A SHORT HISTORY OF "PRIMES IS IN P"

Manindra Agrawal

IIT Kanpur

ICALP 2006

()VERVIEW

- **1** August 1998: A Question
- 2 August 1998 January 1999: Primality Testing as IDENTITY TESTING
- February 1999: A Conjecture
- March 1999 July 2000: Failed Attempts at Proof
- August 2000 December 2002: Experiments
- 6 January 2002 July 2002: Another Attempt at PROOF

OUTLINE

- **1** August 1998: A Question
- August 1998 January 1999: Primality Testing as Identity Testing
- February 1999: A Conjecture
- March 1999 July 2000: Failed Attempts at Proof

An Intriguing Identity Test

- Let $P(x_1, ..., x_n)$ be a degree *n* polynomial over \mathbb{Q} given as an arithmetic circuit.
- Chen and Kao (1997) showed that there exist, easily computable, irrational numbers $\alpha_1, \ldots, \alpha_n$ such that

$$P=0 \Leftrightarrow P(\alpha_1,\ldots,\alpha_n)=0.$$

- They also showed that
- This yields a novel time-error tradeoff.

- Let $P(x_1,...,x_n)$ be a degree n polynomial over \mathbb{Q} given as an arithmetic circuit.
- Chen and Kao (1997) showed that there exist, easily computable, irrational numbers $\alpha_1, \ldots, \alpha_n$ such that

$$P=0 \Leftrightarrow P(\alpha_1,\ldots,\alpha_n)=0.$$

- They also showed that
 - ▶ A random rational approximation to α_i 's works with high probability.
 - ► The error can be reduced by increasing the quality of approximation without increasing the number of random bits.
- This yields a novel time-error tradeoff.

- Let $P(x_1,...,x_n)$ be a degree n polynomial over \mathbb{Q} given as an arithmetic circuit.
- Chen and Kao (1997) showed that there exist, easily computable, irrational numbers $\alpha_1, \ldots, \alpha_n$ such that

$$P=0 \Leftrightarrow P(\alpha_1,\ldots,\alpha_n)=0.$$

- They also showed that
 - ▶ A random rational approximation to α_i 's works with high probability.
 - ► The error can be reduced by increasing the quality of approximation without increasing the number of random bits.
- This yields a novel time-error tradeoff.

- Let $P(x_1,...,x_n)$ be a degree n polynomial over \mathbb{Q} given as an arithmetic circuit.
- Chen and Kao (1997) showed that there exist, easily computable, irrational numbers $\alpha_1, \ldots, \alpha_n$ such that

$$P=0 \Leftrightarrow P(\alpha_1,\ldots,\alpha_n)=0.$$

- They also showed that
 - ▶ A random rational approximation to α_i 's works with high probability.
 - ► The error can be reduced by increasing the quality of approximation without increasing the number of random bits.
- This yields a novel time-error tradeoff.

Somenath Biswas: Professor at IITK

- Lewis and Vadhan (1998) designed a similar test for identities over finite fields.
- Instead of irrational numbers, they used square roots of irreducible polynomials.

A QUESTION

QUESTION. Are there other problems that admit similar time-error tradeoff?

In particular, what about primality testing?

A QUESTION

QUESTION. Are there other problems that admit similar time-error tradeoff?

In particular, what about primality testing?

OUTLINE

- August 1998: A Question
- 2 August 1998 January 1999: Primality Testing as IDENTITY TESTING
- February 1999: A Conjecture

From Primality Testing to Identity Testing

A reduction of primality testing to identity testing:

iff

$$(x+1)^n = x^n + 1 \pmod{n}.$$

Unfortunately, the polynomial above has exponential degree and so Lewis-Vadhan algorithm does not work.

From Primality Testing to Identity Testing

A reduction of primality testing to identity testing:

iff

$$(x+1)^n = x^n + 1 \pmod{n}.$$

Unfortunately, the polynomial above has exponential degree and so Lewis-Vadhan algorithm does not work.

A New Identity Testing Algorithm

- Let P be a univariate, degree d polynomial over finite field F_q .
- Let r be a prime such that $\operatorname{ord}_r(q) > \log d$.
- Let $R(y) = y^t + \sum_{i=0}^{\log d} r_i \cdot y^i$ with $r_i \in_R \{0, 1\}$.

