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Approaches to Lower Bounds

Proving lower bounds on the complexity of problems is the central
aim of complexity theory.

Most important amongst these is to prove P 6= NP.

So far, we have not been very successful.

Two approaches have been used over last thirty years but both have
hit roadblocks.
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First Approach: Diagonalization

Basic Idea

To prove that the set A does not belong to complexity class C.

Consider the (infinite) sequence of Turing machines accepting
precisely the class of sets in C.

Let this sequence be M1, M2, . . ..

Show that for every i , there is a string xi that belongs to set A iff Mi

rejects xi .
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First Approach: Diagonalization

Earliest approach, popular in 1970s.

Useful for seperating complexity classes that are very “far apart,”
e.g., P and EXP.

Did not work for closer classes, e.g., P and NP.

Baker-Gill-Solovay (1975) showed that standard approaches to
diagonalization cannot seperate P and NP.

They proved that standard techniques diagonalize and no
diagonalizable technique can prove P 6= NP or P = NP.

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 6 / 73



First Approach: Diagonalization

Earliest approach, popular in 1970s.

Useful for seperating complexity classes that are very “far apart,”
e.g., P and EXP.

Did not work for closer classes, e.g., P and NP.

Baker-Gill-Solovay (1975) showed that standard approaches to
diagonalization cannot seperate P and NP.

They proved that standard techniques diagonalize and no
diagonalizable technique can prove P 6= NP or P = NP.

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 6 / 73



First Approach: Diagonalization

Earliest approach, popular in 1970s.

Useful for seperating complexity classes that are very “far apart,”
e.g., P and EXP.

Did not work for closer classes, e.g., P and NP.

Baker-Gill-Solovay (1975) showed that standard approaches to
diagonalization cannot seperate P and NP.

They proved that standard techniques diagonalize and no
diagonalizable technique can prove P 6= NP or P = NP.

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 6 / 73



First Approach: Diagonalization

Earliest approach, popular in 1970s.

Useful for seperating complexity classes that are very “far apart,”
e.g., P and EXP.

Did not work for closer classes, e.g., P and NP.

Baker-Gill-Solovay (1975) showed that standard approaches to
diagonalization cannot seperate P and NP.

They proved that standard techniques diagonalize and no
diagonalizable technique can prove P 6= NP or P = NP.

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 6 / 73



Example: Seperating P From EXP

Let M1, M2, . . . be an enumeration of deterministic TMs with Mi

running for at most n|i | steps on an input of size n.

Define a set A as:
A = {i | Mi rejects i}.

Set A is in EXP.

If TM Mj from the above sequence accepts A then Mj accepts j iff
Mj rejects j .
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Second Approach: Combinatorial Arguments

on Circuits

Most of the complexity classes have a circuit characterization.

A family of circuits, one for each input length, corresponds to a set in
the class.

We consider circuits that are layered and have unbounded fanin gates.
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Second Approach: Combinatorial Arguments

on Circuits

Basic Idea

To prove that the set A does not belong to complexity class C.

Consider the circuit characterization of C.

This is given by a family of circuits, one circuit for every input length,
for each set in C.

Prove that any circuit on input length n from the families can be
transformed to a “simple” circuit that “approximates” the original
circuit well.

Prove that no “simple” circuit can approximate the set A well.
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Second Approach: Combinatorial Arguments

on Circuits

Proposed in 1980s.

Biggest successes were lower bounds on monotone and constant
depth circuit classes.

Razborov (1985) seperated the class of sets characterized by
polynomial sized monotone circuits from the class of sets in NP
accepted by monotone circuits.

Furst-Saxe-Sipser (1984), Håstad (1986) showed that the set PARITY
does not belong to the class of sets characterized by constant depth,
polynomial sized circuits.

PARITY is the set of all strings that have an odd number of 1’s.
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Example: Lower Bounds on PARITY
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Second Approach: Combinatorial Arguments

on Circuits

Appeared very promising in the beginning.

However, Razborov-Rudich (1994) proved otherwise.

