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Motivation: Mathematics

• Automorphisms of algebraic structures capture its symmetries.

• Many properties of the structure can be proved by analyzing
the automorphism group of the structure.



Motivation Definitions Representation Complexity

Examples

• Galois (1830) showed that the structure of automorphism
group of the splitting field of polynomial f (x) can be used to
characterize solvability of f by radicals.

• Wantzel (1836) showed that not all angles can be trisected
using ruler and compass.
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Motivation: Computer Science

• A useful tool in analyzing computational complexity of
problems in algebra and number theory.

• Automorphisms and isomorphisms of finite rings are most
useful as we will see.

• There are many applications, but only a few are well-known.

• In this talk, we:
• identify algorithmic problems related to automorphisms and

isomorphisms, and
• present an overview of several applications of these.
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Finite Rings and Their Representations

• We define a finite ring to be a finite commutative ring with
identity.

• There are three main ways to represent these rings:
• Table Representation.
• Basis Representation.
• Polynomial Representation.

• Each representation has a different complexity.
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Table Representation

• Let R be a finite ring with n elements e1, . . ., en.

• The Table Representation of R is given by two n × n tables
with entries from the interval [1, n]:

• The first table encodes the addition operation with its (i , j)th
entry equal to k when ei + ej = ek .

• The second table encodes the multiplication operation similarly.

• The size of the representation is O(n2).
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Example

• Let R be the ring of polynomials over field F2 modulo
polynomial x4 − 1.

• The ring has 24 = 16 elements.

• Its Table Representation will provide two 16× 16 addition and
multiplication tables for all elements of the ring.
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Basis Representation

• Consider the additive structure on R.

• Since R is finite, (R,+) has a finite set of generators.

• Let b1, b2, . . ., bm be a set of generators for (R,+) such that
• The order of bi is ri .
• (R,+) = Zr1b1 ⊕ Zr2b2 ⊕ · · · ⊕ Zrmbm.

• The Basis Representation of R is given by the m-tuple
(r1, r2, . . . , rm) and matrices Mi for 1 ≤ i ≤ m such that:

• Each Mi is an m ×m matrix.
• bi · bj =

∑m
k=1 αijkbk with 0 ≤ αijk < rk .

• The size of the representation is O(m3) = O(log3 n).

• Therefore, this representation is exponentially more succinct
than the Table Representation.
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Example

• The ring R defined earlier has 1, x , x2, x3 as a set of
generators.

• Each generator has order 2.

• The Basis Representation of the ring is given by the four 4× 4
matrices M1, . . ., M4.

• Matrix M1 is identity since it codes multiplication by 1.

• Matrix M2 codes multiplication by x :

M2 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


• Similarly for M3 and M4.
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Polynomial Representation

• Let r = lcm(r1, r2, . . . , rm).

• Let 1, B1, B2, . . ., Bt be a minimal subset of generators b1,
. . ., bm such that each bi can be expressed as a polynomial in
1, B1, . . ., Bt over Zr .

• Let I be the set of all polynomials f (x1, . . . , xt) over Zr in t
variables such that f (B1, . . . ,Bt) = 0.

• Set I forms an ideal of the polynomial ring Zr [y1, . . . , yt ].
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Polynomial Representation

• The Polynomial Representation is given by numbers t, r , and
a generator set (f1, f2, . . . , fk) for the ideal I.

• We have R = Zr [B1, . . . ,Bt ]/I.

• The size of the representation is determined by the number
and size of the polynomials fi .

• It is possible that this representation is exponentially more
succinct than the Basis Representation.

• For example, consider the ring F2[Y1, . . . ,Yt ]/(Y
2
1 , . . . ,Y

2
t ).

• Its Polynomial Representation has size Θ(t).
• It has an additive basis of size 2t and hence its Basis

Representation has size Θ(23t).
• It has 22t

elements and so its Table Representation has size
Ω(22t

).
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Example

• Every element of ring R can be expressed as a polynomial in 1
and x .

• The set of polynomials that are zero in R are all multiples of
x4 − 1.

• Therefore, R = F2[x ]/(x4 − 1).
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Automorphisms and Isomorphisms

• Mapping φ, φ : R 7→ R, is an automorphism of ring R if φ is a
bijection and for every a, b ∈ R:

φ(a + b) = φ(a) + φ(b)

and
φ(a ∗ b) = φ(a) ∗ φ(b).

• Given two rings R and S , mapping φ, φ : R 7→ S , is an
isomorphism of R and S if φ is a bijection and for every
a, b ∈ R:

φ(a + b) = φ(a) + φ(b)

and
φ(a ∗ b) = φ(a) ∗ φ(b).
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Automorphisms for Basis Representation

• Let b1, . . ., bm be an additive basis for R.

