Two Problems of Number Theory

Manindra Agarwal

IIT Kanpur
LSR Delhi, September 18, 2009

Outline

(1) Introduction

(2) Fermat's Last Theorem

(3) Counting Primes

Number Theory

- Number Theory is the study of properties of numbers.
- Here, by numbers, we mean integers.
- Properties of reals and complex numbers fall in a different area called Analysis.

Number Theory

- Number Theory is the study of properties of numbers.
- Here, by numbers, we mean integers.
- Properties of reals and complex numbers fall in a different area called Analysis.

Number Theory

- Number Theory is the study of properties of numbers.
- Here, by numbers, we mean integers.
- Properties of reals and complex numbers fall in a different area called Analysis.

Fundamental Theorem of Arithmetic

- The study starts with Fundamental Theorem of Arithmetic: every number can be written uniquely as a product of prime numbers.
- Hence, prime numbers are of great importance in number theory.
- Most of the problems of numbers translate to problems on prime numbers via the Fundamental Theorem.

Fundamental Theorem of Arithmetic

- The study starts with Fundamental Theorem of Arithmetic: every number can be written uniquely as a product of prime numbers.
- Hence, prime numbers are of great importance in number theory.
- Most of the problems of numbers translate to problems on prime numbers via the Fundamental Theorem.

Diophantine Problems

- A class of problems, called Diophantine Problems, address the question whether an equation has integer solutions.
- For example, consider
- Are there integer values of x, y, and z that satisfy this equation?
- Answer ves!

$$
x=3, y=4, z=5
$$

is one solution.

- In fact, for any pair of integers u and v,
is a solution to the equation.
- The solutions are called Pythanorean triples.

Diophantine Problems

- A class of problems, called Diophantine Problems, address the question whether an equation has integer solutions.
- For example, consider

$$
x^{2}+y^{2}=z^{2}
$$

- Are there integer values of x, y, and z that satisfy this equation?
- Answer: yes!

is one solution
- In fact for any pair of integers u and v,
is a solution to the equation.
- The solutions are called Pythagorean triples.

Diophantine Problems

- A class of problems, called Diophantine Problems, address the question whether an equation has integer solutions.
- For example, consider

$$
x^{2}+y^{2}=z^{2}
$$

- Are there integer values of x, y, and z that satisfy this equation?
- Answer: yes!

$$
x=3, y=4, z=5
$$

is one solution.

- In fact, for any pair of integers u and v,
is a solution to the equation.
- The solutions are called Pythagorean triples.

Diophantine Problems

- A class of problems, called Diophantine Problems, address the question whether an equation has integer solutions.
- For example, consider

$$
x^{2}+y^{2}=z^{2}
$$

- Are there integer values of x, y, and z that satisfy this equation?
- Answer: yes!

$$
x=3, y=4, z=5
$$

is one solution.

- In fact, for any pair of integers u and v,

$$
x=u^{2}-v^{2}, y=2 u v, z=u^{2}+v^{2}
$$

is a solution to the equation.

- The solutions are called Pythagorean triples.

Diophantine Problems

- Another example is Pell's equations:

$$
x^{2}-n y^{2}=1
$$

for non-square n.

- A solution of Pell's equation gives a good rational approximation of \sqrt{n} :

$$
\left(\frac{x}{y}\right)^{2}=n+\frac{1}{y^{2}} .
$$

- Budhayana (ca. 800 BC) gave two soltions of $x^{2}-2 y^{2}=1:(17,12)$ and $(577,408)$.
- Lagrange (1736-1813) showed that all Pell's equations have infinitely many solutions.
- Notice that it is much more difficult to find solutions of equations in integers than it is in reals!

Diophantine Problems

- Another example is Pell's equations:

$$
x^{2}-n y^{2}=1
$$

for non-square n.

- A solution of Pell's equation gives a good rational approximation of \sqrt{n} :

$$
\left(\frac{x}{y}\right)^{2}=n+\frac{1}{y^{2}} .
$$

- Budhayana (ca. 800 BC) gave two soltions of $x^{2}-2 y^{2}=1:(17,12)$ and $(577,408)$.
- Lagrange (1736-1813) showed that all Pell's equations have infinitely many solutions.
- Notice that it is much more difficult to find solutions of equations in integers than it is in reals!

Diophantine Problems

- Another example is Pell's equations:

$$
x^{2}-n y^{2}=1
$$

for non-square n.

- A solution of Pell's equation gives a good rational approximation of \sqrt{n} :

$$
\left(\frac{x}{y}\right)^{2}=n+\frac{1}{y^{2}} .
$$

- Budhayana (ca. 800 BC) gave two soltions of $x^{2}-2 y^{2}=1:(17,12)$ and (577, 408).
- Lagrange (1736-1813) showed that all Pell's equations have infinitely many solutions.
- Notice that it is much more difficult to find solutions of equations in integers than it is in reals!

