DETERMINANT VERSUS PERMANENT

Manindra Agrawal

IIT Kanpur

ICM 2006

OVERVIEW

- 1 Determinant and Permanent
- **2** Complexity Notions
- **3** Known Lower Bounds on Complexity of Permanent
- Proving Strong Lower Bounds on Determinant Complexity
- 5 Proving Strong Lower Bounds on Circuit Complexity
- 6 Proving Hardness of Permanent Polynomial

OUTLINE

- 1 Determinant and Permanent
- Complexity Notions
- Known Lower Bounds on Complexity of Permanent
- Proving Strong Lower Bounds on Determinant Complexity
- Proving Strong Lower Bounds on Circuit Complexity
- 6 Proving Hardness of Permanent Polynomial

DETERMINANT

Determinant of an $n \times n$ matrix $X = [x_{i,j}]$ is defined as:

$$\det X = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \cdot \prod_{i=1}^n x_{i,\sigma(i)}.$$

Here S_n is the group of all permutations on [1, n] and $sgn(\sigma)$ is the sign of the permutation σ , $sgn(\sigma) \in \{1, -1\}$.

PROPERTIES OF DETERMINANT

LINEARITY. $det[c_1 + c_1' \ c_2 \ \cdots \ c_n] = det[c_1 \ c_2 \ \cdots \ c_n] + det[c_1' \ c_2 \ \cdots \ c_n].$

MULTIPLICATIVITY. $\det AB = \det A \cdot \det B$.

GEOMETRIC INTERPRETATION. $|\det[c_1 \ c_2 \ \cdots \ c_n]|$ is the volume of the parallelopied defined by vectors $c_1, \ c_2, \ \ldots, \ c_n$.

ALGEBRAIC INTERPRETATION. det $A = \prod_{i=1}^{n} \lambda_i$ where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of A.

LINEARITY. $det[c_1 + c_1' \ c_2 \ \cdots \ c_n] = det[c_1 \ c_2 \ \cdots \ c_n] + det[c_1' \ c_2 \ \cdots \ c_n].$ MULTIPLICATIVITY. $det AB = det A \cdot det B$.

GEOMETRIC INTERPRETATION. $|\det[c_1 \ c_2 \ \cdots \ c_n]|$ is the volume of the parallelopied defined by vectors $c_1, \ c_2, \ \ldots, \ c_n$.

ALGEBRAIC INTERPRETATION. det $A = \prod_{i=1}^{n} \lambda_i$ where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of A.

LINEARITY. $det[c_1 + c_1' \ c_2 \ \cdots \ c_n] = det[c_1 \ c_2 \ \cdots \ c_n] + det[c_1' \ c_2 \ \cdots \ c_n].$ MULTIPLICATIVITY. $det AB = det A \cdot det B$.

GEOMETRIC INTERPRETATION. $|\det[c_1 \ c_2 \ \cdots \ c_n]|$ is the volume of the parallelopied defined by vectors $c_1, \ c_2, \ \ldots, \ c_n$.

ALGEBRAIC INTERPRETATION. det $A = \prod_{i=1}^{n} \lambda_i$ where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of A.

LINEARITY. $det[c_1 + c'_1 \ c_2 \ \cdots \ c_n] = det[c_1 \ c_2 \ \cdots \ c_n] + det[c'_1 \ c_2 \ \cdots \ c_n].$ MULTIPLICATIVITY. $det AB = det A \cdot det B$.

GEOMETRIC INTERPRETATION. $|\det[c_1 \ c_2 \ \cdots \ c_n]|$ is the volume of the parallelopied defined by vectors $c_1, \ c_2, \ \ldots, \ c_n$.

ALGEBRAIC INTERPRETATION. det $A = \prod_{i=1}^{n} \lambda_i$ where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of A.

LINEARITY. $det[c_1 + c'_1 \ c_2 \ \cdots \ c_n] = det[c_1 \ c_2 \ \cdots \ c_n] + det[c'_1 \ c_2 \ \cdots \ c_n].$ MULTIPLICATIVITY. $det AB = det A \cdot det B$.

GEOMETRIC INTERPRETATION. $|\det[c_1 \ c_2 \ \cdots \ c_n]|$ is the volume of the parallelopied defined by vectors $c_1, \ c_2, \ \ldots, \ c_n$.

ALGEBRAIC INTERPRETATION. det $A = \prod_{i=1}^{n} \lambda_i$ where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of A.

PERMANENT

Permanent of an $n \times n$ matrix $X = [x_{i,j}]$ is defined as:

$$per X = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}.$$

Same as determinant except the signs.

PERMANENT

Permanent of an $n \times n$ matrix $X = [x_{i,j}]$ is defined as:

$$per X = \sum_{\sigma \in S_n} \prod_{i=1}^n x_{i,\sigma(i)}.$$

Same as determinant except the signs.

