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Number Theory

Number Theory is the study of properties of numbers.

Here, by numbers, we mean integers.

Properties of reals and complex numbers fall in a different area called
Analysis.
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Fundamental Theorem of Arithmetic

The study starts with Fundamental Theorem of Arithmetic: every
number can be written uniquely as a product of prime numbers.

Hence, prime numbers are of great importance in number theory.

Most of the problems of numbers translate to problems on prime
numbers via the Fundamental Theorem.
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Diophantine Problems

A class of problems, called Diophantine Problems, address the
question whether an equation has integer solutions.

For example, consider
x2 + y2 = z2.

Are there integer values of x , y , and z that satisfy this equation?

Answer: yes!
x = 3, y = 4, z = 5

is one solution.

In fact, for any pair of integers u and v ,

x = u2 − v2, y = 2uv , z = u2 + v2

is a solution to the equation.

The solutions are called Pythagorean triples.
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Diophantine Problems

Another example is Pell’s equations:

x2 − ny2 = 1

for non-square n.

A solution of Pell’s equation gives a good rational approximation of√
n:

(
x

y
)2 = n +

1

y2
.

Budhayana (ca. 800 BC) gave two soltions of x2 − 2y2 = 1: (17, 12)
and (577, 408).

Lagrange (1736 - 1813) showed that all Pell’s equations have
infinitely many solutions.

Notice that it is much more difficult to find solutions of equations in
integers than it is in reals!
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Counting Prime Numbers

Many questions on prime numbers are about counting:
I How many prime numbers exist? [infinite]
I How many prime numbers are less than n? [About n

ln n ]
I How many twin primes (primes numbers at distance 2) are there?
I What is the maximum gap between two consecutive primes?

The first question was answered by Euclid (ca. 300 BC):
I Assume there are finitely many primes.
I Let n be the largest prime.
I But prime factorization of n! + 1 does not include any prime less than

or equal to n.
I Contradiction.

Manindra Agarwal (IIT Kanpur) Two Problems of NT LSR, 09/2009 7 / 43



Counting Prime Numbers

Many questions on prime numbers are about counting:
I How many prime numbers exist? [infinite]
I How many prime numbers are less than n? [About n

ln n ]
I How many twin primes (primes numbers at distance 2) are there?
I What is the maximum gap between two consecutive primes?

The first question was answered by Euclid (ca. 300 BC):
I Assume there are finitely many primes.
I Let n be the largest prime.
I But prime factorization of n! + 1 does not include any prime less than

or equal to n.
I Contradiction.

Manindra Agarwal (IIT Kanpur) Two Problems of NT LSR, 09/2009 7 / 43



Counting Prime Numbers

Many questions on prime numbers are about counting:
I How many prime numbers exist? [infinite]
I How many prime numbers are less than n? [About n

ln n ]
I How many twin primes (primes numbers at distance 2) are there?
I What is the maximum gap between two consecutive primes?

The first question was answered by Euclid (ca. 300 BC):
I Assume there are finitely many primes.
I Let n be the largest prime.
I But prime factorization of n! + 1 does not include any prime less than

or equal to n.
I Contradiction.

Manindra Agarwal (IIT Kanpur) Two Problems of NT LSR, 09/2009 7 / 43



Counting Prime Numbers

Many questions on prime numbers are about counting:
I How many prime numbers exist? [infinite]
I How many prime numbers are less than n? [About n

ln n ]
I How many twin primes (primes numbers at distance 2) are there?
I What is the maximum gap between two consecutive primes?

The first question was answered by Euclid (ca. 300 BC):
I Assume there are finitely many primes.
I Let n be the largest prime.
I But prime factorization of n! + 1 does not include any prime less than

or equal to n.
I Contradiction.

Manindra Agarwal (IIT Kanpur) Two Problems of NT LSR, 09/2009 7 / 43



Counting Prime Numbers

Many questions on prime numbers are about counting:
I How many prime numbers exist? [infinite]
I How many prime numbers are less than n? [About n

ln n ]
I How many twin primes (primes numbers at distance 2) are there?
I What is the maximum gap between two consecutive primes?