LEMMA

If $P(x) \neq 0$ then with probability at most $\frac{1}{t}$, P(x) = 0 (mod $(R(x))^r - 1$).

A NEW IDENTITY TESTING ALGORITHM

- Let P be a univariate, degree d polynomial over finite field F_q .
- Let r be a prime such that $\operatorname{ord}_r(q) > \log d$.
- Let $R(y) = y^t + \sum_{i=0}^{\log d} r_i \cdot y^i$ with $r_i \in_R \{0, 1\}$.

LEMMA

If $P(x) \neq 0$ then with probability at most $\frac{1}{t}$, P(x) = 0 (mod $(R(x))^r - 1$).

A NEW IDENTITY TESTING ALGORITHM

- Let P be a univariate, degree d polynomial over finite field F_q .
- Let r be a prime such that $\operatorname{ord}_r(q) > \log d$.
- Let $R(y) = y^t + \sum_{i=0}^{\log d} r_i \cdot y^i$ with $r_i \in_R \{0, 1\}$.

LEMMA

If $P(x) \neq 0$ then with probability at most $\frac{1}{t}$, P(x) = 0 (mod $(R(x))^r - 1$).

OUTLINE

- August 1998: A Question
- August 1998 January 1999: Primality Testing as Identity Testing
- 3 February 1999: A Conjecture
- March 1999 July 2000: Failed Attempts at Proof

A Conjecture

- Polynomial $y^r 1$ proved very useful in reducing randomness.
- Perhaps it can be used to completely derandomize the special identity for primality testing for a small r with $ord_r(n)$ large . . .

CONJECTURE. n is prime iff for every r, $1 \leq r \leq \log n$,

$$(x+1)^n = x^n + 1 \pmod{n, x^r - 1}.$$

A Conjecture

- Polynomial $y^r 1$ proved very useful in reducing randomness.
- Perhaps it can be used to completely derandomize the special identity for primality testing for a small r with $ord_r(n)$ large . . .

Conjecture. n is prime iff for every r, $1 \le r \le \log n$,

$$(x+1)^n = x^n + 1 \pmod{n, x^r - 1}.$$

OUTLINE

- August 1998: A Question
- August 1998 January 1999: Primality Testing as Identity Testing
- February 1999: A Conjecture
- March 1999 July 2000: Failed Attempts at Proof

FIRST ATTEMPT: USING COMPLEX ROOTS OF UNITY

- Let $\omega \in \mathbb{C}$, $\omega = e^{i\frac{2\pi}{r}}$.
- If $(x+1)^n = x^n + 1 \pmod{n, x^r 1}$ then

$$(\omega^j + 1)^n = \omega^{jn} + 1 \pmod{n},$$

for every j, $0 \le j < r$.

- This introduces integer linear dependencies between different powers of ω modulo n.
- Can this be exploited?

FIRST ATTEMPT: USING COMPLEX ROOTS OF UNITY

- Let $\omega \in \mathbb{C}$, $\omega = e^{i\frac{2\pi}{r}}$.
- If $(x+1)^n = x^n + 1 \pmod{n, x^r 1}$ then

$$(\omega^j+1)^n=\omega^{jn}+1\ (mod\ n),$$

for every j, $0 \le j < r$.

- This introduces integer linear dependencies between different powers of ω modulo n.
- Can this be exploited?

FIRST ATTEMPT: USING COMPLEX ROOTS OF UNITY

- Let $\omega \in \mathbb{C}, \omega = e^{i\frac{2\pi}{r}}$.
- If $(x+1)^n = x^n + 1 \pmod{n, x^r 1}$ then

$$(\omega^j+1)^n=\omega^{jn}+1\ (mod\ n),$$

for every j, $0 \le j < r$.

- This introduces integer linear dependencies between different powers of ω modulo n.
- Can this be exploited?

