PRIMALITY TESTS BASED ON FERMAT'S LITTLE THEOREM

Manindra Agrawal

IIT Kanpur

ICDCN, IIT Guwahati

MANINDRA AGRAWAL (IIT KANPUR)

FLT BASED TESTS

ICDCN, IIT GUWAHATI 1 / 39

OVERVIEW

- **1** Fermat's Little Theorem
- **2** PRIMALITY TESTING
- **3** Solovay-Strassen Algorithm
- 4 MILLER-RABIN ALGORITHM
- **5** AKS Algorithm

OUTLINE

- 2 Primality Testing
- 3 Solovay-Strassen Algorithm
- Miller-Rabin Algorithm
- 5 AKS Algorithm

-

FERMAT'S LITTLE THEOREM

Pierre de Fermat (1601-1665)

THEOREM

If n is prime then for every a, $1 \le a < n$, $a^{n-1} = 1 \pmod{n}$.

MANINDRA AGRAWAL (IIT KANPUR)

FLT BASED TESTS

ICDCN, IIT GUWAHATI 4 / 39

- Consider the sequence of numbers a * 1 (mod n), a * 2 (mod n), ..., a * (n − 1) (mod n) for any 1 ≤ a < n.
- None of these are zero, and no pair is equal:
 - Follows from the primality of *n*.

• Therefore,

$$\prod_{i=1}^{n-1} a * i = \prod_{i=1}^{n-1} i \pmod{n}.$$

• Canceling $\prod_{i=1}^{n-1} i$ from both sides we get

 $a^{n-1} = 1 \pmod{n}.$

- Consider the sequence of numbers a * 1 (mod n), a * 2 (mod n), ..., a * (n − 1) (mod n) for any 1 ≤ a < n.
- None of these are zero, and no pair is equal:
 - Follows from the primality of *n*.

• Therefore,

$$\prod_{i=1}^{n-1} a * i = \prod_{i=1}^{n-1} i \; (mod \; n).$$

• Canceling $\prod_{i=1}^{n-1} i$ from both sides we get

 $a^{n-1} = 1 \pmod{n}$.

- Consider the sequence of numbers a * 1 (mod n), a * 2 (mod n), ..., a * (n − 1) (mod n) for any 1 ≤ a < n.
- None of these are zero, and no pair is equal:
 - Follows from the primality of *n*.
- Therefore,

$$\prod_{i=1}^{n-1} a * i = \prod_{i=1}^{n-1} i \pmod{n}.$$

• Canceling $\prod_{i=1}^{n-1} i$ from both sides we get

 $a^{n-1} = 1 \pmod{n}.$

- Consider the sequence of numbers a * 1 (mod n), a * 2 (mod n), ..., a * (n − 1) (mod n) for any 1 ≤ a < n.
- None of these are zero, and no pair is equal:
 - Follows from the primality of *n*.
- Therefore,

$$\prod_{i=1}^{n-1} a * i = \prod_{i=1}^{n-1} i \pmod{n}.$$

• Canceling $\prod_{i=1}^{n-1} i$ from both sides we get

 $a^{n-1} = 1 \pmod{n}$.

CONSEQUENCES

- Fermat's Little Theorem identifies a crucial property of prime numbers.
- Instrumental in design of some of the most important primality testing algorithms.

3 > 4 3

- Fermat's Little Theorem identifies a crucial property of prime numbers.
- Instrumental in design of some of the most important primality testing algorithms.

OUTLINE

Fermat's Little Theorem

2 PRIMALITY TESTING

3 Solovay-Strassen Algorithm

Miller-Rabin Algorithm

5 AKS Algorithm

-

< 🗇 🕨

The Problem

Given a number *n*, decide if it is prime efficiently.

By efficiently, one means an algorithm taking $\log^{O(1)} n$ steps.

MANINDRA AGRAWAL (IIT KANPUR)

(日)・《ヨン《ヨン ヨークへの ICDCN, IIT GUWAHATI 8 / 39 Given a number *n*, decide if it is prime efficiently.

By efficiently, one means an algorithm taking $\log^{O(1)} n$ steps.

School Method

Try dividing by all numbers < n or better, $\leq \sqrt{n}$.

3

School Method

Try dividing by all numbers < n or better, $\leq \sqrt{n}$.

Takes time $\Omega(\sqrt{n}) = \Omega(2^{\frac{1}{2}\log n}).$

A SIMPLE ALGORITHM BASED ON FLT

For *m* different *a*'s, test if $a^{n-1} = 1 \pmod{n}$.

- Takes $O(m \log n)$ arithmetic operations.
- However, it goes wrong on some numbers, for example, Carmichael numbers.
 - ► These are composite numbers with the property that for every a < n, aⁿ = a (mod n).
 - There exist infinitely many Carmichael numbers with 561 = 3 * 11 * 17 the smallest one.

A SIMPLE ALGORITHM BASED ON FLT

For *m* different *a*'s, test if $a^{n-1} = 1 \pmod{n}$.

- Takes $O(m \log n)$ arithmetic operations.
- However, it goes wrong on some numbers, for example, Carmichael numbers.
 - These are composite numbers with the property that for every a < n, $a^n = a \pmod{n}$.
 - There exist infinitely many Carmichael numbers with 561 = 3 * 11 * 17 the smallest one.

A SIMPLE ALGORITHM BASED ON FLT

For *m* different *a*'s, test if $a^{n-1} = 1 \pmod{n}$.

- Takes $O(m \log n)$ arithmetic operations.
- However, it goes wrong on some numbers, for example, Carmichael numbers.
 - These are composite numbers with the property that for every a < n, $a^n = a \pmod{n}$.
 - There exist infinitely many Carmichael numbers with 561 = 3 * 11 * 17 the smallest one.