The first question was answered by Euclid (ca. 300 BC):
I Assume there are finitely many primes.
I Let n be the largest prime.
I But prime factorization of n! + 1 does not include any prime less than

or equal to n.
I Contradiction.

Manindra Agarwal (IIT Kanpur) Two Problems of NT LSR, 09/2009 7 / 43



Counting Prime Numbers

Many questions on prime numbers are about counting:
I How many prime numbers exist? [infinite]
I How many prime numbers are less than n? [About n

ln n ]
I How many twin primes (primes numbers at distance 2) are there?
I What is the maximum gap between two consecutive primes?

The first question was answered by Euclid (ca. 300 BC):
I Assume there are finitely many primes.
I Let n be the largest prime.
I But prime factorization of n! + 1 does not include any prime less than

or equal to n.
I Contradiction.

Manindra Agarwal (IIT Kanpur) Two Problems of NT LSR, 09/2009 7 / 43



Counting Prime Numbers

Many questions on prime numbers are about counting:
I How many prime numbers exist? [infinite]
I How many prime numbers are less than n? [About n

ln n ]
I How many twin primes (primes numbers at distance 2) are there?
I What is the maximum gap between two consecutive primes?

The first question was answered by Euclid (ca. 300 BC):
I Assume there are finitely many primes.
I Let n be the largest prime.
I But prime factorization of n! + 1 does not include any prime less than

or equal to n.
I Contradiction.

Manindra Agarwal (IIT Kanpur) Two Problems of NT LSR, 09/2009 7 / 43



Counting Prime Numbers

Many questions on prime numbers are about counting:
I How many prime numbers exist? [infinite]
I How many prime numbers are less than n? [About n

ln n ]
I How many twin primes (primes numbers at distance 2) are there?
I What is the maximum gap between two consecutive primes?

The first question was answered by Euclid (ca. 300 BC):
I Assume there are finitely many primes.
I Let n be the largest prime.
I But prime factorization of n! + 1 does not include any prime less than

or equal to n.
I Contradiction.

Manindra Agarwal (IIT Kanpur) Two Problems of NT LSR, 09/2009 7 / 43



Two Special Problems

In this talk, we consider two problems.

First problem: how many solutions exist for the equation

xn + yn = zn

when n > 2?

Second problem: how many prime numbers exist less than x?

Both the problems have a long history and have beeen instrumental in
development of number theory.
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Fermat’s Last Theorem

Theorem

There are no non-zero integer solutions of the equation xn + yn = zn

when n > 2.
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Fermat’s Last Theorem

Towards the end of his life, Pierre de Fermat (1601-1665) wrote in the
margin of a book:

I have discovered a truely remarkable proof of this theorem, but this
margin is too small to write it down.

After more than 300 years, when the proof was finally written, it did take a
little more than a margin to write.
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A Brief History

1660s: Fermat proved the theorem for n = 4.

1753: Euler proved the theorem for n = 3.

1825: Dirichlet and Legendre proved the theorem for n = 5.

1839: Lame proved the theorem for n = 7.

1857: Kummer proved the theorem for all n ≤ 100.
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A Brief History

1983: Faltings proved that for any n > 2, the equation
xn + yn = zn can have at most finitely many integer
solutions.

1994: Wiles proved the theorem.
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The Outline of Proof

The proof transforms the problem to a problem in Geometry and then
to a problem in Complex Analysis!

The proof came after more than 325 years and was more than 100
pages long!

First observe that we can assume n to be a prime number:
I Suppose n = p · q where p is prime, and let solution (a, b, c) satisfy

xn + yn = zn.
I Then (aq, bq, cq) satisfies xp + yp = zp.

We now translate the problem to Elliptic curves.
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Elliptic Curves

Definition

An elliptic curve is given by equation:

y2 = x3 + Ax + B

for numbers A and B satisfying 4A3 + 27B2 6= 0.

We will be interested in curves for which both A and B are rational
numbers.