LINEARITY. per
$$[c_1 + c_1' \ c_2 \ \cdots \ c_n] =$$

per $[c_1 \ c_2 \ \cdots \ c_n] + \text{per } [c_1' \ c_2 \ \cdots \ c_n].$

COMBINATORIAL INTERPRETATION. Permanent of matrix *A* with non-negative numbers is the sum of weights of all perfect matchings of the bipartite graph represented by *A*.

LINEARITY. per
$$[c_1 + c_1' \ c_2 \ \cdots \ c_n] =$$

per $[c_1 \ c_2 \ \cdots \ c_n] + \text{per } [c_1' \ c_2 \ \cdots \ c_n].$

COMBINATORIAL INTERPRETATION. Permanent of matrix A with non-negative numbers is the sum of weights of all perfect matchings of the bipartite graph represented by A.

- Despite closeness in definition, permanent function satisfies much fewer properties than determinant function.
- In particular, there are efficient algorithms to compute determinant, however, there does not appear any way of computing permanent efficiently.

- Despite closeness in definition, permanent function satisfies much fewer properties than determinant function.
- In particular, there are efficient algorithms to compute determinant, however, there does not appear any way of computing permanent efficiently.

COMPUTATIONAL CHARACTERIZATIONS

Valiant (1979) showed that

- The complexity of computing permanent polynomial charecterizes arithmetic version of NP.
- The complexity of computing determinant polynomial (nearly) charecterizes arithmetic version of P.

COMPUTATIONAL CHARACTERIZATIONS

Valiant (1979) showed that

- The complexity of computing permanent polynomial charecterizes arithmetic version of NP.
- The complexity of computing determinant polynomial (nearly) charecterizes arithmetic version of P.

Computing Determinant and Permanent

INTUITION. Permanent is much harder to compute than determinant.

This can be formalized in two ways

- Permanent of X has a large determinant complexity
- Permanent of X has large circuit complexity.

Computing Determinant and Permanent

INTUITION. Permanent is much harder to compute than determinant.

This can be formalized in two ways:

- Permanent of X has a large determinant complexity.
- Permanent of X has large circuit complexity.

Computing Determinant and Permanent

INTUITION. Permanent is much harder to compute than determinant.

This can be formalized in two ways:

- Permanent of X has a large determinant complexity.
- Permanent of *X* has large circuit complexity.

OUTLINE

- Determinant and Permanent
- 2 Complexity Notions
- Known Lower Bounds on Complexity of Permanent
- Proving Strong Lower Bounds on Determinant Complexity
- Proving Strong Lower Bounds on Circuit Complexity
- 6 Proving Hardness of Permanent Polynomial

DETERMINANT COMPLEXITY

For matrix $X = [x_{i,j}]$, permanent of X has determinant complexity m over field F if there exists an $m \times m$ matrix Y such that

- per $X = \det Y$.
- Each entry of Y is an F-affine combination of $x_{i,j}$'s.

Arithmetic Circuits

Arithmetic circuits over field F represent a sequence of arithmetic operations over F on variables.

- The variables are called input to the circuit.
- The result of the operations is called the output of the circuit.

Arithmetic Circuits

Arithmetic circuits over field F represent a sequence of arithmetic operations over F on variables.

- The variables are called input to the circuit.
- The result of the operations is called the output of the circuit.

ARITHMETIC CIRCUITS

Output =
$$(ux + vy)^2 + (vx - uy)^2 - (u^2 + v^2)^* (x^2 + y^2) = 0$$

Inputs

Crucial parameters associated with arithmetic circuits are:

- Size: equals the number of operations in the circuit.
- Depth: equals the length of the longest path from a variable to output of the circuit.
- Degree: equals the formal degree of the polynomial output by the circuit.

Crucial parameters associated with arithmetic circuits are:

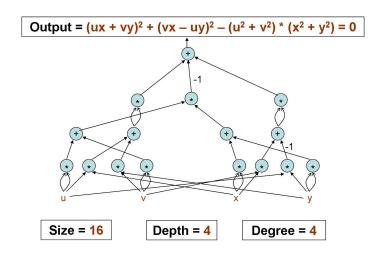
- Size: equals the number of operations in the circuit.
- Depth: equals the length of the longest path from a variable to output of the circuit.
- Degree: equals the formal degree of the polynomial output by the circuit.

Crucial parameters associated with arithmetic circuits are:

- Size: equals the number of operations in the circuit.
- Depth: equals the length of the longest path from a variable to output of the circuit.
- Degree: equals the formal degree of the polynomial output by the circuit.

Crucial parameters associated with arithmetic circuits are:

- Size: equals the number of operations in the circuit.
- Depth: equals the length of the longest path from a variable to output of the circuit.
- Degree: equals the formal degree of the polynomial output by the circuit.



ARITH-P AND ARITH-NP

Polynomial family $\{p_n\} \in \text{arith-P if } p_n \text{ has circuit complexity } n^{O(1)}$.