They classified the combinatorial arguments used as natural proofs.

And showed, under very reasonable assumptions, that no natural
proof can prove lower bounds on circuit classes significantly larger
than constant depth, polynomial sized.
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A New Approach: Pseudo-Random Generators

Pseudo-random generators were defined in 1980s for two reasons:
I To formalize the notion of cryptographic security.
I To derandomize probabilistic algorithms.

In 1990s, they were shown to be equivalent to certain types of lower
bounds.

Recently, there are indications that they might be useful in proving
lower bounds.
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Definition

Let C(n, d) be the class of depth d , size n boolean circuits on n inputs.

Let f : {0, 1}∗ 7→ {0, 1}∗ be a function such that |f (y)| = n for all strings
y of length `(n) < n.
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Definition

Function f is a (`(n), n)-pseudo-random generator against C(n, d) if for
every circuit C ∈ C(n, d),

1

2n
| {x | C (x) = 1} | − 1

2`(n)
| {y | C (f (y)) = 1} | ≤ 1

n
.

String y is called the seed, and the difference n − `(n) is called the stretch
of the generator.
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Existance of Pseudo-Random Generators

Let C be any circuit in C(n, n). Define F as: On input y , |y | = 5 log n,
output a random string of length n.

For any y , define random variable Zy as: Zy = C (f (y)).

Then, ∑
y

Zy =| {y | C (f (y)) = 1} | .

And,

Pr[Zy = 1] =
1

2n
| {x | C (x) = 1} |= µC (say).
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Existance of Pseudo-Random Generators

By Chernoff’s bound:

Pr[| 1

n5

∑
y

Zy − µC |> δµC ] < e−n5µC δ2/4 < e−n5δ2/4.

Choosing δ = 1
n , we get:

Pr[| 1

n5

∑
y

Zy − µ |> 1

n
] < e−n3/4.

Since there are less than 2n2
circuits in C(n, n), probability that F fails

to approximate µC for some C ∈ C(n, n) is at most 1
2n/4 .

Hence, most of the functions from {0, 1}5 log n to {0, 1}n are
pseudo-random against C(n, n).
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Optimal Pseudo-Random Generators

Function f is an optimal pseudo-random generator against C(n, d) if it is a
(O(log n), n)-pseudo-random generator against C(n, d).

A simple argument shows that most of the functions are optimal
pseudo-random generators against C(n, n).
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Time-Bounded Pseudo-Random Generators

An (`(n), n)-pseudo-random generator f is t(m)-computable if there is a
t(m)-time bounded DTM that, on input (y , j), |y | = m = `(n) and
1 ≤ j ≤ n, outputs the jth bit of f (y).

Time-bounded pseudo-random generators are very interesting!
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Derandomizing BPP

Suppose there exists a 2O(m)-computable optimal pseudo-random
generator f against C(n, n).

Let B be a randomized polynomial-time algorithm accepting a set B
in BPP.

View B as taking two inputs x and r , with x being the “real” input
and r being a sequence of random bits.

Assume that |r | equals the square of time taken by B on input x .
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Derandomizing BPP

Fix any x . Then B(x , r) can be thought of as a circuit C of size
n = |r | operating on input r .

Circuit C outputs a 1 on either at least 2
3 -fraction or at most

1
3 -fraction of these inputs depending on whether x is in the set B or
not.

Therefore, C will output a 1 on either at least (2
3 −

1
n )-fraction or at

most (1
3 + 1

n )-fraction of inputs of the form f (y).
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Derandomizing BPP

Since f is optimal, |y | = O(log n).

Since f is 2O(m)-computable and m = |y | = O(log n), f (y) can be
computed in time nO(1).

Therefore, in time polynomial in n, one can deterministically decide if
x is in the set B or not.

Since n = |r |, n is a polynomial in |x |.
This shows that B ∈ P.

Thus, BPP = P.
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Formalizing Cryptographic Security

Suppose there exists a mO(1)-computable (no(1), n)-pseudo-random
generator f against C(n, n).

