IS *n* A PRIME NUMBER?

Manindra Agrawal

IIT Kanpur

March 27, 2006, Delft

MANINDRA AGRAWAL (IIT KANPUR)

IS **n** A PRIME NUMBER?

March 27, 2006, Delft

A 3 >

1 / 47

OVERVIEW

1 The Problem

- **2** Two Simple, and Slow, Methods
- **3** Modern Methods
- Algorithms Based on Factorization of Group Size
- 6 Algorithms Based on Fermat's Little Theorem
- 6 AN ALGORITHM OUTSIDE THE TWO THEMES

OUTLINE

1 The Problem

2 Two Simple, and Slow, Methods

Modern Methods

- Algorithms Based on Factorization of Group Size
- 5 Algorithms Based on Fermat's Little Theorem

Given a number *n*, decide if it is prime.

MANINDRA AGRAWAL (IIT KANPUR)

IS **n** A PRIME NUMBER?

A 3 1 A 3 1 March 27, 2006, Delft 4 / 47

< 🗇 🕨

Given a number *n*, decide if it is prime.

Easy: try dividing by all numbers less than *n*.

-

Given a number *n*, decide if it is prime efficiently.

Not so easy: several non-obvious methods have been found.

MANINDRA AGRAWAL (IIT KANPUR)

IS **n** A PRIME NUMBER?

<日 > < 三 > < 三 > 三 つへの March 27, 2006, DelFT 5 / 47

Given a number *n*, decide if it is prime efficiently.

Not so easy: several non-obvious methods have been found.

• There should exist an algorithm for solving the problem taking a polynomial in input size number of steps.

• For our problem, this means an algorithm taking $\log^{O(1)} n$ steps.

CAVEAT: An algorithm taking $\log^{12} n$ steps would be slower than an algorithm taking $\log^{\log \log \log n} n$ steps for all practical values of n!

- log is logarithm base 2.
- $O^{\sim}(\log^{c} n)$ stands for $O(\log^{c} n \log \log^{O(1)} n)$.

- There should exist an algorithm for solving the problem taking a polynomial in input size number of steps.
- For our problem, this means an algorithm taking $\log^{O(1)} n$ steps.

CAVEAT: An algorithm taking $\log^{12} n$ steps would be slower than an algorithm taking $\log^{\log \log \log n} n$ steps for all practical values of n!

- log is logarithm base 2.
- $O^{\sim}(\log^{c} n)$ stands for $O(\log^{c} n \log \log^{O(1)} n)$.

- There should exist an algorithm for solving the problem taking a polynomial in input size number of steps.
- For our problem, this means an algorithm taking $\log^{O(1)} n$ steps.

CAVEAT: An algorithm taking $\log^{12} n$ steps would be slower than an algorithm taking $\log^{\log \log \log n} n$ steps for all practical values of n!

- log is logarithm base 2.
- $O^{\sim}(\log^{c} n)$ stands for $O(\log^{c} n \log \log^{O(1)} n)$.

- There should exist an algorithm for solving the problem taking a polynomial in input size number of steps.
- For our problem, this means an algorithm taking $\log^{O(1)} n$ steps.

CAVEAT: An algorithm taking $\log^{12} n$ steps would be slower than an algorithm taking $\log^{\log \log \log n} n$ steps for all practical values of n!

- log is logarithm base 2.
- $O^{\sim}(\log^{c} n)$ stands for $O(\log^{c} n \log \log^{O(1)} n)$.

OUTLINE

2 Two Simple, and Slow, Methods

Modern Methods

- 4 Algorithms Based on Factorization of Group Size
- 5 Algorithms Based on Fermat's Little Theorem

The Sieve of Eratosthenes

Proposed by Eratosthenes (ca. 300 BCE).

- List all numbers from 2 to *n* in a sequence.
- Take the smallest uncrossed number from the sequence and cross out all its multiples.
- (a) If *n* is uncrossed when the smallest uncrossed number is greater than \sqrt{n} then *n* is prime otherwise composite.

TIME COMPLEXITY

- If *n* is prime, algorithm crosses out all the first \sqrt{n} numbers before giving the answer.
- So the number of steps needed is $\Omega(\sqrt{n})$.

TIME COMPLEXITY

- If *n* is prime, algorithm crosses out all the first \sqrt{n} numbers before giving the answer.
- So the number of steps needed is $\Omega(\sqrt{n})$.

WILSON'S THEOREM

Based on Wilson's theorem (1770).

Theorem

n is prime iff $(n-1)! = -1 \pmod{n}$.

- Computing $(n-1)! \pmod{n}$ naïvely requires $\Omega(n)$ steps.
- No significantly better method is known!

WILSON'S THEOREM

Based on Wilson's theorem (1770).

THEOREM

n is prime iff $(n-1)! = -1 \pmod{n}$.

- Computing $(n-1)! \pmod{n}$ naïvely requires $\Omega(n)$ steps.
- No significantly better method is known!

OUTLINE

The Problem

2) Two Simple, and Slow, Methods

3 Modern Methods

- Algorithms Based on Factorization of Group Size
- 5 Algorithms Based on Fermat's Little Theorem

FUNDAMENTAL IDEA

Nearly all the efficient algorithms for the problem use the following idea.

- Identify a finite group *G* related to number *n*.
- Design an efficiently testable property $P(\cdot)$ of the elements G such that P(e) has different values depending on whether n is prime.
- The element *e* is either from a small set (in deterministic algorithms) or a random element of *G* (in randomized algorithms).

FUNDAMENTAL IDEA

Nearly all the efficient algorithms for the problem use the following idea.

• Identify a finite group G related to number n.

• Design an efficiently testable property $P(\cdot)$ of the elements G such that P(e) has different values depending on whether n is prime.

• The element *e* is either from a small set (in deterministic algorithms) or a random element of *G* (in randomized algorithms).

Nearly all the efficient algorithms for the problem use the following idea.

- Identify a finite group G related to number n.
- Design an efficiently testable property $P(\cdot)$ of the elements G such that P(e) has different values depending on whether n is prime.
- The element *e* is either from a small set (in deterministic algorithms) or a random element of *G* (in randomized algorithms).

Nearly all the efficient algorithms for the problem use the following idea.

- Identify a finite group G related to number n.
- Design an efficiently testable property $P(\cdot)$ of the elements G such that P(e) has different values depending on whether n is prime.
- The element *e* is either from a small set (in deterministic algorithms) or a random element of *G* (in randomized algorithms).

GROUPS AND PROPERTIES

- The group *G* is often:
 - A subgroup of Z_n^* or $Z_n^*[\zeta]$ for an extension ring $Z_n[\zeta]$.
 - A subgroup of $E(Z_n)$, the set of points on an elliptic curve modulo n.
- The properties vary, but are from two broad themes.

GROUPS AND PROPERTIES

- The group *G* is often:
 - A subgroup of Z_n^* or $Z_n^*[\zeta]$ for an extension ring $Z_n[\zeta]$.
 - A subgroup of $E(Z_n)$, the set of points on an elliptic curve modulo n.
- The properties vary, but are from two broad themes.

