors $c_{1}, c_{2}, \ldots, c_{n}$.

ALGEBRAIC Interpretation. $\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}$ where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of A.

Relation to Multiplication. For any A, there exists an efficiently computable B and number m such that $\operatorname{det} A=\left[B^{m}\right]_{1,1}$.

Properties of Determinant

Linearity. $\operatorname{det}\left[c_{1}+c_{1}^{\prime} c_{2} \cdots c_{n}\right]=\operatorname{det}\left[c_{1} c_{2} \cdots c_{n}\right]+\operatorname{det}\left[c_{1}^{\prime} c_{2} \cdots c_{n}\right]$. Multiplicativity. $\operatorname{det} A B=\operatorname{det} A \cdot \operatorname{det} B$.
Geometric Interpretation. $\left|\operatorname{det}\left[c_{1} c_{2} \cdots c_{n}\right]\right|$ is the volume of the parallelopiped defined by vectors $c_{1}, c_{2}, \ldots, c_{n}$.

Properties of Determinant

Linearity. $\operatorname{det}\left[c_{1}+c_{1}^{\prime} c_{2} \cdots c_{n}\right]=\operatorname{det}\left[c_{1} c_{2} \cdots c_{n}\right]+\operatorname{det}\left[c_{1}^{\prime} c_{2} \cdots c_{n}\right]$. Multiplicativity. $\operatorname{det} A B=\operatorname{det} A \cdot \operatorname{det} B$.
Geometric Interpretation. $\left|\operatorname{det}\left[c_{1} c_{2} \cdots c_{n}\right]\right|$ is the volume of the parallelopiped defined by vectors $c_{1}, c_{2}, \ldots, c_{n}$.
Algebraic Interpretation. $\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}$ where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of A.
Relation to Multiplication. For any A, there exists an efficiently computable B and number m such that $\operatorname{det} A=\left[B^{m}\right]_{1,1}$.

Properties of Determinant

Linearity. $\operatorname{det}\left[c_{1}+c_{1}^{\prime} c_{2} \cdots c_{n}\right]=\operatorname{det}\left[\begin{array}{cccc}c_{1} & c_{2} & \cdots & c_{n}\end{array}\right]+\operatorname{det}\left[c_{1}^{\prime} c_{2} \cdots c_{n}\right]$. Multiplicativity. $\operatorname{det} A B=\operatorname{det} A \cdot \operatorname{det} B$.
Geometric Interpretation. $\left|\operatorname{det}\left[c_{1} c_{2} \cdots c_{n}\right]\right|$ is the volume of the parallelopiped defined by vectors $c_{1}, c_{2}, \ldots, c_{n}$.
Algebraic Interpretation. $\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i}$ where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of A.
Relation to Multiplication. For any A, there exists an efficiently computable B and number m such that $\operatorname{det} A=\left[B^{m}\right]_{1,1}$.

Permanent

Permanent of an $n \times n$ matrix $X=\left[x_{i, j}\right]$ is defined as:

$$
\operatorname{per} X=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Same as determinant except the signs.

Permanent

Permanent of an $n \times n$ matrix $X=\left[x_{i, j}\right]$ is defined as:

$$
\operatorname{per} X=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Same as determinant except the signs.

Properties of Permanent

Linearity. per $\left[c_{1}+c_{1}^{\prime} c_{2} \cdots c_{n}\right]=$
$\operatorname{per}\left[c_{1} c_{2} \cdots c_{n}\right]+\operatorname{per}\left[c_{1}^{\prime} c_{2} \cdots c_{n}\right]$.
Combinatorial Interpretation. Permanent of matrix A with
non-negative numbers is the sum of weights of all perfect matchings of the bipartite graph represented by A.

Properties of Permanent

Linearity. per $\left[c_{1}+c_{1}^{\prime} c_{2} \cdots c_{n}\right]=$
per $\left[c_{1} c_{2} \cdots c_{n}\right]+\operatorname{per}\left[c_{1}^{\prime} c_{2} \cdots c_{n}\right]$.
Combinatorial Interpretation. Permanent of matrix A with non-negative numbers is the sum of weights of all perfect matchings of the bipartite graph represented by A.

Properties of Permanent

- Despite closeness in definition, permanent function satisfies much fewer properties than determinant function.
- How does one explain this?

Determinant Complexity

For matrix $X=\left[x_{i, j}\right]$, permanent of X has determinant complexity m over field F if there exists an $m \times m$ matrix Y such that

- per $X=\operatorname{det} Y$.
- Each entry of Y is an F-affine combination of $x_{i, j}$'s.