Define function g as: on input y , |y | = m, output the first m4 bits of
f (y).

Function g is efficiently computed since first m4 bits of f can be
computed in time mO(1).
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Formalizing Cryptographic Security

No randomized polynomial-time bounded adversary can distinguish the
output of function g from a random sequence.

Let A be a randomized polynomial-time algorithm.

Suppose that A can distinguish the output of g from a random
sequence.

View A on input of size m4 as a size n = mO(1) circuit C .

Modify function g to ĝ which outputs first n bits of f instead of first
m4.

A can distinguish the output of ĝ from a random sequence by simply
ignoring all except first m4 input bits.

This, however, is not possible since f is pseudo-random against
C(n, n).
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A can distinguish the output of ĝ from a random sequence by simply
ignoring all except first m4 input bits.

This, however, is not possible since f is pseudo-random against
C(n, n).

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 28 / 73



Formalizing Cryptographic Security

No randomized polynomial-time bounded adversary can distinguish the
output of function g from a random sequence.

Let A be a randomized polynomial-time algorithm.

Suppose that A can distinguish the output of g from a random
sequence.

View A on input of size m4 as a size n = mO(1) circuit C .
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Formalizing Cryptographic Security

Function g is a provably secure stream cipher.

View input y to g as key.

View g(y) as pseudo-random stream.

For example, for key size 128 bits, g provides 256 Mbits of random
stream.

This notion can be used to formalize block ciphers and public-key
encryption algorithms too.

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 29 / 73



Formalizing Cryptographic Security

Function g is a provably secure stream cipher.

View input y to g as key.

View g(y) as pseudo-random stream.

For example, for key size 128 bits, g provides 256 Mbits of random
stream.

This notion can be used to formalize block ciphers and public-key
encryption algorithms too.

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 29 / 73



Formalizing Cryptographic Security

Function g is a provably secure stream cipher.

View input y to g as key.

View g(y) as pseudo-random stream.

For example, for key size 128 bits, g provides 256 Mbits of random
stream.

This notion can be used to formalize block ciphers and public-key
encryption algorithms too.

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 29 / 73



Formalizing Cryptographic Security

Function g is a provably secure stream cipher.

View input y to g as key.

View g(y) as pseudo-random stream.

For example, for key size 128 bits, g provides 256 Mbits of random
stream.

This notion can be used to formalize block ciphers and public-key
encryption algorithms too.

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 29 / 73



Formalizing Cryptographic Security

Function g is a provably secure stream cipher.

View input y to g as key.

View g(y) as pseudo-random stream.

For example, for key size 128 bits, g provides 256 Mbits of random
stream.

This notion can be used to formalize block ciphers and public-key
encryption algorithms too.

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 29 / 73



Outline

1 Lower Bounds History

2 Pseudo-Random Generators

3 Applications of Time-Bounded Pseudo-Random
Generators

Derandomizing Randomized Algorithms
Formalizing Cryptographic Security
Lower Bounds

4 Lower Bounds on Boolean Circuits

5 Lower Bounds on Arithmetic Circuits

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 30 / 73



Lower Bounds via Pseudo-Random Generators

Suppose there exists a 2O(m)-computable optimal pseudo-random
generator f against C(n, n).

Define a set B as: on input z , |z | = 2m, accept if there exists a y ,
|y | = m, such that z is a prefix of f (y).

Set B is in E.
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Lower Bounds via Pseudo-Random Generators

Let f be a (c log n, n)-pseudo-random generator.

Suppose B can be accepted by a circuit family of size n = 2
m
2c .

Let C be a circuit from this family on 2m inputs.

By definition of B, C accepts at most 2m inputs.

On the other hand, C accepts all prefixes of f (y) of length 2m for
|y | = m.

Contradicts pseudo-randomness of f .
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Lower Bounds via Pseudo-Random Generators

Thus we get that sets in the class E require exponential sized circuits.