- Suppose that n is square-free and p is a prime divisor of n.
- Let $m = \frac{n}{n}$.
- If $(x + 1)^n = x^n + 1 \pmod{n, x^r 1}$ then

$$(x+1)^m = x^m + 1 \pmod{p, x^r - 1}.$$

Suppose that

$$(x+1)^m = x^m + 1 \pmod{p, (x^r - 1)^2}.$$

$$(x+1)^{m-1} = x^{m-1} \pmod{p, x^r - 1}.$$

- Suppose that n is square-free and p is a prime divisor of n.
- Let $m = \frac{n}{p}$.
- If $(x+1)^n = x^n + 1 \pmod{n, x^r 1}$ then

$$(x+1)^m = x^m + 1 \pmod{p, x^r - 1}.$$

Suppose that

$$(x+1)^m = x^m + 1 \pmod{p, (x^r - 1)^2}.$$

Differentiating both sides, we get

$$(x+1)^{m-1} = x^{m-1} \pmod{p, x^r - 1}.$$

- Suppose that n is square-free and p is a prime divisor of n.
- Let $m = \frac{n}{p}$.
- If $(x+1)^n = x^n + 1 \pmod{n, x^r 1}$ then

$$(x+1)^m = x^m + 1 \pmod{p, x^r - 1}.$$

Suppose that

$$(x+1)^m = x^m + 1 \pmod{p, (x^r-1)^2}.$$

• Differentiating both sides, we get

$$(x+1)^{m-1} = x^{m-1} \pmod{p, x^r - 1}.$$

- Suppose that n is square-free and p is a prime divisor of n.
- Let $m = \frac{n}{p}$.
- If $(x+1)^n = x^n + 1 \pmod{n, x^r 1}$ then

$$(x+1)^m = x^m + 1 \pmod{p, x^r - 1}.$$

Suppose that

$$(x+1)^m = x^m + 1 \pmod{p, (x^r-1)^2}.$$

• Differentiating both sides, we get

$$(x+1)^{m-1} = x^{m-1} \pmod{p, x^r - 1}.$$

- Since the coefficient of x^0 and x^{m-1} must be the same modulo $x^r 1$, it follows that r divides m 1.
- Since m < n, one of the first $\log n$ numbers will not divide m 1.
- This is precisely what we need!
- Unfortunately, it is not clear how to test if

$$(x+1)^m = x^m + 1 \pmod{p, (x^r - 1)^2}.$$

Testing

$$(x+1)^n = x^n + 1 \pmod{n, (x^r - 1)^2}$$

$$(x+1)^n = x^n + 1 \pmod{p, x^r - 1}!$$

- Since the coefficient of x^0 and x^{m-1} must be the same modulo $x^r 1$, it follows that r divides m 1.
- Since m < n, one of the first $\log n$ numbers will not divide m-1.
- This is precisely what we need!
- Unfortunately, it is not clear how to test if

$$(x+1)^m = x^m + 1 \pmod{p, (x^r - 1)^2}$$

Testing

$$(x+1)^n = x^n + 1 \pmod{n, (x^r - 1)^2}$$

$$(x+1)^n = x^n + 1 \pmod{p, x^r - 1}!$$

- Since the coefficient of x^0 and x^{m-1} must be the same modulo $x^r 1$, it follows that r divides m 1.
- Since m < n, one of the first $\log n$ numbers will not divide m-1.
- This is precisely what we need!
- Unfortunately, it is not clear how to test if

$$(x+1)^m = x^m + 1 \pmod{p, (x^r-1)^2}.$$

Testing

$$(x+1)^n = x^n + 1 \pmod{n, (x^r - 1)^2}$$

$$(x+1)^n = x^n + 1 \pmod{p, x^r - 1}$$

- Since the coefficient of x^0 and x^{m-1} must be the same modulo $x^r 1$, it follows that r divides m 1.
- Since m < n, one of the first $\log n$ numbers will not divide m-1.
- This is precisely what we need!
- Unfortunately, it is not clear how to test if

$$(x+1)^m = x^m + 1 \pmod{p, (x^r-1)^2}.$$

Testing

$$(x+1)^n = x^n + 1 \pmod{n, (x^r - 1)^2}$$

$$(x+1)^n = x^n + 1 \pmod{p, x^r - 1}!$$

THIRD ATTEMPT: INCREASING MODULI POWER

Suppose one can prove that if

$$(x+1)^n = x^n + 1 \pmod{n, x^{r_1} - 1},$$

and

$$(x+1)^n = x^n + 1 \pmod{n, x^{r_2} - 1},$$

then

$$(x+1)^n = x^n + 1 \pmod{n, x^{lcm(r_1, r_2)} - 1}.$$

• Then, the equation holding for $1 < r < \log n$ implies that

$$(x+1)^n = x^n + 1 \; (mod \; n, x^{lcm(1,2,...,\log n)} - 1) = x^n + 1 \; (mod \; n)$$

• Can one prove the above product property of exponents?

