Is n A Prime Number?

Manindra Agrawal

IIT Kanpur

March 27, 2006, Delft

Overview

(1) The Problem
(2) Two Simple, and Slow, Methods
(3) Modern Methods
(4) Algorithms Based on Factorization of Group Size
(5) Algorithms Based on Fermat's Little Theorem
(6) An Algorithm Outside the Two Themes

Outline

(1) The Problem

(2) Two Simple, and Slow, Methods
(3) Modern Methods

4 Algorithms Based on Factorization of Group Size

5 Algorithms Based on Fermat's Little Theorem
(6) An Algorithm Outside the Two Themes

The Problem

Given a number n, decide if it is prime.

Easy: try dividing by all numbers less than n.

The Problem

Given a number n, decide if it is prime.

Easy: try dividing by all numbers less than n.

The Problem

Given a number n, decide if it is prime efficiently. Not so easy: several non-obvious methods have been found.

The Problem

Given a number n, decide if it is prime efficiently.

Not so easy: several non-obvious methods have been found.

Efficiently Solving a Problem

- There should exist an algorithm for solving the problem taking a polynomial in input size number of steps.
- For our problem, this means an algorithm taking log ${ }^{(1)}$ n steps. An algorithm taking $\log ^{12} n$ steps would be slower than an
algorithm taking $\log \log ^{\log \log n} n$ steps for all practical values
of n !
- \log is logarithm base 2.
- $O^{\sim}\left(\log ^{c} n\right)$ stands for $O\left(\log ^{c} n \log \log O(1) n\right)$.

Efficiently Solving a Problem

- There should exist an algorithm for solving the problem taking a polynomial in input size number of steps.
- For our problem, this means an algorithm taking $\log ^{O(1)} n$ steps. CAVEAT: An algorithm taking $\log ^{12} n$ steps would be slower than an
- log is logarithm base 2.
- $O^{\sim}\left(\log ^{c} n\right)$ stands for $O\left(\log ^{c} n \log \log ^{O(1)} n\right)$.

Efficiently Solving a Problem

- There should exist an algorithm for solving the problem taking a polynomial in input size number of steps.
- For our problem, this means an algorithm taking $\log { }^{O(1)} n$ steps.

CAVEAT: An algorithm taking $\log ^{12} n$ steps would be slower than an algorithm taking $\log { }^{\log \log \log n} n$ steps for all practical values of n !

Efficiently Solving a Problem

- There should exist an algorithm for solving the problem taking a polynomial in input size number of steps.
- For our problem, this means an algorithm taking $\log ^{O(1)} n$ steps.

CAVEAT: An algorithm taking $\log ^{12} n$ steps would be slower than an algorithm taking $\log { }^{\log \log \log n} n$ steps for all practical values of n !

Notation:

- log is logarithm base 2.
- $O^{\sim}\left(\log ^{c} n\right)$ stands for $O\left(\log ^{c} n \log \log ^{O(1)} n\right)$.

Outline

(1) The Problem
(2) Two Simple, and Slow, Methods
(3) Modern Methods
(algorithms Based on Factorization of Group Size
© Algorithms Based on Fermat's Little Theorem
(6) An Algorithm Outside the Two Themes

The Sieve of Eratosthenes

Proposed by Eratosthenes (ca. 300 BCE).
(1) List all numbers from 2 to n in a sequence.
(2) Take the smallest uncrossed number from the sequence and cross out all its multiples.
(3) If n is uncrossed when the smallest uncrossed number is greater than \sqrt{n} then n is prime otherwise composite.

Time Complexity

- If n is prime, algorithm crosses out all the first \sqrt{n} numbers before giving the answer.
- So the number of steps needed is $\Omega(\sqrt{n})$.

Time Complexity

- If n is prime, algorithm crosses out all the first \sqrt{n} numbers before giving the answer.
- So the number of steps needed is $\Omega(\sqrt{n})$.

Wilson's Theorem

Based on Wilson's theorem (1770).

Theorem

n is prime iff $(n-1)!=-1(\bmod n)$.

- Computing $(n-1)$! $(\bmod n)$ naïvely requires $\Omega(n)$ steps.
- No significantly better method is known!

Wilson's Theorem

Based on Wilson's theorem (1770).

Theorem

n is prime iff $(n-1)!=-1(\bmod n)$.

- Computing $(n-1)$! $(\bmod n)$ naïvely requires $\Omega(n)$ steps.
- No significantly better method is known!

Outline

(1) The Problem
(2) Two Simple, and Slow, Methods
(3) Modern Methods
(1) Algorithms Based on Factorization of Group Size
© Algorithms Based on Fermat's Little Theorem
(6) An Algorithm Outside the Two Themes

Fundamental Idea

Nearly all the efficient algorithms for the problem use the following idea.

- Identify a finite group G related to number n.
- Design an efficienty testable property $P(\cdot)$ of the elements G such that $P(e)$ has different values depending on whether n is prime.
- The element e is either from a small set (in deterministic algorithms) or a random element of G (in randomized algorithms).

Fundamental Idea

Nearly all the efficient algorithms for the problem use the following idea.

- Identify a finite group G related to number n.
- Design an efficienty testable property $P(\cdot)$ of the elements G such that $P(e)$ has different values depending on whether n is prime.
- The element e is either from a small set (in deterministic algorithms) or a random element of G (in randomized algorithms).

Fundamental Idea

Nearly all the efficient algorithms for the problem use the following idea.