One can vary the depth and time-complexity of the generator to
obtain different lower bounds.
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Equivalence of Lower Bounds and

Pseudo-Random Generators

Theorem (Håstad-Impagliazzo-Levin-Luby (1990))

There exist mO(1)-computable (no(1), n)-pseudo-random generators against
C(n, n) iff there exist one-way functions.

One-way functions are functions computable in polynomial-time whose
inverse is hard-to-compute.
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Equivalence of Lower Bounds and

Pseudo-Random Generators

Theorem (Impagliazzo-Wigderson,1997)

There exist 2O(m)-computable optimal pseudo-random generators against
C(n, n) iff there exist sets in E that cannot be computed by
subexponential-sized circuit family.

In both the results, proving the ‘if’ direction required a lot of work.
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Why Should Pseudo-Random Generators be

Any Easier to Construct?

Pseudo-random generators avoid natural proof block.

Since they imply lower bounds, they cannot satisfy natural proof
axioms.

Checking if a truth-table codes an optimal pseudo-random function is
in PH.
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Why Should Pseudo-Random Generators be

Any Easier to Construct?

Some techniques in circuit model are known to be non-relativizable, e.g.,
Håstad’s Switching Lemma.
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Why Should Pseudo-Random Generators be

Any Easier to Construct?

The problem is of designing an algorithm.

We know that optimal pseudo-random generators can be computed in
2O(m) space.

We need to improve it to 2O(m) time.
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Why Should Pseudo-Random Generators be

Any Easier to Construct?

There are a number of derandomization primitives available, e.g.,
extractors, expanders, pairwise independence.

Expander graphs were recently used by Reingold (2005) to
derandomize searching in undirected graphs proving SL = L.
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A Possible Way of Proving P 6= NP

We now give a stepwise approach to prove P 6= NP.

It is based on construction of successively stronger optimal
pseudo-random generators.
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First Step: Against Constant Depth Circuits

Håstad (1986) proved that PARITY cannot be accepted by depth d

circuits of size 2n1/14d
.

By Nisan-Wigderson (1987), this yields a mO(1)-computable,
(logO(d) n, n)-pseudo-random generator against C(n, d).

This is almost an optimal pseudo-random generator – the seed length
is logO(d) n instead of O(log n).
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First Step: Against Constant Depth Circuits

Step 1.

For each d > 0, construct a 2O(m)-computable optimal pseudo-random
generator against C(n, d).
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First Step: Against Constant Depth Circuits

There exists a 2O(m)-computable optimal pseudo-random generator
against C(n, d)

⇓

There is a set B in E that cannot be accepted by any subexponential sized
depth d circuit family

⇓

B cannot be accepted by any nd−ε size, (d − ε) log n depth circuit family
with bounded fanin AND gates for any ε > 0
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Second Step: Improve the Time Complexity

Step 2.

For each d > 0, construct a mO(1)-computable optimal pseudo-random
generator against C(n, d).
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Second Step: Improve the Time Complexity

These generators yield hard sets in the class NP instead of E.

For example, the generator aginst depth d circuits yields a set in NP
that cannot be accepted by any nd−ε size, (d − ε) log n depth circuit
family with bounded fanin AND gates.
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Third Step: Enlarge the Class of Circuits

Step 3.

Construct a mO(1)-computable optimal pseudo-random generator against
C(n, log n).
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Third Step: Enlarge the Class of Circuits

Although the increase in depth is small, it improves the lower bound
enormously because of inherent exponentiation.

The generator implies that NP cannot be accepted by any family of
sublinear depth and subexponential sized circuits.

In particular, NC 6= NP.
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Fourth Step: Further Enlarge the Class of

Circuits

Step 4.

Construct a mO(1)-computable optimal pseudo-random generator against
C(n, logO(1) n).
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Fourth Step: Further Enlarge the Class of

Circuits

Again, because of exponentiation, this implies that NP cannot be
accepted by any family of polynomial depth and subexponential sized
circuits.

In particular, P 6= NP.
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Current Status

We known mO(1)-computable optimal pseudo-random generator
against C(n, 2), the class of depth two circuits.