Counting Prime Numbers

- Many questions on prime numbers are about counting:
- How many prime numbers exist? [infinite]
- How many prime numbers are less than n ? [About $\frac{n}{\ln n}$]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):

Counting Prime Numbers

- Many questions on prime numbers are about counting:
- How many prime numbers exist? [infinite]
- How many prime numbers are less than n? [About $\frac{n}{\ln n}$]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):

Counting Prime Numbers

- Many questions on prime numbers are about counting:
- How many prime numbers exist? [infinite]
- How many prime numbers are less than n ? [About $\frac{n}{\ln n}$]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):

Counting Prime Numbers

- Many questions on prime numbers are about counting:
- How many prime numbers exist? [infinite]
- How many prime numbers are less than n ? [About $\frac{n}{\ln n}$]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):

Counting Prime Numbers

- Many questions on prime numbers are about counting:
- How many prime numbers exist? [infinite]
- How many prime numbers are less than n ? [About $\frac{n}{\ln n}$]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?

Counting Prime Numbers

- Many questions on prime numbers are about counting:
- How many prime numbers exist? [infinite]
- How many prime numbers are less than n ? [About $\frac{n}{\ln n}$]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):
- Assume there are finitely many primes.

```
* Let n be the largest prime.
* But prime factorization of n!+1 does not include any prime less than
    or equal to n.
- Contradiction.
```


Counting Prime Numbers

- Many questions on prime numbers are about counting:
- How many prime numbers exist? [infinite]
- How many prime numbers are less than n ? [About $\frac{n}{\ln n}$]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):
- Assume there are finitely many primes.
- Let n be the largest prime.

```
* But prime factorization of n! + 1 does not include any prime less than
    or equal to n.
- Contradiction.
```


Counting Prime Numbers

- Many questions on prime numbers are about counting:
- How many prime numbers exist? [infinite]
- How many prime numbers are less than n ? [About $\frac{n}{\ln n}$]
- How many twin primes (primes numbers at distance 2) are there?
- What is the maximum gap between two consecutive primes?
- The first question was answered by Euclid (ca. 300 BC):
- Assume there are finitely many primes.
- Let n be the largest prime.
- But prime factorization of $n!+1$ does not include any prime less than or equal to n.
- Contradiction.

Two Special Problems

- In this talk, we consider two problems.
- First problem: how many solutions exist for the equation
when $n>2$?
- Second problem how many prime numbers exist less than x?
- Both the problems have a long history and have beeen instrumental in development of number theory.

Two Special Problems

- In this talk, we consider two problems.
- First problem: how many solutions exist for the equation

$$
x^{n}+y^{n}=z^{n}
$$

when $n>2$?

- Second problem: how many prime numbers exist less than x ?
- Both the problems have a long history and have beeen instrumental in development of number theory.

Two Special Problems

- In this talk, we consider two problems.
- First problem: how many solutions exist for the equation

$$
x^{n}+y^{n}=z^{n}
$$

when $n>2$?

- Second problem: how many prime numbers exist less than x ?
- Both the problems have a long history and have beeen instrumental in development of number theory.

Two Special Problems

- In this talk, we consider two problems.
- First problem: how many solutions exist for the equation

$$
x^{n}+y^{n}=z^{n}
$$

when $n>2$?

- Second problem: how many prime numbers exist less than x ?
- Both the problems have a long history and have beeen instrumental in development of number theory.

Outline

(1) Introduction

(2) Fermat's Last Theorem

(3) Counting Primes

Fermat's Last Theorem

Theorem

There are no non-zero integer solutions of the equation $x^{n}+y^{n}=z^{n}$ when $n>2$.

Fermat's Last Theorem

Towards the end of his life, Pierre de Fermat (1601-1665) wrote in the margin of a book:

I have discovered a truely remarkable proof of this theorem, but this margin is too small to write it down.

After more than 300 years, when the proof was finally written, it did take a little more than a margin to write.

Fermat's Last Theorem

Towards the end of his life, Pierre de Fermat (1601-1665) wrote in the margin of a book:

I have discovered a truely remarkable proof of this theorem, but this margin is too small to write it down.

After more than 300 years, when the proof was finally written, it did take a little more than a margin to write.

A Brief History

1660s: Fermat proved the theorem for $n=4$.
1753: Euler proved the theorem for $n=3$.
1825: Dirichlet and Legendre proved the theorem for $n=5$.
1839: Lame proved the theorem for $n=7$.
1857: Kummer proved the theorem for all $n \leq 100$.

A Brief History

1660s: Fermat proved the theorem for $n=4$.
1753: Euler proved the theorem for $n=3$.
1825: Dirichlet and Legendre proved the theorem for $n=5$.
1839: Lame proved the theorem for $n=7$.
1857: Kummer proved the theorem for all $n<100$.

A Brief History

1660s: Fermat proved the theorem for $n=4$.
1753: Euler proved the theorem for $n=3$.
1825: Dirichlet and Legendre proved the theorem for $n=5$.
1839: Lame proved the theorem for $n=7$
1857: Kummer proved the theorem for all $n \leq 100$.