Polynomial family $\{q_n\} \in \text{arith-NP}$ if there exists a family $\{p_n\} \in \text{arith-P}$ such that

$$q_n(x_1,\ldots,x_n)=\sum_{y_1=0}^1\cdots\sum_{y_n=0}^1p_{2n}(x_1,\ldots,x_n,y_1,\ldots,y_n)$$

ARITH-P AND ARITH-NP

Polynomial family $\{p_n\} \in \text{arith-P if } p_n \text{ has circuit complexity } n^{O(1)}$.

Polynomial family $\{q_n\} \in \text{arith-NP}$ if there exists a family $\{p_n\} \in \text{arith-P}$ such that

$$q_n(x_1,\ldots,x_n)=\sum_{y_1=0}^1\cdots\sum_{y_n=0}^1p_{2n}(x_1,\ldots,x_n,y_1,\ldots,y_n).$$

DETERMINANT COMPLEXITY VERSUS CIRCUIT COMPLEXITY

- Determinant polynomial family over F is in arith-P.
- A polynomial family in arith-P has determinant complexity $n^{O(\log n)}$.

HYPOTHESIS. Permanent of $n \times n$ matrix X over F has superpolynomial circuit complexity for char $F \neq 2$.

DETERMINANT COMPLEXITY VERSUS CIRCUIT COMPLEXITY

- Determinant polynomial family over F is in arith-P.
- A polynomial family in arith-P has determinant complexity $n^{O(\log n)}$.

HYPOTHESIS. Permanent of $n \times n$ matrix X over F has superpolynomial circuit complexity for char $F \neq 2$.

DETERMINANT COMPLEXITY VERSUS CIRCUIT COMPLEXITY

- Determinant polynomial family over F is in arith-P.
- A polynomial family in arith-P has determinant complexity $n^{O(\log n)}$.

HYPOTHESIS. Permanent of $n \times n$ matrix X over F has superpolynomial circuit complexity for char $F \neq 2$.

OUTLINE

- Determinant and Permanent
- Complexity Notions
- 3 Known Lower Bounds on Complexity of Permanent
- Proving Strong Lower Bounds on Determinant Complexity
- 5 Proving Strong Lower Bounds on Circuit Complexity
- 6 Proving Hardness of Permanent Polynomial

LOWER BOUNDS FOR DETERMINANT COMPLEXITY

• Mignon and Ressayre (2004) showed that determinant complexity of per X (size X = n) is $\Omega(n^2)$ over \mathbb{Q} .

- Lower bounds are known for permanent only for very restricted type of circuits.
- Jerrum and Snir (1982) showed that any monotone circuit computing per *X* is of exponential size.
 - ▶ Monotone circuits are circuits with no negative constant.
- Shpilka and Wigderson (1999) showed that any depth three circuit computing per X (or even det X) over \mathbb{Q} is of size $\Omega(n^2)$.

- Lower bounds are known for permanent only for very restricted type of circuits.
- Jerrum and Snir (1982) showed that any monotone circuit computing per X is of exponential size.
 - ▶ Monotone circuits are circuits with no negative constant.
- Shpilka and Wigderson (1999) showed that any depth three circuit computing per X (or even det X) over \mathbb{Q} is of size $\Omega(n^2)$.

- Lower bounds are known for permanent only for very restricted type of circuits.
- Jerrum and Snir (1982) showed that any monotone circuit computing per X is of exponential size.
 - ▶ Monotone circuits are circuits with no negative constant.
- Shpilka and Wigderson (1999) showed that any depth three circuit computing per X (or even det X) over \mathbb{Q} is of size $\Omega(n^2)$.

- Grigoriev and Razborov (2000) showed that any depth three circuit computing per X or det X over a finite field is of exponential size.
- Raz (2004) showed that any multilinear formula computing per X or det X is of size $n^{\Omega(\log n)}$.
 - Formulas are circuits with outdegree one.
 - Multilinear formulas are formulas in which every gate computes a multilinear polynomial.

- Grigoriev and Razborov (2000) showed that any depth three circuit computing per X or det X over a finite field is of exponential size.
- Raz (2004) showed that any multilinear formula computing per X or det X is of size $n^{\Omega(\log n)}$.
 - ► Formulas are circuits with outdegree one.
 - Multilinear formulas are formulas in which every gate computes a multilinear polynomial.

OUTLINE

- Determinant and Permanent
- Complexity Notions
- 8 Known Lower Bounds on Complexity of Permanent
- PROVING STRONG LOWER BOUNDS ON DETERMINANT COMPLEXITY
- 6 Proving Strong Lower Bounds on Circuit Complexity
- 6 Proving Hardness of Permanent Polynomial

- Mulmulay and Sohoni (2002) have formulated the problem as an algebraic geometry problem.
- Let $X_{\ell} = [x_{i,j}]_{1 \le i,j \le \ell}$ be $\ell \times \ell$ matrix of variables.
- Let per $_{\ell} = \operatorname{per} X_{\ell}$ and $\det_{\ell} = \det X_{\ell}$ denote the permanent and determinant polynomials respectively in ℓ^2 variables.
- Suppose over \mathbb{Q} , determinant complexity of per n is m.
- Let per $_n = \det Y$ for $m \times m$ matrix Y whose entries are affine combinations of variables of X_n .
- Define $\widehat{per}_n = x_{m,m}^{m-n} \cdot \operatorname{per}_n$.