THIRD ATTEMPT: INCREASING MODULI POWER

Suppose one can prove that if

$$(x+1)^n = x^n + 1 \pmod{n, x^{r_1} - 1},$$

and

$$(x+1)^n = x^n + 1 \pmod{n, x^{r_2} - 1},$$

then

$$(x+1)^n = x^n + 1 \pmod{n, x^{lcm(r_1, r_2)} - 1}.$$

• Then, the equation holding for $1 < r \le \log n$ implies that

$$(x+1)^n = x^n + 1 \pmod{n, x^{lcm(1,2,...,\log n)} - 1} = x^n + 1 \pmod{n}$$

since $lcm(1,2,...,\log n) > n$.

• Can one prove the above product property of exponents?

THIRD ATTEMPT: INCREASING MODULI POWER

Suppose one can prove that if

$$(x+1)^n = x^n + 1 \pmod{n, x^{r_1} - 1},$$

and

$$(x+1)^n = x^n + 1 \pmod{n, x^{r_2} - 1},$$

then

$$(x+1)^n = x^n + 1 \pmod{n, x^{lcm(r_1, r_2)} - 1}.$$

• Then, the equation holding for $1 < r \le \log n$ implies that

$$(x+1)^n = x^n + 1 \pmod{n, x^{lcm(1,2,...,\log n)} - 1} = x^n + 1 \pmod{n}$$

since $lcm(1, 2, \ldots, \log n) > n$.

• Can one prove the above product property of exponents?

OUTLINE

- August 1998: A Question
- August 1998 January 1999: Primality Testing as Identity Testing
- February 1999: A Conjecture
- March 1999 July 2000: Failed Attempts at Proof
- August 2000 December 2002: Experiments

Aug'00-Apr'01: Experiments on the Conjecture

Rajat Bhattacharjee: Doing PhD at Stanford

Rajat Bhattacharjee tested the equation

$$(x+1)^n = x^n + 1 \pmod{n, x^r - 1}$$

for all $n \le 10^8$ and $r \le 100$.

ullet He found that for composite n, all r's that satisfy the equation satisfy

$$n^2 = 1 \; (mod \; r)$$

Aug'00-Apr'01: Experiments on the Conjecture

Rajat Bhattacharjee: Doing PhD at Stanford

Rajat Bhattacharjee tested the equation

$$(x+1)^n = x^n + 1 \pmod{n, x^r - 1}$$

for all $n \le 10^8$ and $r \le 100$.

 \bullet He found that for composite n, all r's that satisfy the equation satisfy

$$n^2 = 1 \; (mod \; r).$$

Aug'01-Dec'01: Experiments on the Conjecture

Neeraj Kayal and Nitin Saxena: Finishing PhD at IITK

- Neeraj Kayal and Nitin Saxena continued with the experiments.
- They went up to $n \le 10^{10}$ and found the same property.

Aug'01-Dec'01: Experiments on the Conjecture

Neeraj Kayal and Nitin Saxena: Finishing PhD at IITK

- Neeraj Kayal and Nitin Saxena continued with the experiments.
- They went up to $n \le 10^{10}$ and found the same property.

OUTLINE

- August 1998 January 1999: Primality Testing as Identity Testing
- February 1999: A Conjecture

- 6 January 2002 July 2002: Another Attempt at PROOF

- Let p be a prime divisor of n.
- Let I be the set of numbers m satisfying

$$(x+1)^m = x^m + 1 \pmod{p, x^r - 1}.$$

- Let d be the order of p in F_r^* .
- Let O be the order of x + 1 in the group $[F_p[x]/(x^r 1)]^*$.

LEMMA

Let $m_1, m_2 \in I$. Then $m_1 = m_2 \pmod{r}$ iff $m_1 = m_2 \pmod{O}$.

