# Two Problems of Number Theory

Manindra Agarwal

IIT Kanpur

LSR Delhi, September 18, 2009

MANINDRA AGARWAL (IIT KANPUR)

Two Problems of NT

LSR, 09/2009 1 / 43

#### OUTLINE



2 Fermat's Last Theorem



MANINDRA AGARWAL (IIT KANPUR)

Two Problems of NT

LSR, 09/2009 2 / 43

э

イロト イヨト イヨト イヨト

# NUMBER THEORY

#### • Number Theory is the study of properties of numbers.

- Here, by numbers, we mean integers.
- Properties of reals and complex numbers fall in a different area called Analysis.

# NUMBER THEORY

- Number Theory is the study of properties of numbers.
- Here, by numbers, we mean integers.
- Properties of reals and complex numbers fall in a different area called Analysis.

# NUMBER THEORY

- Number Theory is the study of properties of numbers.
- Here, by numbers, we mean integers.
- Properties of reals and complex numbers fall in a different area called Analysis.

### FUNDAMENTAL THEOREM OF ARITHMETIC

- The study starts with Fundamental Theorem of Arithmetic: every number can be written uniquely as a product of prime numbers.
- Hence, prime numbers are of great importance in number theory.
- Most of the problems of numbers translate to problems on prime numbers via the Fundamental Theorem.

### FUNDAMENTAL THEOREM OF ARITHMETIC

- The study starts with Fundamental Theorem of Arithmetic: every number can be written uniquely as a product of prime numbers.
- Hence, prime numbers are of great importance in number theory.
- Most of the problems of numbers translate to problems on prime numbers via the Fundamental Theorem.

• A class of problems, called Diophantine Problems, address the question whether an equation has integer solutions.

• For example, consider

$$x^2 + y^2 = z^2.$$

• Are there integer values of x, y, and z that satisfy this equation?

• Answer: yes!

$$x = 3, y = 4, z = 5$$

is one solution.

• In fact, for any pair of integers *u* and *v*,

$$x = u^2 - v^2, y = 2uv, z = u^2 + v^2$$

is a solution to the equation.

- A class of problems, called Diophantine Problems, address the question whether an equation has integer solutions.
- For example, consider

$$x^2 + y^2 = z^2.$$

- Are there integer values of x, y, and z that satisfy this equation?
- Answer: yes!

$$x = 3, y = 4, z = 5$$

is one solution.

• In fact, for any pair of integers *u* and *v*,

$$x = u^2 - v^2, y = 2uv, z = u^2 + v^2$$

is a solution to the equation.

- A class of problems, called Diophantine Problems, address the question whether an equation has integer solutions.
- For example, consider

$$x^2 + y^2 = z^2.$$

- Are there integer values of x, y, and z that satisfy this equation?
- Answer: yes!

$$x = 3, y = 4, z = 5$$

#### is one solution.

• In fact, for any pair of integers *u* and *v*,

$$x = u^2 - v^2, y = 2uv, z = u^2 + v^2$$

is a solution to the equation.

- A class of problems, called Diophantine Problems, address the question whether an equation has integer solutions.
- For example, consider

$$x^2 + y^2 = z^2.$$

- Are there integer values of x, y, and z that satisfy this equation?
- Answer: yes!

$$x=3, y=4, z=5$$

is one solution.

• In fact, for any pair of integers *u* and *v*,

$$x = u^2 - v^2, y = 2uv, z = u^2 + v^2$$

is a solution to the equation.

• Another example is Pell's equations:

$$x^2 - ny^2 = 1$$

for non-square *n*.

• A solution of Pell's equation gives a good rational approximation of  $\sqrt{n}$ :

$$(\frac{x}{y})^2 = n + \frac{1}{y^2}.$$

- Budhayana (ca. 800 BC) gave two soltions of  $x^2 2y^2 = 1$ : (17, 12) and (577, 408).
- Lagrange (1736 1813) showed that all Pell's equations have infinitely many solutions.
- Notice that it is much more difficult to find solutions of equations in integers than it is in reals!

• Another example is Pell's equations:

$$x^2 - ny^2 = 1$$

for non-square *n*.

• A solution of Pell's equation gives a good rational approximation of  $\sqrt{n}$ :

$$(\frac{x}{y})^2 = n + \frac{1}{y^2}.$$

- Budhayana (ca. 800 BC) gave two soltions of  $x^2 2y^2 = 1$ : (17, 12) and (577, 408).
- Lagrange (1736 1813) showed that all Pell's equations have infinitely many solutions.
- Notice that it is much more difficult to find solutions of equations in integers than it is in reals!

• Another example is Pell's equations:

$$x^2 - ny^2 = 1$$

for non-square *n*.

• A solution of Pell's equation gives a good rational approximation of  $\sqrt{n}$ :

$$(\frac{x}{y})^2 = n + \frac{1}{y^2}.$$

- Budhayana (ca. 800 BC) gave two soltions of  $x^2 2y^2 = 1$ : (17, 12) and (577, 408).
- Lagrange (1736 1813) showed that all Pell's equations have infinitely many solutions.
- Notice that it is much more difficult to find solutions of equations in integers than it is in reals!

MANINDRA AGARWAL (IIT KANPUR)

#### Many questions on prime numbers are about counting:

- How many prime numbers exist? [infinite]
- How many prime numbers are less than *n*? [About  $\frac{n}{\ln n}$ ]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):
  - Assume there are finitely many primes.
  - Let n be the largest prime.
  - But prime factorization of n! + 1 does not include any prime less than or equal to n.
  - Contradiction.

マロト イヨト イヨト

#### Many questions on prime numbers are about counting:

- How many prime numbers exist? [infinite]
- How many prime numbers are less than *n*? [About  $\frac{n}{\ln n}$ ]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):
  - Assume there are finitely many primes.
  - Let n be the largest prime.
  - But prime factorization of n! + 1 does not include any prime less than or equal to n.
  - Contradiction.