GROUPS AND PROPERTIES

- The group *G* is often:
 - A subgroup of Z_n^* or $Z_n^*[\zeta]$ for an extension ring $Z_n[\zeta]$.
 - A subgroup of $E(Z_n)$, the set of points on an elliptic curve modulo n.
- The properties vary, but are from two broad themes.

THEME I: FACTORIZATION OF GROUP SIZE

- Compute a complete, or partial, factorization of the size of *G* assuming that *n* is prime.
- Use the knowledge of this factorization to design a suitable property.

THEME I: FACTORIZATION OF GROUP SIZE

- Compute a complete, or partial, factorization of the size of *G* assuming that *n* is prime.
- Use the knowledge of this factorization to design a suitable property.

THEME II: FERMAT'S LITTLE THEOREM

THEOREM (FERMAT, 1660S)

If n is prime then for every $e, e^n = e \pmod{n}$.

- Group $G = Z_n^*$ and property P is $P(e) \equiv e^n = e$ in G.
- This property of Z_n is not a sufficient test for primality of n.
- So try to extend this property to a neccessary and sufficient condition.

THEME II: FERMAT'S LITTLE THEOREM

THEOREM (FERMAT, 1660S)

If n is prime then for every $e, e^n = e \pmod{n}$.

- Group $G = Z_n^*$ and property P is $P(e) \equiv e^n = e$ in G.
- This property of Z_n is not a sufficient test for primality of n.
- So try to extend this property to a neccessary and sufficient condition.

OUTLINE

- 2 Two Simple, and Slow, Methods
- 3 Modern Methods

Algorithms Based on Factorization of Group Size

5 Algorithms Based on Fermat's Little Theorem

16 / 47

LUCAS THEOREM

THEOREM (E. LUCAS, 1891)

Let $n-1 = \prod_{i=1}^{t} p_i^{d_i}$ where p_i 's are distinct primes. n is prime iff there is an $e \in Z_n$ such that $e^{n-1} = 1$ and $gcd(e^{\frac{n-1}{p_i}} - 1, n) = 1$ for every $1 \le i \le t$.

- The theorem also holds for a random choice of e.
- We can choose $G = Z_n^*$ and P to be the property above.
- The test will be efficient only for numbers n such that n-1 is smooth.

LUCAS THEOREM

THEOREM (E. LUCAS, 1891)

Let $n-1 = \prod_{i=1}^{t} p_i^{d_i}$ where p_i 's are distinct primes. n is prime iff there is an $e \in Z_n$ such that $e^{n-1} = 1$ and $gcd(e^{\frac{n-1}{p_i}} - 1, n) = 1$ for every $1 \le i \le t$.

• The theorem also holds for a random choice of e.

- We can choose $G = Z_n^*$ and P to be the property above.
- The test will be efficient only for numbers n such that n-1 is smooth.

LUCAS THEOREM

THEOREM (E. LUCAS, 1891)

Let $n-1 = \prod_{i=1}^{t} p_i^{d_i}$ where p_i 's are distinct primes. n is prime iff there is an $e \in Z_n$ such that $e^{n-1} = 1$ and $gcd(e^{\frac{n-1}{p_i}} - 1, n) = 1$ for every $1 \le i \le t$.

- The theorem also holds for a random choice of e.
- We can choose $G = Z_n^*$ and P to be the property above.
- The test will be efficient only for numbers n such that n-1 is smooth.

LUCAS-LEHMER TEST

- G is a subgroup of $Z_n^*[\sqrt{3}]$ containing elements of order n+1.
- The property P is: $P(e) \equiv e^{\frac{n+1}{2}} = -1$ in $Z_n[\sqrt{3}]$.
- Works only for special Mersenne primes of the form $n = 2^p 1$, p prime.
- For such *n*'s, $n + 1 = 2^{p}$.
- The property needs to be tested only for $e = 2 + \sqrt{3}$.

LUCAS-LEHMER TEST

- G is a subgroup of $Z_n^*[\sqrt{3}]$ containing elements of order n+1.
- The property P is: $P(e) \equiv e^{\frac{n+1}{2}} = -1$ in $Z_n[\sqrt{3}]$.
- Works only for special Mersenne primes of the form $n = 2^p 1$, p prime.
- For such *n*'s, $n + 1 = 2^{p}$.
- The property needs to be tested only for $e = 2 + \sqrt{3}$.

LUCAS-LEHMER TEST

- G is a subgroup of $Z_n^*[\sqrt{3}]$ containing elements of order n+1.
- The property P is: $P(e) \equiv e^{\frac{n+1}{2}} = -1$ in $Z_n[\sqrt{3}]$.
- Works only for special Mersenne primes of the form $n = 2^p 1$, p prime.
- For such *n*'s, $n + 1 = 2^{p}$.
- The property needs to be tested only for $e = 2 + \sqrt{3}$.

TIME COMPLEXITY

• Raising $2 + \sqrt{3}$ to $\frac{n+1}{2}$ th power requires $O(\log n)$ multiplication operations in Z_n .

• Overall time complexity is $O^{\sim}(\log^2 n)$.

그는 소프는 그

TIME COMPLEXITY

- Raising $2 + \sqrt{3}$ to $\frac{n+1}{2}$ th power requires $O(\log n)$ multiplication operations in Z_n .
- Overall time complexity is $O^{\sim}(\log^2 n)$.

크 (크) 크

POCKLINGTON-LEHMER TEST

THEOREM (POCKLINGTON, 1914)

If there exists a e such that $e^{n-1} = 1 \pmod{n}$ and $gcd(e^{\frac{n-1}{p_j}} - 1, n) = 1$ for distinct primes p_1, p_2, \dots, p_t dividing n-1 then every prime factor of nhas the form $k \cdot \prod_{j=1}^{t} p_j + 1$.

Similar to Lucas's theorem.

- Let $G = Z_n^*$ and property *P* precisely as in the theorem.
- The property is tested for a random *e*.
- For the test to work, we need $\prod_{i=1}^{t} \ge \sqrt{n}$.

POCKLINGTON-LEHMER TEST

THEOREM (POCKLINGTON, 1914)

If there exists a *e* such that $e^{n-1} = 1 \pmod{n}$ and $gcd(e^{\frac{n-1}{p_j}} - 1, n) = 1$ for distinct primes p_1, p_2, \ldots, p_t dividing n-1 then every prime factor of *n* has the form $k \cdot \prod_{j=1}^{t} p_j + 1$.

- Similar to Lucas's theorem.
- Let $G = Z_n^*$ and property *P* precisely as in the theorem.
- The property is tested for a random *e*.

• For the test to work, we need $\prod_{i=1}^{t} \ge \sqrt{n}$.

MANINDRA AGRAWAL (IIT KANPUR)

IS **n** A PRIME NUMBER?

