
Primality Tests Based on Fermat’s Little

Theorem

Manindra Agrawal

IIT Kanpur

ICDCN, IIT Guwahati

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 1 / 39



Overview

1 Fermat’s Little Theorem

2 Primality Testing

3 Solovay-Strassen Algorithm

4 Miller-Rabin Algorithm

5 AKS Algorithm

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 2 / 39



Outline

1 Fermat’s Little Theorem

2 Primality Testing

3 Solovay-Strassen Algorithm

4 Miller-Rabin Algorithm

5 AKS Algorithm

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 3 / 39



Fermat’s Little Theorem

Pierre de Fermat (1601-1665)

Theorem

If n is prime then for every a, 1 ≤ a < n, an−1 = 1 (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 4 / 39



Proof

Consider the sequence of numbers a ∗ 1 (mod n), a ∗ 2 (mod n), . . .,
a ∗ (n − 1) (mod n) for any 1 ≤ a < n.

None of these are zero, and no pair is equal:
I Follows from the primality of n.

Therefore,
n−1∏
i=1

a ∗ i =
n−1∏
i=1

i (mod n).

Canceling
∏n−1

i=1 i from both sides we get

an−1 = 1 (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 5 / 39



Proof

Consider the sequence of numbers a ∗ 1 (mod n), a ∗ 2 (mod n), . . .,
a ∗ (n − 1) (mod n) for any 1 ≤ a < n.

None of these are zero, and no pair is equal:
I Follows from the primality of n.

Therefore,
n−1∏
i=1

a ∗ i =
n−1∏
i=1

i (mod n).

Canceling
∏n−1

i=1 i from both sides we get

an−1 = 1 (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 5 / 39



Proof

Consider the sequence of numbers a ∗ 1 (mod n), a ∗ 2 (mod n), . . .,
a ∗ (n − 1) (mod n) for any 1 ≤ a < n.

None of these are zero, and no pair is equal:
I Follows from the primality of n.

Therefore,
n−1∏
i=1

a ∗ i =
n−1∏
i=1

i (mod n).

Canceling
∏n−1

i=1 i from both sides we get

an−1 = 1 (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 5 / 39



Proof

Consider the sequence of numbers a ∗ 1 (mod n), a ∗ 2 (mod n), . . .,
a ∗ (n − 1) (mod n) for any 1 ≤ a < n.

None of these are zero, and no pair is equal:
I Follows from the primality of n.

Therefore,
n−1∏
i=1

a ∗ i =
n−1∏
i=1

i (mod n).

Canceling
∏n−1

i=1 i from both sides we get

an−1 = 1 (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 5 / 39



Consequences

Fermat’s Little Theorem identifies a crucial property of prime
numbers.

Instrumental in design of some of the most important primality
testing algorithms.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 6 / 39



Consequences

Fermat’s Little Theorem identifies a crucial property of prime
numbers.

Instrumental in design of some of the most important primality
testing algorithms.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 6 / 39



Outline

1 Fermat’s Little Theorem

2 Primality Testing

3 Solovay-Strassen Algorithm

4 Miller-Rabin Algorithm

5 AKS Algorithm

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 7 / 39



The Problem

Given a number n, decide if it is prime efficiently.

By efficiently, one means an algorithm taking logO(1) n steps.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 8 / 39



The Problem

Given a number n, decide if it is prime efficiently.

By efficiently, one means an algorithm taking logO(1) n steps.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 8 / 39



School Method

Try dividing by all numbers < n or better, ≤
√

n.

Takes time Ω(
√

n) = Ω(2
1
2

log n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 9 / 39



School Method

Try dividing by all numbers < n or better, ≤
√

n.

Takes time Ω(
√

n) = Ω(2
1
2

log n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 9 / 39



A Simple Algorithm Based on FLT

For m different a’s, test if an−1 = 1 (mod n).

Takes O(m log n) arithmetic operations.

However, it goes wrong on some numbers, for example, Carmichael
numbers.

I These are composite numbers with the property that for every a < n,
an = a (mod n).

I There exist infinitely many Carmichael numbers with 561 = 3 ∗ 11 ∗ 17
the smallest one.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 10 / 39



A Simple Algorithm Based on FLT

For m different a’s, test if an−1 = 1 (mod n).

Takes O(m log n) arithmetic operations.

However, it goes wrong on some numbers, for example, Carmichael
numbers.

I These are composite numbers with the property that for every a < n,
an = a (mod n).

I There exist infinitely many Carmichael numbers with 561 = 3 ∗ 11 ∗ 17
the smallest one.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 10 / 39



A Simple Algorithm Based on FLT

For m different a’s, test if an−1 = 1 (mod n).

Takes O(m log n) arithmetic operations.

However, it goes wrong on some numbers, for example, Carmichael
numbers.

I These are composite numbers with the property that for every a < n,
an = a (mod n).