マロト イヨト イヨト

Many questions on prime numbers are about counting:

- How many prime numbers exist? [infinite]
- How many prime numbers are less than *n*? [About  $\frac{n}{\ln n}$ ]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):
  - Assume there are finitely many primes.
  - ▶ Let *n* be the largest prime.
  - But prime factorization of n! + 1 does not include any prime less than or equal to n.
  - Contradiction.

マロト イヨト イヨト

Many questions on prime numbers are about counting:

- How many prime numbers exist? [infinite]
- How many prime numbers are less than *n*? [About  $\frac{n}{\ln n}$ ]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):
  - Assume there are finitely many primes.
  - Let n be the largest prime
  - But prime factorization of n! + 1 does not include any prime less than or equal to n.
  - Contradiction.

- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

Many questions on prime numbers are about counting:

- How many prime numbers exist? [infinite]
- How many prime numbers are less than *n*? [About  $\frac{n}{\ln n}$ ]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):
  - Assume there are finitely many primes.
  - Let n be the largest prime.
  - But prime factorization of n! + 1 does not include any prime less than or equal to n.
  - Contradiction.

- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

Many questions on prime numbers are about counting:

- How many prime numbers exist? [infinite]
- How many prime numbers are less than *n*? [About  $\frac{n}{\ln n}$ ]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):
  - Assume there are finitely many primes.
  - Let n be the largest prime.
  - ▶ But prime factorization of *n*! + 1 does not include any prime less than or equal to *n*.
  - Contradiction.

A B K A B K

• Many questions on prime numbers are about counting:

- How many prime numbers exist? [infinite]
- How many prime numbers are less than *n*? [About  $\frac{n}{\ln n}$ ]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):
  - Assume there are finitely many primes.
  - Let *n* be the largest prime.
  - ▶ But prime factorization of *n*! + 1 does not include any prime less than or equal to *n*.
  - Contradiction.

向下 イヨト イヨト

• Many questions on prime numbers are about counting:

- How many prime numbers exist? [infinite]
- How many prime numbers are less than *n*? [About  $\frac{n}{\ln n}$ ]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):
  - Assume there are finitely many primes.
  - Let *n* be the largest prime.
  - ► But prime factorization of n! + 1 does not include any prime less than or equal to n.
  - Contradiction.

#### • In this talk, we consider two problems.

• First problem: how many solutions exist for the equation

#### $x^n + y^n = z^n$

- Second problem: how many prime numbers exist less than x?
- Both the problems have a long history and have been instrumental in development of number theory.

- In this talk, we consider two problems.
- First problem: how many solutions exist for the equation

 $x^n + y^n = z^n$ 

- Second problem: how many prime numbers exist less than x?
- Both the problems have a long history and have been instrumental in development of number theory.

- In this talk, we consider two problems.
- First problem: how many solutions exist for the equation

 $x^n + y^n = z^n$ 

- Second problem: how many prime numbers exist less than x?
- Both the problems have a long history and have been instrumental in development of number theory.

- In this talk, we consider two problems.
- First problem: how many solutions exist for the equation

 $x^n + y^n = z^n$ 

- Second problem: how many prime numbers exist less than x?
- Both the problems have a long history and have been instrumental in development of number theory.

#### OUTLINE

#### **I** INTRODUCTION

#### 2 Fermat's Last Theorem



MANINDRA AGARWAL (IIT KANPUR)

э

・ 同 ト ・ ヨ ト ・ ヨ ト

# FERMAT'S LAST THEOREM



#### Theorem

There are no non-zero integer solutions of the equation  $x^n + y^n = z^n$ when n > 2. Towards the end of his life, Pierre de Fermat (1601-1665) wrote in the margin of a book:

I have discovered a truely remarkable proof of this theorem, but this margin is too small to write it down.

After more than 300 years, when the proof was finally written, it did take a little more than a margin to write.

Towards the end of his life, Pierre de Fermat (1601-1665) wrote in the margin of a book:

I have discovered a truely remarkable proof of this theorem, but this margin is too small to write it down.

After more than 300 years, when the proof was finally written, it did take a little more than a margin to write.

#### 1660s: Fermat proved the theorem for n = 4.

1753: Euler proved the theorem for n = 3.

- 1825: Dirichlet and Legendre proved the theorem for n = 5.
- 1839: Lame proved the theorem for n = 7.
- 1857: Kummer proved the theorem for all  $n \leq 100$ .

- 1660s: Fermat proved the theorem for n = 4.
  - 1753: Euler proved the theorem for n = 3.
  - 1825: Dirichlet and Legendre proved the theorem for n = 5.
  - 1839: Lame proved the theorem for n = 7.
  - 1857: Kummer proved the theorem for all  $n \leq 100$ .

- 1660s: Fermat proved the theorem for n = 4.
  - 1753: Euler proved the theorem for n = 3.
  - 1825: Dirichlet and Legendre proved the theorem for n = 5.
  - 1839: Lame proved the theorem for n = 7.
  - 1857: Kummer proved the theorem for all  $n \leq 100$ .

- 1660s: Fermat proved the theorem for n = 4.
  - 1753: Euler proved the theorem for n = 3.
  - 1825: Dirichlet and Legendre proved the theorem for n = 5.
  - 1839: Lame proved the theorem for n = 7.
  - 1857: Kummer proved the theorem for all  $n \leq 100$ .

- 1660s: Fermat proved the theorem for n = 4.
  - 1753: Euler proved the theorem for n = 3.
  - 1825: Dirichlet and Legendre proved the theorem for n = 5.
  - 1839: Lame proved the theorem for n = 7.
  - 1857: Kummer proved the theorem for all  $n \leq 100$ .

- 1983: Faltings proved that for any n > 2, the equation  $x^n + y^n = z^n$  can have at most finitely many integer solutions.
- 1994: Wiles proved the theorem.

- 1983: Faltings proved that for any n > 2, the equation  $x^n + y^n = z^n$  can have at most finitely many integer solutions.
- 1994: Wiles proved the theorem.