- Identify a finite group G related to number n.
- Design an efficienty testable property $P(\cdot)$ of the elements G such that $P(e)$ has different values depending on whether n is prime.
- The element e is either from a small set (in deterministic algorithms) or a random element of G (in randomized algorithms)

Fundamental Idea

Nearly all the efficient algorithms for the problem use the following idea.

- Identify a finite group G related to number n.
- Design an efficienty testable property $P(\cdot)$ of the elements G such that $P(e)$ has different values depending on whether n is prime.
- The element e is either from a small set (in deterministic algorithms) or a random element of G (in randomized algorithms).

Groups and Properties

- The group G is often:
- A subgroup of Z_{n}^{*} or $Z_{n}^{*}[\zeta]$ for an extension ring $Z_{n}[\zeta]$.
- The properties vary, but are from two broad themes.

Groups and Properties

- The group G is often:
- A subgroup of Z_{n}^{*} or $Z_{n}^{*}[\zeta]$ for an extension ring $Z_{n}[\zeta]$.
- A subgroup of $E\left(Z_{n}\right)$, the set of points on an elliptic curve modulo n.
- The properties vary, but are from two broad themes.

Groups and Properties

- The group G is often:
- A subgroup of Z_{n}^{*} or $Z_{n}^{*}[\zeta]$ for an extension ring $Z_{n}[\zeta]$.
- A subgroup of $E\left(Z_{n}\right)$, the set of points on an elliptic curve modulo n.
- The properties vary, but are from two broad themes.

Theme I: Factorization of Group Size

- Compute a complete, or partial, factorization of the size of G assuming that n is prime.
- Use the knowledge of this factorization to design a suitable property.

Theme I: Factorization of Group Size

- Compute a complete, or partial, factorization of the size of G assuming that n is prime.
- Use the knowledge of this factorization to design a suitable property.

Theme II: Fermat's Little Theorem

Theorem (Fermat, 1660s)
If n is prime then for every $e, e^{n}=e(\bmod n)$.

- Group $G=Z_{n}^{*}$ and property P is $P(e) \equiv e^{n}=e$ in G.
- This property of Z_{n} is not a sufficient test for primality of n.
- So try to extend this property to a neccessary and sufficient condition.

Theme II: Fermat's Little Theorem

Theorem (Fermat, 1660s)

If n is prime then for every $e, e^{n}=e(\bmod n)$.

- Group $G=Z_{n}^{*}$ and property P is $P(e) \equiv e^{n}=e$ in G.
- This property of Z_{n} is not a sufficient test for primality of n.
- So try to extend this property to a neccessary and sufficient condition.

Outline

(1) The Problem
(2) Two Simple, and Slow, Methods
(3) Modern Methods
(4) Algorithms Based on Factorization of Group Size
(5) Algorithms Based on Fermat's Little Theorem
(6) An Algorithm Outside the Two Themes

Lucas Theorem

Theorem (E. Lucas, 1891)

Let $n-1=\prod_{i=1}^{t} p_{i}^{d_{i}}$ where p_{i} 's are distinct primes. n is prime iff there is an $e \in Z_{n}$ such that $e^{n-1}=1$ and $\operatorname{gcd}\left(e^{\frac{n-1}{p_{i}}}-1, n\right)=1$ for every $1 \leq i \leq t$.

- The theorem also holds for a random choice of e.
- We can choose $G=Z_{n}^{*}$ and P to be the property above.
- The test will be efficient only for numbers n such that $n-1$ is smooth.

Lucas Theorem

Theorem (E. Lucas, 1891)

Let $n-1=\prod_{i=1}^{t} p_{i}^{d_{i}}$ where p_{i} 's are distinct primes. n is prime iff there is an $e \in Z_{n}$ such that $e^{n-1}=1$ and $\operatorname{gcd}\left(e^{\frac{n-1}{p_{i}}}-1, n\right)=1$ for every $1 \leq i \leq t$.

- The theorem also holds for a random choice of e.
- We can choose $G=Z_{n}^{*}$ and P to be the property above.
- The test will be efficient only for numbers n such that $n-1$ is smooth

Lucas Theorem

Theorem (E. Lucas, 1891)

Let $n-1=\prod_{i=1}^{t} p_{i}^{d_{i}}$ where p_{i} 's are distinct primes. n is prime iff there is an $e \in Z_{n}$ such that $e^{n-1}=1$ and $\operatorname{gcd}\left(e^{\frac{n-1}{p_{i}}}-1, n\right)=1$ for every $1 \leq i \leq t$.

- The theorem also holds for a random choice of e.
- We can choose $G=Z_{n}^{*}$ and P to be the property above.
- The test will be efficient only for numbers n such that $n-1$ is smooth.

Lucas-Lehmer Test

- G is a subgroup of $Z_{n}^{*}[\sqrt{3}]$ containing elements of order $n+1$.
- The property P is: $P(e) \equiv e^{\frac{n+1}{2}}=-1$ in $Z_{n}[\sqrt{3}]$.
- For such n's, $n+1=2^{p}$.
- The pronerty needs to be tested only for $e=2+\sqrt{ } 3$.

Lucas-Lehmer Test

- G is a subgroup of $Z_{n}^{*}[\sqrt{3}]$ containing elements of order $n+1$.
- The property P is: $P(e) \equiv e^{\frac{n+1}{2}}=-1$ in $Z_{n}[\sqrt{3}]$.
- Works only for special Mersenne primes of the form $n=2^{p}-1, p$ prime.
- For such n 's, $n+1=2^{p}$.
- The property needs to be tested only for $e=2+\sqrt{3}$.