• Then automorphism φ is completely specified by its action on
basis elements: Let

a =
m∑

i=1

αibi

be any element of R. Then,

φ(a) = φ(
m∑

i=1

αibi ) =
m∑

i=1

αiφ(bi ).

• Same holds for isomorphisms between two rings.
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Automorphisms for Polynomial

Representation

• Let R = Zr [X1, . . . ,Xt ]/I.

• An automorphism φ of R is completely specified by its action
on X1, . . ., Xt : Let

a = f (X1, . . . ,Xt)

be any element of R where f is a polynomial. Then,

φ(a) = φ(f (X1, . . . ,Xt)) = f (φ(X1), . . . , φ(Xt)).

• Same holds for isomorphisms between two rings.
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Problems Related to Automorphisms

• Given a ring R, does it have a non-trivial automorphism?
• This problem is called Ring Automorphism problem.
• Its search version requires one to find a non-trivial

automorphism.

• Given a ring R and a mapping φ, φ : R 7→ R, is φ an
automorphism of R?

• This problem is called Automorphism Testing problem.
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Problems Related to Automorphisms

• Given two rings R and S , are they isomorphic?
• This problem is called Ring Isomorphism Problem.
• Its search version requires one to find an isomorphism.
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Complexity of Ring Automorphism Problem:

Table Representation

Recall:

• The ring R has m additive generators, m = O(log n) (n is the
size of the ring).

• An automorphism of R is completely specified by its action on
a set of additive generators.
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Complexity of Ring Automorphism Problem:

Table Representation

• Hence to test if R has a non-trivial automorphism, do the
following:

1. Compute an ordered set of m additive generators for R. This
can be done in time O(n2)

2. For every ordered subset of m elements, check if mapping the
generators to these elements (in order) defines an
automorphism. There are O(nm) such subsets and for each
subset checking if the mapping is an automorphism requires
time O(n2).

• The time complexity of this algorithm is O(nm) = O(nlog n).

• This is quasi-polynomial time since size of input is Θ(n2).

• The search version of the problem has the same complexity.
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Complexity of Ring Automorphism Problem:

Basis Representation

• The size of the input is O(m3) and so the previous algorithm
becomes exponential time.

• The problem now is in NP:
• Given a set of m additive generators, guess the action of an

automorphism on these generators and then verify if this
results in a non-trivial automorphism. Verification can be done
in time O(m3) since it just requires verifying multiplication
property for all pairs of generators.
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Complexity of Ring Automorphism Problem:

Basis Representation

• Kayal-Saxena (2004) show that the problem is in P!
• They show that ring R has no non-trivial automorphism iff

R = ⊕j ⊕i Z
p

αi,j
i
,

with α1,j < α2,j < α3,j < · · · for each j .
• Then they give an efficient algorithm to detect if R is of this

form or not.

• Notice that this implies that the Automorphism Problem for
Table Representation is also in P.

• However, the search version of the problem is not known to be
in P.

• Kayal-Saxena (2004) show that the problem is in coAM by
adopting the protocol for Graph Isomorphism.
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Complexity of Ring Automorphism Problem:

Polynomial Representation

Theorem
The Ring Automorphism problem for Polynomial Representation is
NP-hard.
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Complexity of Ring Automorphism Problem:

Polynomial Representation
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variables.

• For ith clause ci = xi1 ∨ x̄i2 ∨ xi3 of F , define polynomial

pi = 1− (1− xi1) · xi2 · (1− xi3).

• Polynomial pi equals 1 on any assignment that satisfies clause
ci , 0 otherwise.
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• If F is satisfiable, then 1 + f will be of the form
(1 + multi-linear terms) modulo the ideal
(Y 2
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• Therefore, R will be non-trivial, in particular, 1 6= 0 in R.



Motivation Definitions Representation Complexity

Complexity of Ring Automorphism Problem:

Polynomial Representation

• Define ring R as:

R = F2[Y1,Y2, . . . ,Yn]/(1+f (Y1, . . . ,Yn),Y
2
1−Y1, . . . ,Y

2
n−Yn).

• If F is unsatisfiable then
1 ∈ (1 + f (Y1, . . . ,Yn),Y

2
1 − Y1, . . . ,Y

2
n − Yn).

• Implies that ring R is trivial, i.e., has only zero.

• If F is satisfiable, then 1 + f will be of the form
(1 + multi-linear terms) modulo the ideal
(Y 2

1 − Y1, . . . ,Y
2
n − Yn).