I There exist infinitely many Carmichael numbers with 561 = 3 ∗ 11 ∗ 17
the smallest one.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 10 / 39



Outline

1 Fermat’s Little Theorem

2 Primality Testing

3 Solovay-Strassen Algorithm

4 Miller-Rabin Algorithm

5 AKS Algorithm

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 11 / 39



Fermat’s Little Theorem and Quadratic

Residues

Theorem (A Restatement of FLT)

If n is odd prime then for every a, 1 ≤ a < n, a
n−1

2 = ±1 (mod n).

Fact

When n is prime, a
n−1

2 = 1 (mod n) iff a is a quadratic residue in Zn.

Therefore, if n is prime then(a

n

)
= a

n−1
2 (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 12 / 39



Fermat’s Little Theorem and Quadratic

Residues

Theorem (A Restatement of FLT)

If n is odd prime then for every a, 1 ≤ a < n, a
n−1

2 = ±1 (mod n).

Fact

When n is prime, a
n−1

2 = 1 (mod n) iff a is a quadratic residue in Zn.

Therefore, if n is prime then(a

n

)
= a

n−1
2 (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 12 / 39



Fermat’s Little Theorem and Quadratic

Residues

Theorem (A Restatement of FLT)

If n is odd prime then for every a, 1 ≤ a < n, a
n−1

2 = ±1 (mod n).

Fact

When n is prime, a
n−1

2 = 1 (mod n) iff a is a quadratic residue in Zn.

Therefore, if n is prime then(a

n

)
= a

n−1
2 (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 12 / 39



Legendre-Jacobi Symbol

For prime n ≥ 3,
(

a
n

)
= 1 if a is a quadratic residue modulo n, −1 if a

is a non-residue.

If n =
∏k

i=1 pei
i with pi ’s distinct odd primes then(a

n

)
=

k∏
i=1

(
a

pi

)ei

It satisfies the quadratic reciprocity law:(a

n

)
·
(n

a

)
= (−1)

(a−1)(n−1)
4

for n ≥ 3. (
a + n

n

)
=

(a

n

)
Using last two properties,

(
a
n

)
can be computed for odd n in O(log n)

arithmetic operations.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 13 / 39



Legendre-Jacobi Symbol

For prime n ≥ 3,
(

a
n

)
= 1 if a is a quadratic residue modulo n, −1 if a

is a non-residue.

If n =
∏k

i=1 pei
i with pi ’s distinct odd primes then(a

n

)
=

k∏
i=1

(
a

pi

)ei

It satisfies the quadratic reciprocity law:(a

n

)
·
(n

a

)
= (−1)

(a−1)(n−1)
4

for n ≥ 3. (
a + n

n

)
=

(a

n

)
Using last two properties,

(
a
n

)
can be computed for odd n in O(log n)

arithmetic operations.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 13 / 39



Legendre-Jacobi Symbol

For prime n ≥ 3,
(

a
n

)
= 1 if a is a quadratic residue modulo n, −1 if a

is a non-residue.

If n =
∏k

i=1 pei
i with pi ’s distinct odd primes then(a

n

)
=

k∏
i=1

(
a

pi

)ei

It satisfies the quadratic reciprocity law:(a

n

)
·
(n

a

)
= (−1)

(a−1)(n−1)
4

for n ≥ 3. (
a + n

n

)
=

(a

n

)
Using last two properties,

(
a
n

)
can be computed for odd n in O(log n)

arithmetic operations.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 13 / 39



Legendre-Jacobi Symbol

For prime n ≥ 3,
(

a
n

)
= 1 if a is a quadratic residue modulo n, −1 if a

is a non-residue.

If n =
∏k

i=1 pei
i with pi ’s distinct odd primes then(a

n

)
=

k∏
i=1

(
a

pi

)ei

It satisfies the quadratic reciprocity law:(a

n

)
·
(n

a

)
= (−1)

(a−1)(n−1)
4

for n ≥ 3. (
a + n

n

)
=

(a

n

)
Using last two properties,

(
a
n

)
can be computed for odd n in O(log n)

arithmetic operations.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 13 / 39



Legendre-Jacobi Symbol

For prime n ≥ 3,
(

a
n

)
= 1 if a is a quadratic residue modulo n, −1 if a

is a non-residue.

If n =
∏k

i=1 pei
i with pi ’s distinct odd primes then(a

n

)
=

k∏
i=1

(
a

pi

)ei

It satisfies the quadratic reciprocity law:(a

n

)
·
(n

a

)
= (−1)

(a−1)(n−1)
4

for n ≥ 3. (
a + n

n

)
=

(a

n

)
Using last two properties,

(
a
n

)
can be computed for odd n in O(log n)

arithmetic operations.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 13 / 39



Solovay-Strassen Algorithm

Proposed by Solovay and Strassen (1973).

A randomized algorithm based on the equation
(

a
n

)
= a

n−1
2 (mod n).

Never incorrectly classifies primes and correctly classifies composites
with probability at least 1

2 .

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 14 / 39



Solovay-Strassen Algorithm

Proposed by Solovay and Strassen (1973).

A randomized algorithm based on the equation
(

a
n

)
= a

n−1
2 (mod n).

Never incorrectly classifies primes and correctly classifies composites
with probability at least 1

2 .