OUTLINE

3 SOLOVAY-STRASSEN ALGORITHM

Miller-Rabin Algorithm

AKS Algorithm

-

FERMAT'S LITTLE THEOREM AND QUADRATIC RESIDUES

THEOREM (A RESTATEMENT OF FLT)

If n is odd prime then for every a, $1 \le a < n$, $a^{\frac{n-1}{2}} = \pm 1 \pmod{n}$.

Fact

When *n* is prime, $a^{\frac{n-1}{2}} = 1 \pmod{n}$ iff *a* is a quadratic residue in Z_n .

Therefore, if *n* is prime then

$$\left(\frac{a}{n}\right) = a^{\frac{n-1}{2}} \pmod{n}.$$

FERMAT'S LITTLE THEOREM AND QUADRATIC RESIDUES

THEOREM (A RESTATEMENT OF FLT)

If n is odd prime then for every a, $1 \le a < n$, $a^{\frac{n-1}{2}} = \pm 1 \pmod{n}$.

Fact

When *n* is prime, $a^{\frac{n-1}{2}} = 1 \pmod{n}$ iff *a* is a quadratic residue in Z_n .

Therefore, if *n* is prime then

$$\left(\frac{a}{n}\right) = a^{\frac{n-1}{2}} \pmod{n}.$$

FERMAT'S LITTLE THEOREM AND QUADRATIC RESIDUES

THEOREM (A RESTATEMENT OF FLT)

If n is odd prime then for every a, $1 \le a < n$, $a^{\frac{n-1}{2}} = \pm 1 \pmod{n}$.

Fact

When *n* is prime, $a^{\frac{n-1}{2}} = 1 \pmod{n}$ iff *a* is a quadratic residue in Z_n .

Therefore, if *n* is prime then

$$\left(\frac{a}{n}\right) = a^{\frac{n-1}{2}} \pmod{n}.$$

Legendre-Jacobi Symbol

• For prime $n \ge 3$, $\left(\frac{a}{n}\right) = 1$ if a is a quadratic residue modulo n, -1 if a is a non-residue.

• If $n = \prod_{i=1}^{k} p_i^{e_i}$ with p_i 's distinct odd primes then

$$\left(\frac{a}{n}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)^{\epsilon}$$

• It satisfies the quadratic reciprocity law:

$$\left(\frac{a}{n}\right)\cdot\left(\frac{n}{a}\right) = (-1)^{\frac{(a-1)(n-1)}{4}}$$

for $n \ge 3$.

$$\left(\frac{a+n}{n}\right) = \left(\frac{a}{n}\right)$$

• Using last two properties, $\left(\frac{a}{n}\right)$ can be computed for odd *n* in $O(\log n)$ arithmetic operations.

MANINDRA AGRAWAL (IIT KANPUR)

- For prime n ≥ 3, (^a/_n) = 1 if a is a quadratic residue modulo n, −1 if a is a non-residue.
- If $n = \prod_{i=1}^{k} p_i^{e_i}$ with p_i 's distinct odd primes then

$$\left(\frac{a}{n}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)^{e_i}$$

• It satisfies the quadratic reciprocity law:

$$\left(\frac{a}{n}\right)\cdot\left(\frac{n}{a}\right) = (-1)^{\frac{(a-1)(n-1)}{4}}$$

for $n \ge 3$.

$$\left(\frac{a+n}{n}\right) = \left(\frac{a}{n}\right)$$

• Using last two properties, $\left(\frac{a}{n}\right)$ can be computed for odd *n* in $O(\log n)$ arithmetic operations.

MANINDRA AGRAWAL (IIT KANPUR)

- For prime n ≥ 3, (^a/_n) = 1 if a is a quadratic residue modulo n, −1 if a is a non-residue.
- If $n = \prod_{i=1}^{k} p_i^{e_i}$ with p_i 's distinct odd primes then

$$\left(\frac{a}{n}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)^{e_i}$$

• It satisfies the quadratic reciprocity law:

$$\left(\frac{a}{n}\right)\cdot\left(\frac{n}{a}\right) = (-1)^{\frac{(a-1)(n-1)}{4}}$$

for $n \geq 3$.

$$\left(\frac{a+n}{n}\right) = \left(\frac{a}{n}\right)$$

• Using last two properties, $\left(\frac{a}{n}\right)$ can be computed for odd *n* in $O(\log n)$ arithmetic operations.

MANINDRA AGRAWAL (IIT KANPUR)

ICDCN, IIT GUWAHATI 13 / 39

- For prime n ≥ 3, (^a/_n) = 1 if a is a quadratic residue modulo n, −1 if a is a non-residue.
- If $n = \prod_{i=1}^{k} p_i^{e_i}$ with p_i 's distinct odd primes then

$$\left(\frac{a}{n}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)^{e_i}$$

• It satisfies the quadratic reciprocity law:

$$\left(\frac{a}{n}\right)\cdot\left(\frac{n}{a}\right)=(-1)^{\frac{(a-1)(n-1)}{4}}$$

for $n \geq 3$.

$$\left(\frac{a+n}{n}\right) = \left(\frac{a}{n}\right)$$

• Using last two properties, $\left(\frac{a}{n}\right)$ can be computed for odd *n* in $O(\log n)$ arithmetic operations.

MANINDRA AGRAWAL (IIT KANPUR)

ICDCN, IIT GUWAHATI

13 / 39

- For prime $n \ge 3$, $\left(\frac{a}{n}\right) = 1$ if a is a quadratic residue modulo n, -1 if a is a non-residue.
- If $n = \prod_{i=1}^{k} p_i^{e_i}$ with p_i 's distinct odd primes then

$$\left(\frac{a}{n}\right) = \prod_{i=1}^{k} \left(\frac{a}{p_i}\right)^{e_i}$$

• It satisfies the quadratic reciprocity law:

$$\left(\frac{a}{n}\right)\cdot\left(\frac{n}{a}\right)=(-1)^{\frac{(a-1)(n-1)}{4}}$$

for $n \geq 3$.