A Brief History

1660s: Fermat proved the theorem for $n=4$.
1753: Euler proved the theorem for $n=3$.
1825: Dirichlet and Legendre proved the theorem for $n=5$.
1839: Lame proved the theorem for $n=7$.
1857: Kummer proved the theorem for all $n \leq 100$.

A Brief History

1660s: Fermat proved the theorem for $n=4$.
1753: Euler proved the theorem for $n=3$.
1825: Dirichlet and Legendre proved the theorem for $n=5$.
1839: Lame proved the theorem for $n=7$.
1857: Kummer proved the theorem for all $n \leq 100$.

A Brief History

1983: Faltings proved that for any $n>2$, the equation $x^{n}+y^{n}=z^{n}$ can have at most finitely many integer solutions.
1994: Wiles proved the theorem.

A Brief History

1983: Faltings proved that for any $n>2$, the equation $x^{n}+y^{n}=z^{n}$ can have at most finitely many integer solutions.
1994: Wiles proved the theorem.

The Outline of Proof

- The proof transforms the problem to a problem in Geometry and then to a problem in Complex Analysis!
- The proof came after more than 325 years and was more than 100 pages long!
- First observe that we can assume n to be a prime number:
- We now translate the problem to Elliptic curves.

The Outline of Proof

- The proof transforms the problem to a problem in Geometry and then to a problem in Complex Analysis!
- The proof came after more than 325 years and was more than 100 pages long!
- First observe that we can assume n to be a prime number:
- We now translate the problem to Elliptic curves.

The Outline of Proof

- The proof transforms the problem to a problem in Geometry and then to a problem in Complex Analysis!
- The proof came after more than 325 years and was more than 100 pages long!
- First observe that we can assume n to be a prime number:
- Suppose $n=p \cdot q$ where p is prime, and let solution (a, b, c) satisfy $x^{n}+y^{n}=z^{n}$.
- Then $\left(a^{q}, b^{q}, c^{q}\right)$ satisfies $x^{p}+y^{p}=z^{p}$.
- We now translate the problem to Elliptic curves.

The Outline of Proof

- The proof transforms the problem to a problem in Geometry and then to a problem in Complex Analysis!
- The proof came after more than 325 years and was more than 100 pages long!
- First observe that we can assume n to be a prime number:
- Suppose $n=p \cdot q$ where p is prime, and let solution (a, b, c) satisfy $x^{n}+y^{n}=z^{n}$.
- Then $\left(a^{q}, b^{q}, c^{q}\right)$ satisfies $x^{p}+y^{p}=z^{p}$.
- We now translate the problem to Elliptic curves.

Elliptic Curves

Definition

An elliptic curve is given by equation:

$$
y^{2}=x^{3}+A x+B
$$

for numbers A and B satisfying $4 A^{3}+27 B^{2} \neq 0$.

- We will be interested in curves for which both A and B are rational numbers.
- Elliptic curves have truly amazing properties as we shall see.

Elliptic Curves

Definition

An elliptic curve is given by equation:

$$
y^{2}=x^{3}+A x+B
$$

for numbers A and B satisfying $4 A^{3}+27 B^{2} \neq 0$.

- We will be interested in curves for which both A and B are rational numbers.
- Elliptic curves have truly amazing properties as we shall see.

Elliptic Curves

DEFINITION

An elliptic curve is given by equation:

$$
y^{2}=x^{3}+A x+B
$$

for numbers A and B satisfying $4 A^{3}+27 B^{2} \neq 0$.

- We will be interested in curves for which both A and B are rational numbers.
- Elliptic curves have truly amazing properties as we shall see.

Elliptic Curve Examples

Elliptic Curve Examples

Elliptic Curve Examples

Discriminant of an Elliptic Curve

- Let E be an elliptic curve given by equation $y^{2}=x^{3}+A x+B$.
- Discriminant Δ of E is the number $4 A^{3}+27 B^{2}$.
- We require the discriminant of E to be non-zero.
- This condition is equivalent to the condition that the three (perhaps complex) roots of the polynomial $x^{3}+A x+B$ are distinct. [Verify!]

Discriminant of an Elliptic Curve

- Let E be an elliptic curve given by equation $y^{2}=x^{3}+A x+B$.
- Discriminant Δ of E is the number $4 A^{3}+27 B^{2}$.
- We require the discriminant of E to be non-zero.
- This condition is equivalent to the condition that the three (perhaps complex) roots of the polynomial $x^{3}+A x+B$ are distinct. [Verify!]
- If $x^{3}+A x+B=(x-\alpha)(x-\beta)(x-\gamma)$ then

$$
\Delta=(\alpha-\beta)^{2}(\beta-\gamma)^{2}(\gamma-\alpha)^{2}
$$

Rational Points on an Elliptic Curve

- Let $E(\mathbb{Q})$ be the set of rational points on the curve E.
- We add a "point at infinity," called O, to this set.

Amazing Fact
 We can define an "addition" operation on the set of points in $E(Q)$ just like integer addition.

Rational Points on an Elliptic Curve

- Let $E(\mathbb{Q})$ be the set of rational points on the curve E.
- We add a "point at infinity," called O, to this set.