The construction does not appear to generalize to even to depth three
circuits.

So there is a long way to go!
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Arithmetic Circuits

Arithmetic circuits over field F are circuits with addition, subtraction,
and multiplication gates.

These compute a polynomial over the field F .

A number of algrbraic problems admit arithmetic circuits.

For example, computing determinant, finding roots of a polynomial,
finding short vectors in a lattice etc.
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Power of Arithmetic Circuits

Polynomial sized arithmetic circuits can solve all the above problems.

They can also be easily simulated by boolean circuits of similar size.

The converse is unlikely as shown by Valiant et. al. (1983):
I A polynomial sized arithmetic circuit of polynomial degree can be

transformed to polynomial sized arithmetic circuit of logarithmic depth
and fanin two multiplication gates.
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Lower Bounds on Arithmetic Circuits

Due to their algebraic structure, it appears that obtaining lower
bounds on the arithmetic circuits should be easier.

It has not happened so far!

We do not even know lower bounds on constant depth arithmetic
circuits!
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Identity Testing and Lower Bounds

Identity Testing problem is that given a polynomial computed by an
arithmetic circuit, test if the polynomial is identically zero.

It is a classical problem and there exist a number of randomized
polynomial time algorithms for solving it.

Kabanets-Impagliazzo (2003) showed that a derandomization of
identity testing problem implies a lower bound on arithmetic circuits!

We strengthen this relationship by defining pseudo-random generators
against arithmetic circuits.
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Pseudo-Random Generators Against

Arithmetic Circuits

Let A(n,F ) be a subclass of size n arithmetic circuits over field F .

Let f : N 7→ (F [y ])∗ be a function such that
f (n) = (f1(y), . . . , fn(y), g(y)) for all n.
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Pseudo-Random Generators Against

Arithmetic Circuits

Function f is an efficiently computable optimal pseudo-random generator
against A(n,F ) if

Each fi (y) and g(y) is of degree nO(1).

Each fi (y) and g(y) is computable in time nO(1).

For any circuit C ∈ A(n,F ) with m ≤ n inputs:

C (x1, x2, . . . , xm) = 0 iff C (f1(y), f2(y), . . . , fm(y)) = 0 (mod g(y)).
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Pseudo-Random Generators Against

Arithmetic Circuits

Schwartz-Zippel lemma shows that optimal pseudo-random
generators exist against the entire class of size n circuits.

I Of course, these are not efficiently computable.

If there exist efficiently computable optimal pseudo-random
generators against the entire class of size n circuits then:

I The identity testing problem can be solved in determinstic
polynomial-time.

I There exists a multilinear polynomial in PSPACE that cannot be
computed by subexponential sized arithmetic circuits.
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Pseudo-Random Generators Imply Lower

Bounds

Suppose f is an efficiently computable optimal pseudo-random
generator against A(n,F ).

Let the degree of all polynomials in f1(y), . . ., fn(y) be bounded by
d = nO(1) and m = log d .

Define polynomial q as:

q(x1, x2, . . . , x2m) =
∑

S⊆[1,m]

cS

∏
i∈S

xi .

Here cS ∈ F satisfying: ∑
S⊆[1,m]

cS

∏
i∈S

fi (y) = 0.
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Pseudo-Random Generators Imply Lower

Bounds

A non-zero q always exists:
I Number of coefficients cS are exactly 22m = d2.
I These need to satisfy a polynomial equation of degree at most

2m2m = 2d log d .
I This requires satisfying 2d log d + 1 homogeneous constraints.
I Since d2 > 2d log d + 1 for d ≥ 8, this is always possible.

Polynomial q can be computed by solving a system of 2O(m) linear
equations, thus is computable in PSPACE.
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Pseudo-Random Generators Imply Lower

Bounds

Suppose that q can be computed by a circuit C in A(n,F ).

By definition of q, C (f1(y), f2(y), . . . , f2m(y)) = 0.