- The proof transforms the problem to a problem in Geometry and then to a problem in Complex Analysis!
- The proof came after more than 325 years and was more than 100 pages long!
- First observe that we can assume *n* to be a prime number:
  - Suppose  $n = p \cdot q$  where p is prime, and let solution (a, b, c) satisfy  $x^n + y^n = z^n$ .
  - Then  $(a^q, b^q, c^q)$  satisfies  $x^p + y^p = z^p$ .
- We now translate the problem to Elliptic curves.

向下 イヨト イヨ

- The proof transforms the problem to a problem in Geometry and then to a problem in Complex Analysis!
- The proof came after more than 325 years and was more than 100 pages long!
- First observe that we can assume *n* to be a prime number:
  - Suppose  $n = p \cdot q$  where p is prime, and let solution (a, b, c) satisfy  $x^n + y^n = z^n$ .
  - Then  $(a^q, b^q, c^q)$  satisfies  $x^p + y^p = z^p$ .
- We now translate the problem to Elliptic curves.

向下 イヨト イヨト

- The proof transforms the problem to a problem in Geometry and then to a problem in Complex Analysis!
- The proof came after more than 325 years and was more than 100 pages long!
- First observe that we can assume *n* to be a prime number:
  - Suppose  $n = p \cdot q$  where p is prime, and let solution (a, b, c) satisfy  $x^n + y^n = z^n$ .
  - Then  $(a^q, b^q, c^q)$  satisfies  $x^p + y^p = z^p$ .
- We now translate the problem to Elliptic curves.

. . . . . . . .

- The proof transforms the problem to a problem in Geometry and then to a problem in Complex Analysis!
- The proof came after more than 325 years and was more than 100 pages long!
- First observe that we can assume *n* to be a prime number:
  - Suppose  $n = p \cdot q$  where p is prime, and let solution (a, b, c) satisfy  $x^n + y^n = z^n$ .
  - Then  $(a^q, b^q, c^q)$  satisfies  $x^p + y^p = z^p$ .
- We now translate the problem to Elliptic curves.

## Elliptic Curves

#### DEFINITION

An elliptic curve is given by equation:

$$y^2 = x^3 + Ax + B$$

for numbers A and B satisfying  $4A^3 + 27B^2 \neq 0$ .

- We will be interested in curves for which both A and B are rational numbers.
- Elliptic curves have truly amazing properties as we shall see.

## Elliptic Curves

#### DEFINITION

An elliptic curve is given by equation:

$$y^2 = x^3 + Ax + B$$

for numbers A and B satisfying  $4A^3 + 27B^2 \neq 0$ .

• We will be interested in curves for which both *A* and *B* are rational numbers.

• Elliptic curves have truly amazing properties as we shall see.

## Elliptic Curves

#### DEFINITION

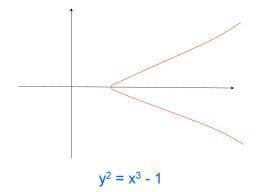
An elliptic curve is given by equation:

$$y^2 = x^3 + Ax + B$$

for numbers A and B satisfying  $4A^3 + 27B^2 \neq 0$ .

- We will be interested in curves for which both *A* and *B* are rational numbers.
- Elliptic curves have truly amazing properties as we shall see.

### Elliptic Curve Examples



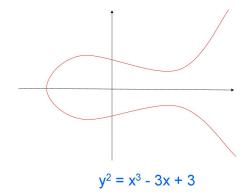
э

< ∃⇒

3 ×

A (1)

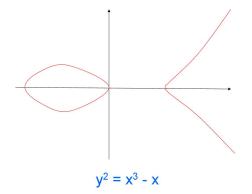
### Elliptic Curve Examples



э

< ∃⇒

### Elliptic Curve Examples



LSR, 09/2009 16 / 43

э

< ∃⇒

#### DISCRIMINANT OF AN ELLIPTIC CURVE

- Let *E* be an elliptic curve given by equation  $y^2 = x^3 + Ax + B$ .
- Discriminant  $\Delta$  of *E* is the number  $4A^3 + 27B^2$ .
- We require the discriminant of *E* to be non-zero.
- This condition is equivalent to the condition that the three (perhaps complex) roots of the polynomial  $x^3 + Ax + B$  are distinct. [Verify!]
- If  $x^3 + Ax + B = (x \alpha)(x \beta)(x \gamma)$  then

$$\Delta = (\alpha - \beta)^2 (\beta - \gamma)^2 (\gamma - \alpha)^2.$$

#### DISCRIMINANT OF AN ELLIPTIC CURVE

- Let *E* be an elliptic curve given by equation  $y^2 = x^3 + Ax + B$ .
- Discriminant  $\Delta$  of *E* is the number  $4A^3 + 27B^2$ .
- We require the discriminant of *E* to be non-zero.
- This condition is equivalent to the condition that the three (perhaps complex) roots of the polynomial x<sup>3</sup> + Ax + B are distinct. [Verify!]
- If  $x^3 + Ax + B = (x \alpha)(x \beta)(x \gamma)$  then

$$\Delta = (\alpha - \beta)^2 (\beta - \gamma)^2 (\gamma - \alpha)^2.$$

## RATIONAL POINTS ON AN ELLIPTIC CURVE

- Let  $E(\mathbb{Q})$  be the set of rational points on the curve E.
- We add a "point at infinity," called O, to this set.

#### AMAZING FACT

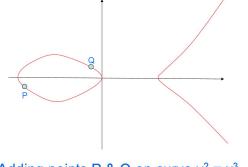
We can define an "addition" operation on the set of points in  $E(\mathbb{Q})$  just like integer addition.

## RATIONAL POINTS ON AN ELLIPTIC CURVE

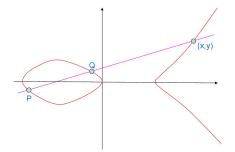
- Let  $E(\mathbb{Q})$  be the set of rational points on the curve E.
- We add a "point at infinity," called *O*, to this set.

#### AMAZING FACT

We can define an "addition" operation on the set of points in  $E(\mathbb{Q})$  just like integer addition.