Amazing Fact

We can define an "addition" operation on the set of points in $E(\mathbb{Q})$ just like integer addition.

Addition of Points on E

Adding points P \& Q on curve $y^{2}=x^{3}-x$

Addition of Points on E

Addition of Points on E

- Observe that if points P and Q on E are rational, then point $P+Q$ is also rational. [Verify!]
- The point addition obeys same laws as integer addition with point at infinity O acting as the "zero" of point addition.
- The point addition has some additional interesting properties too.

Addition of Points on E

- Observe that if points P and Q on E are rational, then point $P+Q$ is also rational. [Verify!]
- The point addition obeys same laws as integer addition with point at infinity O acting as the "zero" of point addition.
- The point addition has some additional interesting properties too.

Addition of Points on E

- Observe that if points P and Q on E are rational, then point $P+Q$ is also rational. [Verify!]
- The point addition obeys same laws as integer addition with point at infinity O acting as the "zero" of point addition.
- The point addition has some additional interesting properties too.

Addition of Points on E

A Special Elliptic Curve

Let (a, b, c) be an integer solution of the equation $x^{n}+y^{n}=z^{n}$ for some prime $n>2$.

Definition
Define an elliptic curve E_{n} by the equation:

- Discriminant of this curve is:

- So the discriminant is $2 n$th power of an integer.

A Special Elliptic Curve

Let (a, b, c) be an integer solution of the equation $x^{n}+y^{n}=z^{n}$ for some prime $n>2$.

Definition

Define an elliptic curve E_{n} by the equation:

$$
y^{2}=x\left(x-a^{n}\right)\left(x+b^{n}\right)
$$

- Discriminant of this curve is:

- So the discriminant is $2 n$th power of an integer.

A Special Elliptic Curve

Let (a, b, c) be an integer solution of the equation $x^{n}+y^{n}=z^{n}$ for some prime $n>2$.

Definition

Define an elliptic curve E_{n} by the equation:

$$
y^{2}=x\left(x-a^{n}\right)\left(x+b^{n}\right)
$$

- Discriminant of this curve is:

$$
\Delta_{n}=\left(a^{n}\right)^{2} \cdot\left(b^{n}\right)^{2} \cdot\left(a^{n}+b^{n}\right)^{2}=(a b c)^{2 n} .
$$

- So the discriminant is $2 n$th power of an integer.

A Special Elliptic Curve

Let (a, b, c) be an integer solution of the equation $x^{n}+y^{n}=z^{n}$ for some prime $n>2$.

Definition

Define an elliptic curve E_{n} by the equation:

$$
y^{2}=x\left(x-a^{n}\right)\left(x+b^{n}\right)
$$

- Discriminant of this curve is:

$$
\Delta_{n}=\left(a^{n}\right)^{2} \cdot\left(b^{n}\right)^{2} \cdot\left(a^{n}+b^{n}\right)^{2}=(a b c)^{2 n} .
$$

- So the discriminant is $2 n$th power of an integer.

A Special Elliptic Curve

- So if there is no elliptic curve whose discriminant is a $2 n$th power for some prime $n>2$ then FLT is true.
- Ribet (1988) showed that any elliptic curve of this kind is not modular.

A Special Elliptic Curve

- So if there is no elliptic curve whose discriminant is a $2 n$th power for some prime $n>2$ then FLT is true.
- Ribet (1988) showed that any elliptic curve of this kind is not modular.
- Modularity is a property of a function related to a curve.
- This function is defined over complex numbers.

A Special Elliptic Curve

- So if there is no elliptic curve whose discriminant is a $2 n$th power for some prime $n>2$ then FLT is true.
- Ribet (1988) showed that any elliptic curve of this kind is not modular.
- Modularity is a property of a function related to a curve.
- This function is defined over complex numbers.

Wiles Theorem

Theorem (Wiles, 1994)
Every elliptic curve is modular.

Outline

(1) Introduction

(2) Fermat's Last Theorem

(3) Counting Primes

Density of Prime Numbers

- Define $\pi(x)$ to be the number of primes less than x.
- We wish to obtain an estimate for $\pi(x)$.
- It is easier to count prime numbers with their "weights". Let

where

Density of Prime Numbers

- Define $\pi(x)$ to be the number of primes less than x.
- We wish to obtain an estimate for $\pi(x)$.
- It is easier to count prime numbers with their "weights". Let

$$
\psi(x)=\sum_{1 \leq n<x} \Lambda(n)
$$

where

$$
\Lambda(n)= \begin{cases}\ln p, & \text { if } n=p^{k} \text { for some prime } p \\ 0, & \text { otherwise }\end{cases}
$$

Bernhard Riemann (1826-1866)

- Riemann was a student of Gauss.
- In 1859, he wrote a paper on estimating $\psi(x)$ which had immense impact on the development of mathematics.

Estimating $\psi(x)$

- It is generally easier to handle infinite series.
- So we will extend the sum in $\psi(x)$ to an infinite sum.
- Define

- Then we can write

assuming that x is not an integer.