Lucas-Lehmer Test

- G is a subgroup of $Z_{n}^{*}[\sqrt{3}]$ containing elements of order $n+1$.
- The property P is: $P(e) \equiv e^{\frac{n+1}{2}}=-1$ in $Z_{n}[\sqrt{3}]$.
- Works only for special Mersenne primes of the form $n=2^{p}-1, p$ prime.
- For such n 's, $n+1=2^{p}$.
- The property needs to be tested only for $e=2+\sqrt{3}$.

Time Complexity

- Raising $2+\sqrt{3}$ to $\frac{n+1}{2}$ th power requires $O(\log n)$ multiplication operations in Z_{n}.

Time Complexity

- Raising $2+\sqrt{3}$ to $\frac{n+1}{2}$ th power requires $O(\log n)$ multiplication operations in Z_{n}.
- Overall time complexity is $O^{\sim}\left(\log ^{2} n\right)$.

Pocklington-Lehmer Test

Theorem (Pocklington, 1914)

If there exists a e such that $e^{n-1}=1(\bmod n)$ and $\operatorname{gcd}\left(e^{\frac{n-1}{\rho_{j}}}-1, n\right)=1$ for distinct primes $p_{1}, p_{2}, \ldots, p_{t}$ dividing $n-1$ then every prime factor of n has the form $k \cdot \prod_{j=1}^{t} p_{j}+1$.

- Similar to Lucas's theorem.
- Let $G=Z_{n}^{*}$ and property P precisely as in the theorem.
- The property is tested for a random e.
- For the test to work, we need $\prod_{j=1}^{t} \geq \sqrt{n}$.

Pocklington-Lehmer Test

Theorem (Pocklington, 1914)

If there exists a e such that $e^{n-1}=1(\bmod n)$ and $\operatorname{gcd}\left(e^{\frac{n-1}{p_{j}}}-1, n\right)=1$ for distinct primes $p_{1}, p_{2}, \ldots, p_{t}$ dividing $n-1$ then every prime factor of n has the form $k \cdot \prod_{j=1}^{t} p_{j}+1$.

- Similar to Lucas's theorem.
- Let $G=Z_{n}^{*}$ and property P precisely as in the theorem.
- The property is tested for a random e.
- For the test to work, we need $\prod_{j=1}^{t} \geq \sqrt{n}$.

Pocklington-Lehmer Test

Theorem (Pocklington, 1914)

If there exists a e such that $e^{n-1}=1(\bmod n)$ and $\operatorname{gcd}\left(e^{\frac{n-1}{p_{j}}}-1, n\right)=1$ for distinct primes $p_{1}, p_{2}, \ldots, p_{t}$ dividing $n-1$ then every prime factor of n has the form $k \cdot \prod_{j=1}^{t} p_{j}+1$.

- Similar to Lucas's theorem.
- Let $G=Z_{n}^{*}$ and property P precisely as in the theorem.
- The property is tested for a random e.
- For the test to work, we need $\prod_{j=1}^{t} \geq \sqrt{n}$.

Time Complexity

- Depends on the difficulty of finding prime factorizations of $n-1$ whose product is at least \sqrt{n}.
- Other operations can be carried out efficiently.

Time Complexity

- Depends on the difficulty of finding prime factorizations of $n-1$ whose product is at least \sqrt{n}.
- Other operations can be carried out efficiently.

Elliptic Curves Based Tests

- Elliptic curves give rise to groups of different sizes associated with the given number.
- With good probability, some of these groups have sizes that can be easily factored.
- This motivated primality testing based on elliptic curves.

Elliptic Curves Based Tests

- Elliptic curves give rise to groups of different sizes associated with the given number.
- With good probability, some of these groups have sizes that can be easily factored.
- This motivated primality testing based on elliptic curves.

Elliptic Curves Based Tests

- Elliptic curves give rise to groups of different sizes associated with the given number.
- With good probability, some of these groups have sizes that can be easily factored.
- This motivated primality testing based on elliptic curves.

Goldwasser-Kilian Test

- This is a randomized primality proving algorithm.
- Under a reasonable hypothesis, it is polynomial time on all inputs.
- Unconditionally, it is polynomial time on all but negligible fraction of numbers.

Goldwasser-Kilian Test

- This is a randomized primality proving algorithm.
- Under a reasonable hypothesis, it is polynomial time on all inputs.
- Unconditionally, it is polynomial time on all but negligible fraction of numbers.

Goldwasser-Kilian Test

- This is a randomized primality proving algorithm.
- Under a reasonable hypothesis, it is polynomial time on all inputs.
- Unconditionally, it is polynomial time on all but negligible fraction of numbers.

Goldwasser-Kilian Test

- Consider a random elliptic curve over Z_{n}.
- By a theorem of Lenstra (1987), the number of points of the curve is nearly uniformly distributed in the interval $[n+1-2 \sqrt{n}, n+1+2 \sqrt{n}$] for prime n.
- Assuming a conjecture about the density of primes in small intervals, it follows that there are curves with $2 q$ points, for q prime, with reasonable probability.

Goldwasser-Kilian Test

- Consider a random elliptic curve over Z_{n}.
- By a theorem of Lenstra (1987), the number of points of the curve is nearly uniformly distributed in the interval $[n+1-2 \sqrt{n}, n+1+2 \sqrt{n}$] for prime n.
- Assuming a conjecture about the density of primes in small intervals, it follows that there are curves with $2 q$ points, for q prime, with reasonable probability.