- Let p be a prime divisor of n.
- Let I be the set of numbers m satisfying

$$(x+1)^m = x^m + 1 \pmod{p, x^r - 1}.$$

- Let d be the order of p in F_r^* .
- Let O be the order of x + 1 in the group $[F_p[x]/(x^r 1)]^*$.

LEMMA

Let $m_1, m_2 \in I$. Then $m_1 = m_2 \pmod{r}$ iff $m_1 = m_2 \pmod{O}$.

- Let p be a prime divisor of n.
- Let I be the set of numbers m satisfying

$$(x+1)^m = x^m + 1 \pmod{p, x^r - 1}.$$

- Let d be the order of p in F_r^* .
- Let O be the order of x + 1 in the group $[F_p[x]/(x^r 1)]^*$.

LEMMA

Let $m_1, m_2 \in I$. Then $m_1 = m_2 \pmod{r}$ iff $m_1 = m_2 \pmod{O}$.

- So there exist at most r numbers in I modulo O.
- Some of these are 1, p, p^2 , ..., p^{d-1} .
- If n satisfies the equation, then n, n^2 , n^3 , ... also belong to I.

- So there exist at most r numbers in I modulo O.
- Some of these are 1, p, p^2 , ..., p^{d-1} .
- If *n* satisfies the equation, then n, n^2 , n^3 , ... also belong to I.

- So there exist at most r numbers in I modulo O.
- Some of these are 1, p, p^2 , ..., p^{d-1} .
- If n satisfies the equation, then n, n^2 , n^3 , ... also belong to I.

- Suppose that d = r 1 for r prime, $r > \log n$.
- And $O > p^{r-2}$.
- Now,

$$(x+1)^n = x^n + 1 \pmod{n, x^r - 1}$$

implies that

$$n = p^j \pmod{O}$$

for some j < r - 1.

$$n = p^j$$
!

- Suppose that d = r 1 for r prime, $r > \log n$.
- And $O > p^{r-2}$.
- Now,

$$(x+1)^n = x^n + 1 \pmod{n, x^r - 1}$$

implies that

$$n = p^j \pmod{O}$$

for some j < r - 1.

$$n = p^j$$

- Suppose that d = r 1 for r prime, $r > \log n$.
- And $O > p^{r-2}$.
- Now,

$$(x+1)^n = x^n + 1 \pmod{n, x^r - 1}$$

implies that

$$n = p^j \pmod{O}$$

for some j < r - 1.

$$n = p^j$$

- Suppose that d = r 1 for r prime, $r > \log n$.
- And $O > p^{r-2}$.
- Now,

$$(x+1)^n = x^n + 1 \pmod{n, x^r - 1}$$

implies that

$$n = p^j \pmod{O}$$

for some j < r - 1.

$$n=p^{j}!$$

- How can one ensure both the properties?
- To make d = r 1, p must be a generator for F_r^* .
- To make $O > p^{r-2}$, p must be a generator for F_r^* and order of x+1

- How can one ensure both the properties?
- To make d = r 1, p must be a generator for F_r^* .
 - Artin's conjecture implies that there are several small r's for which this is the case.
 - However, proving it appears very difficult.
- To make $O>p^{r-2}$, p must be a generator for F_r^* and order of x+1 in $[F_p[x]/(1+x+\cdots+x^{r-1})]^*$ must be nearly maximum.
 - This is even harder to prove!

- How can one ensure both the properties?
- To make d = r 1, p must be a generator for F_r^* .
 - Artin's conjecture implies that there are several small r's for which this is the case.
 - ► However, proving it appears very difficult.
- To make $O > p^{r-2}$, p must be a generator for F_r^* and order of x+1 in $[F_p[x]/(1+x+\cdots+x^{r-1})]^*$ must be nearly maximum.
 - This is even harder to prove!

- How can one ensure both the properties?
- To make d = r 1, p must be a generator for F_r^* .
 - Artin's conjecture implies that there are several small r's for which this is the case.
 - ► However, proving it appears very difficult.
- To make $O > p^{r-2}$, p must be a generator for F_r^* and order of x+1 in $[F_p[x]/(1+x+\cdots+x^{r-1})]^*$ must be nearly maximum.
 - ► This is even harder to prove!

MAR'02-APR'02: HOW LARGE **d** CAN ONE PROVABLY GET?