- Mulmulay and Sohoni (2002) have formulated the problem as an algebraic geometry problem.
- Let $X_{\ell} = [x_{i,j}]_{1 \le i,j \le \ell}$ be $\ell \times \ell$ matrix of variables.
- Let $\operatorname{per}_{\ell} = \operatorname{per} X_{\ell}$ and $\det_{\ell} = \det X_{\ell}$ denote the permanent and determinant polynomials respectively in ℓ^2 variables.
- Suppose over \mathbb{Q} , determinant complexity of per n is m.
- Let per $_n = \det Y$ for $m \times m$ matrix Y whose entries are affine combinations of variables of X_n .
- Define $\widehat{per}_n = x_{m,m}^{m-n} \cdot \operatorname{per}_n$.

- Mulmulay and Sohoni (2002) have formulated the problem as an algebraic geometry problem.
- Let $X_{\ell} = [x_{i,j}]_{1 \le i,j \le \ell}$ be $\ell \times \ell$ matrix of variables.
- Let $\operatorname{per}_{\ell} = \operatorname{per} X_{\ell}$ and $\det_{\ell} = \det X_{\ell}$ denote the permanent and determinant polynomials respectively in ℓ^2 variables.
- Suppose over \mathbb{Q} , determinant complexity of per n is m.
- Let per $_n = \det Y$ for $m \times m$ matrix Y whose entries are affine combinations of variables of X_n .
- Define $\widehat{per}_n = x_{m,m}^{m-n} \cdot \operatorname{per}_n$.

- Mulmulay and Sohoni (2002) have formulated the problem as an algebraic geometry problem.
- Let $X_{\ell} = [x_{i,j}]_{1 \le i,j \le \ell}$ be $\ell \times \ell$ matrix of variables.
- Let $\operatorname{per}_{\ell} = \operatorname{per} X_{\ell}$ and $\det_{\ell} = \det X_{\ell}$ denote the permanent and determinant polynomials respectively in ℓ^2 variables.
- Suppose over \mathbb{Q} , determinant complexity of per n is m.
- Let per $_n = \det Y$ for $m \times m$ matrix Y whose entries are affine combinations of variables of X_n .
- Define $\widehat{\operatorname{per}}_n = x_{m,m}^{m-n} \cdot \operatorname{per}_n$.

• This can be expressed as:

$$\widehat{\mathsf{per}}_n = \det_m \cdot A$$

where A is a (non-invertible) matrix over \mathbb{Q} .

- Let $V = \mathbb{C}^M$ where $M = \binom{m^2 + m 1}{m}$ and P(V) be the corresponding projective space.
- Polynomials det m and \widehat{per}_n can be viewed as points in P(V).
- Let O be the orbit of \det_m under the action of $SL_{m^2}(\mathbb{C})$:

$$O = \{ \det_{m} \cdot B \mid B \in SL_{m^{2}}(\mathbb{C}) \}.$$

• This can be expressed as:

$$\widehat{\operatorname{per}}_n = \det_m \cdot A$$

where A is a (non-invertible) matrix over \mathbb{Q} .

- Let $V = \mathbb{C}^M$ where $M = \binom{m^2+m-1}{m}$ and P(V) be the corresponding projective space.
- Polynomials \det_m and \widehat{per}_n can be viewed as points in P(V).
- Let O be the orbit of \det_m under the action of $SL_{m^2}(\mathbb{C})$:

$$O = \{ \det_{m} \cdot B \mid B \in SL_{m^{2}}(\mathbb{C}) \}.$$

• This can be expressed as:

$$\widehat{\operatorname{per}}_n = \det_m \cdot A$$

where A is a (non-invertible) matrix over \mathbb{Q} .

- Let $V = \mathbb{C}^M$ where $M = \binom{m^2 + m 1}{m}$ and P(V) be the corresponding projective space.
- Polynomials \det_m and \widehat{per}_n can be viewed as points in P(V).
- Let O be the orbit of \det_m under the action of $SL_{m^2}(\mathbb{C})$:

$$O = \{ \det_{m} \cdot B \mid B \in SL_{m^{2}}(\mathbb{C}) \}.$$

• This can be expressed as:

$$\widehat{\operatorname{per}}_n = \det_m \cdot A$$

where A is a (non-invertible) matrix over \mathbb{Q} .