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 14 / 39



Solovay-Strassen Algorithm

Proposed by Solovay and Strassen (1973).

A randomized algorithm based on the equation
(

a
n

)
= a

n−1
2 (mod n).

Never incorrectly classifies primes and correctly classifies composites
with probability at least 1

2 .

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 14 / 39



Solovay-Strassen Algorithm

1 If n = mk for some k > 1 or an even number > 2, it is composite.

2 For a random a in Zn, test if(a

n

)
= a

n−1
2 (mod n).

3 If yes, classify n as prime, otherwise as composite.

The time complexity is O(log n) arithmetic operations.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 15 / 39



Solovay-Strassen Algorithm

1 If n = mk for some k > 1 or an even number > 2, it is composite.

2 For a random a in Zn, test if(a

n

)
= a

n−1
2 (mod n).

3 If yes, classify n as prime, otherwise as composite.

The time complexity is O(log n) arithmetic operations.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 15 / 39



Solovay-Strassen Algorithm

1 If n = mk for some k > 1 or an even number > 2, it is composite.

2 For a random a in Zn, test if(a

n

)
= a

n−1
2 (mod n).

3 If yes, classify n as prime, otherwise as composite.

The time complexity is O(log n) arithmetic operations.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 15 / 39



Solovay-Strassen Algorithm

1 If n = mk for some k > 1 or an even number > 2, it is composite.

2 For a random a in Zn, test if(a

n

)
= a

n−1
2 (mod n).

3 If yes, classify n as prime, otherwise as composite.

The time complexity is O(log n) arithmetic operations.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 15 / 39



Analysis

If n is prime, it is always classified as prime.

Consider the case when n is an odd composite and a product of at
least two primes.

Let n = pk ·m where p is prime, k > 0 is odd, and (p,m) = 1.

Facts
1 Every number a < n can be uniquely decomposed as a = 〈α, c〉 where

α = a (mod pk) and c = a (mod m).

2 There are exactly 1
2(p − 1) numbers between 0 and p that are

quadratic residues modulo p.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 16 / 39



Analysis

If n is prime, it is always classified as prime.

Consider the case when n is an odd composite and a product of at
least two primes.

Let n = pk ·m where p is prime, k > 0 is odd, and (p,m) = 1.

Facts
1 Every number a < n can be uniquely decomposed as a = 〈α, c〉 where

α = a (mod pk) and c = a (mod m).

2 There are exactly 1
2(p − 1) numbers between 0 and p that are

quadratic residues modulo p.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 16 / 39



Analysis

If n is prime, it is always classified as prime.

Consider the case when n is an odd composite and a product of at
least two primes.

Let n = pk ·m where p is prime, k > 0 is odd, and (p,m) = 1.

Facts
1 Every number a < n can be uniquely decomposed as a = 〈α, c〉 where

α = a (mod pk) and c = a (mod m).

2 There are exactly 1
2(p − 1) numbers between 0 and p that are

quadratic residues modulo p.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 16 / 39



Analysis

Let 0 < α, β < p, 0 < c < m with α a quadratic residue modulo p
and β a non-residue.

Clearly,

〈α, c〉
n−1

2 = 〈β, c〉
n−1

2 = c
n−1

2 (mod m)

And(
〈α, c〉

n

)
=

(
α

p

)k

·
( c

m

)
= −

(
β

p

)k

·
( c

m

)
= −

(
〈β, c〉

n

)
.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 17 / 39



Analysis

Let 0 < α, β < p, 0 < c < m with α a quadratic residue modulo p
and β a non-residue.

Clearly,

〈α, c〉
n−1

2 = 〈β, c〉
n−1

2 = c
n−1

2 (mod m)

And(
〈α, c〉

n

)
=

(
α

p

)k

·
( c

m

)
= −

(
β

p

)k

·
( c

m

)
= −

(
〈β, c〉

n

)
.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 17 / 39



Analysis

Let 0 < α, β < p, 0 < c < m with α a quadratic residue modulo p
and β a non-residue.

Clearly,

〈α, c〉
n−1

2 = 〈β, c〉
n−1

2 = c
n−1

2 (mod m)

And(
〈α, c〉

n

)
=

(
α

p

)k

·
( c

m

)
= −

(
β

p

)k

·
( c

m

)
= −

(
〈β, c〉

n

)
.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 17 / 39



Analysis

If 〈α, c〉
n−1

2 6= 〈β, c〉
n−1

2 (mod n) then one of them is not in {1,−1}
and so compositeness of n is proven.

Otherwise, either (
〈α, c〉

n

)
6= 〈α, c〉

n−1
2 (mod n),

or (
〈β, c〉

n

)
6= 〈β, c〉

n−1
2 (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 18 / 39



Analysis

If 〈α, c〉
n−1

2 6= 〈β, c〉
n−1

2 (mod n) then one of them is not in {1,−1}
and so compositeness of n is proven.