A Conjecture

Permanent of $n \times n$ matrix X over field F, with char $\neq 2$, has determinant complexity $2^{\Omega(n)}$.

Outline

(1) Determinant and Permanent
(2) A Computational View
(3) Known Lower Bounds on Complexity of Permanent
(1) Proving Strong Lower Bounds on Determinant Complexity
(3) Proving Strong Lower Bounds on Circuit Complexity
© Proving Hardness of Permanent Polynomial

Arithmetic Circuits

Arithmetic circuits over field F represent a sequence of arithmetic operations over F on variables.

- Allowed operations are addition and multiplication.
- The output of the circuit is a polynomial in the input variables.

Arithmetic Circuits

Arithmetic circuits over field F represent a sequence of arithmetic operations over F on variables.

- Allowed operations are addition and multiplication.
- The output of the circuit is a polynomial in the input variables.

Circuit Complexity

Crucial parameters associated with arithmetic circuits are:

- Size: equals the number of operations in the circuit.
- Depth: equals the length of the longest path from a variable to output of the circuit.
- Degree: equals the formal degree of the polynomial output by the circuit.

Circuit complexity of a polynomial is the size of the smallest arithmetic circuit that outputs the polynomial.

Circuit Complexity

Crucial parameters associated with arithmetic circuits are:

- Size: equals the number of operations in the circuit.
- Depth: equals the length of the longest path from a variable to output of the circuit.
- Degree: equals the formal degree of the polynomial output by the circuit.

Circuit complexity of a polynomial is the size of the smallest arithmetic circuit that outputs the polynomial.

Circuit Complexity

Crucial parameters associated with arithmetic circuits are:

- Size: equals the number of operations in the circuit.
- Depth: equals the length of the longest path from a variable to output of the circuit.
- Degree: equals the formal degree of the polynomial output by the circuit.

Circuit complexity of a polynomial is the size of the smallest arithmetic circuit that outputs the polynomial.

Circuit Complexity

Crucial parameters associated with arithmetic circuits are:

- Size: equals the number of operations in the circuit.
- Depth: equals the length of the longest path from a variable to output of the circuit.
- Degree: equals the formal degree of the polynomial output by the circuit.

Circuit complexity of a polynomial is the size of the smallest arithmetic circuit that outputs the polynomial.

ARITH-P AND ARITH-NP

Polynomial family $\left\{p_{n}\right\} \in$ arith- P if p_{n} has circuit complexity $n^{O(1)}$.

Polynomial family $\left\{q_{n}\right\} \in$ arith-NP if there exists a family $\left\{p_{n}\right\} \in$ arith- P

 such that
ARITH-P AND ARITH-NP

Polynomial family $\left\{p_{n}\right\} \in$ arith-P if p_{n} has circuit complexity $n^{O(1)}$. Polynomial family $\left\{q_{n}\right\} \in$ arith-NP if there exists a family $\left\{p_{n}\right\} \in$ arith- P such that

$$
q_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{y_{1}=0}^{1} \cdots \sum_{y_{n}=0}^{1} p_{2 n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) .
$$

Complexity of Determinant and Permanent

- Permanent is complete for arith-NP [Valient 1979].
- Determinant is in arith-P, and any polynomial family in arith-P has determinant complexity $n^{O(\log n)}$.

Complexity of Determinant and Permanent

- Permanent is complete for arith-NP [Valient 1979].
- Determinant is in arith-P, and any polynomial family in arith-P has determinant complexity $n^{O(\log n)}$.

Another Conjecture

Permanent of $n \times n$ matrix X over F has circuit complexity $2^{\Omega(n)}$ for char $F \neq 2$.

This conjecture implies the first one!

Another Conjecture

Permanent of $n \times n$ matrix X over F has circuit complexity $2^{\Omega(n)}$ for char $F \neq 2$.

This conjecture implies the first one!

Outline

(1) Determinant and Permanent
(2) A Computational View
(3) Known Lower Bounds on Complexity of Permanent
(a) Proving Strong Lower Bounds on Determinant Complexity
© Proving Strong Lower Bounds on Circuit Complexity
(6) Proving Hardness of Permanent Polynomial

Lower Bounds for Determinant Complexity

- Mignon and Ressayre (2004) showed that determinant complexity of per $X($ size $X=n)$ is $\Omega\left(n^{2}\right)$ over \mathbb{Q}.

