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Fermat’s Little Theorem

Pierre de Fermat (1601-1665)

Theorem

If n is prime then for every a, 1 ≤ a < n, an−1 = 1 (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 4 / 39



Proof

Consider the sequence of numbers a ∗ 1 (mod n), a ∗ 2 (mod n), . . .,
a ∗ (n − 1) (mod n) for any 1 ≤ a < n.

None of these are zero, and no pair is equal:
I Follows from the primality of n.

Therefore,
n−1∏
i=1

a ∗ i =
n−1∏
i=1

i (mod n).

Canceling
∏n−1

i=1 i from both sides we get

an−1 = 1 (mod n).
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Consequences

Fermat’s Little Theorem identifies a crucial property of prime
numbers.

Instrumental in design of some of the most important primality
testing algorithms.
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The Problem

Given a number n, decide if it is prime efficiently.

By efficiently, one means an algorithm taking logO(1) n steps.
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School Method

Try dividing by all numbers < n or better, ≤
√

n.

Takes time Ω(
√

n) = Ω(2
1
2

log n).
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A Simple Algorithm Based on FLT

For m different a’s, test if an−1 = 1 (mod n).

Takes O(m log n) arithmetic operations.

However, it goes wrong on some numbers, for example, Carmichael
numbers.

I These are composite numbers with the property that for every a < n,
an = a (mod n).

I There exist infinitely many Carmichael numbers with 561 = 3 ∗ 11 ∗ 17
the smallest one.
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Fermat’s Little Theorem and Quadratic

Residues

Theorem (A Restatement of FLT)

If n is odd prime then for every a, 1 ≤ a < n, a
n−1

2 = ±1 (mod n).

Fact

When n is prime, a
n−1

2 = 1 (mod n) iff a is a quadratic residue in Zn.

Therefore, if n is prime then(a

n

)
= a

n−1
2 (mod n).
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Legendre-Jacobi Symbol

For prime n ≥ 3,
(

a
n

)
= 1 if a is a quadratic residue modulo n, −1 if a

is a non-residue.

If n =
∏k

i=1 pei
i with pi ’s distinct odd primes then(a

n

)
=

k∏
i=1

(
a

pi

)ei

It satisfies the quadratic reciprocity law:(a

n

)
·
(n

a

)
= (−1)

(a−1)(n−1)
4

for n ≥ 3. (
a + n

n

)
=

(a

n

)
Using last two properties,

(
a
n

)
can be computed for odd n in O(log n)

arithmetic operations.
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Solovay-Strassen Algorithm

Proposed by Solovay and Strassen (1973).

A randomized algorithm based on the equation
(

a
n

)
= a

n−1
2 (mod n).

Never incorrectly classifies primes and correctly classifies composites
with probability at least 1

2 .
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Solovay-Strassen Algorithm

1 If n = mk for some k > 1 or an even number > 2, it is composite.

2 For a random a in Zn, test if(a

n

)
= a

n−1
2 (mod n).

3 If yes, classify n as prime, otherwise as composite.

The time complexity is O(log n) arithmetic operations.
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Analysis

If n is prime, it is always classified as prime.

Consider the case when n is an odd composite and a product of at
least two primes.

Let n = pk ·m where p is prime, k > 0 is odd, and (p,m) = 1.

Facts
1 Every number a < n can be uniquely decomposed as a = 〈α, c〉 where

α = a (mod pk) and c = a (mod m).

2 There are exactly 1
2(p − 1) numbers between 0 and p that are

quadratic residues modulo p.
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Analysis

Let 0 < α, β < p, 0 < c < m with α a quadratic residue modulo p
and β a non-residue.

Clearly,

〈α, c〉
n−1

2 = 〈β, c〉
n−1

2 = c
n−1

2 (mod m)

And(
〈α, c〉

n

)
=

(
α

p

)k

·
( c

m

)
= −

(
β

p

)k

·
( c

m

)
= −

(
〈β, c〉

n

)
.
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Analysis

If 〈α, c〉
n−1

2 6= 〈β, c〉
n−1

2 (mod n) then one of them is not in {1,−1}
and so compositeness of n is proven.

Otherwise, either (
〈α, c〉

n

)
6= 〈α, c〉

n−1
2 (mod n),

or (
〈β, c〉

n

)
6= 〈β, c〉

n−1
2 (mod n).
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Analysis

So it cannot be that both a quadratic residue and a non-residue
modulo p satisfy the equation(a

n

)
= a

n−1
2 (mod n).

Therefore, with probability at least 1
2 , when n is composite, the

algorithm will be correct.
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Fermat’s Little Theorem and More Quadratic

Residues

Theorem (Another Restatement of FLT)

If n is odd prime and n = 1 + 2s · t, t odd, then for every a, 1 ≤ a < n, the

sequence a
n−1

2 = a2s−1·t (mod n), a2s−2·t (mod n), . . ., at (mod n) has
either all 1’s or a −1 somewhere.
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Miller’s Algorithm

This theorem is the basis for Miller’s algorithm (1973).

It is a deterministic polynomial time test.

It is correct under Extended Riemann Hypothesis.
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Miller’s Algorithm

1 If n = mk for some k > 1 or is even number > 2, it is composite.

2 For each a, 1 < a ≤ 4 log2 n, check if the sequence a2s−1·t (mod n),
a2s−2·t (mod n), . . ., at (mod n) has either all 1’s or a −1 somewhere.

3 If yes, classify n as prime, otherwise as composite.

The time complexity of the test is O(log3 n) arithmetic operations.
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Rabin’s Modification

A modification of Miller’s algorithm proposed soon after (1974).