- Let $V = \mathbb{C}^M$ where $M = \binom{m^2 + m 1}{m}$ and P(V) be the corresponding projective space.
- Polynomials \det_m and \widehat{per}_n can be viewed as points in P(V).
- Let O be the orbit of \det_m under the action of $SL_{m^2}(\mathbb{C})$:

$$O = \{ \det_{m} \cdot B \mid B \in SL_{m^{2}}(\mathbb{C}) \}.$$

- Polynomial per $_n$ has far fewer automorphisms than det $_m$:
 - ▶ det $_m$ is invariant under the map $Y \mapsto CYD^{-1}$ where det $C = \det D \neq 0$.
 - ▶ per_n is invariant under the map $X \mapsto CYD^{-1}$ where both C and D are either diagonal or permutation matrices.
- For any point in O, its set of automorphisms is a conjugate of the set of automorphisms of \det_m .

- Polynomial per $_n$ has far fewer automorphisms than det $_m$:
 - ▶ det $_m$ is invariant under the map $Y \mapsto CYD^{-1}$ where det $C = \det D \neq 0$.
 - ▶ per_n is invariant under the map $X \mapsto CYD^{-1}$ where both C and D are either diagonal or permutation matrices.
- For any point in O, its set of automorphisms is a conjugate of the set of automorphisms of \det_m .

- Polynomial per $_n$ has far fewer automorphisms than det $_m$:
 - ▶ det $_m$ is invariant under the map $Y \mapsto CYD^{-1}$ where det $C = \det D \neq 0$.
 - ▶ per_n is invariant under the map $X \mapsto CYD^{-1}$ where both C and D are either diagonal or permutation matrices.
- For any point in O, its set of automorphisms is a conjugate of the set of automorphisms of \det_m .

Polynomial \widehat{per}_n has several additional automorphisms due to additional m-n variables.

HYPOTHESIS. For small m, a point that has the set of automorphisms of \widehat{per}_n cannot occur in the closure of O.

Polynomial \widehat{per}_n has several additional automorphisms due to additional m-n variables.

HYPOTHESIS. For small m, a point that has the set of automorphisms of \widehat{per}_n cannot occur in the closure of O.

OUTLINE

- Determinant and Permanent
- Complexity Notions
- 3 Known Lower Bounds on Complexity of Permanent
- Proving Strong Lower Bounds on Determinant Complexity
- 5 Proving Strong Lower Bounds on Circuit Complexity
- Proving Hardness of Permanent Polynomial

DERANDOMIZATION AND LOWER BOUNDS

- Kabanets and Impagliazzo (2003) showed a connection between derandomization of Identity Testing problem and lower bounds on arithmetic circuits:
 - If Identity Testing problem can be solved deterministically in polynomial time then NEXP has superpolynomial circuit complexity.
- This connection can be made stronger via black-box derandomization, or equivalently, pseudo-random generators.

DERANDOMIZATION AND LOWER BOUNDS

- Kabanets and Impagliazzo (2003) showed a connection between derandomization of Identity Testing problem and lower bounds on arithmetic circuits:
 - ► If Identity Testing problem can be solved deterministically in polynomial time then NEXP has superpolynomial circuit complexity.
- This connection can be made stronger via black-box derandomization, or equivalently, pseudo-random generators.

IDENTITY TESTING

DEFINITION

Given a polynomial computed by an arithmetic circuit over field F, test if the polynomial is identically zero.

PSEUDO-RANDOM GENERATORS AGAINST ARITHMETIC CIRCUITS

- Let \mathcal{A}_F be a class of arithmetic circuits over field F with \mathcal{A}_F^s denoting the subclass of \mathcal{A}_F of circuits of size s.
- Let $f: \mathbb{N} \mapsto (F[y])^*$ be a function such that $f(s) = (p_{s,1}(y), \dots, p_{s,s}(y), q_s(y))$ for all s.

DEFINITION

Function f is a pseudo-random generator against A_F if

- Each $p_{s,i}(y)$ and $q_s(y)$ is of degree $s^{O(1)}$
- For any circuit $C \in \mathcal{A}_F^s$ with $n \leq s$ inputs:

```
C(x_1,\ldots,x_n)=0 iff C(\rho_{s,1}(y),\ldots,\rho_{s,n}(y))=0 (mod\ q_s(y))
```

PSEUDO-RANDOM GENERATORS AGAINST ARITHMETIC CIRCUITS

- Let \mathcal{A}_F be a class of arithmetic circuits over field F with \mathcal{A}_F^s denoting the subclass of \mathcal{A}_F of circuits of size s.
- Let $f: \mathbb{N} \mapsto (F[y])^*$ be a function such that $f(s) = (p_{s,1}(y), \dots, p_{s,s}(y), q_s(y))$ for all s.

