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OUTLINE

@ FERMAT’S LITTLE THEOREM
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FERMAT’S LITTLE THEOREM

Pierre de Fermat (1601-1665)

THEOREM J

If n is prime then for every a, 1 < a < n, aml=1 (mod n).
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PROOF

o Consider the sequence of numbers a1 (mod n), a2 (mod n), ...,
ax(n—1) (mod n) forany 1 <a<n.
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Proor

e Consider the sequence of numbers ax 1 (mod n), a*2 (mod n), ...,
ax(n—1) (mod n) forany 1 <a<n.
@ None of these are zero, and no pair is equal:
» Follows from the primality of n.
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Proor

e Consider the sequence of numbers ax 1 (mod n), a*2 (mod n), ...,
ax(n—1) (mod n) forany 1 <a<n.
@ None of these are zero, and no pair is equal:
» Follows from the primality of n.

@ Therefore,

n—1 n—1
Ha*i: Hi(mod n).
i=1 i=1
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Proor

Consider the sequence of numbers a* 1 (mod n), a*2 (mod n), ...,
ax(n—1) (mod n) forany 1 <a<n.

@ None of these are zero, and no pair is equal:

» Follows from the primality of n.

@ Therefore,
n—1 n—1
Ha*i: Hi(modn).
i=1 i=1

o Canceling [[7— i from both sides we get

a" ' =1 (mod n).
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CONSEQUENCES

@ Fermat's Little Theorem identifies a crucial property of prime
numbers.
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CONSEQUENCES

@ Fermat's Little Theorem identifies a crucial property of prime
numbers.

@ Instrumental in design of some of the most important primality
testing algorithms.
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OUTLINE

© PRIMALITY TESTING
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THE PROBLEM

Given a number n, decide if it is prime efficiently. J
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THE PROBLEM

Given a number n, decide if it is prime efficiently. J

By efficiently, one means an algorithm taking Iogo(l) n steps.
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SCcHOOL METHOD

Try dividing by all numbers < n or better, < /n. J
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SCcHOOL METHOD

Try dividing by all numbers < n or better, < /n. J

Takes time Q(y/n) = Q(2% log )
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A SIMPLE ALGORITHM BASED oN FLT

For m different a's, test if a1 = 1 (mod n). J
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A SIMPLE ALGORITHM BASED ON FLT

For m different a's, test if a1 = 1 (mod n). J

e Takes O(mlog n) arithmetic operations.

@ However, it goes wrong on some numbers, for example, Carmichael
numbers.
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A SIMPLE ALGORITHM BASED ON FLT

For m different a's, test if a7~1 = 1 (mod n). J

e Takes O(mlog n) arithmetic operations.

@ However, it goes wrong on some numbers, for example, Carmichael
numbers.

» These are composite numbers with the property that for every a < n,
a" = a (mod n).

> There exist infinitely many Carmichael numbers with 561 = 3 % 11 % 17
the smallest one.
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OUTLINE

© SOLOVAY-STRASSEN ALGORITHM
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FERMAT’S LITTLE THEOREM AND QUADRATIC
RESIDUES

THEOREM (A RESTATEMENT OF FLT)

If n is odd prime then for every a, 1 < a < n, a7 = +1 (mod n). J
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FERMAT’S LITTLE THEOREM AND QUADRATIC
RESIDUES

THEOREM (A RESTATEMENT OF FLT)

If n is odd prime then for every a, 1 < a < n, a7 = +1 (mod n).

Fact

When n is prime, ar =1 (mod n) iff a is a quadratic residue in Z,.
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FERMAT’S LITTLE THEOREM AND QUADRATIC
RESIDUES

THEOREM (A RESTATEMENT OF FLT)

If n is odd prime then for every a, 1 < a < n, a7 = +1 (mod n).

Fact

When n is prime, a"t =1 (mod n) iff a is a quadratic residue in Z,.

Therefore, if n is prime then
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LEGENDRE-JACOBI SYMBOL

e For prime n > 3, (%) = 1if ais a quadratic residue modulo n, —1 if a
is a non-residue.