March 27, 2006, Delft 2

20 / 47

POCKLINGTON-LEHMER TEST

THEOREM (POCKLINGTON, 1914)

If there exists a *e* such that $e^{n-1} = 1 \pmod{n}$ and $gcd(e^{\frac{n-1}{p_j}} - 1, n) = 1$ for distinct primes p_1, p_2, \ldots, p_t dividing n-1 then every prime factor of *n* has the form $k \cdot \prod_{j=1}^{t} p_j + 1$.

- Similar to Lucas's theorem.
- Let $G = Z_n^*$ and property *P* precisely as in the theorem.
- The property is tested for a random *e*.
- For the test to work, we need $\prod_{i=1}^{t} \ge \sqrt{n}$.

20 / 47

TIME COMPLEXITY

- Depends on the difficulty of finding prime factorizations of n-1 whose product is at least \sqrt{n} .
- Other operations can be carried out efficiently.

TIME COMPLEXITY

- Depends on the difficulty of finding prime factorizations of n-1 whose product is at least \sqrt{n} .
- Other operations can be carried out efficiently.

Elliptic Curves Based Tests

- Elliptic curves give rise to groups of different sizes associated with the given number.
- With good probability, some of these groups have sizes that can be easily factored.
- This motivated primality testing based on elliptic curves.

Elliptic Curves Based Tests

- Elliptic curves give rise to groups of different sizes associated with the given number.
- With good probability, some of these groups have sizes that can be easily factored.
- This motivated primality testing based on elliptic curves.

Elliptic Curves Based Tests

- Elliptic curves give rise to groups of different sizes associated with the given number.
- With good probability, some of these groups have sizes that can be easily factored.
- This motivated primality testing based on elliptic curves.

• This is a randomized primality proving algorithm.

- Under a reasonable hypothesis, it is polynomial time on all inputs.
- Unconditionally, it is polynomial time on all but negligible fraction of numbers.

- This is a randomized primality proving algorithm.
- Under a reasonable hypothesis, it is polynomial time on all inputs.
- Unconditionally, it is polynomial time on all but negligible fraction of numbers.

- This is a randomized primality proving algorithm.
- Under a reasonable hypothesis, it is polynomial time on all inputs.
- Unconditionally, it is polynomial time on all but negligible fraction of numbers.

• Consider a random elliptic curve over Z_n .

- By a theorem of Lenstra (1987), the number of points of the curve is nearly uniformly distributed in the interval $[n + 1 2\sqrt{n}, n + 1 + 2\sqrt{n}]$ for prime *n*.
- Assuming a conjecture about the density of primes in small intervals, it follows that there are curves with 2q points, for q prime, with reasonable probability.

- Consider a random elliptic curve over Z_n .
- By a theorem of Lenstra (1987), the number of points of the curve is nearly uniformly distributed in the interval $[n + 1 2\sqrt{n}, n + 1 + 2\sqrt{n}]$ for prime *n*.
- Assuming a conjecture about the density of primes in small intervals, it follows that there are curves with 2q points, for q prime, with reasonable probability.

- Consider a random elliptic curve over Z_n .
- By a theorem of Lenstra (1987), the number of points of the curve is nearly uniformly distributed in the interval $[n + 1 2\sqrt{n}, n + 1 + 2\sqrt{n}]$ for prime *n*.
- Assuming a conjecture about the density of primes in small intervals, it follows that there are curves with 2*q* points, for *q* prime, with reasonable probability.

THEOREM (GOLDWASSER-KILIAN)

Suppose $E(Z_n)$ is an elliptic curve with 2q points. If q is prime and there exists $A \in E(Z_n) \neq O$ such that $q \cdot A = O$ then either n is provably prime or provably composite.

Proof.

- Let p be a prime factor of n with $p \leq \sqrt{n}$.
- We have $q \cdot A = O$ in $E(Z_p)$ as well.
- If A = O in $E(Z_p)$ then *n* can be factored.
- Otherwise, since q is prime, $|E(Z_p)| \ge q$.
- If $2q < n + 1 2\sqrt{n}$ then *n* must be composite.
- Otherwise, $p + 1 + 2\sqrt{p} > \frac{n}{2} \sqrt{n}$ which is not possible.

-

25 / 47

THEOREM (GOLDWASSER-KILIAN)

Suppose $E(Z_n)$ is an elliptic curve with 2q points. If q is prime and there exists $A \in E(Z_n) \neq O$ such that $q \cdot A = O$ then either n is provably prime or provably composite.

Proof.

- Let p be a prime factor of n with $p \le \sqrt{n}$.
- We have $q \cdot A = O$ in $E(Z_p)$ as well.
- If A = O in $E(Z_p)$ then *n* can be factored.
- Otherwise, since q is prime, $|E(Z_p)| \ge q$.
- If $2q < n + 1 2\sqrt{n}$ then *n* must be composite.
- Otherwise, $p + 1 + 2\sqrt{p} > \frac{n}{2} \sqrt{n}$ which is not possible.

-

25 / 47

THEOREM (GOLDWASSER-KILIAN)

Suppose $E(Z_n)$ is an elliptic curve with 2q points. If q is prime and there exists $A \in E(Z_n) \neq O$ such that $q \cdot A = O$ then either n is provably prime or provably composite.

Proof.

- Let *p* be a prime factor of *n* with $p \le \sqrt{n}$.
- We have $q \cdot A = O$ in $E(Z_p)$ as well.
- If A = O in $E(Z_p)$ then *n* can be factored.
- Otherwise, since q is prime, $|E(Z_p)| \ge q$.
- If $2q < n + 1 2\sqrt{n}$ then *n* must be composite.
- Otherwise, $p + 1 + 2\sqrt{p} > \frac{n}{2} \sqrt{n}$ which is not possible.

25 / 47

THEOREM (GOLDWASSER-KILIAN)

Suppose $E(Z_n)$ is an elliptic curve with 2q points. If q is prime and there exists $A \in E(Z_n) \neq O$ such that $q \cdot A = O$ then either n is provably prime or provably composite.

Proof.

- Let *p* be a prime factor of *n* with $p \le \sqrt{n}$.
- We have $q \cdot A = O$ in $E(Z_p)$ as well.
- If A = O in $E(Z_p)$ then *n* can be factored.
- Otherwise, since q is prime, $|E(Z_p)| \ge q$.
- If $2q < n + 1 2\sqrt{n}$ then *n* must be composite.
- Otherwise, $p + 1 + 2\sqrt{p} > \frac{n}{2} \sqrt{n}$ which is not possible.

25 / 47

• Find a random elliptic curve over Z_n with 2q points.

- Prove primality of q recursively.
- (i) Randomly select an A such that $q \cdot A = O$.
- Infer *n* to be prime or composite.

- Find a random elliptic curve over Z_n with 2q points.
- Prove primality of *q* recursively.
- Solution 8 Solution 8
- Infer *n* to be prime or composite.

- Find a random elliptic curve over Z_n with 2q points.
- Prove primality of *q* recursively.
- Solution Randomly select an A such that $q \cdot A = O$.
- Infer n to be prime or composite.