Definition

Function f is a pseudo-random generator against A_F if

- Each $p_{s,i}(y)$ and $q_s(y)$ is of degree $s^{O(1)}$.
- For any circuit $C \in \mathcal{A}_F^s$ with $n \leq s$ inputs

 $C(x_1, \ldots, x_n) = 0$ iff $C(p_{s,1}(y), \ldots, p_{s,n}(y)) = 0 \ (mod \ q_s(y)).$

PSEUDO-RANDOM GENERATORS AGAINST ARITHMETIC CIRCUITS

- Let \mathcal{A}_F be a class of arithmetic circuits over field F with \mathcal{A}_F^s denoting the subclass of \mathcal{A}_F of circuits of size s.
- Let $f: \mathbb{N} \mapsto (F[y])^*$ be a function such that $f(s) = (p_{s,1}(y), \dots, p_{s,s}(y), q_s(y))$ for all s.

DEFINITION

Function f is a pseudo-random generator against A_F if

- Each $p_{s,i}(y)$ and $q_s(y)$ is of degree $s^{O(1)}$.
- For any circuit $C \in \mathcal{A}_F^s$ with $n \leq s$ inputs:

$$C(x_1,...,x_n)=0 \text{ iff } C(p_{s,1}(y),...,p_{s,n}(y))=0 \pmod{q_s(y)}.$$

Existance of Pseudo-Random Generators

- Schwartz-Zippel provide an efficient randomized algorithm to test if a given circuit computes zero polynomial.
- The same argument shows that a random choice of f is a pseudo-random generator against the entire class of arithmetic circuits with good probability.

Existance of Pseudo-Random Generators

- Schwartz-Zippel provide an efficient randomized algorithm to test if a given circuit computes zero polynomial.
- The same argument shows that a random choice of *f* is a pseudo-random generator against the entire class of arithmetic circuits with good probability.

 A pseudo-random generator that can be quickly computed is very useful.

DEFINITION

Function f is an efficiently computable pseudo-random generator against \mathcal{A}_F if

- It is a pseudo-random generator against A_F .
- f(s) can be computed in time $s^{O(1)}$.

 A pseudo-random generator that can be quickly computed is very useful.

DEFINITION

Function f is an efficiently computable pseudo-random generator against \mathcal{A}_F if

- It is a pseudo-random generator against A_F .
- f(s) can be computed in time $s^{O(1)}$.

- If there exist efficiently computable pseudo-random generators against the entire class of arithmetic circuits then:
 - ▶ The identity testing problem can be solved in determinstic polynomial-time.
 - ▶ There exists a multilinear polynomial in EXP that cannot be computed by subexponential sized arithmetic circuits.

- If there exist efficiently computable pseudo-random generators against the entire class of arithmetic circuits then:
 - ► The identity testing problem can be solved in determinstic polynomial-time.
 - ▶ There exists a multilinear polynomial in EXP that cannot be computed by subexponential sized arithmetic circuits.

- If there exist efficiently computable pseudo-random generators against the entire class of arithmetic circuits then:
 - ► The identity testing problem can be solved in determinstic polynomial-time.
 - ► There exists a multilinear polynomial in EXP that cannot be computed by subexponential sized arithmetic circuits.

A POLYNOMIAL WITH HIGH CIRCUIT COMPLEXITY

- Let f be an efficiently computable pseudo-random generator against A_F .
- Let the degree of all polynomials in $p_{s,1}(y)$, ..., $p_{s,s}(y)$ be bounded by $d = s^{O(1)}$ and $m = \log d = O(\log s)$.
- Define polynomial r_{2m} as:

$$r_{2m}(x_1, x_2, \dots, x_{2m}) = \sum_{S \subseteq [1, 2m]} c_S \prod_{i \in S} x_i$$

• Coefficients $c_S \in F$ satisfy:

$$\sum_{S\subseteq[1,2m]}c_S\prod_{i\in S}p_{s,i}(y)=0$$

A POLYNOMIAL WITH HIGH CIRCUIT COMPLEXITY

- Let f be an efficiently computable pseudo-random generator against \mathcal{A}_F .
- Let the degree of all polynomials in $p_{s,1}(y)$, ..., $p_{s,s}(y)$ be bounded by $d = s^{O(1)}$ and $m = \log d = O(\log s)$.
- Define polynomial r_{2m} as:

$$r_{2m}(x_1, x_2, \dots, x_{2m}) = \sum_{S \subseteq [1, 2m]} c_S \prod_{i \in S} x_i$$

• Coefficients $c_S \in F$ satisfy:

$$\sum_{S\subseteq[1,2m]}c_S\prod_{i\in S}p_{s,i}(y)=0$$

- Let f be an efficiently computable pseudo-random generator against A_F .
- Let the degree of all polynomials in $p_{s,1}(y)$, ..., $p_{s,s}(y)$ be bounded by $d = s^{O(1)}$ and $m = \log d = O(\log s)$.
- Define polynomial r_{2m} as:

$$r_{2m}(x_1, x_2, \ldots, x_{2m}) = \sum_{S \subseteq [1, 2m]} c_S \prod_{i \in S} x_i.$$