 $\left(\frac{a+n}{n}\right) = \left(\frac{a}{n}\right)$

• Using last two properties, $\left(\frac{a}{n}\right)$ can be computed for odd *n* in $O(\log n)$ arithmetic operations.

13 / 39

• Proposed by Solovay and Strassen (1973).

- A randomized algorithm based on the equation $\left(\frac{a}{n}\right) = a^{\frac{n-1}{2}} \pmod{n}$.
- Never incorrectly classifies primes and correctly classifies composites with probability at least ¹/₂.

- Proposed by Solovay and Strassen (1973).
- A randomized algorithm based on the equation $\left(\frac{a}{n}\right) = a^{\frac{n-1}{2}} \pmod{n}$.
- Never incorrectly classifies primes and correctly classifies composites with probability at least ¹/₂.

- Proposed by Solovay and Strassen (1973).
- A randomized algorithm based on the equation $\left(\frac{a}{n}\right) = a^{\frac{n-1}{2}} \pmod{n}$.
- Never incorrectly classifies primes and correctly classifies composites with probability at least ¹/₂.

If n = m^k for some k > 1 or an even number > 2, it is composite.
 For a random a in Z_n, test if

$$\left(\frac{a}{n}\right) = a^{\frac{n-1}{2}} \pmod{n}.$$

If yes, classify *n* as prime, otherwise as composite.

If n = m^k for some k > 1 or an even number > 2, it is composite.
For a random a in Z_n, test if

$$\left(\frac{a}{n}\right) = a^{\frac{n-1}{2}} \pmod{n}.$$

If yes, classify *n* as prime, otherwise as composite.

If n = m^k for some k > 1 or an even number > 2, it is composite.
For a random a in Z_n, test if

$$\left(\frac{a}{n}\right) = a^{\frac{n-1}{2}} \pmod{n}.$$

If yes, classify n as prime, otherwise as composite.

If n = m^k for some k > 1 or an even number > 2, it is composite.
For a random a in Z_n, test if

$$\left(\frac{a}{n}\right) = a^{\frac{n-1}{2}} \pmod{n}.$$

If yes, classify n as prime, otherwise as composite.

ANALYSIS

• If *n* is prime, it is always classified as prime.

- Consider the case when *n* is an odd composite and a product of at least two primes.
- Let $n = p^k \cdot m$ where p is prime, k > 0 is odd, and (p, m) = 1.

Facts

Every number a < n can be uniquely decomposed as a = (α, c) where α = a (mod p^k) and c = a (mod m).

There are exactly $\frac{1}{2}(p-1)$ numbers between 0 and p that are quadratic residues modulo p.

ANALYSIS

- If *n* is prime, it is always classified as prime.
- Consider the case when n is an odd composite and a product of at least two primes.
- Let $n = p^k \cdot m$ where p is prime, k > 0 is odd, and (p, m) = 1.

Facts

- Every number a < n can be uniquely decomposed as a = (α, c) where α = a (mod p^k) and c = a (mod m).
- There are exactly $\frac{1}{2}(p-1)$ numbers between 0 and p that are quadratic residues modulo p.
- If *n* is prime, it is always classified as prime.
- Consider the case when *n* is an odd composite and a product of at least two primes.
- Let $n = p^k \cdot m$ where p is prime, k > 0 is odd, and (p, m) = 1.

Facts

- Every number a < n can be uniquely decomposed as a = (α, c) where α = a (mod p^k) and c = a (mod m).
- There are exactly $\frac{1}{2}(p-1)$ numbers between 0 and p that are quadratic residues modulo p.

16 / 39

- Let $0 < \alpha, \beta < p, 0 < c < m$ with α a quadratic residue modulo p and β a non-residue.
- Clearly,

$$\langle \alpha, c \rangle^{\frac{n-1}{2}} = \langle \beta, c \rangle^{\frac{n-1}{2}} = c^{\frac{n-1}{2}} \pmod{m}$$

And

$$\left(\frac{\langle \alpha, c \rangle}{n}\right) = \left(\frac{\alpha}{p}\right)^k \cdot \left(\frac{c}{m}\right) = -\left(\frac{\beta}{p}\right)^k \cdot \left(\frac{c}{m}\right) = -\left(\frac{\langle \beta, c \rangle}{n}\right).$$

- Let 0 < α, β < p, 0 < c < m with α a quadratic residue modulo p and β a non-residue.
- Clearly,

$$\langle \alpha, \boldsymbol{c} \rangle^{\frac{n-1}{2}} = \langle \beta, \boldsymbol{c} \rangle^{\frac{n-1}{2}} = \boldsymbol{c}^{\frac{n-1}{2}} \pmod{m}$$

And

$$\left(\frac{\langle \alpha, c \rangle}{n}\right) = \left(\frac{\alpha}{p}\right)^k \cdot \left(\frac{c}{m}\right) = -\left(\frac{\beta}{p}\right)^k \cdot \left(\frac{c}{m}\right) = -\left(\frac{\langle \beta, c \rangle}{n}\right).$$

∃ ∃ >

- Let 0 < α, β < p, 0 < c < m with α a quadratic residue modulo p and β a non-residue.
- Clearly,

$$\langle \alpha, \boldsymbol{c} \rangle^{\frac{n-1}{2}} = \langle \beta, \boldsymbol{c} \rangle^{\frac{n-1}{2}} = \boldsymbol{c}^{\frac{n-1}{2}} \pmod{m}$$

And

$$\left(\frac{\langle \alpha, \boldsymbol{c} \rangle}{\boldsymbol{n}}\right) = \left(\frac{\alpha}{\boldsymbol{p}}\right)^{\boldsymbol{k}} \cdot \left(\frac{\boldsymbol{c}}{\boldsymbol{m}}\right) = -\left(\frac{\beta}{\boldsymbol{p}}\right)^{\boldsymbol{k}} \cdot \left(\frac{\boldsymbol{c}}{\boldsymbol{m}}\right) = -\left(\frac{\langle \beta, \boldsymbol{c} \rangle}{\boldsymbol{n}}\right).$$