- Find a random elliptic curve over Z_n with 2q points.
- Prove primality of *q* recursively.
- Solution Randomly select an A such that $q \cdot A = O$.
- Infer n to be prime or composite.

• The algorithm never incorrectly classifies a composite number.

- With high probability it correctly classifies prime numbers.
- The running time is $O(\log^{11} n)$.
- Improvements by Atkin and others result in a conjectured running time of O[~](log⁴ n).

- The algorithm never incorrectly classifies a composite number.
- With high probability it correctly classifies prime numbers.
- The running time is $O(\log^{11} n)$.
- Improvements by Atkin and others result in a conjectured running time of O[~](log⁴ n).

- The algorithm never incorrectly classifies a composite number.
- With high probability it correctly classifies prime numbers.
- The running time is $O(\log^{11} n)$.
- Improvements by Atkin and others result in a conjectured running time of O[~](log⁴ n).

- The algorithm never incorrectly classifies a composite number.
- With high probability it correctly classifies prime numbers.
- The running time is $O(\log^{11} n)$.
- Improvements by Atkin and others result in a conjectured running time of O[~](log⁴ n).

Adleman-Huang Test

- The previous test is not unconditionally polynomial time on a small fraction of numbers.
- Adleman-Huang (1992) removed this drawback.
- They first used hyperelliptic curves to reduce the problem of testing for *n* to that of a nearly random integer of similar size.
- Then the previous test works with high probability.
- The time complexity becomes $O(\log^c n)$ for c > 30!

Adleman-Huang Test

- The previous test is not unconditionally polynomial time on a small fraction of numbers.
- Adleman-Huang (1992) removed this drawback.
- They first used hyperelliptic curves to reduce the problem of testing for *n* to that of a nearly random integer of similar size.
- Then the previous test works with high probability.
- The time complexity becomes $O(\log^c n)$ for c > 30!

Adleman-Huang Test

- The previous test is not unconditionally polynomial time on a small fraction of numbers.
- Adleman-Huang (1992) removed this drawback.
- They first used hyperelliptic curves to reduce the problem of testing for *n* to that of a nearly random integer of similar size.
- Then the previous test works with high probability.
- The time complexity becomes $O(\log^c n)$ for c > 30!

OUTLINE

The Problem

- 2) Two Simple, and Slow, Methods
- B Modern Methods
- Algorithms Based on Factorization of Group Size
- 6 Algorithms Based on Fermat's Little Theorem

29 / 47

A RESTATEMENT OF FLT

If n is odd prime then for every e, $1 \le e < n$, $e^{\frac{n-1}{2}} = \pm 1 \pmod{n}$.

When n is prime, e is a quadratic residue in Z_n iff e^{n-1/2} = 1 (mod n).
Therefore, if n is prime then

$$\left(\frac{e}{n}\right) = e^{\frac{n-1}{2}} \pmod{n}.$$

A RESTATEMENT OF FLT

If n is odd prime then for every e, $1 \le e < n$, $e^{\frac{n-1}{2}} = \pm 1 \pmod{n}$.

When n is prime, e is a quadratic residue in Z_n iff e^{n-1/2} = 1 (mod n).
Therefore, if n is prime then

$$\left(\frac{e}{n}\right) = e^{\frac{n-1}{2}} \pmod{n}.$$

A RESTATEMENT OF FLT

If n is odd prime then for every e, $1 \le e < n$, $e^{\frac{n-1}{2}} = \pm 1 \pmod{n}$.

- When *n* is prime, *e* is a quadratic residue in Z_n iff $e^{\frac{n-1}{2}} = 1 \pmod{n}$.
- Therefore, if *n* is prime then

$$\left(\frac{e}{n}\right) = e^{\frac{n-1}{2}} \pmod{n}.$$

• Proposed by Solovay and Strassen (1973).

- A randomized algorithm based on above property.
- Never incorrectly classifies primes and correctly classifies composites with probability at least ¹/₂.

- Proposed by Solovay and Strassen (1973).
- A randomized algorithm based on above property.
- Never incorrectly classifies primes and correctly classifies composites with probability at least ¹/₂.

- Proposed by Solovay and Strassen (1973).
- A randomized algorithm based on above property.
- Never incorrectly classifies primes and correctly classifies composites with probability at least ¹/₂.

If *n* is an exact power, it is composite.

For a random e in Z_n, test if

$$\left(\frac{e}{n}\right) = e^{\frac{n-1}{2}} \pmod{n}.$$

If yes, classify n as prime otherwise it is proven composite.

• The time complexity is $O^{\sim}(\log^2 n)$.

- If *n* is an exact power, it is composite.
- **2** For a random e in Z_n , test if

$$\left(\frac{e}{n}\right) = e^{\frac{n-1}{2}} \pmod{n}.$$

If yes, classify n as prime otherwise it is proven composite.

• The time complexity is $O^{\sim}(\log^2 n)$.

- If *n* is an exact power, it is composite.
- **2** For a random e in Z_n , test if

$$\left(\frac{e}{n}\right) = e^{\frac{n-1}{2}} \pmod{n}.$$

 \bigcirc If yes, classify *n* as prime otherwise it is proven composite.

• The time complexity is
$$O^{\sim}(\log^2 n)$$
.

- If *n* is an exact power, it is composite.
- **2** For a random e in Z_n , test if

$$\left(\frac{e}{n}\right) = e^{\frac{n-1}{2}} \pmod{n}.$$

If yes, classify *n* as prime otherwise it is proven composite.

• The time complexity is $O^{\sim}(\log^2 n)$.

- Consider the case when *n* is a product of two primes *p* and *q*.
- Let $a, b \in Z_p$, $c \in Z_q$ with a residue and b non-residue in Z_p .
- Clearly, $< a, c > \frac{n-1}{2} = < b, c > \frac{n-1}{2} \pmod{q}$.
- If $< a, c > \frac{n-1}{2} \neq < b, c > \frac{n-1}{2} \pmod{n}$ then one of them is not in $\{1, -1\}$ and so compositeness of n is proven.
- Otherwise, either

$$\left(\frac{\langle a,c\rangle}{n}\right)\neq \langle a,c\rangle^{\frac{n-1}{2}} \pmod{n},$$

or

$$\left(\frac{< b, c >}{n}\right) \neq < b, c >^{\frac{n-1}{2}} \pmod{n}.$$

- Consider the case when *n* is a product of two primes *p* and *q*.
- Let $a, b \in Z_p$, $c \in Z_q$ with a residue and b non-residue in Z_p .
- Clearly, $< a, c > \frac{n-1}{2} = < b, c > \frac{n-1}{2} \pmod{q}$.
- If $< a, c > \frac{n-1}{2} \neq < b, c > \frac{n-1}{2} \pmod{n}$ then one of them is not in $\{1, -1\}$ and so compositeness of n is proven.
- Otherwise, either

$$\left(\frac{\langle a,c\rangle}{n}\right)\neq \langle a,c\rangle^{\frac{n-1}{2}} \pmod{n},$$