Otherwise, either (
〈α, c〉

n

)
6= 〈α, c〉

n−1
2 (mod n),

or (
〈β, c〉

n

)
6= 〈β, c〉

n−1
2 (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 18 / 39



Analysis

So it cannot be that both a quadratic residue and a non-residue
modulo p satisfy the equation(a

n

)
= a

n−1
2 (mod n).

Therefore, with probability at least 1
2 , when n is composite, the

algorithm will be correct.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 19 / 39



Analysis

So it cannot be that both a quadratic residue and a non-residue
modulo p satisfy the equation(a

n

)
= a

n−1
2 (mod n).

Therefore, with probability at least 1
2 , when n is composite, the

algorithm will be correct.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 19 / 39



Outline

1 Fermat’s Little Theorem

2 Primality Testing

3 Solovay-Strassen Algorithm

4 Miller-Rabin Algorithm

5 AKS Algorithm

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 20 / 39



Fermat’s Little Theorem and More Quadratic

Residues

Theorem (Another Restatement of FLT)

If n is odd prime and n = 1 + 2s · t, t odd, then for every a, 1 ≤ a < n, the

sequence a
n−1

2 = a2s−1·t (mod n), a2s−2·t (mod n), . . ., at (mod n) has
either all 1’s or a −1 somewhere.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 21 / 39



Miller’s Algorithm

This theorem is the basis for Miller’s algorithm (1973).

It is a deterministic polynomial time test.

It is correct under Extended Riemann Hypothesis.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 22 / 39



Miller’s Algorithm

This theorem is the basis for Miller’s algorithm (1973).

It is a deterministic polynomial time test.

It is correct under Extended Riemann Hypothesis.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 22 / 39



Miller’s Algorithm

This theorem is the basis for Miller’s algorithm (1973).

It is a deterministic polynomial time test.

It is correct under Extended Riemann Hypothesis.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 22 / 39



Miller’s Algorithm

1 If n = mk for some k > 1 or is even number > 2, it is composite.

2 For each a, 1 < a ≤ 4 log2 n, check if the sequence a2s−1·t (mod n),
a2s−2·t (mod n), . . ., at (mod n) has either all 1’s or a −1 somewhere.

3 If yes, classify n as prime, otherwise as composite.

The time complexity of the test is O(log3 n) arithmetic operations.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 23 / 39



Miller’s Algorithm

1 If n = mk for some k > 1 or is even number > 2, it is composite.

2 For each a, 1 < a ≤ 4 log2 n, check if the sequence a2s−1·t (mod n),
a2s−2·t (mod n), . . ., at (mod n) has either all 1’s or a −1 somewhere.

3 If yes, classify n as prime, otherwise as composite.

The time complexity of the test is O(log3 n) arithmetic operations.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 23 / 39



Miller’s Algorithm

1 If n = mk for some k > 1 or is even number > 2, it is composite.

2 For each a, 1 < a ≤ 4 log2 n, check if the sequence a2s−1·t (mod n),
a2s−2·t (mod n), . . ., at (mod n) has either all 1’s or a −1 somewhere.

3 If yes, classify n as prime, otherwise as composite.

The time complexity of the test is O(log3 n) arithmetic operations.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 23 / 39



Miller’s Algorithm

1 If n = mk for some k > 1 or is even number > 2, it is composite.

2 For each a, 1 < a ≤ 4 log2 n, check if the sequence a2s−1·t (mod n),
a2s−2·t (mod n), . . ., at (mod n) has either all 1’s or a −1 somewhere.

3 If yes, classify n as prime, otherwise as composite.

The time complexity of the test is O(log3 n) arithmetic operations.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 23 / 39



Rabin’s Modification

A modification of Miller’s algorithm proposed soon after (1974).

Selects a randomly instead of trying all a in the range [2, 4 log2 n].

Randomized algorithm that never classfies primes incorrectly and
correctly classifies composites with probabilty at least 3

4 .

Time complexity is O(log n) arithmetic operations.

The most popular primality testing algorithm.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 24 / 39



Rabin’s Modification

A modification of Miller’s algorithm proposed soon after (1974).

Selects a randomly instead of trying all a in the range [2, 4 log2 n].

Randomized algorithm that never classfies primes incorrectly and
correctly classifies composites with probabilty at least 3

4 .

Time complexity is O(log n) arithmetic operations.

The most popular primality testing algorithm.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 24 / 39



Rabin’s Modification

A modification of Miller’s algorithm proposed soon after (1974).

Selects a randomly instead of trying all a in the range [2, 4 log2 n].

Randomized algorithm that never classfies primes incorrectly and
correctly classifies composites with probabilty at least 3

4 .

Time complexity is O(log n) arithmetic operations.

The most popular primality testing algorithm.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 24 / 39



Rabin’s Modification

A modification of Miller’s algorithm proposed soon after (1974).

Selects a randomly instead of trying all a in the range [2, 4 log2 n].

Randomized algorithm that never classfies primes incorrectly and
correctly classifies composites with probabilty at least 3

4 .

Time complexity is O(log n) arithmetic operations.