Goldwasser-Kilian Test

- Consider a random elliptic curve over Z_{n}.
- By a theorem of Lenstra (1987), the number of points of the curve is nearly uniformly distributed in the interval $[n+1-2 \sqrt{n}, n+1+2 \sqrt{n}$] for prime n.
- Assuming a conjecture about the density of primes in small intervals, it follows that there are curves with $2 q$ points, for q prime, with reasonable probability.

Goldwasser-Kilian Test

Theorem (Goldwasser-Kilian)

Suppose $E\left(Z_{n}\right)$ is an elliptic curve with $2 q$ points. If q is prime and there exists $A \in E\left(Z_{n}\right) \neq O$ such that $q \cdot A=O$ then either n is provably prime or provably composite.

Proof.

- Let p be a prime factor of n with $p \leq \sqrt{n}$.
- We have $q \cdot A=O$ in $E\left(Z_{p}\right)$ as well
- If $A=O$ in $F\left(Z_{p}\right)$ then n can he factored
- Otherwise, since q is prime, $\left|E\left(Z_{p}\right)\right| \geq q$.
- If $2 q<n+1-2 \sqrt{n}$ then n must be composite.
- Otherwise $n+1+2 \sqrt{n}>\frac{n}{2}-\sqrt{n}$ which is not nossible.

Goldwasser-Kilian Test

Theorem (Goldwasser-Kilian)

Suppose $E\left(Z_{n}\right)$ is an elliptic curve with $2 q$ points. If q is prime and there exists $A \in E\left(Z_{n}\right) \neq O$ such that $q \cdot A=O$ then either n is provably prime or provably composite.

Proof.

- Let p be a prime factor of n with $p \leq \sqrt{n}$.
- We have $q \cdot A=O$ in $E\left(Z_{p}\right)$ as well.
- If $A=O$ in $E\left(Z_{p}\right)$ then n can be factored.
- Otherwise, since q is prime, $\left|E\left(Z_{p}\right)\right| \geq q$.
- If $2 q<n+1-2 \sqrt{n}$ then n must be composite.
- Otherwise, $p+1+2 \sqrt{p}>\frac{n}{2}-\sqrt{n}$ which is not possible.

Goldwasser-Kilian Test

Theorem (Goldwasser-Kilian)

Suppose $E\left(Z_{n}\right)$ is an elliptic curve with $2 q$ points. If q is prime and there exists $A \in E\left(Z_{n}\right) \neq O$ such that $q \cdot A=O$ then either n is provably prime or provably composite.

Proof.

- Let p be a prime factor of n with $p \leq \sqrt{n}$.
- We have $q \cdot A=O$ in $E\left(Z_{p}\right)$ as well.
- If $A=O$ in $E\left(Z_{p}\right)$ then n can be factored.
- Otherwise, since q is prime, $\left|E\left(Z_{p}\right)\right| \geq q$.

Goldwasser-Kilian Test

Theorem (Goldwasser-Kilian)

Suppose $E\left(Z_{n}\right)$ is an elliptic curve with $2 q$ points. If q is prime and there exists $A \in E\left(Z_{n}\right) \neq O$ such that $q \cdot A=O$ then either n is provably prime or provably composite.

Proof.

- Let p be a prime factor of n with $p \leq \sqrt{n}$.
- We have $q \cdot A=O$ in $E\left(Z_{p}\right)$ as well.
- If $A=O$ in $E\left(Z_{p}\right)$ then n can be factored.
- Otherwise, since q is prime, $\left|E\left(Z_{p}\right)\right| \geq q$.
- If $2 q<n+1-2 \sqrt{n}$ then n must be composite.
- Otherwise, $p+1+2 \sqrt{p}>\frac{n}{2}-\sqrt{n}$ which is not possible.

Goldwasser-Kilian Test

(1) Find a random elliptic curve over Z_{n} with $2 q$ points.
© Prove primality of q recursively.

- Randomly select an A such that $q \cdot A=O$.
(1) Infer n to be prime or composite.

Goldwasser-Kilian Test

(1) Find a random elliptic curve over Z_{n} with $2 q$ points.
(2) Prove primality of q recursively.
(2) Randomly select an A such that $q \cdot A=O$.
(1) Infer n to be prime or composite.

Goldwasser-Kilian Test

(1) Find a random elliptic curve over Z_{n} with $2 q$ points.
(2) Prove primality of q recursively.
(3) Randomly select an A such that $q \cdot A=O$.

- Infer n to be prime or composite.

Goldwasser-Kilian Test

(1) Find a random elliptic curve over Z_{n} with $2 q$ points.
(2) Prove primality of q recursively.
(3) Randomly select an A such that $q \cdot A=O$.
(1) Infer n to be prime or composite.

Analysis

- The algorithm never incorrectly classifies a composite number.
- With high probability it correctly classifies prime numbers.
- The running time is $O\left(\log ^{11} n\right)$.
- Improvements by Atkin and others result in a conjectured running time of $O^{\sim}\left(\log ^{4} n\right)$.

Analysis

- The algorithm never incorrectly classifies a composite number.
- With high probability it correctly classifies prime numbers.
- The running time is $O\left(\log ^{11} n\right)$.
- Improvements by Atkin and others result in a conjectured running time of $O^{\sim}\left(\log ^{4} n\right)$.