or

$$\left(\frac{< b, c >}{n}\right) \neq < b, c >^{\frac{n-1}{2}} \pmod{n}.$$

- Consider the case when *n* is a product of two primes *p* and *q*.
- Let $a, b \in Z_p$, $c \in Z_q$ with a residue and b non-residue in Z_p .
- Clearly, $< a, c > \frac{n-1}{2} = < b, c > \frac{n-1}{2} \pmod{q}$.
- If $\langle a, c \rangle^{\frac{n-1}{2}} \neq \langle b, c \rangle^{\frac{n-1}{2}} \pmod{n}$ then one of them is not in $\{1, -1\}$ and so compositeness of n is proven.
- Otherwise, either

$$\left(\frac{\langle a,c\rangle}{n}\right) \neq \langle a,c\rangle^{\frac{n-1}{2}} \pmod{n},$$

or

$$\left(\frac{< b, c >}{n}\right) \neq < b, c >^{\frac{n-1}{2}} \pmod{n}.$$

- Consider the case when *n* is a product of two primes *p* and *q*.
- Let $a, b \in Z_p$, $c \in Z_q$ with a residue and b non-residue in Z_p .
- Clearly, $< a, c > \frac{n-1}{2} = < b, c > \frac{n-1}{2} \pmod{q}$.
- If $\langle a, c \rangle^{\frac{n-1}{2}} \neq \langle b, c \rangle^{\frac{n-1}{2}} \pmod{n}$ then one of them is not in $\{1, -1\}$ and so compositeness of *n* is proven.
- Otherwise, either

$$\left(rac{\langle a,c
angle}{n}
ight)
eq \langle a,c
angle^{rac{n-1}{2}} \pmod{n},$$

or

$$\left(\frac{< b, c >}{n}\right) \neq < b, c >^{\frac{n-1}{2}} \pmod{n}.$$

THEOREM (ANOTHER RESTATEMENT OF FLT)

If n is odd prime and $n = 1 + 2^{s} \cdot t$, t odd, then for every e, $1 \le e < n$, the sequence $e^{2^{s-1} \cdot t} \pmod{n}$, $e^{2^{s-2} \cdot t} \pmod{n}$, ..., $e^{t} \pmod{n}$ has either all 1's or a -1 somewhere.

- This theorem is the basis for Miller's test (1973).
- It is a deterministic polynomial time test.
- It is correct under Extended Riemann Hypothesis.

- This theorem is the basis for Miller's test (1973).
- It is a deterministic polynomial time test.
- It is correct under Extended Riemann Hypothesis.

- This theorem is the basis for Miller's test (1973).
- It is a deterministic polynomial time test.
- It is correct under Extended Riemann Hypothesis.

If n is an exact power, it is composite.

- So For each e, $1 < e \le 4 \log^2 n$, check if the sequence $e^{2^{s-1} \cdot t} \pmod{n}$, $e^{2^{s-2} \cdot t} \pmod{n}$, ..., $e^t \pmod{n}$ has either all 1's or a -1 somewhere.
- If yes, classify n as prime otherwise composite.
- The time complexity of the test is $O^{\sim}(\log^4 n)$.

- If n is an exact power, it is composite.
- For each e, 1 < e ≤ 4 log² n, check if the sequence e^{2^{s-1}⋅t} (mod n), e^{2^{s-2}⋅t} (mod n), ..., e^t (mod n) has either all 1's or a -1 somewhere.

If yes, classify n as prime otherwise composite.

• The time complexity of the test is $O^{\sim}(\log^4 n)$.

- If n is an exact power, it is composite.
- For each e, 1 < e ≤ 4 log² n, check if the sequence e^{2^{s-1}⋅t} (mod n), e^{2^{s-2}⋅t} (mod n), ..., e^t (mod n) has either all 1's or a −1 somewhere.
- If yes, classify *n* as prime otherwise composite.

• The time complexity of the test is $O^{\sim}(\log^4 n)$.

- If n is an exact power, it is composite.
- For each e, 1 < e ≤ 4 log² n, check if the sequence e^{2^{s-1}⋅t} (mod n), e^{2^{s-2}⋅t} (mod n), ..., e^t (mod n) has either all 1's or a -1 somewhere.
- If yes, classify *n* as prime otherwise composite.
- The time complexity of the test is $O^{\sim}(\log^4 n)$.

- A modification of Miller's algorithm proposed soon after (1974).
- Selects *e* randomly instead of trying all *e* in the range $[2, 4 \log^2 n]$.
- Randomized algorithm that never classfies primes incorrectly and correctly classifies composites with probability at least ³/₄.
- Time complexity is $O^{\sim}(\log^2 n)$.
- The most popular primality testing algorithm.

- A modification of Miller's algorithm proposed soon after (1974).
- Selects *e* randomly instead of trying all *e* in the range $[2, 4 \log^2 n]$.
- Randomized algorithm that never classfies primes incorrectly and correctly classifies composites with probability at least $\frac{3}{4}$.
- Time complexity is $O^{\sim}(\log^2 n)$.
- The most popular primality testing algorithm.

- A modification of Miller's algorithm proposed soon after (1974).
- Selects *e* randomly instead of trying all *e* in the range $[2, 4 \log^2 n]$.
- Randomized algorithm that never classfies primes incorrectly and correctly classifies composites with probability at least ³/₄.
- Time complexity is $O^{\sim}(\log^2 n)$.
- The most popular primality testing algorithm.

- A modification of Miller's algorithm proposed soon after (1974).
- Selects *e* randomly instead of trying all *e* in the range $[2, 4 \log^2 n]$.
- Randomized algorithm that never classfies primes incorrectly and correctly classifies composites with probability at least ³/₄.
- Time complexity is $O^{\sim}(\log^2 n)$.
- The most popular primality testing algorithm.

THEOREM (A GENERALIZATION OF FLT)

If n is prime then for every e, $1 \le e < n$, $(\zeta + e)^n = \zeta^n + e$ in $Z_n[\zeta]$, $\zeta^r = 1$.

- A test proposed in 2002 based on this generalization.
- The only known deterministic, unconditionally correct, polynomial time algorithm.

THEOREM (A GENERALIZATION OF FLT) If n is prime then for every e, $1 \le e < n$, $(\zeta + e)^n = \zeta^n + e$ in $Z_n[\zeta]$, $\zeta^r = 1$.

- A test proposed in 2002 based on this generalization.
- The only known deterministic, unconditionally correct, polynomial time algorithm.

THEOREM (A GENERALIZATION OF FLT) If n is prime then for every e, $1 \le e < n$, $(\zeta + e)^n = \zeta^n + e$ in $Z_n[\zeta]$, $\zeta^r = 1$.

- A test proposed in 2002 based on this generalization.
- The only known deterministic, unconditionally correct, polynomial time algorithm.

