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Determinant

Determinant of an n × n matrix X = [xi ,j ] is defined as:

det X =
∑
σ∈Sn

sgn(σ) ·
n∏

i=1

xi ,σ(i).

Here Sn is the group of all permutations on [1, n] and sgn(σ) is the sign of
the permulation σ, sgn(σ) ∈ {1,−1}.
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Properties of Determinant

Linearity. det[c1 + c ′1 c2 · · · cn] = det[c1 c2 · · · cn] + det[c ′1 c2 · · · cn].

Multiplicativity. det AB = det A · det B.

Geometric Interpretation. | det[c1 c2 · · · cn] | is the volume of the
parallelopiped defined by vectors c1, c2, . . ., cn.

Algebraic Interpretation. det A =
∏n

i=1 λi where λ1, . . ., λn are
eigenvalues of A.

Relation to Multiplication. For any A, there exists an efficiently
computable B and number m such that det A = [Bm]1,1.
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Permanent

Permanent of an n × n matrix X = [xi ,j ] is defined as:

per X =
∑
σ∈Sn

n∏
i=1

xi ,σ(i).

Same as determinant except the signs.
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Properties of Permanent

Linearity. per [c1 + c ′1 c2 · · · cn] =
per [c1 c2 · · · cn] + per [c ′1 c2 · · · cn].

Combinatorial Interpretation. Permanent of matrix A with
non-negative numbers is the sum of weights of all perfect
matchings of the bipartite graph represented by A.
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Properties of Permanent

Despite closeness in definition, permanent function satisfies much
fewer properties than determinant function.

How does one explain this?
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Determinant Complexity

For matrix X = [xi ,j ], permanent of X has determinant complexity m over
field F if there exists an m ×m matrix Y such that

per X = detY .

Each entry of Y is an F -affine combination of xi ,j ’s.
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A Conjecture

Permanent of n× n matrix X over field F , with char 6= 2, has determinant
complexity 2Ω(n).
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Arithmetic Circuits

Arithmetic circuits over field F represent a sequence of arithmetic
operations over F on variables.

Allowed operations are addition and multiplication.

The output of the circuit is a polynomial in the input variables.
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Circuit Complexity

Crucial parameters associated with arithmetic circuits are:

Size: equals the number of operations in the circuit.

Depth: equals the length of the longest path from a variable to
output of the circuit.

Degree: equals the formal degree of the polynomial output by the
circuit.

Circuit complexity of a polynomial is the size of the smallest arithmetic
circuit that outputs the polynomial.
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arith-P and arith-NP

Polynomial family {pn} ∈ arith-P if pn has circuit complexity nO(1).

Polynomial family {qn} ∈ arith-NP if there exists a family {pn} ∈ arith-P
such that

qn(x1, . . . , xn) =
1∑

y1=0

· · ·
1∑

yn=0

p2n(x1, . . . , xn, y1, . . . , yn).
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Complexity of Determinant and Permanent

Permanent is complete for arith-NP [Valient 1979].

Determinant is in arith-P, and any polynomial family in arith-P has
determinant complexity nO(log n).
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Another Conjecture

Permanent of n × n matrix X over F has circuit complexity 2Ω(n) for
char F 6= 2.

This conjecture implies the first one!
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Lower Bounds for Determinant Complexity

Mignon and Ressayre (2004) showed that determinant complexity of
per X (size X = n) is Ω(n2) over Q.
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Lower Bounds for Circuit Complexity

Lower bounds are known for permanent only for very restricted type
of circuits.

Jerrum and Snir (1982) showed that any monotone circuit computing
per X is of exponential size.

I Monotone circuits are circuits with no negative constant.

Shpilka and Wigderson (1999) showed that any depth three circuit
computing per X (or even det X ) over Q is of size Ω(n2).
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Lower Bounds for Circuit Complexity

Grigoriev and Razborov (2000) showed that any depth three circuit
computing per X or det X over a finite field is of exponential size.

Raz (2004) showed that any multilinear formula computing per X or
det X is of size nΩ(log n).

I Formulas are circuits with outdegree one.
I Multilinear formulas are formulas in which every gate computes a

multilinear polynomial.
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Geometric Invariant Theory Approach

Mulmulay and Sohoni (2002) have formulated the problem as an
algebraic geometry problem.

Let X` = [xi ,j ]1≤i ,j≤` be `× ` matrix of variables.

Let per ` = per X` and det ` = detX` denote the permanent and
determinant polynomials respectively in `2 variables.

Suppose over Q, determinant complexity of per n is m.

Let per n = detY for m ×m matrix Y whose entries are affine
combinations of variables of Xn.
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Geometric Invariant Theory Approach

View per n and det m as points in P(V ) where V = CM ,

M =
(m2+m−1

m

)
and P(V ) is the corresponding projective space.

It can be seen that per n lies in the closure of the orbit of det m under
the action of invertible linear transformations on variables.

Hypothesis. For small m, a point that has the set of automorphisms of
per n cannot occur in the closure of the orbit of det m.
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Derandomization and Lower Bounds

Kabanets and Impagliazzo (2003) showed a connection between
derandomization of Identity Testing problem and lower bounds on
arithmetic circuits:

Theorem

If Identity Testing problem can be solved deterministically in polynomial
time then either NEXP 6∈ P/poly or permanent has superpolynomial circuit
complexity.