Analysis

- The algorithm never incorrectly classifies a composite number.
- With high probability it correctly classifies prime numbers.
- The running time is $O\left(\log ^{11} n\right)$.
- Improvements by Atkin and others result in a conjectured running time of $O^{\sim}\left(\log ^{4} n\right)$.

Analysis

- The algorithm never incorrectly classifies a composite number.
- With high probability it correctly classifies prime numbers.
- The running time is $O\left(\log ^{11} n\right)$.
- Improvements by Atkin and others result in a conjectured running time of $O^{\sim}\left(\log ^{4} n\right)$.

Adleman-Huang Test

- The previous test is not unconditionally polynomial time on a small fraction of numbers.
- Adleman-Huang (1992) removed this drawback.
- They first used hyperelliptic curves to reduce the problem of testing for n to that of a nearly random integer of similar size.
- Then the previous test works with high probability.
- The time complexity becomes $O\left(\log ^{c} n\right)$ for $c>30$!

Adleman-Huang Test

- The previous test is not unconditionally polynomial time on a small fraction of numbers.
- Adleman-Huang (1992) removed this drawback.
- They first used hyperelliptic curves to reduce the problem of testing for n to that of a nearly random integer of similar size.
- Then the previous test works with high probability.
- The time complexity becomes $O\left(\log ^{c} n\right)$ for $c>30$!

Adleman-Huang Test

- The previous test is not unconditionally polynomial time on a small fraction of numbers.
- Adleman-Huang (1992) removed this drawback.
- They first used hyperelliptic curves to reduce the problem of testing for n to that of a nearly random integer of similar size.
- Then the previous test works with high probability.
- The time complexity becomes $O\left(\log ^{c} n\right)$ for $c>30$!

Outline

(1) The Problem
(2) Two Simple, and Slow, Methods
(3) Modern Methods
© Algorithms Based on Factorization of Group Size
(5) Algorithms Based on Fermat's Little Theorem
(C) An Algorithm Outside the Two Themes

Solovay-Strassen Test

A Restatement of FLT
If n is odd prime then for every $e, 1 \leq e<n, e^{\frac{n-1}{2}}= \pm 1(\bmod n)$.
> - Therefore, if n is prime then

$$
\left(\frac{e}{n}\right)=e^{\frac{n-1}{2}}(\bmod n) .
$$

Solovay-Strassen Test

A Restatement of FLT

If n is odd prime then for every $e, 1 \leq e<n, e^{\frac{n-1}{2}}= \pm 1(\bmod n)$.

- When n is prime, e is a quadratic residue in Z_{n} iff $e^{\frac{n-1}{2}}=1(\bmod n)$.
- Therefore, if n is prime then

Solovay-Strassen Test

A Restatement of FLT

If n is odd prime then for every $e, 1 \leq e<n, e^{\frac{n-1}{2}}= \pm 1(\bmod n)$.

- When n is prime, e is a quadratic residue in Z_{n} iff $e^{\frac{n-1}{2}}=1(\bmod n)$.
- Therefore, if n is prime then

$$
\left(\frac{e}{n}\right)=e^{\frac{n-1}{2}}(\bmod n) .
$$

Solovay-Strassen Test

- Proposed by Solovay and Strassen (1973).
- A randomized algorithm based on above property.
- Never incorrectly classifies primes and correctly classifies composites with probability at least $\frac{1}{2}$

Solovay-Strassen Test

- Proposed by Solovay and Strassen (1973).
- A randomized algorithm based on above property.
- Never incorrectly classifies primes and correctly classifies composites with probability at least $\frac{1}{2}$

Solovay-Strassen Test

- Proposed by Solovay and Strassen (1973).
- A randomized algorithm based on above property.
- Never incorrectly classifies primes and correctly classifies composites with probability at least $\frac{1}{2}$.

Solovay-Strassen Test

(-) If n is an exact power, it is composite.
(2) For a random e in Z_{n}, test if

$$
\left(\frac{e}{n}\right)=e^{\frac{n-1}{2}}(\bmod n)
$$

(3) If yes, classify n as prime otherwise it is proven composite.

- The time complexity is $O^{\sim}\left(\log ^{2} n\right)$.

Solovay-Strassen Test

(1) If n is an exact power, it is composite.
(2) For a random e in Z_{n}, test if

$$
\left(\frac{e}{n}\right)=e^{\frac{n-1}{2}}(\bmod n) .
$$

- If yes, classify n as prime otherwise it is proven composite.
- The time complexity is $O^{\sim}\left(\log ^{2} n\right)$.

Solovay-Strassen Test

(1) If n is an exact power, it is composite.
(2) For a random e in Z_{n}, test if

$$
\left(\frac{e}{n}\right)=e^{\frac{n-1}{2}}(\bmod n)
$$

(3) If yes, classify n as prime otherwise it is proven composite.

- The time complexity is $O^{\sim}\left(\log ^{2} n\right)$.

Solovay-Strassen Test

(1) If n is an exact power, it is composite.
(2) For a random e in Z_{n}, test if

$$
\left(\frac{e}{n}\right)=e^{\frac{n-1}{2}}(\bmod n) .
$$

- If yes, classify n as prime otherwise it is proven composite.
- The time complexity is $O^{\sim}\left(\log ^{2} n\right)$.