A 3 >

- If $\langle \alpha, c \rangle^{\frac{n-1}{2}} \neq \langle \beta, c \rangle^{\frac{n-1}{2}} \pmod{n}$ then one of them is not in $\{1, -1\}$ and so compositeness of *n* is proven.
- Otherwise, either

$$\left(\frac{\langle \alpha, \mathbf{c} \rangle}{\mathbf{n}}\right) \neq \langle \alpha, \mathbf{c} \rangle^{\frac{n-1}{2}} \; (\textit{mod } n),$$

or

- If $\langle \alpha, c \rangle^{\frac{n-1}{2}} \neq \langle \beta, c \rangle^{\frac{n-1}{2}} \pmod{n}$ then one of them is not in $\{1, -1\}$ and so compositeness of *n* is proven.
- Otherwise, either

$$\left(\frac{\langle \alpha, \mathbf{c} \rangle}{\mathbf{n}}\right) \neq \langle \alpha, \mathbf{c} \rangle^{\frac{n-1}{2}} \; (\textit{mod } n),$$

or

$$\left(\frac{\langle \beta, c \rangle}{n}\right) \neq \langle \beta, c \rangle^{\frac{n-1}{2}} \pmod{n}.$$

 So it cannot be that both a quadratic residue and a non-residue modulo p satisfy the equation

$$\left(\frac{a}{n}\right) = a^{\frac{n-1}{2}} \pmod{n}.$$

• Therefore, with probability at least $\frac{1}{2}$, when *n* is composite, the algorithm will be correct.

 So it cannot be that both a quadratic residue and a non-residue modulo p satisfy the equation

$$\left(\frac{a}{n}\right) = a^{\frac{n-1}{2}} \pmod{n}.$$

• Therefore, with probability at least $\frac{1}{2}$, when *n* is composite, the algorithm will be correct.

OUTLINE

- 4 MILLER-RABIN ALGORITHM

AKS Algorithm

FERMAT'S LITTLE THEOREM AND MORE QUADRATIC RESIDUES

THEOREM (ANOTHER RESTATEMENT OF FLT)

If n is odd prime and $n = 1 + 2^{s} \cdot t$, t odd, then for every a, $1 \le a < n$, the sequence $a^{\frac{n-1}{2}} = a^{2^{s-1} \cdot t} \pmod{n}$, $a^{2^{s-2} \cdot t} \pmod{n}$, ..., $a^{t} \pmod{n}$ has either all 1's or a - 1 somewhere.

- This theorem is the basis for Miller's algorithm (1973).
- It is a deterministic polynomial time test.
- It is correct under Extended Riemann Hypothesis.

- This theorem is the basis for Miller's algorithm (1973).
- It is a deterministic polynomial time test.
- It is correct under Extended Riemann Hypothesis.

- This theorem is the basis for Miller's algorithm (1973).
- It is a deterministic polynomial time test.
- It is correct under Extended Riemann Hypothesis.

• If $n = m^k$ for some k > 1 or is even number > 2, it is composite.

Proceed a, 1 < a ≤ 4 log² n, check if the sequence a^{2^{s-1}⋅t} (mod n), a^{2^{s-2}⋅t} (mod n), ..., a^t (mod n) has either all 1's or a −1 somewhere.

If yes, classify n as prime, otherwise as composite.

If n = m^k for some k > 1 or is even number > 2, it is composite.
For each a, 1 < a ≤ 4 log² n, check if the sequence a^{2^{s-1}⋅t} (mod n), a^{2^{s-2}⋅t} (mod n), ..., a^t (mod n) has either all 1's or a -1 somewhere.
If yes, classify n as prime, otherwise as composite.

If n = m^k for some k > 1 or is even number > 2, it is composite.
For each a, 1 < a ≤ 4 log² n, check if the sequence a^{2^{s-1}⋅t} (mod n), a^{2^{s-2}⋅t} (mod n), ..., a^t (mod n) has either all 1's or a -1 somewhere.
If yes, classify n as prime, otherwise as composite.

If n = m^k for some k > 1 or is even number > 2, it is composite.
For each a, 1 < a ≤ 4 log² n, check if the sequence a^{2^{s-1}⋅t} (mod n), a^{2^{s-2}⋅t} (mod n), ..., a^t (mod n) has either all 1's or a -1 somewhere.
If yes, classify n as prime, otherwise as composite.

- A modification of Miller's algorithm proposed soon after (1974).
- Selects *a* randomly instead of trying all *a* in the range $[2, 4 \log^2 n]$.
- Randomized algorithm that never classfies primes incorrectly and correctly classifies composites with probability at least ³/₄.
- Time complexity is $O(\log n)$ arithmetic operations.
- The most popular primality testing algorithm.

- A modification of Miller's algorithm proposed soon after (1974).
- Selects a randomly instead of trying all a in the range $[2, 4 \log^2 n]$.
- Randomized algorithm that never classfies primes incorrectly and correctly classifies composites with probability at least $\frac{3}{4}$.
- Time complexity is $O(\log n)$ arithmetic operations.
- The most popular primality testing algorithm.

- A modification of Miller's algorithm proposed soon after (1974).
- Selects *a* randomly instead of trying all *a* in the range $[2, 4 \log^2 n]$.
- Randomized algorithm that never classfies primes incorrectly and correctly classifies composites with probability at least ³/₄.
- Time complexity is $O(\log n)$ arithmetic operations.
- The most popular primality testing algorithm.