MANINDRA AGRAWAL (IIT KANPUR) FLT BaseDp TESTS



LEGENDRE-JACOBI SYMBOL

e For prime n > 3, (%) = 1if a is a quadratic residue modulo n, —1 if a
is a non-residue.
o If n= ]_[f-‘zl p;" with p;’s distinct odd primes then

()-11(2)

i=1
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LEGENDRE-JACOBI SYMBOL

e For prime n > 3, (%) = 1if a is a quadratic residue modulo n, —1 if a
is a non-residue.
o If n= Hf-‘zl p;" with p;’s distinct odd primes then

(&)-1(2)

o It satisfies the quadratic reciprocity law:

()-(2)- =

for n > 3.
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LEGENDRE-JACOBI SYMBOL

e For prime n > 3, (%) = 1if a is a quadratic residue modulo n, —1 if a
is a non-residue.
o If n= Hf-‘zl p;" with p;’s distinct odd primes then

k &
(2)=1I <>
n =1 \Pi
o It satisfies the quadratic reciprocity law:

()-(2)- =

for n > 3.

@ Using last two properties, (%) can be computed for odd n in O(log n)
arithmetic operations.
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SOLOVAY-STRASSEN ALGORITHM

e Proposed by Solovay and Strassen (1973).
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SOLOVAY-STRASSEN ALGORITHM

e Proposed by Solovay and Strassen (1973).
o A randomized algorithm based on the equation (2) = 2"z (mod n).
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SOLOVAY-STRASSEN ALGORITHM

e Proposed by Solovay and Strassen (1973).
n—1

o A randomized algorithm based on the equation (2) =az (mod n).
o Never incorrectly classifies primes and correctly classifies composites
with probability at least 3.
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SOLOVAY-STRASSEN ALGORITHM

@ If n = m* for some k > 1 or an even number > 2, it is composite.
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SOLOVAY-STRASSEN ALGORITHM

@ If n= m* for some k > 1 or an even number > 2, it is composite.

@ For a random a in Z,, test if

a

(—) —a'7 (mod n).

n
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SOLOVAY-STRASSEN ALGORITHM

@ If n= m* for some k > 1 or an even number > 2, it is composite.

@ For a random a in Z,, test if

a

(—) =a"7 (mod n).

n

@ If yes, classify n as prime, otherwise as composite.
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SOLOVAY-STRASSEN ALGORITHM

@ If n= m* for some k > 1 or an even number > 2, it is composite.

@ For a random a in Z,, test if

a

(—) =a"7 (mod n).

n

@ If yes, classify n as prime, otherwise as composite.

The time complexity is O(log n) arithmetic operations.
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ANALYSIS

e If nis prime, it is always classified as prime.
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ANALYSIS

e If nis prime, it is always classified as prime.

o Consider the case when n is an odd composite and a product of at
least two primes.

o Let n = pX- m where p is prime, kK > 0 is odd, and (p, m) = 1.
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ANALYSIS

e If nis prime, it is always classified as prime.

o Consider the case when n is an odd composite and a product of at
least two primes.

o Let n = pX- m where p is prime, kK > 0 is odd, and (p, m) = 1.

FacTs
@ Every number a < n can be uniquely decomposed as a = (a, ¢) where
a = a (mod p¥) and ¢ = a (mod m).
@ There are exactly 2(p — 1) numbers between 0 and p that are
quadratic residues modulo p.
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ANALYSIS

o Let 0 <, < p, 0 < ¢ < mwith a a quadratic residue modulo p
and 3 a non-residue.
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ANALYSIS

o Let 0 <, 8 < p, 0 < ¢ < mwith o a quadratic residue modulo p
and 3 a non-residue.

o Clearly,

n— n—1

(@,6)"F = (8,¢)"F = c"T (mod m)
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ANALYSIS

o Let 0 < o, < p, 0 < ¢ < mwith o a quadratic residue modulo p
and 3 a non-residue.

o Clearly,

(o, c) 2

n— n—1

T =" (mod m)

F = </87C>
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ANALYSIS

n—1 n—1

o If (a, )2 # (B,c) 2 (mod n) then one of them is not in {1,—1}
and so compositeness of n is proven.
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ANALYSIS

n—1

o If (a, c>nT71 # (8,c) 2 (mod n) then one of them is not in {1, —1}
and so compositeness of n is proven.

() # (0.0

n

o Otherwise, either

-

(mod n),

or

-

(mod n).