Estimating $\psi(x)$

- It is generally easier to handle infinite series.
- So we will extend the sum in $\psi(x)$ to an infinite sum.
- Define

$$
\delta(x)= \begin{cases}1, & \text { if } x>1 \\ 0, & \text { if } 0<x<1\end{cases}
$$

- Then we can write

assuming that x is not an integer.

Estimating $\psi(x)$

- It is generally easier to handle infinite series.
- So we will extend the sum in $\psi(x)$ to an infinite sum.
- Define

$$
\delta(x)= \begin{cases}1, & \text { if } x>1 \\ 0, & \text { if } 0<x<1\end{cases}
$$

- Then we can write

$$
\psi(x)=\sum_{n \geq 1} \Lambda(n) \delta\left(\frac{x}{n}\right)
$$

assuming that x is not an integer.

Defining δ

- It is possible to give a nice definition of δ over complex plane:

$$
\delta(x)=\int_{c-i \infty}^{c+i \infty} \frac{x^{s}}{s} d s
$$

for any $c>0$.

- This is shown using Cauchy's Theorem which states that $f(s) d s=0$
for any closed contour C in the complex plane, for any differentiable function f that has no poles inside C.

Defining δ

- It is possible to give a nice definition of δ over complex plane:

$$
\delta(x)=\int_{c-i \infty}^{c+i \infty} \frac{x^{s}}{s} d s
$$

for any $c>0$.

- This is shown using Cauchy's Theorem which states that

$$
\oint_{C} f(s) d s=0
$$

for any closed contour C in the complex plane, for any differentiable function f that has no poles inside C.

Approximating δ

- The same approach gives an approximation of δ too:

$$
\delta(x)=\int_{c-i R}^{c+i R} \frac{x^{s}}{s} d s+O\left(\frac{x^{c}}{R|\ln x|}\right)
$$

for any $R>0$, any $c>0$.

- This approximation will be more useful for us.
- We can write:

Approximating δ

- The same approach gives an approximation of δ too:

$$
\delta(x)=\int_{c-i R}^{c+i R} \frac{x^{s}}{s} d s+O\left(\frac{x^{c}}{R|\ln x|}\right)
$$

for any $R>0$, any $c>0$.

- This approximation will be more useful for us.
- We can write:

$$
\begin{aligned}
\psi(x) & =\sum_{n \geq 1} \Lambda(n) \delta\left(\frac{x}{n}\right) \\
& =\sum_{n \geq 1} \Lambda(n) \int_{c-i R}^{c+i R} \frac{x^{s}}{x n^{s}} d s+O\left(\sum_{n \geq 1} \frac{\Lambda(n) x^{c}}{R n^{c}\left|\ln \frac{x}{n}\right|}\right)
\end{aligned}
$$

Estimating ψ

- Taking the sum inside the integral, we get

$$
\begin{aligned}
\psi(x) & =\int_{c-i R}^{c+i R} \frac{x^{s}}{s} \sum_{n \geq 1} \frac{\Lambda(n)}{n^{s}} d s+O\left(\sum_{n \geq 1} \frac{\Lambda(n) x^{c}}{R n^{c}\left|\ln \frac{x}{n}\right|}\right) \\
& =\int_{c-i R}^{c+i R} \frac{x^{s}}{s} \sum_{n \geq 1} \frac{\Lambda(n)}{n^{s}} d s+O\left(\frac{x \ln ^{2} x}{R}\right)
\end{aligned}
$$

for $c=1+\frac{1}{\ln x}$.

The Zeta Function

- Let

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}} .
$$

- This can be expressed in another way:

The Zeta Function

- Let

$$
\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}} .
$$

- This can be expressed in another way:

$$
\begin{aligned}
\zeta(s) & =\sum_{n \geq 1} \frac{1}{n^{s}} \\
& =\prod_{p, p}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\frac{1}{p^{3 s}}+\cdots\right) \\
& =\prod_{p, p \text { prime }} \frac{1}{1-\frac{1}{p^{s}}}
\end{aligned}
$$

The Zeta Function

- Taking log, we get:

$$
\ln \zeta(s)=-\sum_{p, p \text { prime }} \ln \left(1-\frac{1}{p^{s}}\right) .
$$

- Differentiating with respect to s, we get:

The Zeta Function

- Taking log, we get:

$$
\ln \zeta(s)=-\sum_{p, p \text { prime }} \ln \left(1-\frac{1}{p^{s}}\right)
$$

- Differentiating with respect to s, we get:

$$
\begin{aligned}
\frac{\zeta^{\prime}(s)}{\zeta(s)} & =-\sum_{p, p \text { prime }} \frac{(\ln p) p^{-s}}{1-\frac{1}{p^{s}}} \\
& =-\sum_{p, p \text { prime }}(\ln p) p^{-s}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\frac{1}{p^{3 s}}+\cdots\right) \\
& =-\sum_{p, p \text { prime }} \sum_{k \geq 1} \frac{\ln p}{p^{k s}} \\
& =-\sum_{n \geq 1} \frac{\Lambda(n)}{n^{s}}
\end{aligned}
$$

Estimating ψ

- Substituting in the expression for ψ, we get:

$$
\psi(x)=-\int_{c-i R}^{c+i R} \frac{x^{s}}{s} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s+O\left(\frac{x \ln ^{2} x}{R}\right)
$$

for $c=1+\frac{1}{\ln x}$.