The most popular primality testing algorithm.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 24 / 39



Outline

1 Fermat’s Little Theorem

2 Primality Testing

3 Solovay-Strassen Algorithm

4 Miller-Rabin Algorithm

5 AKS Algorithm

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 25 / 39



Fermat’s Little Theorem for Polynomials

Theorem (A Third Generalization of FLT)

If n is prime then for every a, 1 ≤ a < n,
(x + a)n = xn + a (mod n, x r − 1).

P(x) (mod n, x r − 1) is the residue polynomial obtained by reducing its
coefficients modulo n and powers of x modulo r .

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 26 / 39



Proof

We have

(x + a)n =
n∑

i=0

(
n

i

)
x i · an−i .

Since n is prime, each of
(n

i

)
is divisible by n for 1 ≤ i < n.

Also, an = a (mod n).

Therefore,
(x + a)n = xn + a (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 27 / 39



Proof

We have

(x + a)n =
n∑

i=0

(
n

i

)
x i · an−i .

Since n is prime, each of
(n

i

)
is divisible by n for 1 ≤ i < n.

Also, an = a (mod n).

Therefore,
(x + a)n = xn + a (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 27 / 39



Proof

We have

(x + a)n =
n∑

i=0

(
n

i

)
x i · an−i .

Since n is prime, each of
(n

i

)
is divisible by n for 1 ≤ i < n.

Also, an = a (mod n).

Therefore,
(x + a)n = xn + a (mod n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 27 / 39



AKS Algorithm

A test proposed in 2002 based on the above generalization.

The time complexity is O(log
19
2 n) arithmetic operations.

The only known deterministic, unconditionally correct, polynomial
time algorithm.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 28 / 39



AKS Algorithm

A test proposed in 2002 based on the above generalization.

The time complexity is O(log
19
2 n) arithmetic operations.

The only known deterministic, unconditionally correct, polynomial
time algorithm.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 28 / 39



AKS Algorithm

A test proposed in 2002 based on the above generalization.

The time complexity is O(log
19
2 n) arithmetic operations.

The only known deterministic, unconditionally correct, polynomial
time algorithm.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 28 / 39



AKS Algorithm

1 If n = mk for k > 1, or is even or has a small divisor, it is composite.

2 Find the smallest number r such that Or (n) > 4 log2 n.

3 For each a, 1 ≤ a ≤ 2
√

r log n, check if
(x + a)n = xn + a (mod n, x r − 1).

4 If yes, n is prime, otherwise composite.

Or (n) is the smallest number k for which nk = 1 (mod r).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 29 / 39



AKS Algorithm

1 If n = mk for k > 1, or is even or has a small divisor, it is composite.

2 Find the smallest number r such that Or (n) > 4 log2 n.

3 For each a, 1 ≤ a ≤ 2
√

r log n, check if
(x + a)n = xn + a (mod n, x r − 1).

4 If yes, n is prime, otherwise composite.

Or (n) is the smallest number k for which nk = 1 (mod r).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 29 / 39



AKS Algorithm

1 If n = mk for k > 1, or is even or has a small divisor, it is composite.

2 Find the smallest number r such that Or (n) > 4 log2 n.

3 For each a, 1 ≤ a ≤ 2
√

r log n, check if
(x + a)n = xn + a (mod n, x r − 1).

4 If yes, n is prime, otherwise composite.

Or (n) is the smallest number k for which nk = 1 (mod r).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 29 / 39



AKS Algorithm

1 If n = mk for k > 1, or is even or has a small divisor, it is composite.

2 Find the smallest number r such that Or (n) > 4 log2 n.

3 For each a, 1 ≤ a ≤ 2
√

r log n, check if
(x + a)n = xn + a (mod n, x r − 1).

4 If yes, n is prime, otherwise composite.

Or (n) is the smallest number k for which nk = 1 (mod r).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 29 / 39



Analysis: Two Sets

Suppose n has a prime factor p.

Fix r such that Or (n) > 4 log2 n.

Suppose that for each 1 ≤ a ≤ 2
√

r log n,

(x + a)n = xn + a (mod n, x r − 1).

Define two sets A and B as follows:

A = {m | (x + a)m = xm + a (mod p, x r − 1)

for every a, 1 ≤ a ≤ 2
√

r log n}
B = {g(x) | g(x)m = g(xm) (mod p, x r − 1) for every m ∈ A}

We have n, p ∈ A and x + a ∈ B for 1 ≤ a ≤ 2
√

r log n.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 30 / 39



Analysis: Two Sets

Suppose n has a prime factor p.

Fix r such that Or (n) > 4 log2 n.

Suppose that for each 1 ≤ a ≤ 2
√

r log n,

(x + a)n = xn + a (mod n, x r − 1).

Define two sets A and B as follows:

A = {m | (x + a)m = xm + a (mod p, x r − 1)

for every a, 1 ≤ a ≤ 2
√

r log n}
B = {g(x) | g(x)m = g(xm) (mod p, x r − 1) for every m ∈ A}

We have n, p ∈ A and x + a ∈ B for 1 ≤ a ≤ 2
√

r log n.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 30 / 39



Analysis: Two Sets

Suppose n has a prime factor p.