- Consider primes r with r-1 containing a prime factor $q_r \ge \sqrt{r}$.
- If q_r divides $\operatorname{ord}_r(n)$ then q_r will divide at least one of $\operatorname{ord}_r(p)$ for prime divisors p of n.
- In addition, there are not many r's for which q_r does not divide $\operatorname{ord}_r(n)$.
- Easy estimates on prime densities show that there exists an $r = \log^{O(1)} n$ and a prime divisor p of n such that $d = \operatorname{ord}_r(p) \ge \sqrt{r}$.

MAR'02-APR'02: HOW LARGE **d** CAN ONE PROVABLY GET?

- Consider primes r with r-1 containing a prime factor $q_r \ge \sqrt{r}$.
- If q_r divides $\operatorname{ord}_r(n)$ then q_r will divide at least one of $\operatorname{ord}_r(p)$ for prime divisors p of n.
- In addition, there are not many r's for which q_r does not divide $\operatorname{ord}_r(n)$.
- Easy estimates on prime densities show that there exists an $r = \log^{O(1)} n$ and a prime divisor p of n such that $d = \operatorname{ord}_r(p) \ge \sqrt{r}$.

Mar'02-Apr'02: How Large d Can One PROVABLY GET?

- Consider primes r with r-1 containing a prime factor $q_r \geq \sqrt{r}$.
- If q_r divides $\operatorname{ord}_r(n)$ then q_r will divide at least one of $\operatorname{ord}_r(p)$ for prime divisors p of n.
- In addition, there are not many r's for which q_r does not divide $\operatorname{ord}_r(n)$.
- Easy estimates on prime densities show that there exists an $r = \log^{O(1)} n$ and a prime divisor p of n such that $d = \operatorname{ord}_r(p) \ge \sqrt{r}$.

- Obtaining any reasonable lower bound on *O* appears hard.
- It becomes easy if one changes the view slightly:
 - Instead of testing the equation only for x + 1, test it for x + a foreign several a's.
- A similar equation will now hold for all products of x + a's as well!

- Obtaining any reasonable lower bound on O appears hard.
- It becomes easy if one changes the view slightly:
 - Instead of testing the equation only for x + 1, test it for x + a for several a's.
- A similar equation will now hold for all products of x + a's as well!

- Obtaining any reasonable lower bound on O appears hard.
- It becomes easy if one changes the view slightly:
 - Instead of testing the equation only for x + 1, test it for x + a for several a's.
- A similar equation will now hold for all products of x + a's as well!

- Let $F = F_p[x]/(h(x))$ where h(x) is an irreducible factor of $1 + x + \cdots + x^{r-1}$.
- Since $\operatorname{ord}_r(p) = d$, degree of h equals d.
- All d-1 products of x + a's are therefore distinct in F.
- The numbers of these products is at least 2^d provided at least $d \times + a$'s are used.
- The product group is cyclic in F^* and so there is a generator g(x).
- Redefine O to be the order of g(x) instead of x + 1.
- Then, $O \ge 2^d$.

- Let $F = F_p[x]/(h(x))$ where h(x) is an irreducible factor of $1 + x + \cdots + x^{r-1}$.
- Since $\operatorname{ord}_r(p) = d$, degree of h equals d.
- All d-1 products of x + a's are therefore distinct in F.
- The numbers of these products is at least 2^d provided at least $d \times + a$'s are used.
- The product group is cyclic in F^* and so there is a generator g(x).
- Redefine O to be the order of g(x) instead of x + 1.
- Then, $O \ge 2^d$.

- Let $F = F_p[x]/(h(x))$ where h(x) is an irreducible factor of $1 + x + \cdots + x^{r-1}$.
- Since $\operatorname{ord}_r(p) = d$, degree of h equals d.
- All d-1 products of x + a's are therefore distinct in F.
- The numbers of these products is at least 2^d provided at least $d \times + a$'s are used.
- The product group is cyclic in F^* and so there is a generator g(x).
- Redefine O to be the order of g(x) instead of x + 1.
- Then, $O \ge 2^d$.