• Therefore, R will be non-trivial, in particular, 1 6= 0 in R.



Motivation Definitions Representation Complexity

Complexity of Ring Automorphism Problem:

Polynomial Representation

• Define ring R as:

R = F2[Y1,Y2, . . . ,Yn]/(1+f (Y1, . . . ,Yn),Y
2
1−Y1, . . . ,Y

2
n−Yn).

• If F is unsatisfiable then
1 ∈ (1 + f (Y1, . . . ,Yn),Y

2
1 − Y1, . . . ,Y

2
n − Yn).

• Implies that ring R is trivial, i.e., has only zero.

• If F is satisfiable, then 1 + f will be of the form
(1 + multi-linear terms) modulo the ideal
(Y 2

1 − Y1, . . . ,Y
2
n − Yn).

• Therefore, R will be non-trivial, in particular, 1 6= 0 in R.



Motivation Definitions Representation Complexity

Complexity of Ring Automorphism Problem:

Polynomial Representation

• Now consider the ring R ⊕ R.
• If R is trivial, R ⊕ R has just one element (0, 0) and so has no

non-trivial automorphisms.
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maps the first copy to the second one and vice-versa.

The search version of the problem is NP-hard too.
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Complexity of Testing Ring Automorphism

• The complexity of the problem depends on how the map φ is
given.

• If given as a polynomial, the Table Representation takes
quasi-polynomial time.

• For Basis Representation, it is in coNP.

• For Polynomial Representation, it is NP-hard.
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• The results are similar for problems related to ring
isomorphisms.

• Ring Isomorphism problem (both versions) takes
quasi-polynomial time in Table Representation.

• All the problems are in FPAM∩coAM in Basis Representation.

• All the problems are coNP-hard in Polynomial Representation.

• The proof is same as for Ring Automorphism: constructed ring
R is isomorphic to trivial ring iff F is unsatisfiable.
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• On the other hand, most “natural” representation is the
Polynomial Representation.

• Fortunately, nearly all the rings we will consider, have the nice
property that their Basis and Polynomial Representations are
of the similar size.

• Hence, we get best of both worlds: study rings in Basis
Representation while using Polynomial Representation to refer
to them!
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• However, until recently, no reduction was known from
primality testing.

• The recent deterministic primality testing algorithm makes the
connection and exploits it.
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• Holds because Zn has only trivial automorphism.

• The converse does not hold, so it does not show that
primality testing reduces to Automorphism Testing.

• A generalization of FLT provides such a reduction.
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Primality Testing reduces to Automorphism
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• Let R = Zn[Y ]/(Y r − 1) for some 0 < r < n.

• Define φ : R 7→ R as: φ(x) = xn.

Lemma
φ is an automorphism of R iff for every g(Y ) ∈ R,
φ(g(Y )) = g(φ(Y )).

Proof.

• φ is multiplicative by definition.

• If φ is linear then φ(x) = φ(y) implies
φ(x − y) = (x − y)n = 0.

• This is not possible since Y r − 1 is not a perfect power and so
φ is a bijection too.
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Let Or (n) denote the order of n modulo r .

Theorem (A-Kayal-Saxena, 2002)

For any r with Or (n) > 4 log2 n, if φ(Y + a) = φ(Y ) + a in R for
every a ≤ 2

√
r log n then either n is a prime power or has a divisor

< r .

The theorem can be generalized to eliminate prime power case.
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For any r with Or (n) > 4 log2 n, if φ(Y + a) = φ(Y ) + a in R for
every a ≤ 2

√
r log n then either n is a prime or has a divisor < r .

• Proof

• This basically says that if φ is linear on a few elements then n
is a prime except when it has a small divisor.

• By changing the ring, one can eliminate the small divisor case
too.
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• Let ring S = Zn[Y ]/(Y 2r − Y r ) = R ⊕ Zn[Y ]/(Y r ).

• Map φ can easily be extended to S .
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Let r be any number with Or (n) > 4 log2 n.

1. n is prime iff φ is an automorphism in S.

2. φ is an automorphism in S iff φ(Y + a) = φ(Y ) + a for every
a ≤ 2

√
r log n.

• Proof

• The first part of the theorem reduces primality testing to
Automorphism Testing.

• The second part shows that Automorphism Testing for the
map φ in ring S can be done in polynomial time.
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Over Finite Fields

• A finite field Fq of characteristic p, q = p`, has exactly `
automorphisms.

• These are ψ, ψ2, . . ., ψ`−1 with ψ(x) = xp.

• These automorphisms play a crucial role in factoring
polynomials over Fq.