Elliptic curves have truly amazing properties as we shall see.
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Elliptic Curve Examples
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Discriminant of an Elliptic Curve

Let E be an elliptic curve given by equation y2 = x3 + Ax + B.

Discriminant ∆ of E is the number 4A3 + 27B2.

We require the discriminant of E to be non-zero.

This condition is equivalent to the condition that the three (perhaps
complex) roots of the polynomial x3 + Ax + B are distinct. [Verify!]

If x3 + Ax + B = (x − α)(x − β)(x − γ) then

∆ = (α− β)2(β − γ)2(γ − α)2.
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Rational Points on an Elliptic Curve

Let E (Q) be the set of rational points on the curve E .

We add a “point at infinity,” called O, to this set.

Amazing Fact

We can define an “addition” operation on the set of points in E (Q) just
like integer addition.
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Addition of Points on E
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Addition of Points on E

Observe that if points P and Q on E are rational, then point P + Q
is also rational. [Verify!]

The point addition obeys same laws as integer addition with point at
infinity O acting as the “zero” of point addition.

The point addition has some additional interesting properties too.
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Addition of Points on E
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A Special Elliptic Curve

Let (a, b, c) be an integer solution of the equation xn + yn = zn for some
prime n > 2.

Definition

Define an elliptic curve En by the equation:

y2 = x(x − an)(x + bn).

Discriminant of this curve is:

∆n = (an)2 · (bn)2 · (an + bn)2 = (abc)2n.

So the discriminant is 2nth power of an integer.
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A Special Elliptic Curve

So if there is no elliptic curve whose discriminant is a 2nth power for
some prime n > 2 then FLT is true.

Ribet (1988) showed that any elliptic curve of this kind is not
modular.

I Modularity is a property of a function related to a curve.
I This function is defined over complex numbers.
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Wiles Theorem

Theorem (Wiles, 1994)

Every elliptic curve is modular.
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Density of Prime Numbers

Define π(x) to be the number of primes less than x .

We wish to obtain an estimate for π(x).

It is easier to count prime numbers with their “weights”. Let

ψ(x) =
∑

1≤n<x

Λ(n)

where

Λ(n) =

{
ln p, if n = pk for some prime p
0, otherwise
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ψ(x) =
∑

1≤n<x

Λ(n)

where

Λ(n) =

{
ln p, if n = pk for some prime p
0, otherwise
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Bernhard Riemann (1826 - 1866)

Riemann was a student of Gauss.

In 1859, he wrote a paper on estimating ψ(x) which had immense
impact on the development of mathematics.
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Estimating ψ(x)

It is generally easier to handle infinite series.

So we will extend the sum in ψ(x) to an infinite sum.

Define

δ(x) =

{
1, if x > 1
0, if 0 < x < 1

Then we can write
ψ(x) =

∑
n≥1

Λ(n)δ(
x

n
)

assuming that x is not an integer.
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Defining δ

It is possible to give a nice definition of δ over complex plane:

δ(x) =

∫ c+i∞

c−i∞

x s

s
ds

for any c > 0.

This is shown using Cauchy’s Theorem which states that∮
C

f (s)ds = 0

for any closed contour C in the complex plane, for any differentiable
function f that has no poles inside C .
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Approximating δ

The same approach gives an approximation of δ too:

δ(x) =

∫ c+iR

c−iR

x s

s
ds + O(

xc

R| ln x |
)

for any R > 0, any c > 0.

This approximation will be more useful for us.

We can write:

ψ(x) =
∑
n≥1

Λ(n)δ(
x

n
)

=
∑
n≥1

Λ(n)

∫ c+iR

c−iR

x s

xns
ds + O(

∑
n≥1

Λ(n)xc

Rnc | ln x
n |

)
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Estimating ψ

Taking the sum inside the integral, we get

ψ(x) =

∫ c+iR

c−iR

x s

s

∑
n≥1

Λ(n)

ns
ds + O(

∑
n≥1

Λ(n)xc

Rnc | ln x
n |

)

=

∫ c+iR

c−iR

x s

s

∑
n≥1

Λ(n)

ns
ds + O(

x ln2 x

R
)

for c = 1 + 1
ln x .
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The Zeta Function

Let

ζ(s) =
∑
n≥1

1

ns
.