AKS TEST

- If *n* is an exact power or has a small divisor, it is composite.
- (a) Select a small number r carefully, let $\zeta^r = 1$ and consider $Z_n[\zeta]$.
- (i) For each e, $1 \le e \le 2\sqrt{r} \log n$, check if $(\zeta + e)^n = \zeta^n + e$ in $Z_n[\zeta]$.
- If yes, n is prime otherwise composite.

AKS TEST

- If *n* is an exact power or has a small divisor, it is composite.
- Select a small number r carefully, let $\zeta^r = 1$ and consider $Z_n[\zeta]$.
- (i) For each e, $1 \le e \le 2\sqrt{r} \log n$, check if $(\zeta + e)^n = \zeta^n + e$ in $Z_n[\zeta]$.
- If yes, *n* is prime otherwise composite.

AKS TEST

- If *n* is an exact power or has a small divisor, it is composite.
- Select a small number r carefully, let $\zeta^r = 1$ and consider $Z_n[\zeta]$.
- So For each e, $1 \le e \le 2\sqrt{r} \log n$, check if $(\zeta + e)^n = \zeta^n + e$ in $Z_n[\zeta]$.
- If yes, n is prime otherwise composite.

- If *n* is an exact power or has a small divisor, it is composite.
- Select a small number r carefully, let $\zeta^r = 1$ and consider $Z_n[\zeta]$.
- **3** For each e, $1 \le e \le 2\sqrt{r} \log n$, check if $(\zeta + e)^n = \zeta^n + e$ in $Z_n[\zeta]$.
- If yes, *n* is prime otherwise composite.

- Suppose *n* has at least two prime factors and let *p* be one of them.
- Let $S \subseteq Z_p[\zeta]$ such that for every element $f(\zeta) \in S$, $f\zeta)^n = f(\zeta^n)$ in $Z_p[\zeta]$.
- It follows that for every $f(\zeta) \in S$, $f(\zeta)^m = f(\zeta^m)$ for any m of the form $n^i \cdot p^j$.
- Since *n* is not a power of *p*, this places an upper bound on the size of *S*.
- If ζ + e ∈ S for every 1 ≤ e ≤ 2√r log n, then all their products are also in S.
- This makes the size of *S* bigger than the upper bound above.

- Suppose *n* has at least two prime factors and let *p* be one of them.
- Let $S \subseteq Z_p[\zeta]$ such that for every element $f(\zeta) \in S$, $f\zeta)^n = f(\zeta^n)$ in $Z_p[\zeta]$.
- It follows that for every $f(\zeta) \in S$, $f(\zeta)^m = f(\zeta^m)$ for any m of the form $n^i \cdot p^j$.
- Since *n* is not a power of *p*, this places an upper bound on the size of *S*.
- If ζ + e ∈ S for every 1 ≤ e ≤ 2√r log n, then all their products are also in S.
- This makes the size of *S* bigger than the upper bound above.

- Suppose *n* has at least two prime factors and let *p* be one of them.
- Let $S \subseteq Z_p[\zeta]$ such that for every element $f(\zeta) \in S$, $f\zeta)^n = f(\zeta^n)$ in $Z_p[\zeta]$.
- It follows that for every $f(\zeta) \in S$, $f(\zeta)^m = f(\zeta^m)$ for any *m* of the form $n^i \cdot p^j$.
- Since n is not a power of p, this places an upper bound on the size of S.
- If ζ + e ∈ S for every 1 ≤ e ≤ 2√r log n, then all their products are also in S.
- This makes the size of *S* bigger than the upper bound above.

- Suppose *n* has at least two prime factors and let *p* be one of them.
- Let $S \subseteq Z_p[\zeta]$ such that for every element $f(\zeta) \in S$, $f\zeta)^n = f(\zeta^n)$ in $Z_p[\zeta]$.
- It follows that for every $f(\zeta) \in S$, $f(\zeta)^m = f(\zeta^m)$ for any *m* of the form $n^i \cdot p^j$.
- Since n is not a power of p, this places an upper bound on the size of S.
- If $\zeta + e \in S$ for every $1 \le e \le 2\sqrt{r} \log n$, then all their products are also in *S*.
- This makes the size of S bigger than the upper bound above.

- Suppose *n* has at least two prime factors and let *p* be one of them.
- Let $S \subseteq Z_p[\zeta]$ such that for every element $f(\zeta) \in S$, $f\zeta)^n = f(\zeta^n)$ in $Z_p[\zeta]$.
- It follows that for every $f(\zeta) \in S$, $f(\zeta)^m = f(\zeta^m)$ for any *m* of the form $n^i \cdot p^j$.
- Since n is not a power of p, this places an upper bound on the size of S.
- If $\zeta + e \in S$ for every $1 \le e \le 2\sqrt{r} \log n$, then all their products are also in *S*.
- This makes the size of *S* bigger than the upper bound above.

TIME COMPLEXITY

• Number r is $O(\log^5 n)$.

- Time complexity of the algorithm is $O^{\sim}(\log^{12} n)$.
- An improvement by Hendrik Lenstra (2002) reduces the time complexity to O[~](log^{15/2} n).
- Lenstra and Pomerance (2003) further reduce the time complexity to $O^{\sim}(\log^6 n)$.
- Bernstein (2003) reduced the time complexity to O[~](log⁴ n) at the cost of making it randomized.

TIME COMPLEXITY

- Number *r* is $O(\log^5 n)$.
- Time complexity of the algorithm is $O^{\sim}(\log^{12} n)$.
- An improvement by Hendrik Lenstra (2002) reduces the time complexity to O[~](log^{15/2} n).
- Lenstra and Pomerance (2003) further reduce the time complexity to $O^{\sim}(\log^6 n)$.
- Bernstein (2003) reduced the time complexity to O[~](log⁴ n) at the cost of making it randomized.

TIME COMPLEXITY

- Number *r* is $O(\log^5 n)$.
- Time complexity of the algorithm is $O^{\sim}(\log^{12} n)$.
- An improvement by Hendrik Lenstra (2002) reduces the time complexity to O[~](log^{15/2} n).
- Lenstra and Pomerance (2003) further reduce the time complexity to $O^{\sim}(\log^6 n)$.
- Bernstein (2003) reduced the time complexity to O[~](log⁴ n) at the cost of making it randomized.

TIME COMPLEXITY

- Number *r* is $O(\log^5 n)$.
- Time complexity of the algorithm is $O^{\sim}(\log^{12} n)$.
- An improvement by Hendrik Lenstra (2002) reduces the time complexity to O[~](log^{15/2} n).
- Lenstra and Pomerance (2003) further reduce the time complexity to $O^{\sim}(\log^6 n)$.
- Bernstein (2003) reduced the time complexity to O[~](log⁴ n) at the cost of making it randomized.

TIME COMPLEXITY

- Number *r* is $O(\log^5 n)$.
- Time complexity of the algorithm is $O^{\sim}(\log^{12} n)$.
- An improvement by Hendrik Lenstra (2002) reduces the time complexity to O[~](log^{15/2} n).
- Lenstra and Pomerance (2003) further reduce the time complexity to $O^{\sim}(\log^6 n)$.
- Bernstein (2003) reduced the time complexity to O[~](log⁴ n) at the cost of making it randomized.