- A modification of Miller's algorithm proposed soon after (1974).
- Selects a randomly instead of trying all a in the range $[2, 4 \log^2 n]$.
- Randomized algorithm that never classfies primes incorrectly and correctly classifies composites with probability at least ³/₄.
- Time complexity is $O(\log n)$ arithmetic operations.
- The most popular primality testing algorithm.

OUTLINE

Fermat's Little Theorem

- 3 Solovay-Strassen Algorithm
- Miller-Rabin Algorithm

5 AKS Algorithm

FERMAT'S LITTLE THEOREM FOR POLYNOMIALS

THEOREM (A THIRD GENERALIZATION OF FLT) If n is prime then for every $a, 1 \le a < n$, $(x + a)^n = x^n + a \pmod{n, x^r - 1}$.

 $P(x) \pmod{n, x^r - 1}$ is the residue polynomial obtained by reducing its coefficients modulo n and powers of x modulo r.

Proof

• We have

$$(x+a)^n = \sum_{i=0}^n \binom{n}{i} x^i \cdot a^{n-i}.$$

• Since *n* is prime, each of $\binom{n}{i}$ is divisible by *n* for $1 \le i < n$.

• Also, $a^n = a \pmod{n}$.

• Therefore,

< 🗇 🕨

Proof

We have

$$(x+a)^n = \sum_{i=0}^n \binom{n}{i} x^i \cdot a^{n-i}.$$

- Since *n* is prime, each of $\binom{n}{i}$ is divisible by *n* for $1 \le i < n$.
- Also, $a^n = a \pmod{n}$.

• Therefore,

Proof

We have

$$(x+a)^n = \sum_{i=0}^n \binom{n}{i} x^i \cdot a^{n-i}.$$

- Since *n* is prime, each of $\binom{n}{i}$ is divisible by *n* for $1 \le i < n$.
- Also, $a^n = a \pmod{n}$.
- Therefore,

 $(x+a)^n = x^n + a \pmod{n}.$

• 3 > 1

- A test proposed in 2002 based on the above generalization.
- The time complexity is $O(\log^{\frac{19}{2}} n)$ arithmetic operations.
- The only known deterministic, unconditionally correct, polynomial time algorithm.

- A test proposed in 2002 based on the above generalization.
- The time complexity is $O(\log^{\frac{19}{2}} n)$ arithmetic operations.
- The only known deterministic, unconditionally correct, polynomial time algorithm.

- A test proposed in 2002 based on the above generalization.
- The time complexity is $O(\log^{\frac{19}{2}} n)$ arithmetic operations.
- The only known deterministic, unconditionally correct, polynomial time algorithm.

() If $n = m^k$ for k > 1, or is even or has a small divisor, it is composite.

- ② Find the smallest number r such that $O_r(n) > 4 \log^2 n$.
- 3 For each $a, 1 \le a \le 2\sqrt{r} \log n$, check if $(x + a)^n = x^n + a \pmod{n, x^r 1}$.
- If yes, n is prime, otherwise composite.

If n = m^k for k > 1, or is even or has a small divisor, it is composite.
Find the smallest number r such that O_r(n) > 4 log² n.
For each a, 1 ≤ a ≤ 2√r log n, check if (x + a)ⁿ = xⁿ + a (mod n, x^r - 1).
If yes, n is prime, otherwise composite.

If n = m^k for k > 1, or is even or has a small divisor, it is composite.
Find the smallest number r such that O_r(n) > 4 log² n.
For each a, 1 ≤ a ≤ 2√r log n, check if (x + a)ⁿ = xⁿ + a (mod n, x^r - 1).
If yes, n is prime, otherwise composite.

- If $n = m^k$ for k > 1, or is even or has a small divisor, it is composite.
- Solution Find the smallest number r such that $O_r(n) > 4 \log^2 n$.
- Sor each a, 1 ≤ a ≤ 2√r log n, check if (x + a)ⁿ = xⁿ + a (mod n, x^r − 1).
- If yes, *n* is prime, otherwise composite.

Analysis: Two Sets

- Suppose *n* has a prime factor *p*.
- Fix r such that $O_r(n) > 4 \log^2 n$.
- Suppose that for each $1 \le a \le 2\sqrt{r} \log n$,

$$(x+a)^n = x^n + a \pmod{n, x^r - 1}.$$

• Define two sets A and B as follows:

$$A = \{m \mid (x+a)^m = x^m + a \pmod{p, x^r - 1}$$

for every $a, 1 \le a \le 2\sqrt{r} \log n\}$
$$B = \{g(x) \mid g(x)^m = g(x^m) \pmod{p, x^r - 1} \text{ for every } m \in A\}$$

• We have $n, p \in A$ and $x + a \in B$ for $1 \le a \le 2\sqrt{r} \log n$.

Analysis: Two Sets

- Suppose *n* has a prime factor *p*.
- Fix r such that $O_r(n) > 4 \log^2 n$.
- Suppose that for each $1 \le a \le 2\sqrt{r} \log n$,

$$(x+a)^n = x^n + a \pmod{n, x^r - 1}.$$

• Define two sets A and B as follows:

 $A = \{m \mid (x+a)^m = x^m + a \pmod{p, x^r - 1}$ for every $a, 1 \le a \le 2\sqrt{r} \log n\}$ $B = \{g(x) \mid g(x)^m = g(x^m) \pmod{p, x^r - 1} \text{ for every } m \in A\}$

• We have $n, p \in A$ and $x + a \in B$ for $1 \le a \le 2\sqrt{r} \log n$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Analysis: Two Sets

- Suppose *n* has a prime factor *p*.
- Fix r such that $O_r(n) > 4 \log^2 n$.
- Suppose that for each $1 \le a \le 2\sqrt{r} \log n$,

$$(x + a)^n = x^n + a \pmod{n, x^r - 1}.$$

• Define two sets A and B as follows:

$$A = \{m \mid (x+a)^m = x^m + a \pmod{p, x^r - 1}$$

for every $a, 1 \le a \le 2\sqrt{r} \log n\}$
$$B = \{g(x) \mid g(x)^m = g(x^m) \pmod{p, x^r - 1} \text{ for every } m \in A\}$$