Analysis

- Consider the case when n is a product of two primes p and q.
- Let $a, b \in Z_{p}, c \in Z_{q}$ with a residue and b non-residue in Z_{p}.
- Clearly, $\langle a, c\rangle^{\frac{n-1}{2}}=\langle b, c\rangle^{\frac{n-1}{2}}(\bmod q)$.
- If $\langle a, c\rangle \frac{n-1}{2} \neq\langle b, c\rangle^{\frac{n-1}{2}}(\bmod n)$ then one of them is not in $\{1,-1\}$ and so compositeness of n is proven.
- Otherwise, either

Analysis

- Consider the case when n is a product of two primes p and q. - Let $a, b \in Z_{p}, c \in Z_{q}$ with a residue and b non-residue in Z_{p}.

- If $\left.\langle a, c\rangle^{\frac{n-1}{2}} \neq<b, c\right\rangle^{\frac{n-1}{2}}(\bmod n)$ then one of them is not in $\{1,-1\}$ and so compositeness of n is proven.
- Otherwise, either

Analysis

- Consider the case when n is a product of two primes p and q.
- Let $a, b \in Z_{p}, c \in Z_{q}$ with a residue and b non-residue in Z_{p}.
- Clearly, $\left\langle a, c>^{\frac{n-1}{2}}=<b, c>^{\frac{n-1}{2}}(\bmod q)\right.$.
- If $<a, c>\frac{n-1}{2} \neq<b, c>^{\frac{n-1}{2}}(\bmod n)$ then one of them is not in $\{1,-1\}$ and so compositeness of n is proven.
- Otherwise, either

Analysis

- Consider the case when n is a product of two primes p and q.
- Let $a, b \in Z_{p}, c \in Z_{q}$ with a residue and b non-residue in Z_{p}.
- Clearly, $\left\langle a, c>^{\frac{n-1}{2}}=<b, c>^{\frac{n-1}{2}}(\bmod q)\right.$.
- If $<a, c>\frac{n-1}{2} \neq<b, c>^{\frac{n-1}{2}}(\bmod n)$ then one of them is not in $\{1,-1\}$ and so compositeness of n is proven.
- Otherwise, either

$$
\left(\frac{<a, c>}{n}\right) \neq<a, c>^{\frac{n-1}{2}}(\bmod n)
$$

or

$$
\left(\frac{<b, c>}{n}\right) \neq<b, c>^{\frac{n-1}{2}}(\bmod n) .
$$

Miller's Test

Theorem (Another Restatement of FLT)

If n is odd prime and $n=1+2^{s} \cdot t, t$ odd, then for every $e, 1 \leq e<n$, the sequence $e^{2^{s-1} \cdot t}(\bmod n), e^{2^{s-2} \cdot t}(\bmod n), \ldots, e^{t}(\bmod n)$ has either all 1's or a -1 somewhere.

Miller's Test

- This theorem is the basis for Miller's test (1973).
- It is a deterministic polynomial time test.
- It is correct under Extended Riemann Hypothesis.

Miller's Test

- This theorem is the basis for Miller's test (1973).
- It is a deterministic polynomial time test.
- It is correct under Extended Riemann Hypothesis.

Miller's Test

- This theorem is the basis for Miller's test (1973).
- It is a deterministic polynomial time test.
- It is correct under Extended Riemann Hypothesis.

Miller's Test

(1) If n is an exact power, it is composite.
(2) For each $e, 1<e \leq 4 \log ^{2} n$, check if the sequence $e^{2^{s-1} \cdot t}(\bmod n)$, $e^{2^{s-2} \cdot t}(\bmod n), \ldots, e^{t}(\bmod n)$ has either all 1 's or a -1 somewhere.
(3) If yes, classify n as prime otherwise comnosite.

- The time complexity of the test is $O^{\sim}\left(\log ^{4} n\right)$.

Miller's Test

(1) If n is an exact power, it is composite.
(2) For each $e, 1<e \leq 4 \log ^{2} n$, check if the sequence $e^{2^{s-1} \cdot t}(\bmod n)$, $e^{2^{s-2} \cdot t}(\bmod n), \ldots, e^{t}(\bmod n)$ has either all 1 's or a -1 somewhere.

- The time complexity of the test is $O^{\sim}\left(\log ^{4} n\right)$.

Miller's Test

(1) If n is an exact power, it is composite.
(2) For each $e, 1<e \leq 4 \log ^{2} n$, check if the sequence $e^{2^{s-1} \cdot t}(\bmod n)$, $e^{2^{s-2} \cdot t}(\bmod n), \ldots, e^{t}(\bmod n)$ has either all 1 's or a -1 somewhere.
(3) If yes, classify n as prime otherwise composite.

- The time complexity of the test is $O^{\sim}\left(\log ^{4} n\right)$.

Miller's Test

(1) If n is an exact power, it is composite.
(2) For each $e, 1<e \leq 4 \log ^{2} n$, check if the sequence $e^{2^{s-1} \cdot t}(\bmod n)$, $e^{2^{s-2} \cdot t}(\bmod n), \ldots, e^{t}(\bmod n)$ has either all 1 's or a -1 somewhere.
(3) If yes, classify n as prime otherwise composite.

- The time complexity of the test is $O^{\sim}\left(\log ^{4} n\right)$.

Rabin's Test

- A modification of Miller's algorithm proposed soon after (1974).
- Selects e randomly instead of trying all e in the range $\left[2,4 \log ^{2} n\right]$.
- Randomized algorithm that never classfies primes incorrectly and correctly classifies composites with probabilty at least $\frac{3}{4}$.
- Time complexity is $O^{\sim}\left(\log ^{2} n\right)$.
- The most popular primality testing algorithm.