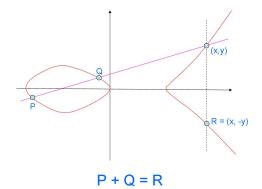


#### Adding points P & Q on curve $y^2 = x^3 - x$



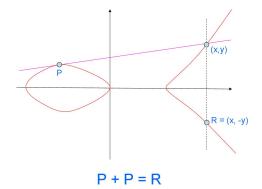
э

・ロト ・回ト ・ヨト ・ヨト



イロト イポト イヨト イヨト

э



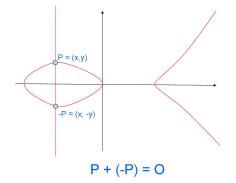
MANINDRA AGARWAL (IIT KANPUR)

Two Problems of NT

LSR, 09/2009 19 / 43

э

イロン イヨン イヨン



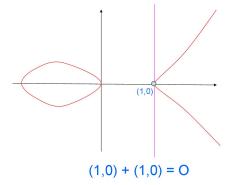
э

イロン イヨン イヨン

- Observe that if points P and Q on E are rational, then point P + Q is also rational. [Verify!]
- The point addition obeys same laws as integer addition with point at infinity *O* acting as the "zero" of point addition.
- The point addition has some additional interesting properties too.

- Observe that if points P and Q on E are rational, then point P + Q is also rational. [Verify!]
- The point addition obeys same laws as integer addition with point at infinity *O* acting as the "zero" of point addition.
- The point addition has some additional interesting properties too.

- Observe that if points P and Q on E are rational, then point P + Q is also rational. [Verify!]
- The point addition obeys same laws as integer addition with point at infinity *O* acting as the "zero" of point addition.
- The point addition has some additional interesting properties too.



э

イロト イポト イヨト イヨト

Let (a, b, c) be an integer solution of the equation  $x^n + y^n = z^n$  for some prime n > 2.

#### DEFINITION

Define an elliptic curve  $E_n$  by the equation:

 $y^2 = x(x - a^n)(x + b^n).$ 

• Discriminant of this curve is:

$$\Delta_n = (a^n)^2 \cdot (b^n)^2 \cdot (a^n + b^n)^2 = (abc)^{2n}.$$

Let (a, b, c) be an integer solution of the equation  $x^n + y^n = z^n$  for some prime n > 2.

#### DEFINITION

Define an elliptic curve  $E_n$  by the equation:

$$y^2 = x(x-a^n)(x+b^n).$$

• Discriminant of this curve is:

$$\Delta_n = (a^n)^2 \cdot (b^n)^2 \cdot (a^n + b^n)^2 = (abc)^{2n}.$$

Let (a, b, c) be an integer solution of the equation  $x^n + y^n = z^n$  for some prime n > 2.

#### DEFINITION

Define an elliptic curve  $E_n$  by the equation:

$$y^2 = x(x-a^n)(x+b^n).$$

• Discriminant of this curve is:

$$\Delta_n = (a^n)^2 \cdot (b^n)^2 \cdot (a^n + b^n)^2 = (abc)^{2n}.$$

Let (a, b, c) be an integer solution of the equation  $x^n + y^n = z^n$  for some prime n > 2.

#### DEFINITION

Define an elliptic curve  $E_n$  by the equation:

$$y^2 = x(x-a^n)(x+b^n).$$

• Discriminant of this curve is:

$$\Delta_n = (a^n)^2 \cdot (b^n)^2 \cdot (a^n + b^n)^2 = (abc)^{2n}$$
.

- So if there is no elliptic curve whose discriminant is a 2nth power for some prime n > 2 then FLT is true.
- Ribet (1988) showed that any elliptic curve of this kind is not modular.
  - Modularity is a property of a function related to a curve.
  - This function is defined over complex numbers.

- So if there is no elliptic curve whose discriminant is a 2nth power for some prime n > 2 then FLT is true.
- Ribet (1988) showed that any elliptic curve of this kind is not modular.
  - Modularity is a property of a function related to a curve.
  - ▶ This function is defined over complex numbers.

- So if there is no elliptic curve whose discriminant is a 2nth power for some prime n > 2 then FLT is true.
- Ribet (1988) showed that any elliptic curve of this kind is not modular.
  - Modularity is a property of a function related to a curve.
  - This function is defined over complex numbers.

## WILES THEOREM



THEOREM (WILES, 1994)

Every elliptic curve is modular.

MANINDRA AGARWAL (IIT KANPUR)

-

#### OUTLINE

#### 1 INTRODUCTION

2 Fermat's Last Theorem



MANINDRA AGARWAL (IIT KANPUR)

э

#### DENSITY OF PRIME NUMBERS

- Define  $\pi(x)$  to be the number of primes less than x.
- We wish to obtain an estimate for  $\pi(x)$ .
- It is easier to count prime numbers with their "weights". Let

$$\psi(x) = \sum_{1 \le n < x} \Lambda(n)$$

where

 $\Lambda(n) = \begin{cases} \ln p, & \text{if } n = p^k \text{ for some prime } p \\ 0, & \text{otherwise} \end{cases}$ 

#### DENSITY OF PRIME NUMBERS

- Define  $\pi(x)$  to be the number of primes less than x.
- We wish to obtain an estimate for  $\pi(x)$ .
- It is easier to count prime numbers with their "weights". Let

$$\psi(x) = \sum_{1 \le n < x} \Lambda(n)$$

where

$$\Lambda(n) = \begin{cases} \ln p, & \text{if } n = p^k \text{ for some prime } p \\ 0, & \text{otherwise} \end{cases}$$

# Bernhard Riemann (1826 - 1866)



- Riemann was a student of Gauss.
- In 1859, he wrote a paper on estimating  $\psi(x)$  which had immense impact on the development of mathematics.