• We have $n, p \in A$ and $x + a \in B$ for $1 \le a \le 2\sqrt{r} \log n$.
Analysis: Two Sets

- Suppose *n* has a prime factor *p*.
- Fix r such that $O_r(n) > 4 \log^2 n$.
- Suppose that for each $1 \le a \le 2\sqrt{r} \log n$,

$$(x+a)^n = x^n + a \pmod{n, x^r - 1}.$$

• Define two sets A and B as follows:

$$A = \{m \mid (x+a)^m = x^m + a \pmod{p, x^r - 1}$$

for every $a, 1 \le a \le 2\sqrt{r} \log n\}$
$$B = \{g(x) \mid g(x)^m = g(x^m) \pmod{p, x^r - 1} \text{ for every } m \in A\}$$

• We have $n, p \in A$ and $x + a \in B$ for $1 \le a \le 2\sqrt{r} \log n$.

30 / 39

Analysis: Two More Sets

OBSERVATION Both A and B are closed under multiplication.

• Now define two more sets:

$$A_0 = \{m \pmod{r} \mid m \in A\} \\ B_0 = \{g(x) \pmod{p, h(x)} \mid g(x) \in B\}$$

Here h(x) is an irreducible factor of $x^r - 1$ modulo p containing a primitive rth root of unity.

• Let $F = F_p[x]/(h(x))$, the field of polynomials modulo p and h(x).

Analysis: Two More Sets

OBSERVATION Both *A* and *B* are closed under multiplication.

• Now define two more sets:

$$\begin{array}{lll} A_0 &=& \{m \ (mod \ r) \mid m \in A\} \\ B_0 &=& \{g(x) \ (mod \ p, h(x)) \mid g(x) \in B\} \end{array}$$

Here h(x) is an irreducible factor of $x^r - 1$ modulo p containing a primitive rth root of unity.

• Let $F = F_p[x]/(h(x))$, the field of polynomials modulo p and h(x).

ANALYSIS: TWO MORE SETS

OBSERVATION Both *A* and *B* are closed under multiplication.

• Now define two more sets:

$$\begin{array}{lll} A_0 &=& \{m \ (mod \ r) \mid m \in A\} \\ B_0 &=& \{g(x) \ (mod \ p, h(x)) \mid g(x) \in B\} \end{array}$$

Here h(x) is an irreducible factor of $x^r - 1$ modulo p containing a primitive rth root of unity.

• Let $F = F_p[x]/(h(x))$, the field of polynomials modulo p and h(x).

31 / 39

RECALL

 $A_0 = \{m \pmod{r} \mid m \in A\}$

• Let $t = |A_0|$.

- Since elements of A_0 are non-zero numbers modulo r, t < r.
- Since all powers of *n* belong to *A* and $O_r(n) > 4 \log^2 n$, $t > 4 \log^2 n$.
- Hence,

RECALL

 $A_0 = \{m \pmod{r} \mid m \in A\}$

- Let $t = |A_0|$.
- Since elements of A_0 are non-zero numbers modulo r, t < r.
- Since all powers of *n* belong to *A* and $O_r(n) > 4 \log^2 n$, $t > 4 \log^2 n$.
- Hence,

RECALL

- $A_0 = \{m \pmod{r} \mid m \in A\}$
 - Let $t = |A_0|$.
 - Since elements of A_0 are non-zero numbers modulo r, t < r.
 - Since all powers of *n* belong to *A* and $O_r(n) > 4 \log^2 n$, $t > 4 \log^2 n$.
 - Hence,

RECALL

 $A_0 = \{m \pmod{r} \mid m \in A\}$

- Let $t = |A_0|$.
- Since elements of A_0 are non-zero numbers modulo r, t < r.
- Since all powers of *n* belong to *A* and $O_r(n) > 4 \log^2 n$, $t > 4 \log^2 n$.
- Hence,

RECALL

 $B_0 = \{g(x) \; (mod \; p, h(x)) \mid g(x) \in B\}$

• Let $T = |B_0|$.

- Since elements of B₀ are polynomials modulo p and h(x) and degree of h is < r, T ≤ p^{r-1}.
- The lower bound on *T* is trickier.

RECALL

 $B_0 = \{g(x) \; (mod \; p, h(x)) \mid g(x) \in B\}$

- Let $T = |B_0|$.
- Since elements of B₀ are polynomials modulo p and h(x) and degree of h is < r, T ≤ p^{r-1}.

• The lower bound on *T* is trickier.

RECALL

- Let $T = |B_0|$.
- Since elements of B₀ are polynomials modulo p and h(x) and degree of h is < r, T ≤ p^{r-1}.
- The lower bound on *T* is trickier.

RECALL

- Consider $f(x), g(x) \in B$, $f \neq g$ and both of degree < t.
- Suppose f(x) = g(x) in B_0 , i.e., $f(x) = g(x) \pmod{p, h(x)}$.
- Since $f, g \in B$, $f(x)^m = f(x^m) \pmod{p, x^r 1}$ and $g(x)^m = g(x^m) \pmod{p, x^r 1}$ for every $m \in A$.
- Therefore, $f(x^m) = g(x^m) \pmod{p, h(x)}$ for every $m \in A_0$.
- Since x is a primitive rth root of unity in F, we get |A₀| = t distinct roots of the polynomial f(y) − g(y) in F.
- Not possible since degree of f(y) g(y) is < t and F is a field.