Primality Polynomials IF GI Polynomial Equivalence Open Questions

Polynomial Factoring Using Automorphisms

Over Finite Fields

• A finite field Fq of characteristic p, q = p`, has exactly `
automorphisms.

• These are ψ, ψ2, . . ., ψ`−1 with ψ(x) = xp.

• These automorphisms play a crucial role in factoring
polynomials over Fq.



Primality Polynomials IF GI Polynomial Equivalence Open Questions

Polynomial Factoring Using Automorphisms

Over Finite Fields
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Fq.

• Assume that f is square-free. If not, its can be factored by
computing gcd(f (x), f ′(x)).

• Define the ring R = Fq[Y ]/(f (Y )).

• If f is irreducible, then R is a field of size qd .

• Else, it is a product of smaller fields.
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Over Finite Fields

• This difference can be used to factor f into equal degree
factors.

• Let f =
∏t

i=1 fi with each fi being a product of irreducible
polynomials of degree di and d1 < d2 < · · · < dt .

• Then, letting Ri = Fq[Y ]/(fi (Y )), R = ⊕t
i=1Ri .

• Further, ψdi is trivial automorphism in ring Ri but not in any
other Rj .

• Notice that ψdi is trivial in Ri iff fi (Y ) divides Y qdi − Y .

• Therefore, gcd(Y qdi − Y , f (Y )) = fi (Y ).
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• Next step is to transform the problem to root finding in Fq.

• Let f be a polynomial of degree d such that all its irreducible
factors have degree d0.

• Let f =
∏ d

d0
i=1 fi and consider ring R = Fq[Y ]/(f (Y )).

• Find a h(Y ) ∈ R − Fq such that ψ(h(Y )) = h(Y ).

• If f is reducible then h(Y ) exists, and can be computed easily
using linear algebra.
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• Now compute u(x) = Res(h(Y )− x , f (Y )).

• Notice that h(Y ) = ci (mod fi (Y )) for ci ∈ Fq for each i .

• Fix any i . ci is a root of u(x) by the property of resultants.

• Since h(Y ) 6∈ Fq, there exist j such that ci 6= cj .

• So, fi will divide h(Y )− ci but not fj .

• Therefore, any root of u(x) in Fq will lead to a factor of f .
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• Finally, to find a root of u(x) in Fq, first compute
v(x) = gcd(u(x), ψ(x)− x).

• Polynomial v(x) contains all the roots of u(x) and factors
completely over Fq.

• If deg(v) > 1, for a random a ∈ Fq, consider v(x2 + a).

• With high probability, at least one irreducible factor of
v(x2 + a) will be linear and at least one will be quadratic.

• Now use earlier equal degree factorization to factor v(x2 + a)
and hence v(x).

• Repeat this until all factors of v are computed giving all the
roots of u.
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• Let f be given univariate polynomial.

• Choose a small prime p and factor f over Fp.

• Use Hensel Lifting to obtain factors of f over Zp` for a small `.

• Use LLL algorithm for computing short vector in a lattice to
compute a factor of f over rationals.
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Factoring Integers Using Ring Automorphism

Problem

• There exist several algorithms for factoring integers.

• The most important ones are: Elliptic Curve Factoring,
Quadratic Sieve, Number Field Sieve.

• The fastest known algorithm is Number Field Sieve with a

conjectured time complexity of ec(log n)1/3(log log n)2/3
,

c ≈ 1.903.
• This is discounting the factoring algorithm on quantum

computers.

• Many of these algorithms are closely connected to computing
automorphisms in rings.

• We will consider the two sieve algorithms.
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Quadratic and Number Field Sieve

• Both the algorithms aim to compute a non-trivial solution of
the equation

x2 = y2 (mod n).

• Given a non-trivial solution (x0, y0), i.e., x0 6= y0 (mod n), n
can be factored easily:

• n divides x2
0 − y2

0 but not x0 − y0 or x0 + y0.
• Hence gcd(n, x0 + y0) will yield a factor of n.

• The process of computing the solution is different in both
though.

• For our purposes, the process used is not relevant.
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factoring n!
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Factoring odd n is equivalent to finding a non-trivial automorphism
of ring R.
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• Let φ(Y ) = a · Y + b be a non-trivial automorphism of R.

• Let d = (a, n).

• Consider φ( n
d Y ) = n

d · a · Y + n
d · b = n

d · b.

• Since φ is a 1-1 map, this is only possible when
d = (a, n) = 1.



Primality Polynomials IF GI Polynomial Equivalence Open Questions

Sieve Algorithms and Finding Automorphisms

Proof.