- It is generally easier to handle infinite series.
- So we will extend the sum in ψ(x) to an infinite sum.
  Define

# $\delta(x) = \begin{cases} 1, & \text{if } x > 1 \\ 0, & \text{if } 0 < x < 1 \end{cases}$

• Then we can write

$$\psi(x) = \sum_{n \ge 1} \Lambda(n) \delta(\frac{x}{n})$$

assuming that x is not an integer.

- It is generally easier to handle infinite series.
- So we will extend the sum in  $\psi(x)$  to an infinite sum.
- Define

$$\delta(x) = \left\{ egin{array}{cc} 1, & ext{if } x > 1 \ 0, & ext{if } 0 < x < 1 \end{array} 
ight.$$

• Then we can write

$$\psi(x) = \sum_{n \ge 1} \Lambda(n) \delta(\frac{x}{n})$$

assuming that x is not an integer.

- It is generally easier to handle infinite series.
- So we will extend the sum in  $\psi(x)$  to an infinite sum.
- Define

$$\delta(x) = \left\{ egin{array}{cc} 1, & ext{if } x > 1 \ 0, & ext{if } 0 < x < 1 \end{array} 
ight.$$

• Then we can write

$$\psi(x) = \sum_{n \ge 1} \Lambda(n) \delta(\frac{x}{n})$$

assuming that x is not an integer.

### Defining $\delta$

• It is possible to give a nice definition of  $\delta$  over complex plane:

$$\delta(x) = \int_{c-i\infty}^{c+i\infty} \frac{x^s}{s} ds$$

for any c > 0.

• This is shown using Cauchy's Theorem which states that

 $\oint_C f(s)ds = 0$ 

for any closed contour C in the complex plane, for any differentiable function f that has no poles inside C.

### Defining $\delta$

• It is possible to give a nice definition of  $\delta$  over complex plane:

$$\delta(x) = \int_{c-i\infty}^{c+i\infty} \frac{x^s}{s} ds$$

for any c > 0.

• This is shown using Cauchy's Theorem which states that

$$\oint_C f(s)ds = 0$$

for any closed contour C in the complex plane, for any differentiable function f that has no poles inside C.

#### Approximating $\delta$

• The same approach gives an approximation of  $\delta$  too:

$$\delta(x) = \int_{c-iR}^{c+iR} \frac{x^s}{s} ds + O(\frac{x^c}{R|\ln x|})$$

for any R > 0, any c > 0.

• This approximation will be more useful for us.

• We can write:

$$\psi(x) = \sum_{n \ge 1} \Lambda(n) \delta(\frac{x}{n})$$
$$= \sum_{n \ge 1} \Lambda(n) \int_{c-iR}^{c+iR} \frac{x^s}{xn^s} ds + O(\sum_{n \ge 1} \frac{\Lambda(n)x^c}{Rn^c |\ln \frac{x}{n}|})$$

#### Approximating $\delta$

• The same approach gives an approximation of  $\delta$  too:

$$\delta(x) = \int_{c-iR}^{c+iR} \frac{x^s}{s} ds + O(\frac{x^c}{R|\ln x|})$$

for any R > 0, any c > 0.

- This approximation will be more useful for us.
- We can write:

$$\psi(x) = \sum_{n \ge 1} \Lambda(n) \delta(\frac{x}{n})$$
  
= 
$$\sum_{n \ge 1} \Lambda(n) \int_{c-iR}^{c+iR} \frac{x^s}{xn^s} ds + O(\sum_{n \ge 1} \frac{\Lambda(n)x^c}{Rn^c |\ln \frac{x}{n}|})$$

MANINDRA AGARWAL (IIT KANPUR)

LSR, 09/2009 30 / 43

• Taking the sum inside the integral, we get

$$\psi(x) = \int_{c-iR}^{c+iR} \frac{x^s}{s} \sum_{n \ge 1} \frac{\Lambda(n)}{n^s} ds + O\left(\sum_{n \ge 1} \frac{\Lambda(n)x^c}{Rn^c |\ln \frac{x}{n}|}\right)$$
$$= \int_{c-iR}^{c+iR} \frac{x^s}{s} \sum_{n \ge 1} \frac{\Lambda(n)}{n^s} ds + O\left(\frac{x \ln^2 x}{R}\right)$$

for 
$$c = 1 + \frac{1}{\ln x}$$
.

-

**A** ►

э

Let

$$\zeta(s)=\sum_{n\geq 1}\frac{1}{n^s}.$$

• This can be expressed in another way:

$$f_{s}(s) = \sum_{n \ge 1} \frac{1}{n^{s}}$$
  
=  $\prod_{p,p \text{ prime}} (1 + \frac{1}{p^{s}} + \frac{1}{p^{2s}} + \frac{1}{p^{3s}} + \cdots)$   
=  $\prod_{p,p \text{ prime}} \frac{1}{1 - \frac{1}{p^{s}}}.$ 

LSR, 09/2009 32 / 43

э

- 4 回 と 4 き と 4 き と

• Let

$$\zeta(s)=\sum_{n\geq 1}\frac{1}{n^s}.$$

• This can be expressed in another way:

$$\begin{aligned} \zeta(s) &= \sum_{n \ge 1} \frac{1}{n^s} \\ &= \prod_{p,p \ prime} \left( 1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \frac{1}{p^{3s}} + \cdots \right) \\ &= \prod_{p,p \ prime} \frac{1}{1 - \frac{1}{p^s}}. \end{aligned}$$

LSR, 09/2009 32 / 43

-

э

• Taking log, we get:

$$\ln \zeta(s) = -\sum_{p,p \text{ prime}} \ln(1 - \frac{1}{p^s}).$$

• Differentiating with respect to *s*, we get:

$$\frac{\zeta'(s)}{\zeta(s)} = -\sum_{p,p \text{ prime}} \frac{(\ln p)p^{-s}}{1 - \frac{1}{p^s}}$$
  
=  $-\sum_{p,p \text{ prime}} (\ln p)p^{-s}(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \frac{1}{p^{3s}} + \cdots)$   
=  $-\sum_{p,p \text{ prime}} \sum_{k \ge 1} \frac{\ln p}{p^{ks}}$   
=  $-\sum_{n \ge 1} \frac{\Lambda(n)}{n^s}.$ 