- So if we can estimate the integral

well, we will have an expression for $\psi(x)$.

Estimating ψ

- Substituting in the expression for ψ, we get:

$$
\psi(x)=-\int_{c-i R}^{c+i R} \frac{x^{s}}{s} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s+O\left(\frac{x \ln ^{2} x}{R}\right)
$$

for $c=1+\frac{1}{\ln x}$.

- So if we can estimate the integral

$$
I(x, R)=-\int_{c-i R}^{c+i R} \frac{x^{s}}{s} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s
$$

well, we will have an expression for $\psi(x)$.

Estimating $I(x, R)$

- We again use Cauchy's Theorem.
- Define the contour C to be
$c-i R \mapsto c+i R \mapsto-U+i R \mapsto-U-i R \mapsto c-i R$.
- However, we need to extend the definition of $\zeta(s)$ to the entire region as the definition $\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}$ diverges for $\Re(s) \leq 1$!
- Fortunately, this can be done using some tricks.
- Unfortunately, the function

with the extended definition has many poles inside C !
- Some of the poles are at $s=0,1, s=-2 m$ for every positive integer m.
- In addition to these, there are infinitely many poles within the strip $0 \leq \Re(s) \leq 1!$!

Estimating $I(x, R)$

- We again use Cauchy's Theorem.
- Define the contour C to be $c-i R \mapsto c+i R \mapsto-U+i R \mapsto-U-i R \mapsto c-i R$.
- However, we need to extend the definition of $\zeta(s)$ to the entire region as the definition $\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}$ diverges for $\Re(s) \leq 1$!
- Fortunately, this can be done using some tricks.
- Unfortunately, the function

with the extended definition has many poles inside C !
- Some of the poles are at $s=0,1, s=-2 m$ for every positive integer
- In addition to these, there are infinitely many poles within the strip

Estimating $I(x, R)$

- We again use Cauchy's Theorem.
- Define the contour C to be $c-i R \mapsto c+i R \mapsto-U+i R \mapsto-U-i R \mapsto c-i R$.
- However, we need to extend the definition of $\zeta(s)$ to the entire region as the definition $\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}$ diverges for $\Re(s) \leq 1$!
- Fortunately, this can be done using some tricks.
- Unfortunately, the function

$$
\frac{x^{s}}{s} \frac{\zeta^{\prime}(s)}{\zeta(s)}
$$

with the extended definition has many poles inside C !

- In addition to these, there are infinitely many poles within the strip

Estimating $I(x, R)$

- We again use Cauchy's Theorem.
- Define the contour C to be $c-i R \mapsto c+i R \mapsto-U+i R \mapsto-U-i R \mapsto c-i R$.
- However, we need to extend the definition of $\zeta(s)$ to the entire region as the definition $\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}$ diverges for $\Re(s) \leq 1$!
- Fortunately, this can be done using some tricks.
- Unfortunately, the function

$$
\frac{x^{s}}{s} \frac{\zeta^{\prime}(s)}{\zeta(s)}
$$

with the extended definition has many poles inside C !

- Some of the poles are at $s=0,1, s=-2 m$ for every positive integer m.
- In addition to these, there are infinitely many poles within the strip $0 \leq \Re(s) \leq 1!$!

Handling Poles

- A generalized version of Cauchy's Theorem states that the value of contour integral equals the sum of residues of poles inside the contour.
- We find that the residue of $\frac{\zeta(s)}{\zeta(s)}$ at $s=1$ is -1 , and at all other poles is 1 .
- The residue of $\frac{x^{5}}{s}$ at $s=0$ is 1 .
- Hence,

Handling Poles

- A generalized version of Cauchy's Theorem states that the value of contour integral equals the sum of residues of poles inside the contour.
- We find that the residue of $\frac{\zeta^{\prime}(s)}{\zeta(s)}$ at $s=1$ is -1 , and at all other poles is 1 .
- The residue of $\frac{\chi^{s}}{s}$ at $s=0$ is 1 .
- Hence,

Handling Poles

- A generalized version of Cauchy's Theorem states that the value of contour integral equals the sum of residues of poles inside the contour.
- We find that the residue of $\frac{\zeta^{\prime}(s)}{\zeta(s)}$ at $s=1$ is -1 , and at all other poles is 1 .
- The residue of $\frac{x^{s}}{s}$ at $s=0$ is 1 .
- Hence,

$$
-\oint_{C} \frac{x^{s}}{s} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s=x-\sum_{-R \leq \Im(\rho) \leq R} \frac{x^{\rho}}{\rho}+\sum_{0<2 m<U} \frac{x^{-2 m}}{2 m}-\frac{\zeta^{\prime}(0)}{\zeta(0)}
$$