• Let φ(Y ) = a · Y + b be a non-trivial automorphism of R.

• Let d = (a, n).

• Consider φ( n
d Y ) = n

d · a · Y + n
d · b = n

d · b.

• Since φ is a 1-1 map, this is only possible when
d = (a, n) = 1.



Primality Polynomials IF GI Polynomial Equivalence Open Questions
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• We have:

0 = φ(Y 2 − 1) = (aY + b)2 − 1 = 2abY + a2 + b2 − 1

in the ring.

• This gives 2ab = 0 = a2 + b2 − 1 (mod n).

• Since n is odd and (a, n) = 1, we get b = 0 (mod n) and
a2 = 1 (mod n).

• Therefore, φ(Y ) = a · Y with a2 = 1 (mod n).

• As φ is non-trivial, a 6= ±1 (mod n).

• So, given φ, we can use a to factor n.
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• Conversely, assume that we know a prime factorization of n.

• Then, it is easy to construct a number a such that
a 6= ±1 (mod n) and a2 = 1 (mod n).

• This a defines a non-trivial automorphism of R.

Therefore, the Sieve methods are equivalent to finding a non-trivial
automorphism in a ring.
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Reducing Factoring to Other Rings

• Let Rf = Zn[Y ]/(f (Y )) where f is a degree 3 polynomial.

• For the sake of simplicity, assume that n = p · q where p and
q are distinct primes.

Theorem (Kayal and Saxena, 2004)

Number n can be efficiently factored iff a non-trivial automorphism
of Rf can be efficiently computed for every f .
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Proof.

• If factors of n are known, a non-trivial automorphism of Rf

can be computed easily.
• If f factors completely modulo p, then construct a non-trivial

automorphism by permuting roots of f modulo p.
• If f does not factor completely, then φ(x) = xp is a non-trivial

automorphism modulo p.
• Either of above two can be combined with trivial automorphism

modulo q to yield a non-trivial automorphism of Rf .
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Reducing Factoring to Other Rings

• Conversely, assume that a non-trivial automorphism of Rf can
be computed for any f .

• Randomly select an f of degree 3.

• With probability at least 1
9 , f will be irreducible modulo p and

factor into two irreducible factors modulo q.

• This implies
Rf = Fp3 ⊕ Fq ⊕ Fq2 .

• Let ψ be a non-trivial automorphism of Rf .

• Compute the set S = {x ∈ Rf | ψ(x) = x}.
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Reducing Factoring to Other Rings

There are now three cases:

Case 1. ψ fixes Fp3 .

• In this case, |S | = p3 · q2.

Case 2. ψ fixes Fq2 .

• In this case, |S | = p · q3.

Case 3. ψ fixes neither.

• In this case, |S | = p · q2.
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• In this case, |S | = p · q2.
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Reducing Factoring to Other Rings

• In either of the three cases, |S |
n or |S |

n2 will yield a factor of n.

• Notice that S can be computed by linear algebra.
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Graph Isomorphism Using Ring Isomorphism

Problem

• Let G = (VG ,EG ) and H = (VH ,EH) be two undirected
graphs on n vertices.

• The Graph Isomorphism problem is to test if G and H are
isomorphic.

• Kayal-Saxena (2004) show that the problem reduces to Ring
Isomorphism problem.



Primality Polynomials IF GI Polynomial Equivalence Open Questions

Graph Isomorphism Using Ring Isomorphism

Problem

• Let G = (VG ,EG ) and H = (VH ,EH) be two undirected
graphs on n vertices.

• The Graph Isomorphism problem is to test if G and H are
isomorphic.

• Kayal-Saxena (2004) show that the problem reduces to Ring
Isomorphism problem.



Primality Polynomials IF GI Polynomial Equivalence Open Questions

Graph Isomorphism Using Ring Isomorphism

Problem

• For graph G , define the following polynomial:

pG (x1, . . . , xn) =
∑

(i ,j)∈EG

xi · xj .

• Now associate an ideal with G :

IG = (pG , {x2
i }1≤i≤n, {xixjxk}1≤i<j<k≤m).

• Finally, define ring RG as:

RG = F [Y1, . . . ,Yn]/IG ,

where F is a field of characteristic 6= 2.
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Graph Isomorphism Using Ring Isomorphism

Problem

• Say that graph G is k-trivial if it is a union of a k-clique and
an n − k-independent set.

Theorem
Graph G and H are isomorphic iff either they are both k-trivial or
ring RG is isomorphic to RH .
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Graph Isomorphism Using Ring Isomorphism

Problem

Proof.

• Forward direction is simple.