э

A 3 >

< 🗇 🕨 🖌 🚍 🕨

• Taking log, we get:

$$\ln \zeta(s) = -\sum_{p,p \text{ prime}} \ln(1 - \frac{1}{p^s}).$$

• Differentiating with respect to *s*, we get:

$$\frac{\zeta'(s)}{\zeta(s)} = -\sum_{p,p \text{ prime}} \frac{(\ln p)p^{-s}}{1 - \frac{1}{p^s}}$$
  
=  $-\sum_{p,p \text{ prime}} (\ln p)p^{-s}(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \frac{1}{p^{3s}} + \cdots)$   
=  $-\sum_{p,p \text{ prime}} \sum_{k \ge 1} \frac{\ln p}{p^{ks}}$   
=  $-\sum_{n \ge 1} \frac{\Lambda(n)}{n^s}.$ 

3

#### Estimating $\psi$

• Substituting in the expression for  $\psi$ , we get:

$$\psi(x) = -\int_{c-iR}^{c+iR} \frac{x^s}{s} \frac{\zeta'(s)}{\zeta(s)} ds + O(\frac{x \ln^2 x}{R})$$

for  $c = 1 + \frac{1}{\ln x}$ .

• So if we can estimate the integral

$$I(x,R) = -\int_{c-iR}^{c+iR} \frac{x^s}{s} \frac{\zeta'(s)}{\zeta(s)} ds$$

well, we will have an expression for  $\psi(x)$ .

3 ×

#### Estimating $\psi$

• Substituting in the expression for  $\psi$ , we get:

$$\psi(x) = -\int_{c-iR}^{c+iR} \frac{x^s}{s} \frac{\zeta'(s)}{\zeta(s)} ds + O(\frac{x \ln^2 x}{R})$$

for  $c = 1 + \frac{1}{\ln x}$ .

• So if we can estimate the integral

$$I(x,R) = -\int_{c-iR}^{c+iR} \frac{x^s}{s} \frac{\zeta'(s)}{\zeta(s)} ds$$

well, we will have an expression for  $\psi(x)$ .

MANINDRA AGARWAL (IIT KANPUR)

Two Problems of NT

- We again use Cauchy's Theorem.
- Define the contour C to be

 $c - iR \mapsto c + iR \mapsto -U + iR \mapsto -U - iR \mapsto c - iR.$ 

- However, we need to extend the definition of  $\zeta(s)$  to the entire region as the definition  $\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}$  diverges for  $\Re(s) \le 1!$
- Fortunately, this can be done using some tricks.
- Unfortunately, the function

$$\frac{x^s}{s}\frac{\zeta'(s)}{\zeta(s)}$$

with the extended definition has many poles inside C!

- Some of the poles are at s = 0, 1, s = -2m for every positive integer m.
- In addition to these, there are infinitely many poles within the strip  $0 \leq \Re(s) \leq 1!!$

- 4 回 ト 4 ヨ ト 4 ヨ ト

- We again use Cauchy's Theorem.
- Define the contour *C* to be  $c - iR \mapsto c + iR \mapsto -U + iR \mapsto -U - iR \mapsto c - iR.$
- However, we need to extend the definition of  $\zeta(s)$  to the entire region as the definition  $\zeta(s) = \sum_{n>1} \frac{1}{n^s}$  diverges for  $\Re(s) \le 1!$
- Fortunately, this can be done using some tricks.
- Unfortunately, the function

$$\frac{x^s}{s}\frac{\zeta'(s)}{\zeta(s)}$$

with the extended definition has many poles inside C!

- Some of the poles are at s = 0, 1, s = -2m for every positive integer m.
- In addition to these, there are infinitely many poles within the strip  $0 \leq \Re(s) \leq 1!!$

イロト イポト イヨト イヨト

- We again use Cauchy's Theorem.
- Define the contour C to be  $c - iR \mapsto c + iR \mapsto -U + iR \mapsto -U - iR \mapsto c - iR.$
- However, we need to extend the definition of  $\zeta(s)$  to the entire region as the definition  $\zeta(s) = \sum_{n>1} \frac{1}{n^s}$  diverges for  $\Re(s) \le 1!$
- Fortunately, this can be done using some tricks.
- Unfortunately, the function

$$\frac{x^s}{s}\frac{\zeta'(s)}{\zeta(s)}$$

#### with the extended definition has many poles inside C!

- Some of the poles are at s = 0, 1, s = -2m for every positive integer m.
- In addition to these, there are infinitely many poles within the strip  $0 \leq \Re(s) \leq 1!!$

3

イロト イポト イヨト イヨト

- We again use Cauchy's Theorem.
- Define the contour C to be  $c - iR \mapsto c + iR \mapsto -U + iR \mapsto -U - iR \mapsto c - iR$ .
- However, we need to extend the definition of  $\zeta(s)$  to the entire region as the definition  $\zeta(s) = \sum_{n>1} \frac{1}{n^s}$  diverges for  $\Re(s) \le 1!$
- Fortunately, this can be done using some tricks.
- Unfortunately, the function

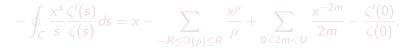
$$\frac{x^s}{s}\frac{\zeta'(s)}{\zeta(s)}$$

with the extended definition has many poles inside C!