Fix r such that Or (n) > 4 log2 n.

Suppose that for each 1 ≤ a ≤ 2
√

r log n,

(x + a)n = xn + a (mod n, x r − 1).

Define two sets A and B as follows:

A = {m | (x + a)m = xm + a (mod p, x r − 1)

for every a, 1 ≤ a ≤ 2
√

r log n}
B = {g(x) | g(x)m = g(xm) (mod p, x r − 1) for every m ∈ A}

We have n, p ∈ A and x + a ∈ B for 1 ≤ a ≤ 2
√

r log n.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 30 / 39



Analysis: Two Sets

Suppose n has a prime factor p.

Fix r such that Or (n) > 4 log2 n.

Suppose that for each 1 ≤ a ≤ 2
√

r log n,

(x + a)n = xn + a (mod n, x r − 1).

Define two sets A and B as follows:

A = {m | (x + a)m = xm + a (mod p, x r − 1)

for every a, 1 ≤ a ≤ 2
√

r log n}
B = {g(x) | g(x)m = g(xm) (mod p, x r − 1) for every m ∈ A}

We have n, p ∈ A and x + a ∈ B for 1 ≤ a ≤ 2
√

r log n.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 30 / 39



Analysis: Two More Sets

Observation

Both A and B are closed under multiplication.

Now define two more sets:

A0 = {m (mod r) | m ∈ A}
B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Here h(x) is an irreducible factor of x r − 1 modulo p containing a
primitive rth root of unity.

Let F = Fp[x ]/(h(x)), the field of polynomials modulo p and h(x).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 31 / 39



Analysis: Two More Sets

Observation

Both A and B are closed under multiplication.

Now define two more sets:

A0 = {m (mod r) | m ∈ A}
B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Here h(x) is an irreducible factor of x r − 1 modulo p containing a
primitive rth root of unity.

Let F = Fp[x ]/(h(x)), the field of polynomials modulo p and h(x).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 31 / 39



Analysis: Two More Sets

Observation

Both A and B are closed under multiplication.

Now define two more sets:

A0 = {m (mod r) | m ∈ A}
B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Here h(x) is an irreducible factor of x r − 1 modulo p containing a
primitive rth root of unity.

Let F = Fp[x ]/(h(x)), the field of polynomials modulo p and h(x).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 31 / 39



Analysis: Estimating Size of A0

Recall

A0 = {m (mod r) | m ∈ A}

Let t = |A0|.
Since elements of A0 are non-zero numbers modulo r , t < r .

Since all powers of n belong to A and Or (n) > 4 log2 n, t > 4 log2 n.

Hence,
4 log2 n < t < r .

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 32 / 39



Analysis: Estimating Size of A0

Recall

A0 = {m (mod r) | m ∈ A}

Let t = |A0|.
Since elements of A0 are non-zero numbers modulo r , t < r .

Since all powers of n belong to A and Or (n) > 4 log2 n, t > 4 log2 n.

Hence,
4 log2 n < t < r .

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 32 / 39



Analysis: Estimating Size of A0

Recall

A0 = {m (mod r) | m ∈ A}

Let t = |A0|.
Since elements of A0 are non-zero numbers modulo r , t < r .

Since all powers of n belong to A and Or (n) > 4 log2 n, t > 4 log2 n.

Hence,
4 log2 n < t < r .

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 32 / 39



Analysis: Estimating Size of A0

Recall

A0 = {m (mod r) | m ∈ A}

Let t = |A0|.
Since elements of A0 are non-zero numbers modulo r , t < r .

Since all powers of n belong to A and Or (n) > 4 log2 n, t > 4 log2 n.

Hence,
4 log2 n < t < r .

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 32 / 39



Analysis: Estimating Size of B0

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Let T = |B0|.
Since elements of B0 are polynomials modulo p and h(x) and degree
of h is < r , T ≤ pr−1.

The lower bound on T is trickier.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 33 / 39



Analysis: Estimating Size of B0

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Let T = |B0|.
Since elements of B0 are polynomials modulo p and h(x) and degree
of h is < r , T ≤ pr−1.

The lower bound on T is trickier.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 33 / 39



Analysis: Estimating Size of B0

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Let T = |B0|.
Since elements of B0 are polynomials modulo p and h(x) and degree
of h is < r , T ≤ pr−1.

The lower bound on T is trickier.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 33 / 39



Analysis: Lower Bound on T

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Consider f (x), g(x) ∈ B, f 6= g and both of degree < t.

Suppose f (x) = g(x) in B0, i.e., f (x) = g(x) (mod p, h(x)).

Since f , g ∈ B, f (x)m = f (xm) (mod p, x r − 1) and
g(x)m = g(xm) (mod p, x r − 1) for every m ∈ A.

Therefore, f (xm) = g(xm) (mod p, h(x)) for every m ∈ A0.

Since x is a primitive rth root of unity in F , we get |A0| = t distinct
roots of the polynomial f (y)− g(y) in F .