This can be expressed in another way:

ζ(s) =
∑
n≥1

1

ns

=
∏

p,p prime

(1 +
1

ps
+

1

p2s
+

1

p3s
+ · · · )

=
∏

p,p prime

1

1− 1
ps

.
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The Zeta Function

Taking log, we get:

ln ζ(s) = −
∑

p,p prime

ln(1− 1

ps
).

Differentiating with respect to s, we get:

ζ ′(s)

ζ(s)
= −

∑
p,p prime

(ln p)p−s

1− 1
ps

= −
∑

p,p prime

(ln p)p−s(1 +
1

ps
+

1

p2s
+

1

p3s
+ · · · )

= −
∑

p,p prime

∑
k≥1

ln p

pks

= −
∑
n≥1

Λ(n)

ns
.
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Estimating ψ

Substituting in the expression for ψ, we get:

ψ(x) = −
∫ c+iR

c−iR

x s

s

ζ ′(s)

ζ(s)
ds + O(

x ln2 x

R
)

for c = 1 + 1
ln x .

So if we can estimate the integral

I (x ,R) = −
∫ c+iR

c−iR

x s

s

ζ ′(s)

ζ(s)
ds

well, we will have an expression for ψ(x).
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Estimating I (x ,R)

We again use Cauchy’s Theorem.

Define the contour C to be
c − iR 7→ c + iR 7→ −U + iR 7→ −U − iR 7→ c − iR.

However, we need to extend the definition of ζ(s) to the entire region
as the definition ζ(s) =

∑
n≥1

1
ns diverges for <(s) ≤ 1!

Fortunately, this can be done using some tricks.

Unfortunately, the function

x s

s

ζ ′(s)

ζ(s)

with the extended definition has many poles inside C !

Some of the poles are at s = 0, 1, s = −2m for every positive integer
m.

In addition to these, there are infinitely many poles within the strip
0 ≤ <(s) ≤ 1!!

Manindra Agarwal (IIT Kanpur) Two Problems of NT LSR, 09/2009 35 / 43



Estimating I (x ,R)

We again use Cauchy’s Theorem.

Define the contour C to be
c − iR 7→ c + iR 7→ −U + iR 7→ −U − iR 7→ c − iR.

However, we need to extend the definition of ζ(s) to the entire region
as the definition ζ(s) =

∑
n≥1

1
ns diverges for <(s) ≤ 1!

Fortunately, this can be done using some tricks.

Unfortunately, the function

x s

s

ζ ′(s)

ζ(s)

with the extended definition has many poles inside C !

Some of the poles are at s = 0, 1, s = −2m for every positive integer
m.

In addition to these, there are infinitely many poles within the strip
0 ≤ <(s) ≤ 1!!

Manindra Agarwal (IIT Kanpur) Two Problems of NT LSR, 09/2009 35 / 43



Estimating I (x ,R)

We again use Cauchy’s Theorem.

Define the contour C to be
c − iR 7→ c + iR 7→ −U + iR 7→ −U − iR 7→ c − iR.

However, we need to extend the definition of ζ(s) to the entire region
as the definition ζ(s) =

∑
n≥1

1
ns diverges for <(s) ≤ 1!

Fortunately, this can be done using some tricks.

Unfortunately, the function

x s

s

ζ ′(s)

ζ(s)

with the extended definition has many poles inside C !

Some of the poles are at s = 0, 1, s = −2m for every positive integer
m.

In addition to these, there are infinitely many poles within the strip
0 ≤ <(s) ≤ 1!!

Manindra Agarwal (IIT Kanpur) Two Problems of NT LSR, 09/2009 35 / 43



Estimating I (x ,R)

We again use Cauchy’s Theorem.

Define the contour C to be
c − iR 7→ c + iR 7→ −U + iR 7→ −U − iR 7→ c − iR.