- Some of the poles are at s = 0, 1, s = -2m for every positive integer m.
- In addition to these, there are infinitely many poles within the strip  $0 \leq \Re(s) \leq 1!!$

#### HANDLING POLES

- A generalized version of Cauchy's Theorem states that the value of contour integral equals the sum of residues of poles inside the contour.
- We find that the residue of ζ<sup>(s)</sup>/ζ(s) at s = 1 is −1, and at all other poles is 1.
- The residue of  $\frac{x^s}{s}$  at s = 0 is 1.
- Hence,



#### HANDLING POLES

- A generalized version of Cauchy's Theorem states that the value of contour integral equals the sum of residues of poles inside the contour.
- We find that the residue of ζ'(s) ζ(s) at s = 1 is −1, and at all other poles is 1.
- The residue of  $\frac{x^s}{s}$  at s = 0 is 1.
- Hence,



#### HANDLING POLES

- A generalized version of Cauchy's Theorem states that the value of contour integral equals the sum of residues of poles inside the contour.
- We find that the residue of ζ'(s) ζ(s) at s = 1 is −1, and at all other poles is 1.
- The residue of  $\frac{x^s}{s}$  at s = 0 is 1.
- Hence,

$$-\oint_C \frac{x^s}{s} \frac{\zeta'(s)}{\zeta(s)} ds = x - \sum_{-R \leq \Im(\rho) \leq R} \frac{x^{\rho}}{\rho} + \sum_{0 < 2m < U} \frac{x^{-2m}}{2m} - \frac{\zeta'(0)}{\zeta(0)}.$$

$$|rac{\zeta'(s)}{\zeta(s)}| = O(\ln^2 |s|).$$

- Using this, it is straightforward to show that the integrals from c + iR to -U + iR and -U iR to c iR are bounded by  $O(\frac{x \ln^2 R}{R \ln x})$ .
- Similarly, the integral from -U + iR to -U iR is bounded by  $O(\frac{R \ln U}{Ux^R})$ .
- Taking limit  $U \mapsto \infty$ , we get:

$$I(x,R) = x - \sum_{-R \le \Im(\rho) \le R} \frac{x^{\rho}}{\rho} + \sum_{2m > 0} \frac{x^{-2m}}{2m} + O(\frac{x \ln^2 R}{R \ln x}).$$

$$|rac{\zeta'(s)}{\zeta(s)}| = O(\ln^2 |s|).$$

- Using this, it is straightforward to show that the integrals from c + iR to -U + iR and -U iR to c iR are bounded by  $O(\frac{x \ln^2 R}{R \ln x})$ .
- Similarly, the integral from -U + iR to -U iR is bounded by  $O(\frac{R \ln U}{Ux^R})$ .
- Taking limit  $U \mapsto \infty$ , we get:

$$I(x,R) = x - \sum_{-R \le \Im(\rho) \le R} \frac{x^{\rho}}{\rho} + \sum_{2m > 0} \frac{x^{-2m}}{2m} + O(\frac{x \ln^2 R}{R \ln x}).$$

$$|rac{\zeta'(s)}{\zeta(s)}| = O(\ln^2 |s|).$$

- Using this, it is straightforward to show that the integrals from c + iR to -U + iR and -U iR to c iR are bounded by  $O(\frac{x \ln^2 R}{R \ln x})$ .
- Similarly, the integral from -U + iR to -U iR is bounded by  $O(\frac{R \ln U}{Ux^R})$ .
- Taking limit  $U \mapsto \infty$ , we get:

$$I(x,R) = x - \sum_{-R \le \Im(\rho) \le R} \frac{x^{\rho}}{\rho} + \sum_{2m > 0} \frac{x^{-2m}}{2m} + O(\frac{x \ln^2 R}{R \ln x}).$$

$$|rac{\zeta'(s)}{\zeta(s)}| = O(\ln^2 |s|).$$

- Using this, it is straightforward to show that the integrals from c + iR to -U + iR and -U iR to c iR are bounded by  $O(\frac{x \ln^2 R}{R \ln x})$ .
- Similarly, the integral from -U + iR to -U iR is bounded by  $O(\frac{R \ln U}{Ux^R})$ .
- Taking limit  $U \mapsto \infty$ , we get:

$$I(x,R) = x - \sum_{-R \le \Im(\rho) \le R} \frac{x^{\rho}}{\rho} + \sum_{2m > 0} \frac{x^{-2m}}{2m} + O(\frac{x \ln^2 R}{R \ln x}).$$

• Thus we get:

$$\psi(x) = x - \sum_{-R \leq \Im(\rho) \leq R} \frac{x^{\rho}}{\rho} + \sum_{2m > 0} \frac{x^{-2m}}{2m} + O(\frac{x \ln^2 R}{R \ln x}) + O(\frac{x \ln^2 x}{R}).$$

Notice that

$$\sum_{2m>0} \frac{x^{-2m}}{2m} = \ln(1 - \frac{1}{x^2})$$

which is close to zero for large x.

• Hence

$$\psi(x) = x - \sum_{-R \le \Im(\rho) \le R} \frac{x^{\rho}}{\rho} + O(\frac{x \ln^2 R}{R \ln x}) + O(\frac{x \ln^2 x}{R}).$$

3

A 3 >

3 ×

< 🗇 🕨

• Thus we get:

$$\psi(x) = x - \sum_{-R \le \Im(\rho) \le R} \frac{x^{\rho}}{\rho} + \sum_{2m > 0} \frac{x^{-2m}}{2m} + O(\frac{x \ln^2 R}{R \ln x}) + O(\frac{x \ln^2 x}{R}).$$

Notice that

$$\sum_{2m>0} \frac{x^{-2m}}{2m} = \ln(1 - \frac{1}{x^2})$$

which is close to zero for large x.

• Hence

$$\psi(x) = x - \sum_{-R \le \Im(\rho) \le R} \frac{x^{\rho}}{\rho} + O(\frac{x \ln^2 R}{R \ln x}) + O(\frac{x \ln^2 x}{R}).$$

• Thus we get:

$$\psi(x) = x - \sum_{-R \le \Im(\rho) \le R} \frac{x^{\rho}}{\rho} + \sum_{2m > 0} \frac{x^{-2m}}{2m} + O(\frac{x \ln^2 R}{R \ln x}) + O(\frac{x \ln^2 x}{R}).$$

Notice that

$$\sum_{2m>0} \frac{x^{-2m}}{2m} = \ln(1 - \frac{1}{x^2})$$

which is close to zero for large x.