Not possible since degree of f (y)− g(y) is < t and F is a field.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 34 / 39



Analysis: Lower Bound on T

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Consider f (x), g(x) ∈ B, f 6= g and both of degree < t.

Suppose f (x) = g(x) in B0, i.e., f (x) = g(x) (mod p, h(x)).

Since f , g ∈ B, f (x)m = f (xm) (mod p, x r − 1) and
g(x)m = g(xm) (mod p, x r − 1) for every m ∈ A.

Therefore, f (xm) = g(xm) (mod p, h(x)) for every m ∈ A0.

Since x is a primitive rth root of unity in F , we get |A0| = t distinct
roots of the polynomial f (y)− g(y) in F .

Not possible since degree of f (y)− g(y) is < t and F is a field.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 34 / 39



Analysis: Lower Bound on T

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Consider f (x), g(x) ∈ B, f 6= g and both of degree < t.

Suppose f (x) = g(x) in B0, i.e., f (x) = g(x) (mod p, h(x)).

Since f , g ∈ B, f (x)m = f (xm) (mod p, x r − 1) and
g(x)m = g(xm) (mod p, x r − 1) for every m ∈ A.

Therefore, f (xm) = g(xm) (mod p, h(x)) for every m ∈ A0.

Since x is a primitive rth root of unity in F , we get |A0| = t distinct
roots of the polynomial f (y)− g(y) in F .

Not possible since degree of f (y)− g(y) is < t and F is a field.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 34 / 39



Analysis: Lower Bound on T

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Consider f (x), g(x) ∈ B, f 6= g and both of degree < t.

Suppose f (x) = g(x) in B0, i.e., f (x) = g(x) (mod p, h(x)).

Since f , g ∈ B, f (x)m = f (xm) (mod p, x r − 1) and
g(x)m = g(xm) (mod p, x r − 1) for every m ∈ A.

Therefore, f (xm) = g(xm) (mod p, h(x)) for every m ∈ A0.

Since x is a primitive rth root of unity in F , we get |A0| = t distinct
roots of the polynomial f (y)− g(y) in F .

Not possible since degree of f (y)− g(y) is < t and F is a field.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 34 / 39



Analysis: Lower Bound on T

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Consider f (x), g(x) ∈ B, f 6= g and both of degree < t.

Suppose f (x) = g(x) in B0, i.e., f (x) = g(x) (mod p, h(x)).

Since f , g ∈ B, f (x)m = f (xm) (mod p, x r − 1) and
g(x)m = g(xm) (mod p, x r − 1) for every m ∈ A.

Therefore, f (xm) = g(xm) (mod p, h(x)) for every m ∈ A0.

Since x is a primitive rth root of unity in F , we get |A0| = t distinct
roots of the polynomial f (y)− g(y) in F .

Not possible since degree of f (y)− g(y) is < t and F is a field.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 34 / 39



Analysis: Lower Bound on T

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

Consider f (x), g(x) ∈ B, f 6= g and both of degree < t.

Suppose f (x) = g(x) in B0, i.e., f (x) = g(x) (mod p, h(x)).

Since f , g ∈ B, f (x)m = f (xm) (mod p, x r − 1) and
g(x)m = g(xm) (mod p, x r − 1) for every m ∈ A.

Therefore, f (xm) = g(xm) (mod p, h(x)) for every m ∈ A0.

Since x is a primitive rth root of unity in F , we get |A0| = t distinct
roots of the polynomial f (y)− g(y) in F .

Not possible since degree of f (y)− g(y) is < t and F is a field.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 34 / 39



Analysis: Lower Bound on T

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

We have that every distinct polynomial of degree < t in B is a
distinct element in B0.

B has at least 2
√

r log n polynomials of degree 1 and is closed under
multiplication.

The number of distinct polynomials of degree < t in B is more than
n2
√

t .

Therefore,
n2
√

t < T ≤ pr−1.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 35 / 39



Analysis: Lower Bound on T

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

We have that every distinct polynomial of degree < t in B is a
distinct element in B0.

B has at least 2
√

r log n polynomials of degree 1 and is closed under
multiplication.

The number of distinct polynomials of degree < t in B is more than
n2
√

t .

Therefore,
n2
√

t < T ≤ pr−1.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 35 / 39



Analysis: Lower Bound on T

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

We have that every distinct polynomial of degree < t in B is a
distinct element in B0.

B has at least 2
√

r log n polynomials of degree 1 and is closed under
multiplication.

The number of distinct polynomials of degree < t in B is more than
n2
√

t .

Therefore,
n2
√

t < T ≤ pr−1.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 35 / 39



Analysis: Lower Bound on T

Recall

B0 = {g(x) (mod p, h(x)) | g(x) ∈ B}

We have that every distinct polynomial of degree < t in B is a
distinct element in B0.

B has at least 2
√

r log n polynomials of degree 1 and is closed under
multiplication.

The number of distinct polynomials of degree < t in B is more than
n2
√

t .

Therefore,
n2
√

t < T ≤ pr−1.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 35 / 39



Analysis: Relation Between n and p

Since |A0| = t, there exist two pairs (i , j) 6= (k, `), i , j , k, ` ≤
√

t such
that

ni · pj = nk · p` (mod r).