Estimating $I(x, R)$

- A careful analysis of the extended definition of $\zeta(s)$ shows that we can choose large U and R such that

$$
\left|\frac{\zeta^{\prime}(s)}{\zeta(s)}\right|=O\left(\ln ^{2}|s|\right)
$$

- Using this, it is straightforward to show that the integrals from $c+i R$ to $-U+i R$ and $-U-i R$ to $c-i R$ are bounded by $O\left(\frac{x \ln ^{2} R}{R \ln x}\right)$.
- Similarly, the integral from $-U+i R$ to $-U-i R$ is bounded by $O\left(\frac{R \ln U}{U x^{R}}\right)$.
- Taking limit $U \mapsto \infty$, we get:

Estimating $I(x, R)$

- A careful analysis of the extended definition of $\zeta(s)$ shows that we can choose large U and R such that

$$
\left|\frac{\zeta^{\prime}(s)}{\zeta(s)}\right|=O\left(\ln ^{2}|s|\right)
$$

- Using this, it is straightforward to show that the integrals from $c+i R$ to $-U+i R$ and $-U-i R$ to $c-i R$ are bounded by $O\left(\frac{x \ln ^{2} R}{R \ln x}\right)$.
- Taking limit $U \mapsto \infty$, we get:

Estimating $I(x, R)$

- A careful analysis of the extended definition of $\zeta(s)$ shows that we can choose large U and R such that

$$
\left|\frac{\zeta^{\prime}(s)}{\zeta(s)}\right|=O\left(\ln ^{2}|s|\right)
$$

- Using this, it is straightforward to show that the integrals from $c+i R$ to $-U+i R$ and $-U-i R$ to $c-i R$ are bounded by $O\left(\frac{x \ln ^{2} R}{R \ln x}\right)$.
- Similarly, the integral from $-U+i R$ to $-U-i R$ is bounded by $O\left(\frac{R \ln U}{U x^{R}}\right)$.

Estimating $I(x, R)$

- A careful analysis of the extended definition of $\zeta(s)$ shows that we can choose large U and R such that

$$
\left|\frac{\zeta^{\prime}(s)}{\zeta(s)}\right|=O\left(\ln ^{2}|s|\right)
$$

- Using this, it is straightforward to show that the integrals from $c+i R$ to $-U+i R$ and $-U-i R$ to $c-i R$ are bounded by $O\left(\frac{x \ln ^{2} R}{R \ln x}\right)$.
- Similarly, the integral from $-U+i R$ to $-U-i R$ is bounded by $O\left(\frac{R \ln U}{U x^{R}}\right)$.
- Taking limit $U \mapsto \infty$, we get:

$$
I(x, R)=x-\sum_{-R \leq \Im(\rho) \leq R} \frac{x^{\rho}}{\rho}+\sum_{2 m>0} \frac{x^{-2 m}}{2 m}+O\left(\frac{x \ln ^{2} R}{R \ln x}\right) .
$$

Estimating $\psi(x)$

- Thus we get:

$$
\psi(x)=x-\sum_{-R \leq \Im(\rho) \leq R} \frac{x^{\rho}}{\rho}+\sum_{2 m>0} \frac{x^{-2 m}}{2 m}+O\left(\frac{x \ln ^{2} R}{R \ln x}\right)+O\left(\frac{x \ln ^{2} x}{R}\right)
$$

- Notice that

which is close to zero for large x.
- Hence

Estimating $\psi(x)$

- Thus we get:

$$
\psi(x)=x-\sum_{-R \leq \Im(\rho) \leq R} \frac{x^{\rho}}{\rho}+\sum_{2 m>0} \frac{x^{-2 m}}{2 m}+O\left(\frac{x \ln ^{2} R}{R \ln x}\right)+O\left(\frac{x \ln ^{2} x}{R}\right)
$$

- Notice that

$$
\sum_{2 m>0} \frac{x^{-2 m}}{2 m}=\ln \left(1-\frac{1}{x^{2}}\right)
$$

which is close to zero for large x.

Estimating $\psi(x)$

- Thus we get:

$$
\psi(x)=x-\sum_{-R \leq \Im(\rho) \leq R} \frac{x^{\rho}}{\rho}+\sum_{2 m>0} \frac{x^{-2 m}}{2 m}+O\left(\frac{x \ln ^{2} R}{R \ln x}\right)+O\left(\frac{x \ln ^{2} x}{R}\right)
$$

- Notice that

$$
\sum_{2 m>0} \frac{x^{-2 m}}{2 m}=\ln \left(1-\frac{1}{x^{2}}\right)
$$

which is close to zero for large x.

- Hence

$$
\psi(x)=x-\sum_{-R \leq \Im(\rho) \leq R} \frac{x^{\rho}}{\rho}+O\left(\frac{x \ln ^{2} R}{R \ln x}\right)+O\left(\frac{x \ln ^{2} x}{R}\right) .
$$

The Riemann Hypothesis

Riemann Hypothesis
All the zeroes of $\zeta(s)$ in $0 \leq \Re(s) \leq 1$ lie at the line $\Re(s)=\frac{1}{2}$.