Lower Bounds for Circuit Complexity

- Lower bounds are known for permanent only for very restricted type of circuits.
- Jerrum and Snir (1982) showed that any monotone circuit computing per X is of exponential size.
- Monotone circuits are circuits with no negative constant.
- Shpilka and Wigderson (1999) showed that any depth three circuit computing per X (or even $\operatorname{det} X$) over \mathbb{Q} is of size $\Omega\left(n^{2}\right)$.

Lower Bounds for Circuit Complexity

- Lower bounds are known for permanent only for very restricted type of circuits.
- Jerrum and Snir (1982) showed that any monotone circuit computing per X is of exponential size.
- Monotone circuits are circuits with no negative constant.
- Shpilka and Wigderson (1999) showed that any depth three circuit computing per X (or even $\operatorname{det} X$) over \mathbb{Q} is of size $\Omega\left(n^{2}\right)$.

Lower Bounds for Circuit Complexity

- Lower bounds are known for permanent only for very restricted type of circuits.
- Jerrum and Snir (1982) showed that any monotone circuit computing per X is of exponential size.
- Monotone circuits are circuits with no negative constant.
- Shpilka and Wigderson (1999) showed that any depth three circuit computing per X (or even $\operatorname{det} X$) over \mathbb{Q} is of size $\Omega\left(n^{2}\right)$.

Lower Bounds for Circuit Complexity

- Grigoriev and Razborov (2000) showed that any depth three circuit computing per X or $\operatorname{det} X$ over a finite field is of exponential size.
det X is of size $n^{\Omega(\log n)}$.
- Formulas are circuits with outdegree one.
- Multilinear formulas are formulas in which every gate computes a multilinear polynomial.

Lower Bounds for Circuit Complexity

- Grigoriev and Razborov (2000) showed that any depth three circuit computing per X or $\operatorname{det} X$ over a finite field is of exponential size.
- Raz (2004) showed that any multilinear formula computing per X or $\operatorname{det} X$ is of size $n^{\Omega(\log n)}$.
- Formulas are circuits with outdegree one.
- Multilinear formulas are formulas in which every gate computes a multilinear polynomial.

Outline

(1) Determinant and Permanent
(2) A Computational View

3 Known Lower Bounds on Complexity of Permanent
(4) Proving Strong Lower Bounds on Determinant Complexity

5 Proving Strong Lower Bounds on Circuit Complexity

6 Proving Hardness of Permanent Polynomial

Geometric Invariant Theory Approach

- Mulmulay and Sohoni (2002) have formulated the problem as an algebraic geometry problem.
- Let $X_{\ell}=\left[x_{i, j}\right]_{1 \leq i, j \leq \ell}$ be $\ell \times \ell$ matrix of variables.
- Let per ${ }_{\ell}=\operatorname{per} X_{\ell}$ and $\operatorname{det}_{\ell}=\operatorname{det} X_{\ell}$ denote the permanent and determinant polynomials respectively in ℓ^{2} variables.
- Suppose over \mathbb{Q}, determinant complexity of per $_{n}$ is m.
- Let per $_{n}=\operatorname{det} Y$ for $m \times m$ matrix Y whose entries are affine combinations of variables of X_{n}.

Geometric Invariant Theory Approach

- Mulmulay and Sohoni (2002) have formulated the problem as an algebraic geometry problem.
- Let $X_{\ell}=\left[x_{i, j}\right]_{1 \leq i, j \leq \ell}$ be $\ell \times \ell$ matrix of variables.
- Let per ${ }_{\ell}=\operatorname{per} X_{\ell}$ and $\operatorname{det}_{\ell}=\operatorname{det} X_{\ell}$ denote the permanent and determinant polynomials respectively in ℓ^{2} variables.
- Suppose over \mathbb{Q}, determinant complexity of per $_{n}$ is m.
- Let per $_{n}=\operatorname{det} Y$ for $m \times m$ matrix Y whose entries are affine combinations of variables of X_{n}.

Geometric Invariant Theory Approach

- Mulmulay and Sohoni (2002) have formulated the problem as an algebraic geometry problem.
- Let $X_{\ell}=\left[x_{i, j}\right]_{1 \leq i, j \leq \ell}$ be $\ell \times \ell$ matrix of variables.
- Let per ${ }_{\ell}=\operatorname{per} X_{\ell}$ and $\operatorname{det}_{\ell}=\operatorname{det} X_{\ell}$ denote the permanent and determinant polynomials respectively in ℓ^{2} variables.
- Suppose over \mathbb{Q}, determinant complexity of per ${ }_{n}$ is m.
- Let per ${ }_{n}=\operatorname{det} Y$ for $m \times m$ matrix Y whose entries are affine combinations of variables of X_{n}.