Let g(x) ∈ B0.

We have:

g(x)n
i ·pj

= g(xni ·pj
) = g(xnk ·p`

) = g(x)n
k ·p`

(mod p, h(x)).

Therefore, every g(x) ∈ B0 is a root of the polynomial yni ·pj − ynk ·p`
.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 36 / 39



Analysis: Relation Between n and p

Since |A0| = t, there exist two pairs (i , j) 6= (k, `), i , j , k, ` ≤
√

t such
that

ni · pj = nk · p` (mod r).

Let g(x) ∈ B0.

We have:

g(x)n
i ·pj

= g(xni ·pj
) = g(xnk ·p`

) = g(x)n
k ·p`

(mod p, h(x)).

Therefore, every g(x) ∈ B0 is a root of the polynomial yni ·pj − ynk ·p`
.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 36 / 39



Analysis: Relation Between n and p

Since |A0| = t, there exist two pairs (i , j) 6= (k, `), i , j , k, ` ≤
√

t such
that

ni · pj = nk · p` (mod r).

Let g(x) ∈ B0.

We have:

g(x)n
i ·pj

= g(xni ·pj
) = g(xnk ·p`

) = g(x)n
k ·p`

(mod p, h(x)).

Therefore, every g(x) ∈ B0 is a root of the polynomial yni ·pj − ynk ·p`
.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 36 / 39



Analysis: Relation Between n and p

By the choice, ni · pj , nk · p` ≤ n2
√

t .

Since T > n2
√

t , the polynomial yni ·pj − ynk ·p`
must be zero.

This implies, ni · pj = nk · p`.

Since p is a prime, p divides n, and (i , j) 6= (k, `), we get

n = pc

for some c > 0.

Therefore, n must be prime.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 37 / 39



Analysis: Relation Between n and p

By the choice, ni · pj , nk · p` ≤ n2
√

t .

Since T > n2
√

t , the polynomial yni ·pj − ynk ·p`
must be zero.

This implies, ni · pj = nk · p`.

Since p is a prime, p divides n, and (i , j) 6= (k, `), we get

n = pc

for some c > 0.

Therefore, n must be prime.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 37 / 39



Analysis: Relation Between n and p

By the choice, ni · pj , nk · p` ≤ n2
√

t .

Since T > n2
√

t , the polynomial yni ·pj − ynk ·p`
must be zero.

This implies, ni · pj = nk · p`.

Since p is a prime, p divides n, and (i , j) 6= (k, `), we get

n = pc

for some c > 0.

Therefore, n must be prime.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 37 / 39



Analysis: Relation Between n and p

By the choice, ni · pj , nk · p` ≤ n2
√

t .

Since T > n2
√

t , the polynomial yni ·pj − ynk ·p`
must be zero.

This implies, ni · pj = nk · p`.

Since p is a prime, p divides n, and (i , j) 6= (k, `), we get

n = pc

for some c > 0.

Therefore, n must be prime.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 37 / 39



Analysis: Relation Between n and p

By the choice, ni · pj , nk · p` ≤ n2
√

t .

Since T > n2
√

t , the polynomial yni ·pj − ynk ·p`
must be zero.

This implies, ni · pj = nk · p`.

Since p is a prime, p divides n, and (i , j) 6= (k, `), we get

n = pc

for some c > 0.

Therefore, n must be prime.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 37 / 39



Analysis: Estimating Size of r

Number r is such that Or (n) > 4 log2 n.

It can be any prime not dividing the product

4 log2 n∏
i=1

(ni − 1) < n16 log4 n.

It follows that r = O(log5 n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 38 / 39



Analysis: Estimating Size of r

Number r is such that Or (n) > 4 log2 n.

It can be any prime not dividing the product

4 log2 n∏
i=1

(ni − 1) < n16 log4 n.

It follows that r = O(log5 n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 38 / 39



Analysis: Estimating Size of r

Number r is such that Or (n) > 4 log2 n.

It can be any prime not dividing the product

4 log2 n∏
i=1

(ni − 1) < n16 log4 n.

It follows that r = O(log5 n).

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 38 / 39



Time Complexity Improvements

Lenstra and Pomerance (2003) further reduce the size of r to
O(log2 n) resulting in the time complexity of O(log5 n) arithmetic
operations.

Bernstein (2003) reduced the time complexity to O(log3 n) arithmetic
operations at the cost of making it randomized.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 39 / 39



Time Complexity Improvements

Lenstra and Pomerance (2003) further reduce the size of r to
O(log2 n) resulting in the time complexity of O(log5 n) arithmetic
operations.

Bernstein (2003) reduced the time complexity to O(log3 n) arithmetic
operations at the cost of making it randomized.

Manindra Agrawal (IIT Kanpur) FLT Based Tests ICDCN, IIT Guwahati 39 / 39


	Fermat's Little Theorem
	Primality Testing
	Solovay-Strassen Algorithm
	Miller-Rabin Algorithm
	AKS Algorithm