OUTLINE

D The Problem

- 2) Two Simple, and Slow, Methods
- 3 Modern Methods
- Algorithms Based on Factorization of Group Size
- Algorithms Based on Fermat's Little Theorem

6 AN ALGORITHM OUTSIDE THE TWO THEMES

- Proposed in 1980.
- Is conceptually the most complex algorithm of them all.
- Uses multiple groups, ideas derived from both themes, plus new ones!
- It is a deterministic algorithm with time complexity $\log^{O(\log \log \log \log n)} n$.
- Was speeded up by Cohen and Lenstra (1981).

- Proposed in 1980.
- Is conceptually the most complex algorithm of them all.
- Uses multiple groups, ideas derived from both themes, plus new ones!
- It is a deterministic algorithm with time complexity $\log^{O(\log \log \log n)} n$.
- Was speeded up by Cohen and Lenstra (1981).

- Proposed in 1980.
- Is conceptually the most complex algorithm of them all.
- Uses multiple groups, ideas derived from both themes, plus new ones!
- It is a deterministic algorithm with time complexity $\log^{O(\log \log \log n)} n$.
- Was speeded up by Cohen and Lenstra (1981).

- Proposed in 1980.
- Is conceptually the most complex algorithm of them all.
- Uses multiple groups, ideas derived from both themes, plus new ones!
- It is a deterministic algorithm with time complexity $\log^{O(\log \log \log n)} n$.
- Was speeded up by Cohen and Lenstra (1981).

• Tries to compute a factor of *n*.

- Let p be a factor of $n, p \leq \sqrt{n}$.
- Find two sets of primes $\{q_1, q_2, \ldots, q_t\}$ and $\{r_1, r_2, \ldots, r_u\}$ satisfying:
 - $\blacktriangleright \prod_{i=1}^{t} q_i = \log^{O(\log \log \log n)} n.$

- Tries to compute a factor of *n*.
- Let p be a factor of n, $p \leq \sqrt{n}$.
- Find two sets of primes $\{q_1, q_2, \ldots, q_t\}$ and $\{r_1, r_2, \ldots, r_u\}$ satisfying:
 - $\blacktriangleright \prod_{i=1}^{t} q_i = \log^{O(\log \log \log n)} n.$
 - For each j ≤ u, r_j − 1 is square-free and has only q_i's as prime divisors.
 ∏^u_i , r_i > √n.

- Tries to compute a factor of *n*.
- Let p be a factor of n, $p \leq \sqrt{n}$.
- Find two sets of primes $\{q_1, q_2, \dots, q_t\}$ and $\{r_1, r_2, \dots, r_u\}$ satisfying:
 - $\blacktriangleright \prod_{i=1}^{t} q_i = \log^{O(\log \log \log n)} n.$

- Tries to compute a factor of *n*.
- Let p be a factor of n, $p \leq \sqrt{n}$.
- Find two sets of primes $\{q_1, q_2, \ldots, q_t\}$ and $\{r_1, r_2, \ldots, r_u\}$ satisfying:
 - $\prod_{i=1}^{t} q_i = \log^{O(\log \log \log n)} n.$
 - For each j ≤ u, r_j − 1 is square-free and has only q_i's as prime divisors.
 ∏^u_{j=1} r_j > √n.

- Tries to compute a factor of *n*.
- Let p be a factor of n, $p \leq \sqrt{n}$.
- Find two sets of primes $\{q_1, q_2, \ldots, q_t\}$ and $\{r_1, r_2, \ldots, r_u\}$ satisfying:
 - $\prod_{i=1}^{t} q_i = \log^{O(\log \log \log n)} n.$
 - For each j ≤ u, r_j − 1 is square-free and has only q_i's as prime divisors.
 ∏^u_{j=1} r_j > √n.

- Tries to compute a factor of *n*.
- Let p be a factor of n, $p \le \sqrt{n}$.
- Find two sets of primes $\{q_1, q_2, \ldots, q_t\}$ and $\{r_1, r_2, \ldots, r_u\}$ satisfying:
 - $\prod_{i=1}^{t} q_i = \log^{O(\log \log \log n)} n.$
 - For each j ≤ u, r_j − 1 is square-free and has only q_i's as prime divisors.
 ∏^u_{i=1} r_j > √n.

• Let g_j be a generator for the group $F_{r_i}^*$.

- Let $p = g_j^{\gamma_j} \pmod{r_j}$ and $\gamma_j = \delta_{i,j} \pmod{q_i}$ for every $q_i \mid r_j 1$.
- Compute 'associated' primes $r_{j_i} \in \{r_1, r_2, \dots, r_u\}$ for each q_i .
- Cycle through all tuples $(\alpha_1, \alpha_2, \ldots, \alpha_t)$ with $0 \le \alpha_i < q_i$.
- From a given tuple $(\alpha_1, \alpha_2, \dots, \alpha_t)$, derive numbers $\beta_{i,j}$ for $1 \le i \le u, 1 \le i \le t$ and $q_i \mid r_i 1$ such that
 - ▶ If $p = g_{j_i}^{\alpha_i} \pmod{r_j}$ for every *j* then $\delta_{i,j} = \beta_{i,j}$ for every *j* and for every *i* with $q_i \mid r_j 1$.

- Let g_j be a generator for the group $F_{r_i}^*$.
- Let $p = g_j^{\gamma_j} \pmod{r_j}$ and $\gamma_j = \delta_{i,j} \pmod{q_i}$ for every $q_i \mid r_j 1$.
- Compute 'associated' primes $r_{j_i} \in \{r_1, r_2, \dots, r_u\}$ for each q_i .
- Cycle through all tuples $(\alpha_1, \alpha_2, \dots, \alpha_t)$ with $0 \le \alpha_i < q_i$.
- From a given tuple $(\alpha_1, \alpha_2, \dots, \alpha_t)$, derive numbers $\beta_{i,j}$ for $1 \le i \le u$, $1 \le i \le t$ and $a_i \mid r_i 1$ such that
 - ▶ If $p = g_{j_i}^{\alpha_i} \pmod{r_j}$ for every *j* then $\delta_{i,j} = \beta_{i,j}$ for every *j* and for every *i* with $q_i \mid r_j 1$.

- Let g_j be a generator for the group $F_{r_i}^*$.
- Let $p = g_j^{\gamma_j} \pmod{r_j}$ and $\gamma_j = \delta_{i,j} \pmod{q_i}$ for every $q_i \mid r_j 1$.
- Compute 'associated' primes $r_{j_i} \in \{r_1, r_2, \dots, r_u\}$ for each q_i .
- Cycle through all tuples $(\alpha_1, \alpha_2, \ldots, \alpha_t)$ with $0 \le \alpha_i < q_i$.
- From a given tuple (α₁, α₂,..., α_t), derive numbers β_{i,j} for 1 ≤ i ≤ u, 1 ≤ i ≤ t and q_i | r_i − 1 such that
 - ▶ If $p = g_{j_i}^{\alpha_i} \pmod{r_j}$ for every *j* then $\delta_{i,j} = \beta_{i,j}$ for every *j* and for every *i* with $q_i \mid r_j 1$.