• Suppose G and H are isomorphic under isomorphism π.

• Then, pG (π(Y1), . . . , π(Yn)) = pH(Y1, . . . ,Yn).

• The other two sets of polynomials in the ideals IG and IH are
closed under permutations.

• Therefore, RG ≡ RH under isomorphism φ(Yi ) = Yπ(i).
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• Conversely, if both G and H are k-trivial then they are clearly
isomorphic.

• So assume that RG and RH are isomorphic but H is not
k-trivial.

• Let φ be an isomorphism between RG and RH .

• Fix an i , 1 ≤ i ≤ n.

• Let

φ(Yi ) = α+
n∑

j=1

βjYj + higher order terms.
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Problem

• We have:

0 = φ(Y 2
i ) = φ2(Yi ) = α2 + higher order terms.

• This gives α = 0.

• So,
0 = φ2(Yi ) = 2

∑
1≤j<k≤n

βjβkYjYk .

• Therefore,
P =

∑
1≤j<k≤n

βjβkYjYk ∈ IH .
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• This is possible only when polynomial pH divides P.

• Let B = {βj | βj 6= 0}.
• Then,

P =
∑

j ,k∈B,j 6=k

βjβkYjYj .

• Since polynomial pH is also of degree 2, P must be a constant
multiple of pH .

• Assume that P is not identically zero.
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Problem

• Since all non-zero coefficients of pH are 1, βjβk ’s must all be
the equal.

• Since P is not a zero polynomial, we get

pH =
∑

j ,k∈B,j 6=k

YjYk ,

implying that H is |B|-trivial.
• This is not possible by assumption.

• Therefore, P must be a zero polynomial and so, βjβk = 0 for
1 ≤ j < k ≤ n.
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• Therefore, P must be a zero polynomial and so, βjβk = 0 for
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Graph Isomorphism Using Ring Isomorphism

Problem

• If βj = 0 for all j , then

φ(YiYi ′) = φ(Yi ) · φ(Yi ′)

= ( degree 2 terms) · ( degree ≥ 1 terms)

= 0.

• Since φ is 1-1, this is not possible.
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• So, there is exactly one βj which is non-zero.

• Let π(i) = j .

• Mapping π is 1-1, since if π(i) = π(i ′) = j then

φ(YiYi ′) = (Yj + degree 2 terms) · (Yj + degree 2 terms)

= 0.

• So, π is a permutation.
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• Now apply φ to pG :

0 = φ(pG ) =
∑

(i ,j)∈EG

φ(YiYj) =
∑

(i ,j)∈EG

Yπ(i)Yπ(j).

• Again, this means that pH divides φ(pG ).

• This is possible only when pH = φ(pG ).

• Therefore, π is an isomorphism between G and H.
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The Polynomial Equivalence Problem

• Let p(x1, . . . , xn) and q(x1, . . . , xn) be two polynomials over
field F .

• Given a n × n matrix A, an A-transformation of p is the
polynomial p(A(x1, x2, . . . , xn)).

• For A = [ai ,j ],

A(x1, . . . , xn) = (
n∑

i=1

ai ,1xi , . . . ,

n∑
i=1

ai ,nxi ).

• Polynomials p and q are equivalent if there exists an invertible
matrix A such that

q(x1, . . . , xn) = p(A(x1, . . . , xn)).



Primality Polynomials IF GI Polynomial Equivalence Open Questions

The Polynomial Equivalence Problem

• Let p(x1, . . . , xn) and q(x1, . . . , xn) be two polynomials over
field F .

• Given a n × n matrix A, an A-transformation of p is the
polynomial p(A(x1, x2, . . . , xn)).

• For A = [ai ,j ],

A(x1, . . . , xn) = (
n∑

i=1

ai ,1xi , . . . ,

n∑
i=1

ai ,nxi ).

• Polynomials p and q are equivalent if there exists an invertible
matrix A such that

q(x1, . . . , xn) = p(A(x1, . . . , xn)).



Primality Polynomials IF GI Polynomial Equivalence Open Questions

The Polynomial Equivalence Problem

• Let p(x1, . . . , xn) and q(x1, . . . , xn) be two polynomials over
field F .

• Given a n × n matrix A, an A-transformation of p is the
polynomial p(A(x1, x2, . . . , xn)).

• For A = [ai ,j ],

A(x1, . . . , xn) = (
n∑

i=1

ai ,1xi , . . . ,

n∑
i=1

ai ,nxi ).

• Polynomials p and q are equivalent if there exists an invertible
matrix A such that

q(x1, . . . , xn) = p(A(x1, . . . , xn)).