Geometric Invariant Theory Approach

- View per ${ }_{n}$ and det_{m} as points in $P(V)$ where $V=\mathbb{C}^{M}$, $M=\binom{m^{2}+m-1}{m}$ and $P(V)$ is the corresponding projective space.
- It can be seen that per ${ }_{n}$ lies in the closure of the orbit of det m under the action of invertible linear transformations on variables.

Geometric Invariant Theory Approach

- View per ${ }_{n}$ and det ${ }_{m}$ as points in $P(V)$ where $V=\mathbb{C}^{M}$, $M=\binom{m^{2}+m-1}{m}$ and $P(V)$ is the corresponding projective space.
- It can be seen that per ${ }_{n}$ lies in the closure of the orbit of det ${ }_{m}$ under the action of invertible linear transformations on variables.

Hypothesis. For small m, a point that has the set of automorphisms of per ${ }_{n}$ cannot occur in the closure of the orbit of det ${ }_{m}$.

Outline

(1) Determinant and Permanent
(2) A Computational View

3 Known Lower Bounds on Complexity of Permanent
4) Proving Strong Lower Bounds on Determinant Complexity
(5) Proving Strong Lower Bounds on Circuit Complexity

6 Proving Hardness of Permanent Polynomial

Derandomization and Lower Bounds

Kabanets and Impagliazzo (2003) showed a connection between derandomization of Identity Testing problem and lower bounds on arithmetic circuits:

Theorem

If Identity Testing problem can be solved deterministically in polynomial time then either NEXP $\notin P /$ poly or permanent has superpolynomial circuit complexity.

This connection can be made stronger via black-box derandomization, or equivalently, pseudo-random generators.

Derandomization and Lower Bounds

Kabanets and Impagliazzo (2003) showed a connection between derandomization of Identity Testing problem and lower bounds on arithmetic circuits:

Theorem

If Identity Testing problem can be solved deterministically in polynomial time then either NEXP $\notin P /$ poly or permanent has superpolynomial circuit complexity.

This connection can be made stronger via black-box derandomization, or equivalently, pseudo-random generators.

Identity Testing

Definition

Given a polynomial computed by an arithmetic circuit over field F, test if the polynomial is identically zero.

Pseudo-Random Generators Against Arithmetic Circuits

- Let \mathcal{A}_{F} be a class of arithmetic circuits over field F with \mathcal{A}_{F}^{s} denoting the subclass of \mathcal{A}_{F} of circuits of size s.
- Let $f: \mathbb{N} \mapsto(F[y])^{*}$ be a function such that $f(s)=\left(p_{s, 1}(y), \ldots, p_{s, s}(y), q_{s}(y)\right)$ for all s. Function f is a pseudo-random generator against \mathcal{A}_{F} if

Pseudo-Random Generators Against Arithmetic Circuits

- Let \mathcal{A}_{F} be a class of arithmetic circuits over field F with \mathcal{A}_{F}^{s} denoting the subclass of \mathcal{A}_{F} of circuits of size s.
- Let $f: \mathbb{N} \mapsto(F[y])^{*}$ be a function such that $f(s)=\left(p_{s, 1}(y), \ldots, p_{s, s}(y), q_{s}(y)\right)$ for all s.

Pseudo-Random Generators Against Arithmetic Circuits

- Let \mathcal{A}_{F} be a class of arithmetic circuits over field F with \mathcal{A}_{F}^{s} denoting the subclass of \mathcal{A}_{F} of circuits of size s.
- Let $f: \mathbb{N} \mapsto(F[y])^{*}$ be a function such that $f(s)=\left(p_{s, 1}(y), \ldots, p_{s, s}(y), q_{s}(y)\right)$ for all s.

DEfinition

Function f is a pseudo-random generator against \mathcal{A}_{F} if

- Each $p_{s, i}(y)$ and $q_{s}(y)$ is of degree $s^{O(1)}$.
- For any circuit $C \in \mathcal{A}_{F}^{s}$ with $n \leq s$ inputs:

$$
C\left(x_{1}, \ldots, x_{n}\right)=0 \text { iff } C\left(p_{s, 1}(y), \ldots, p_{s, n}(y)\right)=0\left(\bmod q_{s}(y)\right)
$$

Existance of Pseudo-Random Generators

- Schwartz-Zippel provide an efficient randomized algorithm to test if a given circuit computes zero polynomial.
- The same argument shows that a random choice of f is a pseudo-random generator against the entire class of arithmetic circuits with good probability.