However, C (x1, x2, . . . , x2m) is non-zero.

This contradicts pseudo-randomness of f .
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Why Should Pseudo-Random generators be

Easier to Construct?

A-Kayal-Saxena (2002) constructed an efficiently computable optimal
pseudo-random generator against a very special class of circuits.

This contained circuits computing the polynomial (1 + x)m − xm − 1
over ring Zm.

The pseudo-random generator was:

f (n) = (x , x , . . . , x , g(x)), g(x) = x16n5
16n5∏
r=1

4n4∏
a=1

((x − a)r − 1).

This derandomized a primality testing algorithm.
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A Possible Way of Proving Hardness of

Permanent

The complexity of computing permanent of a matrix characterizes the
class #P.

#P is the arithmetic analog of the class NP.

We give a stepwise approach to prove hardness of permanent.

As before, it is based on constructing successively stronger optimal
pseudo-random generators.

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 64 / 73



A Possible Way of Proving Hardness of

Permanent

The complexity of computing permanent of a matrix characterizes the
class #P.

#P is the arithmetic analog of the class NP.

We give a stepwise approach to prove hardness of permanent.

As before, it is based on constructing successively stronger optimal
pseudo-random generators.

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 64 / 73



A Possible Way of Proving Hardness of

Permanent

The complexity of computing permanent of a matrix characterizes the
class #P.

#P is the arithmetic analog of the class NP.

We give a stepwise approach to prove hardness of permanent.

As before, it is based on constructing successively stronger optimal
pseudo-random generators.

Manindra Agrawal (IIT Kanpur) Proving Lower Bounds FSTTCS 2005 64 / 73



First Step: Against Constant Depth Circuits

Step 1.

For each d > 0, construct an efficiently computable optimal
pseudo-random generator against the class of size n, depth d arithmetic
circuits.
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First Step: Against Constant Depth Circuits

There exists an efficiently computable optimal pseudo-random generator
against the class of size n, depth d arithmetic circuits

⇓

There is a multilinear polynomial q computable in PSPACE that cannot be
computed by subexponential sized, depth d circuits

⇓

Polynomial q cannot be computed by any size nd−ε, depth (d − ε) log n
circuit family with bounded fanin multiplication gates
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Second Step: Against Superconstant Depth

Circuits

The union over all d ’s spans all polynomial sized circuits!

This motivates the second step.

Step 2.

Construct an efficiently computable optimal pseudo-random generator
against the class of size n, depth ω(1) arithmetic circuits.

This yields a multilinear polynomial in PSPACE that requires
superpolynomial sized arithmetic circuits.
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Third Step: Improve Efficiency of the

Generator

Suppose each coefficient of the hard-to-compute multilinear
polynomial given by a generator can be computed by a #P-function.

Then the polynomial can be expressed as the permanent of a
O(m)× O(m) matrix.

Call such generators #P-computable.

Step 3.

Construct a #P-computable optimal pseudo-random generator against the
class of size n, depth ω(1) arithmetic circuits.
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Third Step: Improve Efficiency of the

Generator

Such a generator implies that Permanent requires superpolynomial sized
arithmetic circuits.
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Current Status

We know efficiently computable optimal pseudo-random generators
against size n, depth two arithmetic circuits.

Still some way to go!
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A Conjecture

Define
F (n, k) = (y , yk , yk2

, . . . , ykn−1
, y r − 1),

where r ≥ n4 is a prime and 1 ≤ k < r .

Conjecture

F is a #P-computable optimal pseudo-random generator against
arithmetic circuits of size n and depth ω(1).
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Predictions for the Future

By 2010.

All the steps for arithmetic circuits. [Proves hardness of Permanent]

By 2020.

First two steps for boolean circuits. [Proves NP requires exponential sized,
constant depth circuits; should also prove NC1 6= NP]

By 2022.

Third step for boolean circuits. [Proves NC 6= NP]

By 2030.

Fourth step for boolean circuits. [Proves P 6= NP]
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THANK YOU!
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