However, we need to extend the definition of ζ(s) to the entire region
as the definition ζ(s) =

∑
n≥1

1
ns diverges for <(s) ≤ 1!

Fortunately, this can be done using some tricks.

Unfortunately, the function

x s

s

ζ ′(s)

ζ(s)

with the extended definition has many poles inside C !

Some of the poles are at s = 0, 1, s = −2m for every positive integer
m.

In addition to these, there are infinitely many poles within the strip
0 ≤ <(s) ≤ 1!!

Manindra Agarwal (IIT Kanpur) Two Problems of NT LSR, 09/2009 35 / 43



Handling Poles

A generalized version of Cauchy’s Theorem states that the value of
contour integral equals the sum of residues of poles inside the contour.

We find that the residue of ζ′(s)
ζ(s) at s = 1 is −1, and at all other poles

is 1.

The residue of xs

s at s = 0 is 1.

Hence,

−
∮

C

x s

s

ζ ′(s)

ζ(s)
ds = x −

∑
−R≤=(ρ)≤R

xρ

ρ
+

∑
0<2m<U

x−2m

2m
− ζ ′(0)

ζ(0)
.
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Estimating I (x ,R)

A careful analysis of the extended definition of ζ(s) shows that we
can choose large U and R such that

|ζ
′(s)

ζ(s)
| = O(ln2 |s|).

Using this, it is straightforward to show that the integrals from c + iR
to −U + iR and −U − iR to c − iR are bounded by O( x ln2 R

R ln x ).

Similarly, the integral from −U + iR to −U − iR is bounded by
O(R ln U

UxR ).

Taking limit U 7→ ∞, we get:

I (x ,R) = x −
∑

−R≤=(ρ)≤R

xρ

ρ
+
∑

2m>0

x−2m

2m
+ O(

x ln2 R

R ln x
).
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Estimating ψ(x)

Thus we get:

ψ(x) = x −
∑

−R≤=(ρ)≤R

xρ

ρ
+
∑

2m>0

x−2m

2m
+ O(

x ln2 R

R ln x
) + O(

x ln2 x

R
).

Notice that ∑
2m>0

x−2m

2m
= ln(1− 1

x2
)

which is close to zero for large x .

Hence

ψ(x) = x −
∑

−R≤=(ρ)≤R

xρ

ρ
+ O(

x ln2 R

R ln x
) + O(

x ln2 x

R
).
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The Riemann Hypothesis

Riemann Hypothesis

All the zeroes of ζ(s) in 0 ≤ <(s) ≤ 1 lie at the line <(s) = 1
2 .

Note that the zeroes of ζ(s) become poles of − ζ′(s)
ζ(s) !

Further, the poles of − ζ′(s)
ζ(s) in the strip 0 ≤ <(s) ≤ 1 are precisely the

zeroes of ζ(s) there except for the pole at s = 1.
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Using Riemann Hypothesis

If the Hypothesis is true, then | xρρ | = x1/2

|ρ| .

Applying this and simplifying, we get:

ψ(x) = x + O(x1/2 ln2 R) + O(
x ln2 R

R ln x
) + O(

x ln2 x

R
).

Now set R = x1/2 and we get:

ψ(x) = x + O(x1/2 ln2 x).
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The Prime Number theorem

Hadamard (1896) and Vallee Poussin (1896) showed that no zero of
ζ(s) lies on <(s) = 1.

Using this, they showed that

ψ(x) = x + o(x)

or, equivalently

lim
x 7→∞

π(x) 7→ x

ln x
.

This is the famous Prime Number Theorem.
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How About Riemann Hypothesis?

Despite attempts for last 150 years, it remains unproven.

It is widely considered to be the most important unsolved problem of
mathematics.

There is a $1 million prize on the proof of the hypothesis!
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Unsolved Problems in Number Theory

A large number of problems in Number Theory remain unsolved:

Goldbach’s Conjecture: Every even integer > 2 is a sum of two
prime numbers.

Twin Prime Conjecture: There exist infinitely many prime pairs
of the form (p, p + 2).

Prime Gaps: For every n, there exits a prime number between n
and n + ln2 n.
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