This connection can be made stronger via black-box derandomization, or
equivalently, pseudo-random generators.
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Identity Testing

Definition

Given a polynomial computed by an arithmetic circuit over field F , test if
the polynomial is identically zero.
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Pseudo-Random Generators Against

Arithmetic Circuits

Let AF be a class of arithmetic circuits over field F with As
F denoting

the subclass of AF of circuits of size s.

Let f : N 7→ (F [y ])∗ be a function such that
f (s) = (ps,1(y), . . . , ps,s(y), qs(y)) for all s.

Definition

Function f is a pseudo-random generator against AF if

Each ps,i (y) and qs(y) is of degree sO(1).

For any circuit C ∈ As
F with n ≤ s inputs:

C (x1, . . . , xn) = 0 iff C (ps,1(y), . . . , ps,n(y)) = 0 (mod qs(y)).
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Existance of Pseudo-Random Generators

Schwartz-Zippel provide an efficient randomized algorithm to test if a
given circuit computes zero polynomial.

The same argument shows that a random choice of f is a
pseudo-random generator against the entire class of arithmetic
circuits with good probability.
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Efficiently Computable Pseudo-Random

Generators

A pseudo-random generator that can be quickly computed is very
useful.

Definition

Function f is an efficiently computable pseudo-random generator against
AF if

It is a pseudo-random generator against AF .

f (s) can be computed in time sO(1).
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Efficiently Computable Pseudo-Random

Generators

If there exist efficiently computable pseudo-random generators against
the entire class of arithmetic circuits then:

I The identity testing problem can be solved in determinstic
polynomial-time.

I There exists a multilinear polynomial in EXP that cannot be computed
by subexponential sized arithmetic circuits.
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A Polynomial With High Circuit Complexity

Let f be an efficiently computable pseudo-random generator against
AF .

Let the degree of all polynomials in ps,1(y), . . ., ps,s(y) be bounded
by d = sO(1) and m = log d = O(log s).

Define polynomial r2m as:

r2m(x1, x2, . . . , x2m) =
∑

S⊆[1,2m]

cS

∏
i∈S

xi .

Coefficients cS ∈ F satisfy:∑
S⊆[1,2m]

cS

∏
i∈S

ps,i (y) = 0.
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by d = sO(1) and m = log d = O(log s).

Define polynomial r2m as:

r2m(x1, x2, . . . , x2m) =
∑

S⊆[1,2m]

cS

∏
i∈S

xi .

Coefficients cS ∈ F satisfy:∑
S⊆[1,2m]

cS

∏
i∈S

ps,i (y) = 0.
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A Polynomial With High Circuit Complexity

A non-zero r2m always exists:
I Number of coefficients cS are exactly 22m = d2.
I These need to satisfy a polynomial equation of degree at most

2m2m = 2d log d .
I This requires satisfying 2d log d + 1 homogeneous constraints on cS ’s.
I Since d2 > 2d log d + 1 for d ≥ 8, this is always possible.

Polynomial r2m can be computed by solving a system of 2O(m) linear
equations, thus is computable in EXP.

Polynomial r2m has the following crucial property:

r2m(ps,1, ps,2, . . . , ps,2m) = 0.
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A Polynomial With High Circuit Complexity

Suppose that r2m can be computed by a circuit C of size s in AF .

By the property of r2m, C (ps,1(y), ps,2(y), . . . , ps,2m(y)) = 0.

However, C (x1, x2, . . . , x2m) is non-zero.

This contradicts pseudo-randomness of f .

Theorefore, r2m cannot be computed by circuits of size s ≥ 2εm for
some ε > 0.
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Connecting to Permanent

Can each r2m be computed as permanent of a small matrix?

Recall:
r2m(x1, x2, . . . , x2m) =

∑
S⊆[1,2m]

cS

∏
i∈S

xi .

Define

r̂4m(x1, . . . , x2m, y1, . . . , y2m) = c(y1, . . . , y2m)
2m∏
i=1

(yixi − yi + 1),

where c(b1, . . . , b2m) = cS , S = {i | bi = 1}.
Then:

r2m(x1, x2, . . . , x2m) =
1∑

y1=0

· · ·
1∑

y2m=0

r̂4m(x1, . . . , x2m, y1, . . . , y2m).
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Connecting to Permanent

By Valiant (1979), if r̂4m has circuit complexity mO(1) then r2m can
be computed as permanent of a matrix of size mO(1).

So a pseudo-random generator such that r̂4m has circuit complexity
mO(1) implies that Permanent has circuit complexity mω(1).
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Current Status: Small Depth Circuits

We know efficiently computable pseudo-random generators against
size s, depth two arithmetic circuits.

Still some way to go!
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Current Status: Large Depth but Restricted

Class of Circuits

A-Kayal-Saxena (2002) constructed an efficiently computable
pseudo-random generator against a very special class of circuits.

This contained circuits computing the polynomial (1 + x)m − xm − 1
over ring Zm.

The pseudo-random generator is:

f (s) = (y , 0, . . . , 0, qs(y)), qs(y) = y16s5
16s5∏
t=1

4s4∏
a=1

((y − a)t − 1).

This derandomized a primality testing algorithm.
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A Conjecture

Define
f (s, r) = (y , y s , y s2

, . . . , y ss−1
, y r − 1),

where 1 ≤ r ≤ s4.

Conjecture

Function f is a pseudo-random generator against arithmetic circuits of size
s, depth ω(1), and degree s.

If true, this implies that Permanent has superpolynomial circuit complexity.
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