() 245,007

n
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ANALYSIS

@ So it cannot be that both a quadratic residue and a non-residue
modulo p satisfy the equation
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ANALYSIS

@ So it cannot be that both a quadratic residue and a non-residue
modulo p satisfy the equation

(f) —a'7 (mod n).

n

o Therefore, with probability at least 1, when n is composite, the
algorithm will be correct.
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OUTLINE

@ MILLER-RABIN ALGORITHM
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FERMAT’S LITTLE THEOREM AND MORE (QUADRATIC
RESIDUES

THEOREM (ANOTHER RESTATEMENT OF FLT)

If n is odd prime and n = 1+ 2° - t, t odd, then for every a, 1 < a < n, the
n—1 s— Ss—

sequence a’z = a* 't (mod n), @ "t (mod n), ..., at (mod n) has

either all 1's or a —1 somewhere.
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MILLER’'S ALGORITHM

@ This theorem is the basis for Miller's algorithm (1973).
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MILLER’'S ALGORITHM

@ This theorem is the basis for Miller's algorithm (1973).

@ It is a deterministic polynomial time test.
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MILLER’'S ALGORITHM

@ This theorem is the basis for Miller's algorithm (1973).
@ It is a deterministic polynomial time test.

@ It is correct under Extended Riemann Hypothesis.
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MILLER’'S ALGORITHM

@ If n = m* for some k > 1 or is even number > 2, it is composite.
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MILLER’'S ALGORITHM

@ If n = mk for some k > 1 or is even number > 2, it is composite.

@ Foreacha, 1<a< 4|og2 n, check if the sequence Pram: (mod n),

2> "t (mod n), ..., at (mod n) has either all 1's or a —1 somewhere.
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MILLER’'S ALGORITHM

@ If n = mk for some k > 1 or is even number > 2, it is composite.

@ Foreacha, 1 <a< 4|og2 n, check if the sequence Pram: (mod n),
2> "t (mod n), ..., at (mod n) has either all 1's or a —1 somewhere.

@ If yes, classify n as prime, otherwise as composite.
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MILLER’'S ALGORITHM

@ If n = mk for some k > 1 or is even number > 2, it is composite.
p

@ Foreacha, 1 <a< 4|og2 n, check if the sequence Pram: (mod n),
2> "t (mod n), ..., at (mod n) has either all 1's or a —1 somewhere.

@ If yes, classify n as prime, otherwise as composite.

The time complexity of the test is O(Iog3 n) arithmetic operations.
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RABIN’S MODIFICATION

e A modification of Miller's algorithm proposed soon after (1974).

@ Selects a randomly instead of trying all a in the range [2,4|og2 n.
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RABIN’S MODIFICATION

e A modification of Miller's algorithm proposed soon after (1974).
@ Selects a randomly instead of trying all a in the range [2,4|og2 n.

@ Randomized algorithm that never classfies primes incorrectly and
correctly classifies composites with probabilty at least %.
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RABIN’S MODIFICATION

e A modification of Miller's algorithm proposed soon after (1974).
@ Selects a randomly instead of trying all a in the range [2,4|og2 n.

@ Randomized algorithm that never classfies primes incorrectly and
correctly classifies composites with probabilty at least %.

e Time complexity is O(log n) arithmetic operations.
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RABIN’S MODIFICATION

e A modification of Miller's algorithm proposed soon after (1974).

@ Selects a randomly instead of trying all a in the range [2,4|og2 n.

Randomized algorithm that never classfies primes incorrectly and
correctly classifies composites with probabilty at least %.

Time complexity is O(log n) arithmetic operations.

The most popular primality testing algorithm.
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OUTLINE

@ AKS ALGORITHM
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FERMAT’S LITTLE THEOREM FOR POLYNOMIALS

THEOREM (A THIRD GENERALIZATION OF FLT)

If n is prime then for every a, 1 < a < n,
(x+a)"=x"+a(mod n,x" —1).

P(x) (mod n,x" — 1) is the residue polynomial obtained by reducing its
coefficients modulo n and powers of x modulo r.
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PROOF

e We have
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Proor

e We have

(x+a)" = i (7>xi ca"

i=0

@ Since n is prime, each of ('I') is divisible by n for 1 </ < n.

e Also, a" = a (mod n).
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Proor

e We have

(x+a)"= i <7>x’

i=0

@ Since n is prime, each of ('I') is divisible by n for 1 </ < n.

e Also, a" = a (mod n).

@ Therefore,

(x+a)" = x"+ a(mod n).
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AKS ALGORITHM

@ A test proposed in 2002 based on the above generalization.
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AKS ALGORITHM

@ A test proposed in 2002 based on the above generalization.

: L 19 : . .
@ The time complexity is O(log2 n) arithmetic operations.
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AKS ALGORITHM

@ A test proposed in 2002 based on the above generalization.

: L 19 : . .
@ The time complexity is O(log2 n) arithmetic operations.