RECALL

- Consider $f(x), g(x) \in B$, $f \neq g$ and both of degree < t.
- Suppose f(x) = g(x) in B_0 , i.e., $f(x) = g(x) \pmod{p, h(x)}$.
- Since $f, g \in B$, $f(x)^m = f(x^m) \pmod{p, x^r 1}$ and $g(x)^m = g(x^m) \pmod{p, x^r 1}$ for every $m \in A$.
- Therefore, $f(x^m) = g(x^m) \pmod{p, h(x)}$ for every $m \in A_0$.
- Since x is a primitive rth root of unity in F, we get |A₀| = t distinct roots of the polynomial f(y) − g(y) in F.
- Not possible since degree of f(y) g(y) is < t and F is a field.

RECALL

- Consider $f(x), g(x) \in B$, $f \neq g$ and both of degree < t.
- Suppose f(x) = g(x) in B_0 , i.e., $f(x) = g(x) \pmod{p, h(x)}$.
- Since $f, g \in B$, $f(x)^m = f(x^m) \pmod{p, x^r 1}$ and $g(x)^m = g(x^m) \pmod{p, x^r 1}$ for every $m \in A$.
- Therefore, $f(x^m) = g(x^m) \pmod{p, h(x)}$ for every $m \in A_0$.
- Since x is a primitive rth root of unity in F, we get |A₀| = t distinct roots of the polynomial f(y) − g(y) in F.
- Not possible since degree of f(y) g(y) is < t and F is a field.

RECALL

- Consider $f(x), g(x) \in B$, $f \neq g$ and both of degree < t.
- Suppose f(x) = g(x) in B_0 , i.e., $f(x) = g(x) \pmod{p, h(x)}$.
- Since $f, g \in B$, $f(x)^m = f(x^m) \pmod{p, x^r 1}$ and $g(x)^m = g(x^m) \pmod{p, x^r 1}$ for every $m \in A$.
- Therefore, $f(x^m) = g(x^m) \pmod{p, h(x)}$ for every $m \in A_0$.
- Since x is a primitive rth root of unity in F, we get |A₀| = t distinct roots of the polynomial f(y) − g(y) in F.
- Not possible since degree of f(y) g(y) is < t and F is a field.

RECALL

- Consider $f(x), g(x) \in B$, $f \neq g$ and both of degree < t.
- Suppose f(x) = g(x) in B_0 , i.e., $f(x) = g(x) \pmod{p, h(x)}$.
- Since $f, g \in B$, $f(x)^m = f(x^m) \pmod{p, x^r 1}$ and $g(x)^m = g(x^m) \pmod{p, x^r 1}$ for every $m \in A$.
- Therefore, $f(x^m) = g(x^m) \pmod{p, h(x)}$ for every $m \in A_0$.
- Since x is a primitive rth root of unity in F, we get $|A_0| = t$ distinct roots of the polynomial f(y) g(y) in F.
- Not possible since degree of f(y) g(y) is < t and F is a field.

RECALL

 $B_0 = \{g(x) \ (mod \ p, h(x)) \mid g(x) \in B\}$

- Consider $f(x), g(x) \in B$, $f \neq g$ and both of degree < t.
- Suppose f(x) = g(x) in B_0 , i.e., $f(x) = g(x) \pmod{p, h(x)}$.
- Since $f, g \in B$, $f(x)^m = f(x^m) \pmod{p, x^r 1}$ and $g(x)^m = g(x^m) \pmod{p, x^r 1}$ for every $m \in A$.
- Therefore, $f(x^m) = g(x^m) \pmod{p, h(x)}$ for every $m \in A_0$.
- Since x is a primitive rth root of unity in F, we get |A₀| = t distinct roots of the polynomial f(y) g(y) in F.
- Not possible since degree of f(y) g(y) is < t and F is a field.

34 / 39

RECALL $B_0 = \{g(x) \pmod{p, h(x)} \mid g(x) \in B\}$

- We have that every distinct polynomial of degree < t in B is a distinct element in B_0 .
- B has at least $2\sqrt{r} \log n$ polynomials of degree 1 and is closed under multiplication.
- The number of distinct polynomials of degree < t in B is more than $n^{2\sqrt{t}}$.
- Therefore,

 $n^{2\sqrt{t}} < T \le p^{r-1}.$

RECALL $B_0 = \{g(x) \pmod{p, h(x)} \mid g(x) \in B\}$

- We have that every distinct polynomial of degree < t in B is a distinct element in B_0 .
- *B* has at least $2\sqrt{r} \log n$ polynomials of degree 1 and is closed under multiplication.
- The number of distinct polynomials of degree < t in B is more than $n^{2\sqrt{t}}$.
- Therefore,

$$n^{2\sqrt{t}} < T \le p^{r-1}.$$

RECALL $B_0 = \{g(x) \pmod{p, h(x)} \mid g(x) \in B\}$

- We have that every distinct polynomial of degree < t in B is a distinct element in B_0 .
- *B* has at least $2\sqrt{r} \log n$ polynomials of degree 1 and is closed under multiplication.
- The number of distinct polynomials of degree < t in B is more than $n^{2\sqrt{t}}$.
- Therefore,

$$n^{2\sqrt{t}} < T \le p^{r-1}.$$

RECALL $B_0 = \{g(x) \pmod{p, h(x)} \mid g(x) \in B\}$

- We have that every distinct polynomial of degree < t in B is a distinct element in B_0 .
- *B* has at least $2\sqrt{r} \log n$ polynomials of degree 1 and is closed under multiplication.
- The number of distinct polynomials of degree < t in B is more than $n^{2\sqrt{t}}$.
- Therefore,

$$n^{2\sqrt{t}} < T \le p^{r-1}.$$

• Since $|A_0| = t$, there exist two pairs $(i,j) \neq (k,\ell)$, $i,j,k,\ell \leq \sqrt{t}$ such that

$$n^i \cdot p^j = n^k \cdot p^\ell \pmod{r}.$$

- Let $g(x) \in B_0$.
- We have:

$$g(x)^{n^{i} \cdot p^{j}} = g(x^{n^{i} \cdot p^{j}}) = g(x^{n^{k} \cdot p^{\ell}}) = g(x)^{n^{k} \cdot p^{\ell}} \pmod{p, h(x)}.$$

• Therefore, every $g(x) \in B_0$ is a root of the polynomial $y^{n^i \cdot p^j} - y^{n^k \cdot p^\ell}$.