Primality Polynomials IF GI Polynomial Equivalence Open Questions

The Polynomial Equivalence Problem

• Let p(x1, . . . , xn) and q(x1, . . . , xn) be two polynomials over
field F .

• Given a n × n matrix A, an A-transformation of p is the
polynomial p(A(x1, x2, . . . , xn)).

• For A = [ai ,j ],

A(x1, . . . , xn) = (
n∑

i=1

ai ,1xi , . . . ,

n∑
i=1

ai ,nxi ).

• Polynomials p and q are equivalent if there exists an invertible
matrix A such that

q(x1, . . . , xn) = p(A(x1, . . . , xn)).



Primality Polynomials IF GI Polynomial Equivalence Open Questions

Example

• Let p(x1, x2) = x2
1 + x2

2 and q(x1, x2) = x2
1 + 2x2

2 + 2x1x2.

• These two are equivalent under transformation
A(x1) = x1 + x2 and A(x2) = x2.
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The Polynomial Equivalence Problem

• This problem has been studied for a long time in mathematics.

• Especially, the equivalence of d-forms: homogeneous
polynomials of degree d .

• Witt (1937) proved that equivalence of quadratic forms
(= 2-forms) can be decided in polynomial time.

• The question is open for higher degree forms.

• Thomas Thierauf (1998) showed that the problem for general
polynomials is in NP ∩ coAM.
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The Polynomial Equivalence Problem

We show that:

• The Ring Isomorphism problem reduces to degree 3
polynomial equivalence.

• The Graph Isomorphism problem reduces to cubic form
equivalence.

• d-form equivalence, for constant d , reduces to Ring
Isomorphism problem (except when the (d , q − 1) > 1 where
q is the size of the underlying field F ).
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Reducing Ring Isomorphism to Polynomial

Equivalence

• Let R and S be two given rings in the Basis Representation.

• Let the given basis for R be b1, . . ., bm and for S be c1, . . .,
cm.

• Also, let bi · bj =
∑m

k=1 βijkbk and ci · cj =
∑m

k=1 γijkck .

• Define polynomial pR as:

pR(x1, . . . , xm, z1,1, z1,2, . . . , zm,m) =
m∑

i=1

m∑
j=1

zi ,j ·(xi ·xj−
m∑

k=1

βijkxk).

• Similarly define the polynomial pS .
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Reducing Ring Isomorphism to Polynomial

Equivalence

Theorem
Rings R and S are isomorphic iff polynomials pR and pS are
equivalent.
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Proof.

• Suppose R and S are isomorphic via isomorphism φ.

• Clearly, φ(bi · bj −
∑m

k=1 βijkbk) = 0 in S .

• So let

φ(bi · bj −
m∑

k=1

βijkbk) =
m∑

s=1

m∑
t=1

δij ,st(cs · ct −
m∑

u=1

γstucu).
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Reducing Ring Isomorphism to Polynomial

Equivalence

• Define map A as:

A(xi ) = φ(xi )

A(
m∑

i=1

m∑
j=1

δij ,stzi ,j) = zs,t .
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Reducing Ring Isomorphism to Polynomial

Equivalence

• Then,

pR(A(x̄ , z̄)) =
m∑

i=1

m∑
j=1

A(zi ,j) · φ(xixj −
m∑

k=1

βijkxk)

=
m∑

i=1

m∑
j=1

A(zi ,j) ·
m∑

s=1

m∑
t=1

δij ,st · (xsxt −
m∑

u=1

γstuxu)

=
m∑

s=1

m∑
t=1

A(
m∑

i=1

m∑
j=1

δij ,stzi ,j) · (xsxt −
m∑

u=1

γstuxu)

=
m∑

s=1

m∑
t=1

zs,t · (xsxt −
m∑

u=1

γstuxu)

= pS .
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Reducing Ring Isomorphism to Polynomial

Equivalence

• Conversely, assume that polynomials pR and pS are equivalent.

• Let A be the linear transformation from pR to pS .

• It can be shown that A(zi ,j) is a linear combination of only
zs,t ’s.

We will not prove it as it is messy.



Primality Polynomials IF GI Polynomial Equivalence Open Questions

Reducing Ring Isomorphism to Polynomial

Equivalence

• Conversely, assume that polynomials pR and pS are equivalent.

• Let A be the linear transformation from pR to pS .

• It can be shown that A(zi ,j) is a linear combination of only
zs,t ’s.

We will not prove it as it is messy.



Primality Polynomials IF GI Polynomial Equivalence Open Questions

Reducing Ring Isomorphism to Polynomial

Equivalence

• Conversely, assume that polynomials pR and pS are equivalent.