Existance of Pseudo-Random Generators

- Schwartz-Zippel provide an efficient randomized algorithm to test if a given circuit computes zero polynomial.
- The same argument shows that a random choice of f is a pseudo-random generator against the entire class of arithmetic circuits with good probability.

Efficiently Computable Pseudo-Random Generators

- A pseudo-random generator that can be quickly computed is very useful.
- It is a pseudo-random generator against \mathcal{A}_{F}.
- $f(s)$ can be computed in time $s^{O(1)}$

Efficiently Computable Pseudo-Random Generators

- A pseudo-random generator that can be quickly computed is very useful.

DEfinition

Function f is an efficiently computable pseudo-random generator against \mathcal{A}_{F} if

- It is a pseudo-random generator against \mathcal{A}_{F}.
- $f(s)$ can be computed in time $s^{O(1)}$.

Efficiently Computable Pseudo-Random Generators

- If there exist efficiently computable pseudo-random generators against the entire class of arithmetic circuits then:
- The identity testing problem can be solved in determinstic polynomial-time.
- There exists a multilinear polynomial in EXP that cannot be computed by subexponential sized arithmetic circuits.

Efficiently Computable Pseudo-Random Generators

- If there exist efficiently computable pseudo-random generators against the entire class of arithmetic circuits then:
- The identity testing problem can be solved in determinstic polynomial-time.
- There exists a multilinear polynomial in EXP that cannot be computed by subexponential sized arithmetic circuits.

Efficiently Computable Pseudo-Random Generators

- If there exist efficiently computable pseudo-random generators against the entire class of arithmetic circuits then:
- The identity testing problem can be solved in determinstic polynomial-time.
- There exists a multilinear polynomial in EXP that cannot be computed by subexponential sized arithmetic circuits.

A Polynomial With High Circuit Complexity

- Let f be an efficiently computable pseudo-random generator against \mathcal{A}_{F}.
- Let the degree of all polynomials in $p_{s, 1}(y), \ldots, p_{s, s}(y)$ be bounded by $d=s^{O(1)}$ and $m=\log d=O(\log s)$.
- Define polynomial $r_{2 m}$ as:

- Coefficients $c_{S} \in F$ satisfy:

A Polynomial With High Circuit Complexity

- Let f be an efficiently computable pseudo-random generator against \mathcal{A}_{F}.
- Let the degree of all polynomials in $p_{s, 1}(y), \ldots, p_{s, s}(y)$ be bounded by $d=s^{O(1)}$ and $m=\log d=O(\log s)$.
- Define polynomial $r_{2 m}$ as:
- Coefficients $c_{S} \in F$ satisfy:

A Polynomial With High Circuit Complexity

- Let f be an efficiently computable pseudo-random generator against \mathcal{A}_{F}.
- Let the degree of all polynomials in $p_{s, 1}(y), \ldots, p_{s, s}(y)$ be bounded by $d=s^{O(1)}$ and $m=\log d=O(\log s)$.
- Define polynomial $r_{2 m}$ as:

$$
r_{2 m}\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)=\sum_{S \subseteq[1,2 m]} c_{S} \prod_{i \in S} x_{i} .
$$

- Coefficients $C_{S} \in F$ satisfy:

A Polynomial With High Circuit Complexity

- Let f be an efficiently computable pseudo-random generator against \mathcal{A}_{F}.
- Let the degree of all polynomials in $p_{s, 1}(y), \ldots, p_{s, s}(y)$ be bounded by $d=s^{O(1)}$ and $m=\log d=O(\log s)$.
- Define polynomial $r_{2 m}$ as:

$$
r_{2 m}\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)=\sum_{S \subseteq[1,2 m]} c_{S} \prod_{i \in S} x_{i}
$$