- Note that the zeroes of $\zeta(s)$ become poles of $-\frac{\zeta^{\prime}(s)}{\zeta(s)}$!
- Further the poles of $-\frac{\zeta^{\prime}(s)}{(s)}$ in the strip $0 \leq \Omega(s)<1$ are precisely the zeroes of $\zeta(s)$ there except for the pole at $s=1$.

The Riemann Hypothesis

Riemann Hypothesis

All the zeroes of $\zeta(s)$ in $0 \leq \Re(s) \leq 1$ lie at the line $\Re(s)=\frac{1}{2}$.

- Note that the zeroes of $\zeta(s)$ become poles of $-\frac{\zeta^{\prime}(s)}{\zeta(s)}$!
- Further, the poles of $-\frac{\zeta^{\prime}(s)}{\zeta(s)}$ in the strip $0 \leq \Re(s) \leq 1$ are precisely the zeroes of $\zeta(s)$ there except for the pole at $s=1$.

Using Riemann Hypothesis

- If the Hypothesis is true, then $\left|\frac{x^{\rho}}{\rho}\right|=\frac{x^{1 / 2}}{|\rho|}$.
- Applying this and simplifying, we get:
- Now set $R=x^{1 / 2}$ and we get:

Using Riemann Hypothesis

- If the Hypothesis is true, then $\left|\frac{x^{\rho}}{\rho}\right|=\frac{x^{1 / 2}}{|\rho|}$.
- Applying this and simplifying, we get:

$$
\psi(x)=x+O\left(x^{1 / 2} \ln ^{2} R\right)+O\left(\frac{x \ln ^{2} R}{R \ln x}\right)+O\left(\frac{x \ln ^{2} x}{R}\right)
$$

- Now set $R=x^{1 / 2}$ and we get:

Using Riemann Hypothesis

- If the Hypothesis is true, then $\left|\frac{x^{\rho}}{\rho}\right|=\frac{x^{1 / 2}}{|\rho|}$.
- Applying this and simplifying, we get:

$$
\psi(x)=x+O\left(x^{1 / 2} \ln ^{2} R\right)+O\left(\frac{x \ln ^{2} R}{R \ln x}\right)+O\left(\frac{x \ln ^{2} x}{R}\right)
$$

- Now set $R=x^{1 / 2}$ and we get:

$$
\psi(x)=x+O\left(x^{1 / 2} \ln ^{2} x\right)
$$

The Prime Number theorem

- Hadamard (1896) and Vallee Poussin (1896) showed that no zero of $\zeta(s)$ lies on $\Re(s)=1$.
- Using this, they showed that
or, equivalently

- This is the famous Prime Number Theorem.

The Prime Number theorem

- Hadamard (1896) and Vallee Poussin (1896) showed that no zero of $\zeta(s)$ lies on $\Re(s)=1$.
- Using this, they showed that

$$
\psi(x)=x+o(x)
$$

or, equivalently

$$
\lim _{x \mapsto \infty} \pi(x) \mapsto \frac{x}{\ln x}
$$

- This is the famous Prime Number Theorem.

How About Riemann Hypothesis?

- Despite attempts for last 150 years, it remains unproven.
- It is widely considered to be the most important unsolved problem of mathematics.
- There is a $\$ 1$ million prize on the proof of the hypothesis!

How About Riemann Hypothesis?

- Despite attempts for last 150 years, it remains unproven.
- It is widely considered to be the most important unsolved problem of mathematics.
- There is a \$1 million prize on the proof of the hypothesis!

How About Riemann Hypothesis?

- Despite attempts for last 150 years, it remains unproven.
- It is widely considered to be the most important unsolved problem of mathematics.
- There is a $\$ 1$ million prize on the proof of the hypothesis!

Unsolved Problems in Number Theory

- A large number of problems in Number Theory remain unsolved: GOLDBACH'S Conjecture: Every even integer >2 is a sum of two

Unsolved Problems in Number Theory

- A large number of problems in Number Theory remain unsolved: Goldbach's Conjecture: Every even integer >2 is a sum of two prime numbers.

There exist infinitely many prime pairs of the form $(p, p+2)$. Prime Gaps: For every n, there exits a prime number between n

Unsolved Problems in Number Theory

- A large number of problems in Number Theory remain unsolved: Goldbach's Conjecture: Every even integer >2 is a sum of two prime numbers.
Twin Prime Conjecture: There exist infinitely many prime pairs of the form $(p, p+2)$.
PRIME GAPS: For every n, there exits a prime number between n and $n+\ln ^{2} n$.

Unsolved Problems in Number Theory

- A large number of problems in Number Theory remain unsolved: Goldbach's Conjecture: Every even integer >2 is a sum of two prime numbers.
Twin Prime Conjecture: There exist infinitely many prime pairs of the form $(p, p+2)$.
PRime Gaps: For every n, there exits a prime number between n and $n+\ln ^{2} n$.