• Coefficients $c_S \in F$ satisfy:

$$\sum_{S\subseteq[1,2m]}c_S\prod_{i\in S}p_{s,i}(y)=0$$

- Let f be an efficiently computable pseudo-random generator against \mathcal{A}_F .
- Let the degree of all polynomials in $p_{s,1}(y)$, ..., $p_{s,s}(y)$ be bounded by $d = s^{O(1)}$ and $m = \log d = O(\log s)$.
- Define polynomial r_{2m} as:

$$r_{2m}(x_1, x_2, \ldots, x_{2m}) = \sum_{S \subseteq [1, 2m]} c_S \prod_{i \in S} x_i.$$

• Coefficients $c_S \in F$ satisfy:

$$\sum_{S\subseteq[1,2m]}c_S\prod_{i\in S}p_{s,i}(y)=0.$$

It can be shown that:

- A non-zero r_{2m} always exists.
- Polynomial r_{2m} can be computed by exponential size arithmetic circuits.
- Circuit complexity of r_{2m} is more than $s = 2^{O(m)}$.

It can be shown that:

- A non-zero r_{2m} always exists.
- Polynomial r_{2m} can be computed by exponential size arithmetic circuits.
- Circuit complexity of r_{2m} is more than $s = 2^{O(m)}$.

It can be shown that:

- A non-zero r_{2m} always exists.
- Polynomial r_{2m} can be computed by exponential size arithmetic circuits.
- Circuit complexity of r_{2m} is more than $s = 2^{O(m)}$.

OUTLINE

- Determinant and Permanent
- Complexity Notions
- 8 Known Lower Bounds on Complexity of Permanent
- Proving Strong Lower Bounds on Determinant Complexity
- 6 Proving Strong Lower Bounds on Circuit Complexity
- 6 Proving Hardness of Permanent Polynomial

A SIMPLER TASK

Construct an efficiently computable pseudo-random generator against the class of size s, depth $\omega(1)$ arithmetic circuits of degree s.

This Yields Superpolynomial Lower Bounds

There exists an efficiently computable pseudo-random generator against the class of size s, depth $\omega(1)$ arithmetic circuits of degree s

There is a multilinear polynomial r_{2m} of circuit complexity $2^{O(m)}$ that cannot be computed by size $2^{o(m)}$, depth $\omega(1)$ circuits

Polynomial r_{2m} cannot be computed by any size $m^{O(1)}$ arithmetic circuit

This Yields Superpolynomial Lower Bounds

There exists an efficiently computable pseudo-random generator against the class of size s, depth $\omega(1)$ arithmetic circuits of degree s

There is a multilinear polynomial r_{2m} of circuit complexity $2^{O(m)}$ that cannot be computed by size $2^{o(m)}$, depth $\omega(1)$ circuits

Polynomial r_{2m} cannot be computed by any size $m^{O(1)}$ arithmetic circuit

This Yields Superpolynomial Lower Bounds

There exists an efficiently computable pseudo-random generator against the class of size s, depth $\omega(1)$ arithmetic circuits of degree s

There is a multilinear polynomial r_{2m} of circuit complexity $2^{O(m)}$ that cannot be computed by size $2^{o(m)}$, depth $\omega(1)$ circuits

Polynomial r_{2m} cannot be computed by any size $m^{O(1)}$ arithmetic circuit

- Can each r_{2m} be computed as permanent of a small matrix?
- Recall:

$$r_{2m}(x_1, x_2, \dots, x_{2m}) = \sum_{S \subseteq [1, 2m]} c_S \prod_{i \in S} x_i$$

Define

$$\hat{r}_{4m}(x_1,\ldots,x_{2m},y_1,\ldots,y_{2m})=c(y_1,\ldots,y_{2m})\prod_{i=1}^{2m}(y_ix_i-y_i+1),$$

where
$$c(b_1, \ldots, b_{2m}) = c_S$$
, $S = \{i \mid b_i = 1\}$.

• Then:

$$r_{2m}(x_1, x_2, \dots, x_{2m}) = \sum_{y_1=0}^{1} \dots \sum_{y_{2m}=0}^{1} \hat{r}_{4m}(x_1, \dots, x_{2m}, y_1, \dots, y_{2m}).$$

- Can each r_{2m} be computed as permanent of a small matrix?
- Recall:

$$r_{2m}(x_1, x_2, \ldots, x_{2m}) = \sum_{S \subseteq [1, 2m]} c_S \prod_{i \in S} x_i.$$

Define

$$\hat{r}_{4m}(x_1,\ldots,x_{2m},y_1,\ldots,y_{2m})=c(y_1,\ldots,y_{2m})\prod_{i=1}^{2m}(y_ix_i-y_i+1),$$

where
$$c(b_1, \ldots, b_{2m}) = c_S$$
, $S = \{i \mid b_i = 1\}$.