Selects a randomly instead of trying all a in the range [2, 4 log2 n].

Randomized algorithm that never classfies primes incorrectly and
correctly classifies composites with probabilty at least 3

4 .

Time complexity is O(log n) arithmetic operations.

The most popular primality testing algorithm.
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Fermat’s Little Theorem for Polynomials

Theorem (A Third Generalization of FLT)

If n is prime then for every a, 1 ≤ a < n,
(x + a)n = xn + a (mod n, x r − 1).

P(x) (mod n, x r − 1) is the residue polynomial obtained by reducing its
coefficients modulo n and powers of x modulo r .
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Proof

We have

(x + a)n =
n∑

i=0

(
n

i

)
x i · an−i .

Since n is prime, each of
(n

i

)
is divisible by n for 1 ≤ i < n.

Also, an = a (mod n).

Therefore,
(x + a)n = xn + a (mod n).
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AKS Algorithm

A test proposed in 2002 based on the above generalization.

The time complexity is O(log
19
2 n) arithmetic operations.

The only known deterministic, unconditionally correct, polynomial
time algorithm.
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AKS Algorithm

1 If n = mk for k > 1, or is even or has a small divisor, it is composite.

2 Find the smallest number r such that Or (n) > 4 log2 n.

3 For each a, 1 ≤ a ≤ 2
√

r log n, check if
(x + a)n = xn + a (mod n, x r − 1).

4 If yes, n is prime, otherwise composite.

Or (n) is the smallest number k for which nk = 1 (mod r).
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Analysis: Two Sets

Suppose n has a prime factor p.

Fix r such that Or (n) > 4 log2 n.

Suppose that for each 1 ≤ a ≤ 2
√

r log n,

(x + a)n = xn + a (mod n, x r − 1).

Define two sets A and B as follows:

A = {m | (x + a)m = xm + a (mod p, x r − 1)

for every a, 1 ≤ a ≤ 2
√

r log n}
B = {g(x) | g(x)m = g(xm) (mod p, x r − 1) for every m ∈ A}

We have n, p ∈ A and x + a ∈ B for 1 ≤ a ≤ 2
√

r log n.
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Analysis: Two More Sets

Observation

Both A and B are closed under multiplication.

Now define two more sets:

A0 = {m (mod r) | m ∈ A}
B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Here h(x) is an irreducible factor of x r − 1 modulo p containing a
primitive rth root of unity.

Let F = Fp[x ]/(h(x)), the field of polynomials modulo p and h(x).
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Analysis: Estimating Size of A0

Recall

A0 = {m (mod r) | m ∈ A}

Let t = |A0|.
Since elements of A0 are non-zero numbers modulo r , t < r .

Since all powers of n belong to A and Or (n) > 4 log2 n, t > 4 log2 n.

Hence,
4 log2 n < t < r .
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Analysis: Estimating Size of B0

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Let T = |B0|.
Since elements of B0 are polynomials modulo p and h(x) and degree
of h is < r , T ≤ pr−1.

The lower bound on T is trickier.
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Analysis: Lower Bound on T

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Consider f (x), g(x) ∈ B, f 6= g and both of degree < t.

Suppose f (x) = g(x) in B0, i.e., f (x) = g(x) (mod p, h(x)).

Since f , g ∈ B, f (x)m = f (xm) (mod p, x r − 1) and
g(x)m = g(xm) (mod p, x r − 1) for every m ∈ A.

Therefore, f (xm) = g(xm) (mod p, h(x)) for every m ∈ A0.

Since x is a primitive rth root of unity in F , we get |A0| = t distinct
roots of the polynomial f (y)− g(y) in F .

Not possible since degree of f (y)− g(y) is < t and F is a field.
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Analysis: Lower Bound on T

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

We have that every distinct polynomial of degree < t in B is a
distinct element in B0.

B has at least 2
√

r log n polynomials of degree 1 and is closed under
multiplication.

The number of distinct polynomials of degree < t in B is more than
n2
√

t .

Therefore,
n2
√

t < T ≤ pr−1.
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Analysis: Relation Between n and p

Since |A0| = t, there exist two pairs (i , j) 6= (k, `), i , j , k, ` ≤
√

t such
that

ni · pj = nk · p` (mod r).

Let g(x) ∈ B0.

We have:

g(x)n
i ·pj

= g(xni ·pj
) = g(xnk ·p`

) = g(x)n
k ·p`

(mod p, h(x)).

Therefore, every g(x) ∈ B0 is a root of the polynomial yni ·pj − ynk ·p`
.
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Analysis: Relation Between n and p

By the choice, ni · pj , nk · p` ≤ n2
√

t .

Since T > n2
√

t , the polynomial yni ·pj − ynk ·p`
must be zero.

This implies, ni · pj = nk · p`.

Since p is a prime, p divides n, and (i , j) 6= (k, `), we get

n = pc

for some c > 0.

Therefore, n must be prime.
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Analysis: Estimating Size of r

Number r is such that Or (n) > 4 log2 n.

It can be any prime not dividing the product

4 log2 n∏
i=1

(ni − 1) < n16 log4 n.

It follows that r = O(log5 n).
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Time Complexity Improvements

Lenstra and Pomerance (2003) further reduce the size of r to
O(log2 n) resulting in the time complexity of O(log5 n) arithmetic
operations.

Bernstein (2003) reduced the time complexity to O(log3 n) arithmetic
operations at the cost of making it randomized.
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