@ The only known deterministic, unconditionally correct, polynomial
time algorithm.
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AKS ALGORITHM

@ If n=mX for k > 1, or is even or has a small divisor, it is composite.
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AKS ALGORITHM

@ If n=mX for k > 1, or is even or has a small divisor, it is composite.
@ Find the smallest number r such that O,(n) > 4log? n.

O,(n) is the smallest number k for which n* =1 (mod r).
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AKS ALGORITHM

@ If n=mX for k > 1, or is even or has a small divisor, it is composite.
@ Find the smallest number r such that O,(n) > 4log? n.

@ For each a, 1 < a < 2./rlogn, check if
(x+a)"=x"+a(mod n,x" —1).

O,(n) is the smallest number k for which n* =1 (mod r).
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AKS ALGORITHM

@ If n= mk for k > 1, or is even or has a small divisor, it is composite.
@ Find the smallest number r such that O,(n) > 4log? n.
@ For each a, 1 < a < 2./rlogn, check if
(x4 a)" =x"+ a(mod n,x" —1).
© If yes, n is prime, otherwise composite.

O,(n) is the smallest number k for which n* = 1 (mod r).
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ANALYSIS: TWO SETS

@ Suppose n has a prime factor p.
o Fix r such that O,(n) > 4log® n.
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ANALYSIS: TWO SETS

@ Suppose n has a prime factor p.
o Fix r such that O,(n) > 4log® n.
@ Suppose that for each 1 < a < 2y/rlogn,

(x+a)" =x"+a(mod n,x" —1).
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ANALYSIS: TWO SETS

@ Suppose n has a prime factor p.
o Fix r such that O,(n) > 4log® n.
@ Suppose that for each 1 < a < 2y/rlogn,

(x+a)" =x"+a(mod n,x" —1).

@ Define two sets A and B as follows:

A = {m|(x+a)"=x"+a(mod p,x" —1)
for every a, 1 < a < 2y/rlogn}
B = {g(x)]|g(x)™ = g(x™) (mod p,x" — 1) for every m € A}
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ANALYSIS: TWO SETS

@ Suppose n has a prime factor p.
o Fix r such that O,(n) > 4log® n.
@ Suppose that for each 1 < a < 2y/rlogn,

(x+a)" =x"+a(mod n,x" —1).

@ Define two sets A and B as follows:

A = {m|(x+a)"=x"+a(mod p,x" —1)
for every a, 1 < a < 2y/rlogn}
B = {g(x)]|g(x)™ = g(x™) (mod p,x" — 1) for every m € A}

e We have n,pe Aand x+a€ Bforl<a<2rlogn.

MANINDRA AGRAWAL (IIT KANPUR) FLT BASED TESTS ICDCN, IIT GUWAHATI 30 / 39



ANALYSIS: TwO MORE SETS

OBSERVATION
Both A and B are closed under multiplication. J

MANINDRA AGRAWAL (IIT KANPUR) FLT BaseDp TESTS



ANALYSIS: TwO MORE SETS

OBSERVATION
Both A and B are closed under multiplication. J

o Now define two more sets:

Ay = {m(modr)| me A}
By = {a(x) (mod p, h(x)) | g(x) € B}

Here h(x) is an irreducible factor of x” — 1 modulo p containing a
primitive rth root of unity.
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ANALYSIS: TwO MORE SETS

OBSERVATION
Both A and B are closed under multiplication. J

o Now define two more sets:

Ay = {m(modr)| me A}
By = {a(x) (mod p, h(x)) | g(x) € B}

Here h(x) is an irreducible factor of x” — 1 modulo p containing a
primitive rth root of unity.

o Let F = Fy[x]/(h(x)), the field of polynomials modulo p and h(x).
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ANALYSIS: ESTIMATING SIZE OF Ag

RECALL
Ao ={m (modr) | me A} J
o Let t = Ao
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ANALYSIS: ESTIMATING SIZE OF Ag

RECALL
Ao ={m (modr) | me A} J
o Let t = Ao

@ Since elements of Ag are non-zero numbers modulo r, t < r.
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ANALYSIS: ESTIMATING SIZE OF Ag

RECALL
Ao ={m (modr) | me A} J

o Let t = |Ao|.
@ Since elements of Ag are non-zero numbers modulo r, t < r.

@ Since all powers of n belong to A and O,(n) > 4log®n, t > 4log?® n.
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ANALYSIS: ESTIMATING SIZE OF Ag

RECALL
Ao ={m (modr) | me A} J
o Let t = |Ao|.