Rabin's Test

- A modification of Miller's algorithm proposed soon after (1974).
- Selects e randomly instead of trying all e in the range $\left[2,4 \log ^{2} n\right]$.
- Randomized algorithm that never classfies primes incorrectly and correctly classifies composites with probabilty at least $\frac{3}{4}$.

Rabin's Test

- A modification of Miller's algorithm proposed soon after (1974).
- Selects e randomly instead of trying all e in the range $\left[2,4 \log ^{2} n\right]$.
- Randomized algorithm that never classfies primes incorrectly and correctly classifies composites with probabilty at least $\frac{3}{4}$.
- Time complexity is $O^{\sim}\left(\log ^{2} n\right)$.
- The most popular primality testing algorithm.

Rabin's Test

- A modification of Miller's algorithm proposed soon after (1974).
- Selects e randomly instead of trying all e in the range $\left[2,4 \log ^{2} n\right]$.
- Randomized algorithm that never classfies primes incorrectly and correctly classifies composites with probabilty at least $\frac{3}{4}$.
- Time complexity is $O^{\sim}\left(\log ^{2} n\right)$.
- The most popular primality testing algorithm.

AKS Test

Theorem (A Generalization of FLT)
If n is prime then for every $e, 1 \leq e<n,(\zeta+e)^{n}=\zeta^{n}+e$ in $Z_{n}[\zeta]$, $\zeta^{r}=1$.

- A test proposed in 2002 based on this generalization.
- The only known deterministic, unconditionally correct, polynomial time algorithm.

AKS Test

Theorem (A Generalization of FLT)

If n is prime then for every $e, 1 \leq e<n,(\zeta+e)^{n}=\zeta^{n}+e$ in $Z_{n}[\zeta]$, $\zeta^{r}=1$.

- A test proposed in 2002 based on this generalization.
- The only known deterministic, unconditionally correct, polynomial time algorithm.

AKS Test

Theorem (A Generalization of FLT)

If n is prime then for every $e, 1 \leq e<n,(\zeta+e)^{n}=\zeta^{n}+e$ in $Z_{n}[\zeta]$, $\zeta^{r}=1$.

- A test proposed in 2002 based on this generalization.
- The only known deterministic, unconditionally correct, polynomial time algorithm.

AKS Test

(1) If n is an exact power or has a small divisor, it is composite.
© Select a small number r carefully, let $\zeta^{r}=1$ and consider $Z_{n}[\zeta]$.

- For each $e, 1 \leq e \leq 2 \sqrt{r} \log n$, check if $(\zeta+e)^{n}=\zeta^{n}+e$ in $Z_{n}[\zeta]$.
- If yes, n is prime otherwise composite.

AKS Test

(1) If n is an exact power or has a small divisor, it is composite.
(0) Select a small number r carefully, let $\zeta^{r}=1$ and consider $Z_{n}[\zeta]$. - For each $e, 1 \leq e \leq 2 \sqrt{r} \log n$, check if $(\zeta+e)^{n}=\zeta^{n}+e$ in $Z_{n}[\zeta]$. (1) If yes, n is prime otherwise composite.

AKS Test

(1) If n is an exact power or has a small divisor, it is composite.
(2) Select a small number r carefully, let $\zeta^{r}=1$ and consider $Z_{n}[\zeta]$.
(3) For each $e, 1 \leq e \leq 2 \sqrt{r} \log n$, check if $(\zeta+e)^{n}=\zeta^{n}+e$ in $Z_{n}[\zeta]$. - If yes, n is prime otherwise composite.

AKS Test

(1) If n is an exact power or has a small divisor, it is composite.
(2) Select a small number r carefully, let $\zeta^{r}=1$ and consider $Z_{n}[\zeta]$.
(3) For each $e, 1 \leq e \leq 2 \sqrt{r} \log n$, check if $(\zeta+e)^{n}=\zeta^{n}+e$ in $Z_{n}[\zeta]$.
(9) If yes, n is prime otherwise composite.

Analysis

- Suppose n has at least two prime factors and let p be one of them.
- Let $S \subseteq Z_{p}[\zeta]$ such that for every element $\left.f(\zeta) \in S, f \zeta\right)^{n}=f\left(\zeta^{n}\right)$ in $Z_{p}[\zeta]$.
- It follows that for every $f(\zeta) \in S, f(\zeta)^{m}=f\left(\zeta^{m}\right)$ for any m of the form $n^{i} \cdot p^{j}$.
- Since n is not a power of p, this places an upper bound on the size of S.
- If $\zeta+e \in S$ for every $1 \leq e \leq 2 \sqrt{r} \log n$, then all their products are also in S.
- This makes the size of S bigger than the upper bound above.

Analysis

- Suppose n has at least two prime factors and let p be one of them.
- Let $S \subseteq Z_{p}[\zeta]$ such that for every element $\left.f(\zeta) \in S, f \zeta\right)^{n}=f\left(\zeta^{n}\right)$ in $Z_{p}[\zeta]$.
- It follows that for every $f(\zeta) \in S, f(\zeta)^{m}=f\left(\zeta^{m}\right)$ for any m of the form $n^{i} \cdot p^{j}$.
- Since n is not a power of p, this places an upper bound on the size of S.
- If $\zeta+e \in S$ for every $1 \leq e \leq 2 \sqrt{r} \log n$, then all their products are
- This makes the size of S bigger than the upper bound above.