• Then:

$$r_{2m}(x_1, x_2, \dots, x_{2m}) = \sum_{y_1=0}^{1} \dots \sum_{y_{2m}=0}^{1} \hat{r}_{4m}(x_1, \dots, x_{2m}, y_1, \dots, y_{2m}).$$

- Can each r_{2m} be computed as permanent of a small matrix?
- Recall:

$$r_{2m}(x_1, x_2, \ldots, x_{2m}) = \sum_{S \subseteq [1, 2m]} c_S \prod_{i \in S} x_i.$$

Define

$$\hat{r}_{4m}(x_1,\ldots,x_{2m},y_1,\ldots,y_{2m})=c(y_1,\ldots,y_{2m})\prod_{i=1}^{2m}(y_ix_i-y_i+1),$$

where
$$c(b_1, \ldots, b_{2m}) = c_S$$
, $S = \{i \mid b_i = 1\}$.

• Then:

$$r_{2m}(x_1, x_2, \dots, x_{2m}) = \sum_{y_1=0}^{1} \dots \sum_{y_{2m}=0}^{1} \hat{r}_{4m}(x_1, \dots, x_{2m}, y_1, \dots, y_{2m}).$$

- Can each r_{2m} be computed as permanent of a small matrix?
- Recall:

$$r_{2m}(x_1, x_2, \ldots, x_{2m}) = \sum_{S \subseteq [1, 2m]} c_S \prod_{i \in S} x_i.$$

Define

$$\hat{r}_{4m}(x_1,\ldots,x_{2m},y_1,\ldots,y_{2m})=c(y_1,\ldots,y_{2m})\prod_{i=1}^{2m}(y_ix_i-y_i+1),$$

where
$$c(b_1, ..., b_{2m}) = c_S$$
, $S = \{i \mid b_i = 1\}$.

Then:

$$r_{2m}(x_1, x_2, \ldots, x_{2m}) = \sum_{y_1=0}^{1} \cdots \sum_{y_{2m}=0}^{1} \hat{r}_{4m}(x_1, \ldots, x_{2m}, y_1, \ldots, y_{2m}).$$

- By Valiant (1979), if \hat{r}_{4m} has circuit complexity $m^{O(1)}$ then r_{2m} can be computed as permanent of a matrix of size $m^{O(1)}$.
- So a pseudo-random generator such that \hat{r}_{4m} has circuit complexity $m^{O(1)}$ implies that Permanent has circuit complexity $m^{\omega(1)}$.

- By Valiant (1979), if \hat{r}_{4m} has circuit complexity $m^{O(1)}$ then r_{2m} can be computed as permanent of a matrix of size $m^{O(1)}$.
- So a pseudo-random generator such that \hat{r}_{4m} has circuit complexity $m^{O(1)}$ implies that Permanent has circuit complexity $m^{\omega(1)}$.

CURRENT STATUS: SMALL DEPTH CIRCUITS

- We know efficiently computable pseudo-random generators against size s, depth two arithmetic circuits.
- Still some way to go!

CURRENT STATUS: SMALL DEPTH CIRCUITS

- We know efficiently computable pseudo-random generators against size *s*, depth two arithmetic circuits.
- Still some way to go!

CURRENT STATUS: LARGE DEPTH BUT RESTRICTED CLASS OF CIRCUITS

- A-Kayal-Saxena (2002) constructed an efficiently computable pseudo-random generator against a very special class of circuits.
- This contained circuits computing the polynomial $(1+x)^m x^m 1$ over ring Z_m .
- The pseudo-random generator is:

$$f(s) = (y, 0, \dots, 0, q_s(y)), q_s(y) = y^{16s^5} \prod_{t=1}^{16s^5} \prod_{a=1}^{4s^4} ((y-a)^t - 1).$$

• This derandomized a primality testing algorithm.

CURRENT STATUS: LARGE DEPTH BUT RESTRICTED CLASS OF CIRCUITS

- A-Kayal-Saxena (2002) constructed an efficiently computable pseudo-random generator against a very special class of circuits.
- This contained circuits computing the polynomial $(1+x)^m x^m 1$ over ring Z_m .
- The pseudo-random generator is:

$$f(s) = (y, 0, \dots, 0, q_s(y)), q_s(y) = y^{16s^5} \prod_{t=1}^{16s^5} \prod_{a=1}^{4s^4} ((y-a)^t - 1).$$

• This derandomized a primality testing algorithm.

A Conjecture

Define

$$f(s,k) = (y, y^k, y^{k^2}, \dots, y^{k^{s-1}}, y^r - 1),$$

where $r \ge s^4$ is a prime and $1 \le k < r$.

Conjecture

Function f is a pseudo-random generator against arithmetic circuits of size s, depth $\omega(1)$, and degree s.

A Conjecture

Define

$$f(s,k) = (y, y^k, y^{k^2}, \dots, y^{k^{s-1}}, y^r - 1),$$

where $r \ge s^4$ is a prime and $1 \le k < r$.

Conjecture

Function f is a pseudo-random generator against arithmetic circuits of size s, depth $\omega(1)$, and degree s.