@ Since elements of Ag are non-zero numbers modulo r, t < r.
o Since all powers of n belong to A and O,(n) > 4log? n, t > 4log? n.

@ Hence,

4log?n<t<r.
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ANALYSIS: ESTIMATING SIZE OF By

RECALL
By = {g(x) (mod p, h(x)) | g(x) € B} J
o Let T = |Bo|

MANINDRA AGRAWAL (IIT KANPUR) FLT BaseD TESTS



ANALYSIS: ESTIMATING SIZE OF By

RECALL
By = {g(x) (mod p, h(x)) | g(x) € B} J

o Let T = |Bo|

@ Since elements of By are polynomials modulo p and h(x) and degree
of his<r, T<p L
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ANALYSIS: ESTIMATING SIZE OF By

RECALL
By = {g(x) (mod p, h(x)) | g(x) € B} J

o Let T = |Bo|

@ Since elements of By are polynomials modulo p and h(x) and degree
of his<r, T<p L

@ The lower bound on T is trickier.
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ANALYSIS: LOWER BOUND ON T

RECALL
By = {g(x) (mod p, h(x)) | g(x) € B} J

e Consider f(x), g(x) € B, f # g and both of degree < t.
= g(x) in By, i.e., f(x) = g(x) (mod p, h(x)).

@ Suppose f(x)
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ANALYSIS: LOWER BOUND ON T

RECALL
By = {g(x) (mod p, h(x)) | g(x) € B} J

e Consider f(x), g(x) € B, f # g and both of degree < t.
@ Suppose f(x) = g(x) in By, i.e., f(x) = g(x) (mod p, h(x)).
e Since f,g € B, f(x)™ = f(x™) (mod p,x" — 1) and

g(x)™ = g(x™) (mod p,x" — 1) for every m € A.
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ANALYSIS: LOWER BOUND ON T

RECALL
By = {g(x) (mod p, h(x)) | g(x) € B} J

e Consider f(x), g(x) € B, f # g and both of degree < t.
@ Suppose f(x) = g(x) in By, i.e., f(x) = g(x) (mod p, h(x)).
e Since f,g € B, f(x)™ = f(x™) (mod p,x" — 1) and
g(x)™ = g(x™) (mod p,x" — 1) for every m € A.
o Therefore, f(x™) = g(x™) (mod p, h(x)) for every m € Ay.
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ANALYSIS: LOWER BOUND ON T

RECALL
By = {g(x) (mod p, h(x)) | g(x) € B} J

e Consider f(x), g(x) € B, f # g and both of degree < t.
@ Suppose f(x) = g(x) in By, i.e., f(x) = g(x) (mod p, h(x)).
e Since f,g € B, f(x)™ = f(x™) (mod p,x" — 1) and
g(x)™ = g(x™) (mod p,x" — 1) for every m € A.
o Therefore, f(x™) = g(x™) (mod p, h(x)) for every m € Ay.

@ Since x is a primitive rth root of unity in F, we get |Ap| = t distinct
roots of the polynomial f(y) — g(y) in F.
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ANALYSIS: LOWER BOUND ON T

RECALL
By = {g(x) (mod p, h(x)) | g(x) € B} J

e Consider f(x), g(x) € B, f # g and both of degree < t.

@ Suppose f(x) = g(x) in By, i.e., f(x) = g(x) (mod p, h(x)).
Since f,g € B, f(x)™ = f(x™) (mod p,x" — 1) and

g(x)™ = g(x™) (mod p,x" — 1) for every m € A.

Therefore, f(x™) = g(x™) (mod p, h(x)) for every m € Ay.

@ Since x is a primitive rth root of unity in F, we get |Ap| = t distinct
roots of the polynomial f(y) — g(y) in F.

Not possible since degree of f(y) — g(y) is < t and F is a field.
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ANALYSIS: LOWER BOUND ON T

RECALL
Bo = {g(x) (mod p, h(x)) | g(x) € B} J

@ We have that every distinct polynomial of degree < t in B is a
distinct element in Bp.

MANINDRA AGRAWAL (IIT KANPUR) FLT BASED TESTS ICDCN, IIT GUWAHATI 35 /39



ANALYSIS: LOWER BOUND ON T

RECALL
Bo = {g(x) (mod p, h(x)) | g(x) € B} J

@ We have that every distinct polynomial of degree < t in B is a
distinct element in Bp.