• Since $|A_0| = t$, there exist two pairs $(i,j) \neq (k,\ell)$, $i,j,k,\ell \leq \sqrt{t}$ such that

$$n^i \cdot p^j = n^k \cdot p^\ell \pmod{r}.$$

- Let $g(x) \in B_0$.
- We have:

$$g(x)^{n^{i} \cdot p^{j}} = g(x^{n^{i} \cdot p^{j}}) = g(x^{n^{k} \cdot p^{\ell}}) = g(x)^{n^{k} \cdot p^{\ell}} \pmod{p, h(x)}.$$

• Therefore, every $g(x) \in B_0$ is a root of the polynomial $y^{n^i \cdot p^j} - y^{n^k \cdot p^\ell}$.

• Since $|A_0| = t$, there exist two pairs $(i, j) \neq (k, \ell)$, $i, j, k, \ell \leq \sqrt{t}$ such that

$$n^i \cdot p^j = n^k \cdot p^\ell \pmod{r}.$$

- Let $g(x) \in B_0$.
- We have:

$$g(x)^{n^{i} \cdot p^{j}} = g(x^{n^{i} \cdot p^{j}}) = g(x^{n^{k} \cdot p^{\ell}}) = g(x)^{n^{k} \cdot p^{\ell}} \pmod{p, h(x)}.$$

• Therefore, every $g(x) \in B_0$ is a root of the polynomial $y^{n^i \cdot p^j} - y^{n^k \cdot p^\ell}$.

36 / 39

- By the choice, $n^i \cdot p^j$, $n^k \cdot p^{\ell} \le n^{2\sqrt{t}}$.
- Since T > n^{2√t}, the polynomial y^{nⁱ.p^j} y^{n^k.p^ℓ} must be zero.
 This implies, nⁱ · p^j = n^k · p^ℓ.
- Since p is a prime, p divides n, and $(i,j) \neq (k,\ell)$, we get

$$n = p^c$$

for some c > 0.

- By the choice, $n^i \cdot p^j$, $n^k \cdot p^\ell \le n^{2\sqrt{t}}$.
- Since $T > n^{2\sqrt{t}}$, the polynomial $y^{n^i \cdot p^j} y^{n^k \cdot p^\ell}$ must be zero.
- This implies, $n^i \cdot p^j = n^k \cdot p^\ell$.
- Since p is a prime, p divides n, and $(i, j) \neq (k, \ell)$, we get

$$n = p^c$$

for some c > 0.

- By the choice, $n^i \cdot p^j$, $n^k \cdot p^\ell \le n^{2\sqrt{t}}$.
- Since $T > n^{2\sqrt{t}}$, the polynomial $y^{n^i \cdot p^j} y^{n^k \cdot p^{\ell}}$ must be zero.
- This implies, $n^i \cdot p^j = n^k \cdot p^\ell$.
- Since p is a prime, p divides n, and $(i, j) \neq (k, \ell)$, we get

$$n = p^c$$

for some c > 0.

- By the choice, $n^i \cdot p^j$, $n^k \cdot p^\ell \le n^{2\sqrt{t}}$.
- Since $T > n^{2\sqrt{t}}$, the polynomial $y^{n^i \cdot p^j} y^{n^k \cdot p^\ell}$ must be zero.
- This implies, $n^i \cdot p^j = n^k \cdot p^\ell$.
- Since p is a prime, p divides n, and $(i,j) \neq (k,\ell)$, we get

$$n = p^c$$

for some c > 0.

- By the choice, $n^i \cdot p^j$, $n^k \cdot p^\ell \le n^{2\sqrt{t}}$.
- Since $T > n^{2\sqrt{t}}$, the polynomial $y^{n^i \cdot p^j} y^{n^k \cdot p^{\ell}}$ must be zero.
- This implies, $n^i \cdot p^j = n^k \cdot p^\ell$.
- Since p is a prime, p divides n, and $(i,j) \neq (k,\ell)$, we get

$$n = p^c$$

for some c > 0.

• Number r is such that $O_r(n) > 4 \log^2 n$.

• It can be any prime not dividing the product

$$\prod_{i=1}^{4\log^2 n} (n^i - 1) < n^{16\log^4 n}.$$

• It follows that $r = O(\log^5 n)$.

- Number r is such that $O_r(n) > 4 \log^2 n$.
- It can be any prime not dividing the product

$$\prod_{i=1}^{4\log^2 n} (n^i - 1) < n^{16\log^4 n}.$$

• It follows that $r = O(\log^5 n)$.

- Number r is such that $O_r(n) > 4 \log^2 n$.
- It can be any prime not dividing the product

$$\prod_{i=1}^{4\log^2 n} (n^i - 1) < n^{16\log^4 n}.$$

• It follows that $r = O(\log^5 n)$.

TIME COMPLEXITY IMPROVEMENTS

- Lenstra and Pomerance (2003) further reduce the size of r to $O(\log^2 n)$ resulting in the time complexity of $O(\log^5 n)$ arithmetic operations.
- Bernstein (2003) reduced the time complexity to $O(\log^3 n)$ arithmetic operations at the cost of making it randomized.

TIME COMPLEXITY IMPROVEMENTS

- Lenstra and Pomerance (2003) further reduce the size of r to $O(\log^2 n)$ resulting in the time complexity of $O(\log^5 n)$ arithmetic operations.
- Bernstein (2003) reduced the time complexity to $O(\log^3 n)$ arithmetic operations at the cost of making it randomized.