• Let A be the linear transformation from pR to pS .

• It can be shown that A(zi ,j) is a linear combination of only
zs,t ’s.

We will not prove it as it is messy.



Primality Polynomials IF GI Polynomial Equivalence Open Questions

Reducing Ring Isomorphism to Polynomial

Equivalence

• Now suppose that A(xk) contains some zs,t ’s.

• These zs,t ’s will all occur in terms of pR(A(x̄ , z̄)) that have
z-degree at least two (follows since A(zi ,j)’s have only zs,t ’s).

• Since pS has no terms of z-degree more than one, these terms
will cancel out each other.

• Therefore, we can drop zs,t ’s from A(xk) and the modified
transformation is still an equivalence.

• Now suppose A(xixj −
∑m

k=1 βijkxk) is not a linear
combination of xsxt −

∑m
u=1 γstuxu’s.
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A(xixj−
m∑

k=1

βijkxk) =
m∑

s=1

m∑
t=1

δij ,st(xsxt−
m∑

u=1

γstuxu)+aijx`+· · ·

for some x` and aij 6= 0.

• Consider the coefficients of x` for all i and j .

• The sum of these coefficients must be zero since
pR(A(·)) = pS .

• Therefore,
m∑

i=1

m∑
j=1

aijA(zi ,j) = 0.

• However, this is not possible since A is invertible.
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k=1 βijkxk) is a linear combination of
xsxt −

∑m
u=1 γstuxu’s for all i and j .

• Let φ(bi ) = A(bi ) with cj ’s replacing xj ’s in the RHS.

• φ maps ring R to S .

• φ is invertible since A is.

• φ is a homomorphism since it preserves the zeroes as shown
above.

• Hence, φ is an isomorphism between R and S .
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but not homogeneous.

• They can be made homogeneous by multiplying all smaller
degree terms with appropriate power of a new variable y .

• However, then the above proof breaks down.

• For rings arising out of Graph Isomorphism reduction, the
proof goes through.
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Reducing d-Form Equivalence to Ring

Isomorphism

• Let p and q be two n-variable d-forms over finite field F of
size s.

• Let ring Rp be:

Rp = F [x1, . . . , xn]/(p(x1, . . . , xn), {
d+1∏
j=1

xij}1≤i1,...,id+1≤n).

• Similarly, define ring Rq.
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Theorem
For (d , s − 1) = 1, polynomials p and q are equivalent iff rings Rp

and Rq are isomorphic.
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• If p and q are equivalent via A, then A defines an
isomorphism between Rp and Rq.

• Conversely, suppose that Rp and Rq are isomorphic via φ.

• Let

φ(xi ) = α+ degree 1 terms + higher degree terms.

• φd+1(xi ) = φ(xd+1
i ) = 0 implies that α = 0.
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• Moreover, ψ(p) = cq for some c ∈ F .

• Therefore, ψ′, ψ′(xi ) = c1/dψ(xi ), is an equivalence between
p and q.

• The d-th root of c will always exist in F if (d , s − 1) = 1.
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• Can integer factoring be done faster using rings other than
Zn[Y ]/(Y 2 − 1)?

• Can the theory of cubic forms be used to derive an efficient
algorithm for Graph Isomorphism?

• Do other algebraic problems, e.g., Discrete Log, reduce to any
of automorphism problems?
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Removing Prime Powers

Proof.

• Suppose that (Y + a)n = Y n + a (mod n,Y r − 1) for
a ≤ 2

√
r log n.

• Therefore, an = a (mod n) for a ≤ 2
√

r log n.

• Since r > 4 log2 n, above equation holds for at least 4 log2 n
a’s.
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Removing Prime Powers

Lemma (Hendrik Lenstra, Jr., 1984)

If an = a (mod n) for every a ≤ 4 log2 n then n is square-free.

The lemma shows that n cannot be a prime power.
Back



Removing Small Divisors

Proof.

• Suppose that (Y + a)n = Y n + a (mod n,Y 2r − Y r ) for
a ≤ 2

√
r log n.

• By previous theorem, this means that n is either prime or has
a divisor < r .

• In addition, we have
(Y + 1)n = Y n + 1 (mod n,Y r ) = 1 (mod n,Y r ).

• Expanding left side, we get:
∑r−1

j=1

(n
j

)
Y j = 0 (mod n).

• Therefore,
(n

j

)
= 0 (mod n) for 1 ≤ j < r .

• Let p be the smallest divisor of n and assume that p < r .

• Then,
(n
p

)
= n

p = 0 (mod n). Contradiction.
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