Hence

$$\psi(x) = x - \sum_{-R \leq \Im(\rho) \leq R} \frac{x^{\rho}}{\rho} + O(\frac{x \ln^2 R}{R \ln x}) + O(\frac{x \ln^2 x}{R}).$$

### THE RIEMANN HYPOTHESIS

#### **RIEMANN HYPOTHESIS**

All the zeroes of  $\zeta(s)$  in  $0 \leq \Re(s) \leq 1$  lie at the line  $\Re(s) = \frac{1}{2}$ .

- Note that the zeroes of  $\zeta(s)$  become poles of  $-\frac{\zeta'(s)}{\zeta(s)}$ !
- Further, the poles of -ζ'(s) ζ(s) in the strip 0 ≤ ℜ(s) ≤ 1 are precisely the zeroes of ζ(s) there except for the pole at s = 1.

### THE RIEMANN HYPOTHESIS

#### **RIEMANN HYPOTHESIS**

All the zeroes of  $\zeta(s)$  in  $0 \leq \Re(s) \leq 1$  lie at the line  $\Re(s) = \frac{1}{2}$ .

- Note that the zeroes of  $\zeta(s)$  become poles of  $-\frac{\zeta'(s)}{\zeta(s)}$ !
- Further, the poles of  $-\frac{\zeta'(s)}{\zeta(s)}$  in the strip  $0 \le \Re(s) \le 1$  are precisely the zeroes of  $\zeta(s)$  there except for the pole at s = 1.

### USING RIEMANN HYPOTHESIS

• If the Hypothesis is true, then  $\left|\frac{x^{\rho}}{\rho}\right| = \frac{x^{1/2}}{|\rho|}$ .

• Applying this and simplifying, we get:

$$\psi(x) = x + O(x^{1/2} \ln^2 R) + O(\frac{x \ln^2 R}{R \ln x}) + O(\frac{x \ln^2 x}{R}).$$

• Now set  $R = x^{1/2}$  and we get:

$$\psi(x) = x + O(x^{1/2} \ln^2 x).$$

### USING RIEMANN HYPOTHESIS

- If the Hypothesis is true, then  $\left|\frac{x^{\rho}}{\rho}\right| = \frac{x^{1/2}}{|\rho|}$ .
- Applying this and simplifying, we get:

$$\psi(x) = x + O(x^{1/2} \ln^2 R) + O(\frac{x \ln^2 R}{R \ln x}) + O(\frac{x \ln^2 x}{R}).$$

• Now set 
$$R = x^{1/2}$$
 and we get:

$$\psi(x) = x + O(x^{1/2} \ln^2 x).$$

### USING RIEMANN HYPOTHESIS

- If the Hypothesis is true, then  $\left|\frac{x^{\rho}}{\rho}\right| = \frac{x^{1/2}}{|\rho|}$ .
- Applying this and simplifying, we get:

$$\psi(x) = x + O(x^{1/2} \ln^2 R) + O(\frac{x \ln^2 R}{R \ln x}) + O(\frac{x \ln^2 x}{R}).$$

• Now set  $R = x^{1/2}$  and we get:

$$\psi(x) = x + O(x^{1/2} \ln^2 x).$$

### THE PRIME NUMBER THEOREM

• Hadamard (1896) and Vallee Poussin (1896) showed that no zero of  $\zeta(s)$  lies on  $\Re(s) = 1$ .

• Using this, they showed that

$$\psi(x) = x + o(x)$$

or, equivalently

$$\lim_{x\mapsto\infty}\pi(x)\mapsto\frac{x}{\ln x}.$$

• This is the famous Prime Number Theorem.

### THE PRIME NUMBER THEOREM

- Hadamard (1896) and Vallee Poussin (1896) showed that no zero of  $\zeta(s)$  lies on  $\Re(s) = 1$ .
- Using this, they showed that

$$\psi(x)=x+o(x)$$

or, equivalently

$$\lim_{x\mapsto\infty}\pi(x)\mapsto\frac{x}{\ln x}.$$

• This is the famous Prime Number Theorem.

### HOW ABOUT RIEMANN HYPOTHESIS?

#### • Despite attempts for last 150 years, it remains unproven.

- It is widely considered to be the most important unsolved problem of mathematics.
- There is a \$1 million prize on the proof of the hypothesis!

### How About Riemann Hypothesis?

- Despite attempts for last 150 years, it remains unproven.
- It is widely considered to be the most important unsolved problem of mathematics.
- There is a \$1 million prize on the proof of the hypothesis!

### How About Riemann Hypothesis?

- Despite attempts for last 150 years, it remains unproven.
- It is widely considered to be the most important unsolved problem of mathematics.
- There is a \$1 million prize on the proof of the hypothesis!

#### • A large number of problems in Number Theory remain unsolved:

GOLDBACH'S CONJECTURE: Every even integer > 2 is a sum of two prime numbers.

TWIN PRIME CONJECTURE: There exist infinitely many prime pairs of the form (p, p + 2).

PRIME GAPS: For every *n*, there exits a prime number between *n* and  $n + \ln^2 n$ .

 A large number of problems in Number Theory remain unsolved: GOLDBACH'S CONJECTURE: Every even integer > 2 is a sum of two prime numbers.

TWIN PRIME CONJECTURE: There exist infinitely many prime pairs of the form (p, p + 2). PRIME GAPS: For every *n*, there exits a prime number between *n* and  $n + \ln^2 n$ .

- A large number of problems in Number Theory remain unsolved: GOLDBACH'S CONJECTURE: Every even integer > 2 is a sum of two prime numbers.
   TWIN PRIME CONJECTURE: There exist infinitely many prime pairs
  - of the form (p, p + 2). PRIME GARS: For every *p*, there exits a prime number between *p*.

and  $n + \ln^2 n$ .

- A large number of problems in Number Theory remain unsolved: GOLDBACH'S CONJECTURE: Every even integer > 2 is a sum of two prime numbers. TWIN PRIME CONJECTURE: There exist infinitely many prime pairs
  - of the form (p, p + 2). PRIME GAPS: For every *n*, there exits a prime number between *n* and  $n + \ln^2 n$ .