- Let g_j be a generator for the group $F_{r_i}^*$.
- Let $p = g_j^{\gamma_j} \pmod{r_j}$ and $\gamma_j = \delta_{i,j} \pmod{q_i}$ for every $q_i \mid r_j 1$.
- Compute 'associated' primes $r_{j_i} \in \{r_1, r_2, \dots, r_u\}$ for each q_i .
- Cycle through all tuples $(\alpha_1, \alpha_2, \dots, \alpha_t)$ with $0 \le \alpha_i < q_i$.
- From a given tuple $(\alpha_1, \alpha_2, \dots, \alpha_t)$, derive numbers $\beta_{i,j}$ for $1 \le j \le u, 1 \le i \le t$ and $q_i \mid r_i 1$ such that
 - ▶ If $p = g_{j_i}^{\alpha_i} \pmod{r_j}$ for every *j* then $\delta_{i,j} = \beta_{i,j}$ for every *j* and for every *i* with $q_i \mid r_j 1$.

▲目▶▲目▶ 目 めぬゆ

- Let g_j be a generator for the group $F_{r_i}^*$.
- Let $p = g_j^{\gamma_j} \pmod{r_j}$ and $\gamma_j = \delta_{i,j} \pmod{q_i}$ for every $q_i \mid r_j 1$.
- Compute 'associated' primes $r_{j_i} \in \{r_1, r_2, \ldots, r_u\}$ for each q_i .
- Cycle through all tuples $(\alpha_1, \alpha_2, \dots, \alpha_t)$ with $0 \le \alpha_i < q_i$.
- From a given tuple $(\alpha_1, \alpha_2, ..., \alpha_t)$, derive numbers $\beta_{i,j}$ for $1 \le j \le u$, $1 \le i \le t$ and $q_i \mid r_i 1$ such that
 - If $p = g_{j_i}^{\alpha_i} \pmod{r_j}$ for every j then $\delta_{i,j} = \beta_{i,j}$ for every j and for every i with $q_i \mid r_j 1$.

▲目▶ ▲目▶ 目 のへの

• From $\delta_{i,j}$'s, p can be constructed easily:

- Use Chinese remaindering to compute γ_j 's from $\delta_{i,j}$'s.
- Use Chinese remaindering to compute $p \pmod{\prod_{i=1}^{u} r_i}$ from $g_i^{\gamma_j}$'s.
- Since $\prod_{i=1}^{u} r_i > \sqrt{n} \ge p$, the residue equals p.
- $\beta_{i,j}$'s are computed using higher reciprocity laws in extension rings $Z_n[\zeta_i]$, $\zeta_i^{q_i} = 1$.
- For most of the composite numbers, the algorithm will fail during computation of $\beta_{i,j}$'s.

• From $\delta_{i,j}$'s, *p* can be constructed easily:

- Use Chinese remaindering to compute γ_j 's from $\delta_{i,j}$'s.
- Use Chinese remaindering to compute $p \pmod{\prod_{i=1}^{u} r_i}$ from $g_i^{\gamma_j}$'s.
- Since $\prod_{i=1}^{u} r_i > \sqrt{n} \ge p$, the residue equals p.
- $\beta_{i,j}$'s are computed using higher reciprocity laws in extension rings $Z_n[\zeta_i]$, $\zeta_i^{q_i} = 1$.
- For most of the composite numbers, the algorithm will fail during computation of $\beta_{i,j}$'s.

• From $\delta_{i,j}$'s, *p* can be constructed easily:

- Use Chinese remaindering to compute γ_j 's from $\delta_{i,j}$'s.
- Use Chinese remaindering to compute $p \pmod{\prod_{i=1}^{u} r_i}$ from $g_i^{\gamma_j}$'s.
- Since $\prod_{j=1}^{u} r_j > \sqrt{n} \ge p$, the residue equals p.
- $\beta_{i,j}$'s are computed using higher reciprocity laws in extension rings $Z_n[\zeta_i]$, $\zeta_i^{q_i} = 1$.
- For most of the composite numbers, the algorithm will fail during computation of $\beta_{i,j}$'s.

- From $\delta_{i,j}$'s, *p* can be constructed easily:
 - Use Chinese remaindering to compute γ_j 's from $\delta_{i,j}$'s.
 - Use Chinese remaindering to compute $p \pmod{\prod_{i=1}^{u} r_i}$ from $g_i^{\gamma_j}$'s.
 - Since $\prod_{j=1}^{u} r_j > \sqrt{n} \ge p$, the residue equals p.
- $\beta_{i,j}$'s are computed using higher reciprocity laws in extension rings $Z_n[\zeta_i]$, $\zeta_i^{q_i} = 1$.
- For most of the composite numbers, the algorithm will fail during computation of $\beta_{i,j}$'s.

- From $\delta_{i,j}$'s, *p* can be constructed easily:
 - Use Chinese remaindering to compute γ_j 's from $\delta_{i,j}$'s.
 - Use Chinese remaindering to compute $p \pmod{\prod_{i=1}^{u} r_i}$ from $g_i^{\gamma_j}$'s.
 - Since $\prod_{j=1}^{u} r_j > \sqrt{n} \ge p$, the residue equals p.
- $\beta_{i,j}$'s are computed using higher reciprocity laws in extension rings $Z_n[\zeta_i], \zeta_i^{q_i} = 1.$
- For most of the composite numbers, the algorithm will fail during computation of $\beta_{i,j}$'s.

- From $\delta_{i,j}$'s, *p* can be constructed easily:
 - Use Chinese remaindering to compute γ_j 's from $\delta_{i,j}$'s.
 - Use Chinese remaindering to compute $p \pmod{\prod_{i=1}^{u} r_i}$ from $g_i^{\gamma_j}$'s.
 - Since $\prod_{j=1}^{u} r_j > \sqrt{n} \ge p$, the residue equals p.
- $\beta_{i,j}$'s are computed using higher reciprocity laws in extension rings $Z_n[\zeta_i], \zeta_i^{q_i} = 1.$
- For most of the composite numbers, the algorithm will fail during computation of β_{i,j}'s.

OUTSTANDING QUESTIONS

• Is there a 'practical', polynomial time deterministic primality test?

- Is there a 'practical', provably polynomial time, primality proving test?
- Are there radically different ways of testing primality efficiently?

OUTSTANDING QUESTIONS

- Is there a 'practical', polynomial time deterministic primality test?
- Is there a 'practical', provably polynomial time, primality proving test?
- Are there radically different ways of testing primality efficiently?

OUTSTANDING QUESTIONS

- Is there a 'practical', polynomial time deterministic primality test?
- Is there a 'practical', provably polynomial time, primality proving test?
- Are there radically different ways of testing primality efficiently?