- Let $F = F_p[x]/(h(x))$ where h(x) is an irreducible factor of $1 + x + \cdots + x^{r-1}$.
- Since $\operatorname{ord}_r(p) = d$, degree of h equals d.
- All d-1 products of x + a's are therefore distinct in F.
- The numbers of these products is at least 2^d provided at least $d \times + a$'s are used.
- The product group is cyclic in F^* and so there is a generator g(x).
- Redefine O to be the order of g(x) instead of x + 1.
- Then, $O \ge 2^d$.

JUN'02: WHAT NOW?

- One can get $d \ge \sqrt{r}$ and $0 \ge 2^d \ge 2^{\sqrt{r}}$.
- One needs to find a relationship between powers of n and p modulo r.
- One type of relationship is $n = p^{j} \pmod{r}$ for some j.
- This holds provided d = r 1, and we then need $O > \max\{n, p^j\}$ and
- Is there a way to keep the numbers small?

- One can get $d \ge \sqrt{r}$ and $O \ge 2^d \ge 2^{\sqrt{r}}$.
- One needs to find a relationship between powers of n and p modulo r.
 - ▶ This translates to a relationship modulo *O*.
 - ▶ If the numbers involved are smaller than *O*, one gets a relationship over integers.
- One type of relationship is $n = p^j \pmod{r}$ for some j.
- This holds provided d = r 1, and we then need $O > \max\{n, p^j\}$ and j can be r 2.
- Is there a way to keep the numbers small?

- One can get $d \ge \sqrt{r}$ and $O \ge 2^d \ge 2^{\sqrt{r}}$.
- One needs to find a relationship between powers of n and p modulo r.
 - ▶ This translates to a relationship modulo *O*.
 - ▶ If the numbers involved are smaller than *O*, one gets a relationship over integers.
- One type of relationship is $n = p^j \pmod{r}$ for some j.
- This holds provided d = r 1, and we then need $O > \max\{n, p^j\}$ and j can be r 2.
- Is there a way to keep the numbers small?

- One can get $d \ge \sqrt{r}$ and $O \ge 2^d \ge 2^{\sqrt{r}}$.
- One needs to find a relationship between powers of n and p modulo r.
 - ► This translates to a relationship modulo *O*.
 - ▶ If the numbers involved are smaller than *O*, one gets a relationship over integers.
- One type of relationship is $n = p^j \pmod{r}$ for some j.
- This holds provided d = r 1, and we then need $O > \max\{n, p^j\}$ and j can be r 2.
- Is there a way to keep the numbers small?

- One can get $d \ge \sqrt{r}$ and $O \ge 2^d \ge 2^{\sqrt{r}}$.
- One needs to find a relationship between powers of n and p modulo r.
 - ► This translates to a relationship modulo *O*.
 - ▶ If the numbers involved are smaller than *O*, one gets a relationship over integers.
- One type of relationship is $n = p^j \pmod{r}$ for some j.
- This holds provided d = r 1, and we then need $O > \max\{n, p^j\}$ and j can be r 2.
- Is there a way to keep the numbers small?

- One can get $d \ge \sqrt{r}$ and $O \ge 2^d \ge 2^{\sqrt{r}}$.
- One needs to find a relationship between powers of n and p modulo r.
 - ► This translates to a relationship modulo *O*.
 - ▶ If the numbers involved are smaller than *O*, one gets a relationship over integers.
- One type of relationship is $n = p^j \pmod{r}$ for some j.
- This holds provided d = r 1, and we then need $O > \max\{n, p^j\}$ and j can be r 2.
- Is there a way to keep the numbers small?

- Consider products of the form $n^i p^j$ for $0 \le i, j \le \sqrt{r}$.
- Two of these are equal modulo r, and the maximum value is at most $n^{2\sqrt{r}}$.
- Therefore, if $O > n^{2\sqrt{r}}$, we are done.
- The bound on O is: $O \ge 2^d \ge 2^{\sqrt{r}}$ since $d \ge \sqrt{r}$.
- However, if one can prove $d \ge r^{\frac{1}{2} + \epsilon}$ for any $\epsilon > 0$ then:

$$O \ge 2^{r^{\frac{1}{2}+\epsilon}} > n^{2\sqrt{r}}$$

- Consider products of the form $n^i p^j$ for $0 \le i, j \le \sqrt{r}$.
- Two of these are equal modulo r, and the maximum value is at most $n^{2\sqrt{r}}$.
- Therefore, if $O > n^{2\sqrt{r}}$, we are done.
- The bound on O is: $O \ge 2^d \ge 2^{\sqrt{r}}$ since $d \ge \sqrt{r}$.
- ullet However, if one can prove $d \geq r^{rac{1}{2} + \epsilon}$ for any $\epsilon > 0$ then:

$$O \ge 2^{r^{\frac{1}{2}+\epsilon}} > n^{2\sqrt{r}}$$

- Consider products of the form $n^i p^j$ for $0 \le i, j \le \sqrt{r}$.
- Two of these are equal modulo r, and the maximum value is at most $n^{2\sqrt{r}}$.
- Therefore, if $O > n^{2\sqrt{r}}$, we are done.
- The bound on O is: $O \ge 2^d \ge 2^{\sqrt{r}}$ since $d \ge \sqrt{r}$.
- However, if one can prove $d \ge r^{\frac{1}{2} + \epsilon}$ for any $\epsilon > 0$ then:

$$O \ge 2^{r^{\frac{1}{2}+\epsilon}} > n^{2\sqrt{r}}$$

- Consider products of the form $n^i p^j$ for $0 \le i, j \le \sqrt{r}$.
- Two of these are equal modulo r, and the maximum value is at most $n^{2\sqrt{r}}$.
- Therefore, if $O > n^{2\sqrt{r}}$, we are done.
- The bound on O is: $O \ge 2^d \ge 2^{\sqrt{r}}$ since $d \ge \sqrt{r}$.
- However, if one can prove $d \ge r^{\frac{1}{2} + \epsilon}$ for any $\epsilon > 0$ then:

$$O \ge 2^{r^{\frac{1}{2}+\epsilon}} > n^{2\sqrt{r}}$$

July'02: Fouvry's Theorem

- E. Fouvry (1985) showed that primes r such that r-1 has a prime factor $q_r > r^{\frac{2}{3}}$ have constant density.
- This implies that d can be made $> r^{\frac{2}{3}}$.
- So $\epsilon = \frac{1}{6}$ and we need to choose $r > \log^6 n$.

July'02: Fouvry's Theorem

- E. Fouvry (1985) showed that primes r such that r-1 has a prime factor $q_r > r^{\frac{2}{3}}$ have constant density.
- This implies that d can be made $> r^{\frac{2}{3}}$.
- So $\epsilon = \frac{1}{6}$ and we need to choose $r > \log^6 n$.

July'02: Fouvry's Theorem

- E. Fouvry (1985) showed that primes r such that r-1 has a prime factor $q_r > r^{\frac{2}{3}}$ have constant density.
- This implies that d can be made $> r^{\frac{2}{3}}$.
- So $\epsilon = \frac{1}{6}$ and we need to choose $r > \log^6 n$.

- The proof above does not prove the conjecture proposed earlier since $r = \omega(\log n)$ and the equation is tested for several x + a's instead of only x + 1.
- It can be viewed as a derandomization of the identity test given earlier for the special case of primality identity.

- The proof above does not prove the conjecture proposed earlier since $r = \omega(\log n)$ and the equation is tested for several x + a's instead of only x + 1.
- It can be viewed as a derandomization of the identity test given earlier for the special case of primality identity.

IDENTITY TEST WITH LESS RANDOMNESS: Test if P(x) = 0 modulo $(R(x))^r - 1$ for a small r that gives rise to a large extension field and R(x) nearly random.

PRIMALITY TEST WITH NO RANDOMNESS: Test if $(x+1)^n - x^n - 1 = 0$ modulo n and $(R(x))^r - 1$ for a small r that gives rise to a large extension field and R(x) = x - a for $1 \le a \le r$.

IDENTITY TEST WITH LESS RANDOMNESS: Test if P(x) = 0 modulo $(R(x))^r - 1$ for a small r that gives rise to a large extension field and R(x) nearly random.

PRIMALITY TEST WITH NO RANDOMNESS: Test if $(x+1)^n - x^n - 1 = 0$ modulo n and $(R(x))^r - 1$ for a small r that gives rise to a large extension field and R(x) = x - a for $1 \le a \le r$.

EPILOGUE

- On August 4, 2002 we distributed the paper.
- Due to a clock error in my brain, it was dated August 6!