@ B has at least 2,/rlog n polynomials of degree 1 and is closed under
multiplication.
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ANALYSIS: LOWER BOUND ON T

RECALL
Bo = {g(x) (mod p, h(x)) | g(x) € B} J

@ We have that every distinct polynomial of degree < t in B is a
distinct element in Bp.

@ B has at least 2,/rlog n polynomials of degree 1 and is closed under
multiplication.

@ The number of distinct polynomials of degree < t in B is more than
2./t
n“vVt,
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ANALYSIS: LOWER BOUND ON T

RECALL
Bo = {g(x) (mod p, h(x)) | g(x) € B} J

@ We have that every distinct polynomial of degree < t in B is a
distinct element in Bp.

@ B has at least 2,/rlog n polynomials of degree 1 and is closed under
multiplication.

@ The number of distinct polynomials of degree < t in B is more than
2./t
n“vVt,

@ Therefore,

Vi< T < p L
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ANALYSIS: RELATION BETWEEN n AND p

o Since |Ao| = t, there exist two pairs (i, /) # (k,£), i,j, k,¢ < \/t such
that o
n'-p) = n*. p* (mod r).
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ANALYSIS: RELATION BETWEEN n AND p

o Since |Ag| = t, there exist two pairs (i,) # (k, ), i,j, k,£ </t such
that o
n'-p) = n*. p* (mod r).

o Let g(x) € By.
o We have:

g(x)"? = g(x"?) = g(x™P") = g(x)""P" (mod p, h(x)).
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ANALYSIS: RELATION BETWEEN n AND p

o Since |Ag| = t, there exist two pairs (i,) # (k, ), i,j, k,£ </t such
that o
n'-p) = n*. p* (mod r).

o Let g(x) € By.
o We have:

g(x)"? = g(x"?) = g(x™P") = g(x)""P" (mod p, h(x)).

o Therefore, every g(x) € By is a root of the polynomial y™ " — yn*»",
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ANALYSIS: RELATION BETWEEN n AND p

@ By the choice, n' - p/, nk - pf < n2vt,
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ANALYSIS: RELATION BETWEEN n AND p

@ By the choice, n' - p/, nk - pf < n2vt,

o Since T > n2V%, the polynomial y"i‘pj — y"k'pZ must be zero.
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ANALYSIS: RELATION BETWEEN n AND p

e By the choice, n' - p/, nk - p¢ < n?Vt,

o Since T > n2V%, the polynomial y”i‘pj — y"k'p/Z must be zero.

o This implies, n' - p/ = n¥ - p’.
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ANALYSIS: RELATION BETWEEN n AND p

By the choice, n' - p/, nk - p¢ < n?Vt,
Since T > n2V%, the polynomial y™ P — y™P" must be zero.

This implies, n' - p/ = nk . pt.

e Since p is a prime, p divides n, and (/,j) # (k, (), we get

n=p

for some ¢ > 0.
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ANALYSIS: RELATION BETWEEN n AND p

By the choice, n' - p/, nk - p¢ < n?Vt,

°
o Since T > n2V%, the polynomial y”i'pj — y"k'p/Z must be zero.
o This implies, n' - p/ = n¥ - p’.

Since p is a prime, p divides n, and (/,j) # (k, ), we get

n=p

for some ¢ > 0.

Therefore, n must be prime.

MANINDRA AGRAWAL (IIT KANPUR) FLT BASED TESTS ICDCN, IIT GUWAHATI 37 /39



ANALYSIS: ESTIMATING SIZE OF r

o Number r is such that O,(n) > 4log? n.
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ANALYSIS: ESTIMATING SIZE OF r

o Number r is such that O,(n) > 4log? n.

@ It can be any prime not dividing the product

4log®n

H (ni _ 1) < n16log4n.
i=1
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ANALYSIS: ESTIMATING SIZE OF r

o Number r is such that O,(n) > 4log? n.

@ It can be any prime not dividing the product

4log®n

H (ni _ 1) < n16log4n.
i=1

o It follows that r = O(log® n).
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TIME COMPLEXITY IMPROVEMENTS

e Lenstra and Pomerance (2003) further reduce the size of r to
O(log? n) resulting in the time complexity of O(log® n) arithmetic
operations.
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TIME COMPLEXITY IMPROVEMENTS

e Lenstra and Pomerance (2003) further reduce the size of r to
O(log? n) resulting in the time complexity of O(log® n) arithmetic
operations.

o Bernstein (2003) reduced the time complexity to O(log® n) arithmetic
operations at the cost of making it randomized.
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