- Coefficients $c_{S} \in F$ satisfy:

$$
\sum_{S \subseteq[1,2 m]} c_{S} \prod_{i \in S} p_{s, i}(y)=0
$$

A Polynomial With High Circuit Complexity

- A non-zero $r_{2 m}$ always exists:
- Number of coefficients C_{S} are exactly $2^{2 m}=d^{2}$.
- These need to satisfy a polynomial equation of degree at most $2 m 2^{m}=2 d \log d$.
- This requires satisfying $2 d \log d+1$ homogeneous constraints on Cs's.
- Since $d^{2}>2 d \log d+1$ for $d \geq 8$, this is always possible.
- Polynomial $r_{2 m}$ can be computed by solving a system of $2^{O(m)}$ linear equations, thus is computable in EXP.
- Polynomial $r_{2 m}$ has the following crucial property:

$$
r_{2 m}\left(p_{s, 1}, p_{s, 2}, \ldots, p_{s, 2 m}\right)=0
$$

A Polynomial With High Circuit Complexity

- A non-zero $r_{2 m}$ always exists:
- Number of coefficients c_{S} are exactly $2^{2 m}=d^{2}$.
- These need to satisfy a polynomial equation of degree at most $2 m 2^{m}=2 d \log d$.
- This requires satisfying $2 d \log d+1$ homogeneous constraints on Cs's.
- Since $d^{2}>2 d \log d+1$ for $d \geq 8$, this is always possible.
- Polynomial $r_{2 m}$ can be computed by solving a system of $2^{O(m)}$ linear equations, thus is computable in EXP.
- Polynomial $r_{2 m}$ has the following crucial property:

A Polynomial With High Circuit Complexity

- A non-zero $r_{2 m}$ always exists:
- Number of coefficients c_{S} are exactly $2^{2 m}=d^{2}$.
- These need to satisfy a polynomial equation of degree at most $2 m 2^{m}=2 d \log d$.
- This requires satisfying $2 d \log d+1$ homogeneous constraints on cs's.
- Since $d^{2}>2 d \log d+1$ for $d \geq 8$, this is always possible.
- Polynomial $r_{2 m}$ can be computed by solving a system of $2^{O(m)}$ linear equations, thus is computable in EXP.
- Polynomial $r_{2 m}$ has the following crucial property:

A Polynomial With High Circuit Complexity

- A non-zero $r_{2 m}$ always exists:
- Number of coefficients c_{S} are exactly $2^{2 m}=d^{2}$.
- These need to satisfy a polynomial equation of degree at most $2 m 2^{m}=2 d \log d$.
- This requires satisfying $2 d \log d+1$ homogeneous constraints on c_{s} 's.
- Polynomial $r_{2 m}$ can be computed by solving a system of $2^{O(m)}$ linear equations, thus is computable in EXP.
- Polynomial $r_{2 m}$ has the following crucial property:

A Polynomial With High Circuit Complexity

- A non-zero $r_{2 m}$ always exists:
- Number of coefficients c_{S} are exactly $2^{2 m}=d^{2}$.
- These need to satisfy a polynomial equation of degree at most $2 m 2^{m}=2 d \log d$.
- This requires satisfying $2 d \log d+1$ homogeneous constraints on c_{s} 's.
- Since $d^{2}>2 d \log d+1$ for $d \geq 8$, this is always possible.
- Polynomial $r_{2 m}$ can be computed by solving a system of $2^{0(m)}$ linear
equations, thus is computable in EXP.
- Polynomial $r_{2 m}$ has the following crucial property:

A Polynomial With High Circuit Complexity

- A non-zero $r_{2 m}$ always exists:
- Number of coefficients c_{S} are exactly $2^{2 m}=d^{2}$.
- These need to satisfy a polynomial equation of degree at most $2 m 2^{m}=2 d \log d$.
- This requires satisfying $2 d \log d+1$ homogeneous constraints on c_{s} 's.
- Since $d^{2}>2 d \log d+1$ for $d \geq 8$, this is always possible.
- Polynomial $r_{2 m}$ can be computed by solving a system of $2^{O(m)}$ linear equations, thus is computable in EXP.
- Polynomial $r_{2 m}$ has the following crucial property:

A Polynomial With High Circuit Complexity

- A non-zero $r_{2 m}$ always exists:
- Number of coefficients c_{S} are exactly $2^{2 m}=d^{2}$.
- These need to satisfy a polynomial equation of degree at most $2 m 2^{m}=2 d \log d$.
- This requires satisfying $2 d \log d+1$ homogeneous constraints on c_{s} 's.
- Since $d^{2}>2 d \log d+1$ for $d \geq 8$, this is always possible.
- Polynomial $r_{2 m}$ can be computed by solving a system of $2^{O(m)}$ linear equations, thus is computable in EXP.
- Polynomial $r_{2 m}$ has the following crucial property:

$$
r_{2 m}\left(p_{s, 1}, p_{s, 2}, \ldots, p_{s, 2 m}\right)=0
$$

A Polynomial With High Circuit Complexity

- Suppose that $r_{2 m}$ can be computed by a circuit C of size s in \mathcal{A}_{F}.
- By the property of $r_{2 m}, C\left(p_{s, 1}(y), p_{s, 2}(y), \ldots, p_{s, 2 m}(y)\right)=0$.
- However, $C\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)$ is non-zero.
- This contradicts pseudo-randomness of f.
- Theorefore, $r_{2 m}$ cannot be computed by circuits of size $s \geq 2^{\epsilon m}$ for some $\epsilon>0$.

A Polynomial With High Circuit Complexity

- Suppose that $r_{2 m}$ can be computed by a circuit C of size s in \mathcal{A}_{F}.
- By the property of $r_{2 m}, C\left(p_{s, 1}(y), p_{s, 2}(y), \ldots, p_{s, 2 m}(y)\right)=0$.
- However, $C\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)$ is non-zero.
- This contradicts pseudo-randomness of f
- Theorefore,
some $\epsilon>0$.

A Polynomial With High Circuit Complexity

- Suppose that $r_{2 m}$ can be computed by a circuit C of size s in \mathcal{A}_{F}.
- By the property of $r_{2 m}, C\left(p_{s, 1}(y), p_{s, 2}(y), \ldots, p_{s, 2 m}(y)\right)=0$.
- However, $C\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)$ is non-zero.
- This contradicts pseudo-randomness of f
- Theorefore,
some $\epsilon>0$.

A Polynomial With High Circuit Complexity

- Suppose that $r_{2 m}$ can be computed by a circuit C of size s in \mathcal{A}_{F}.
- By the property of $r_{2 m}, C\left(p_{s, 1}(y), p_{s, 2}(y), \ldots, p_{s, 2 m}(y)\right)=0$.
- However, $C\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)$ is non-zero.
- This contradicts pseudo-randomness of f.

A Polynomial With High Circuit Complexity

- Suppose that $r_{2 m}$ can be computed by a circuit C of size s in \mathcal{A}_{F}.
- By the property of $r_{2 m}, C\left(p_{s, 1}(y), p_{s, 2}(y), \ldots, p_{s, 2 m}(y)\right)=0$.
- However, $C\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)$ is non-zero.
- This contradicts pseudo-randomness of f.
- Theorefore, $r_{2 m}$ cannot be computed by circuits of size $s \geq 2^{\epsilon m}$ for some $\epsilon>0$.

Outline

(1) Determinant and Permanent
(2) A Computational View

3 Known Lower Bounds on Complexity of Permanent
4) Proving Strong Lower Bounds on Determinant Complexity

5 Proving Strong Lower Bounds on Circuit Complexity
(6) Proving Hardness of Permanent Polynomial

Connecting to Permanent

- Can each $r_{2 m}$ be computed as permanent of a small matrix?
- Recall:

- Define
where $c\left(b_{1}, \ldots, b_{2 m}\right)=c_{S}, S=\left\{i \mid b_{i}=1\right\}$
- Then:

Connecting to Permanent

- Can each $r_{2 m}$ be computed as permanent of a small matrix?
- Recall:

$$
r_{2 m}\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)=\sum_{S \subseteq[1,2 m]} c_{S} \prod_{i \in S} x_{i}
$$

- Define
where $c\left(b_{1}, \ldots, b_{2 m}\right)=c_{S}, S=\left\{i \mid b_{i}=1\right\}$.
- Then:

Connecting to Permanent

- Can each $r_{2 m}$ be computed as permanent of a small matrix?
- Recall:

$$
r_{2 m}\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)=\sum_{S \subseteq[1,2 m]} c_{S} \prod_{i \in S} x_{i} .
$$

- Define

$$
\hat{r}_{4 m}\left(x_{1}, \ldots, x_{2 m}, y_{1}, \ldots, y_{2 m}\right)=c\left(y_{1}, \ldots, y_{2 m}\right) \prod_{i=1}^{2 m}\left(y_{i} x_{i}-y_{i}+1\right)
$$

where $c\left(b_{1}, \ldots, b_{2 m}\right)=c_{S}, S=\left\{i \mid b_{i}=1\right\}$.

Connecting to Permanent

- Can each $r_{2 m}$ be computed as permanent of a small matrix?
- Recall:

$$
r_{2 m}\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)=\sum_{S \subseteq[1,2 m]} c_{S} \prod_{i \in S} x_{i} .
$$

- Define

$$
\hat{r}_{4 m}\left(x_{1}, \ldots, x_{2 m}, y_{1}, \ldots, y_{2 m}\right)=c\left(y_{1}, \ldots, y_{2 m}\right) \prod_{i=1}^{2 m}\left(y_{i} x_{i}-y_{i}+1\right)
$$

where $c\left(b_{1}, \ldots, b_{2 m}\right)=c_{S}, S=\left\{i \mid b_{i}=1\right\}$.

- Then:

$$
r_{2 m}\left(x_{1}, x_{2}, \ldots, x_{2 m}\right)=\sum_{y_{1}=0}^{1} \cdots \sum_{y_{2 m}=0}^{1} \hat{r}_{4 m}\left(x_{1}, \ldots, x_{2 m}, y_{1}, \ldots, y_{2 m}\right)
$$

Connecting to Permanent

- By Valiant (1979), if $\hat{r}_{4 m}$ has circuit complexity $m^{O(1)}$ then $r_{2 m}$ can be computed as permanent of a matrix of size $m^{O(1)}$.

Connecting to Permanent

- By Valiant (1979), if $\hat{r}_{4 m}$ has circuit complexity $m^{O(1)}$ then $r_{2 m}$ can be computed as permanent of a matrix of size $m^{O(1)}$.
- So a pseudo-random generator such that $\widehat{r}_{4 m}$ has circuit complexity $m^{O(1)}$ implies that Permanent has circuit complexity $m^{\omega(1)}$.

Current Status: Small Depth Circuits

- We know efficiently computable pseudo-random generators against size s, depth two arithmetic circuits.

Current Status: Small Depth Circuits

- We know efficiently computable pseudo-random generators against size s, depth two arithmetic circuits.
- Still some way to go!

Current Status: Large Depth but Restricted Class of Circuits

- A-Kayal-Saxena (2002) constructed an efficiently computable pseudo-random generator against a very special class of circuits.
- This contained circuits computing the polynomial $(1+x)^{m}-x^{m}-1$ over ring Z_{m}.
- The pseudo-random generator is:

$$
f(s)=\left(y, 0, \ldots, 0, q_{s}(y)\right), q_{s}(y)=y^{16 s^{5}} \prod_{t=1}^{16 s^{5}} \prod_{a=1}^{4 s^{4}}\left((y-a)^{t}-1\right)
$$

- This derandomized a primality testing algorithm.

Current Status: Large Depth but Restricted Class of Circuits

- A-Kayal-Saxena (2002) constructed an efficiently computable pseudo-random generator against a very special class of circuits.
- This contained circuits computing the polynomial $(1+x)^{m}-x^{m}-1$ over ring Z_{m}.
- The pseudo-random generator is:

$$
f(s)=\left(y, 0, \ldots, 0, q_{s}(y)\right), q_{s}(y)=y^{16 s^{5}} \prod_{t=1}^{16 s^{5}} \prod_{a=1}^{4 s^{4}}\left((y-a)^{t}-1\right) .
$$

- This derandomized a primality testing algorithm.

A Conjecture

Define

$$
f(s, r)=\left(y, y^{s}, y^{s^{2}}, \ldots, y^{s^{s-1}}, y^{r}-1\right),
$$

where $1 \leq r \leq s^{4}$.

Conjecture
Function f is a pseudo-random generator against arithmetic circuits of size s, depth $\omega(1)$, and degree s.

If true, this implies that Permanent has superpolynomial circuit complexity.

A Conjecture

Define

$$
f(s, r)=\left(y, y^{s}, y^{s^{2}}, \ldots, y^{s^{s-1}}, y^{r}-1\right),
$$

where $1 \leq r \leq s^{4}$.

Conjecture

Function f is a pseudo-random generator against arithmetic circuits of size s, depth $\omega(1)$, and degree s.

> If true, this implies that Permanent has superpolynomial circuit complexity.

A Conjecture

Define

$$
f(s, r)=\left(y, y^{s}, y^{s^{2}}, \ldots, y^{s^{s-1}}, y^{r}-1\right),
$$

where $1 \leq r \leq s^{4}$.

Conjecture

Function f is a pseudo-random generator against arithmetic circuits of size s, depth $\omega(1)$, and degree s.

If true, this implies that Permanent has superpolynomial circuit complexity.