Analysis

- Suppose n has at least two prime factors and let p be one of them.
- Let $S \subseteq Z_{p}[\zeta]$ such that for every element $\left.f(\zeta) \in S, f \zeta\right)^{n}=f\left(\zeta^{n}\right)$ in $Z_{p}[\zeta]$.
- It follows that for every $f(\zeta) \in S, f(\zeta)^{m}=f\left(\zeta^{m}\right)$ for any m of the form $n^{i} \cdot p^{j}$.
- Since n is not a power of p, this places an upper bound on the size of S.
- This makes the size of S bigger than the upper bound above.

Analysis

- Suppose n has at least two prime factors and let p be one of them.
- Let $S \subseteq Z_{p}[\zeta]$ such that for every element $\left.f(\zeta) \in S, f \zeta\right)^{n}=f\left(\zeta^{n}\right)$ in $Z_{p}[\zeta]$.
- It follows that for every $f(\zeta) \in S, f(\zeta)^{m}=f\left(\zeta^{m}\right)$ for any m of the form $n^{i} \cdot p^{j}$.
- Since n is not a power of p, this places an upper bound on the size of S.
- If $\zeta+e \in S$ for every $1 \leq e \leq 2 \sqrt{r} \log n$, then all their products are also in S.
- This makes the size of S bigger than the upper bound above.

Analysis

- Suppose n has at least two prime factors and let p be one of them.
- Let $S \subseteq Z_{p}[\zeta]$ such that for every element $\left.f(\zeta) \in S, f \zeta\right)^{n}=f\left(\zeta^{n}\right)$ in $Z_{p}[\zeta]$.
- It follows that for every $f(\zeta) \in S, f(\zeta)^{m}=f\left(\zeta^{m}\right)$ for any m of the form $n^{i} \cdot p^{j}$.
- Since n is not a power of p, this places an upper bound on the size of S.
- If $\zeta+e \in S$ for every $1 \leq e \leq 2 \sqrt{r} \log n$, then all their products are also in S.
- This makes the size of S bigger than the upper bound above.

Time Complexity

- Number r is $O\left(\log ^{5} n\right)$.
- Time complexity of the algorithm is $O^{\sim}\left(\log ^{12} n\right)$.
- An improvement by Hendrik Lenstra (2002) reduces the time complexity to $O^{\sim}\left(\log ^{15 / 2} n\right)$.
- Lenstra and Pomerance (2003) further reduce the time complexity to $O^{\sim}\left(\log ^{6} n\right)$.
- Bernstein (2003) reduced the time complexity to $O^{\sim}\left(\log ^{4} n\right)$ at the cost of making it randomized.

Time Complexity

- Number r is $O\left(\log ^{5} n\right)$.
- Time complexity of the algorithm is $O^{\sim}\left(\log ^{12} n\right)$.
- An improvement by Hendrik Lenstra (2002) reduces the time complexity to $O^{\sim}\left(\log ^{15 / 2} n\right)$.
- Lenstra and Pomerance (2003) further reduce the time complexity to $O^{\sim}\left(\log ^{6} n\right)$.
- Bernstein (2003) reduced the time complexity to $O^{\sim}\left(\log ^{4} n\right)$ at the cost of making it randomized.

Time Complexity

- Number r is $O\left(\log ^{5} n\right)$.
- Time complexity of the algorithm is $O^{\sim}\left(\log ^{12} n\right)$.
- An improvement by Hendrik Lenstra (2002) reduces the time complexity to $O^{\sim}\left(\log ^{15 / 2} n\right)$.
- Lenstra and Pomerance (2003) further reduce the time complexity to
- Bernstein (2003) reduced the time complexity to $O^{\sim}\left(\log ^{4} n\right)$ at the cost of making it randomized.

Time Complexity

- Number r is $O\left(\log ^{5} n\right)$.
- Time complexity of the algorithm is $O^{\sim}\left(\log ^{12} n\right)$.
- An improvement by Hendrik Lenstra (2002) reduces the time complexity to $O^{\sim}\left(\log ^{15 / 2} n\right)$.
- Lenstra and Pomerance (2003) further reduce the time complexity to $O^{\sim}\left(\log ^{6} n\right)$.
- Bernstein (2003) reduced the time complexity to $O^{\sim}\left(\log ^{4} n\right)$ at the cost of making it randomized.

Time Complexity

- Number r is $O\left(\log ^{5} n\right)$.
- Time complexity of the algorithm is $O^{\sim}\left(\log ^{12} n\right)$.
- An improvement by Hendrik Lenstra (2002) reduces the time complexity to $O^{\sim}\left(\log ^{15 / 2} n\right)$.
- Lenstra and Pomerance (2003) further reduce the time complexity to $O^{\sim}\left(\log ^{6} n\right)$.
- Bernstein (2003) reduced the time complexity to $O^{\sim}\left(\log ^{4} n\right)$ at the cost of making it randomized.

Outline

(1) The Problem

(2) Two Simple, and Slow, Methods
(3) Modern Methods
(4) Algorithms Based on Factorization of Group Size
(5) Algorithms Based on Fermat's Little Theorem
(6) An Algorithm Outside the Two Themes

Adleman-Pomerance-Rumeli Test

- Proposed in 1980.
- Is conceptually the most complex algorithm of them all.
- Uses multiple groups, ideas derived from both themes, plus new ones!
- It is a deterministic algorithm with time complexity $\log O(\log \log \log n) n$.
- Was speeded up by Cohen and Lenstra (1981).

Adleman-Pomerance-Rumeli Test

- Proposed in 1980.
- Is conceptually the most complex algorithm of them all.
- Uses multiple groups, ideas derived from both themes, plus new ones!
- It is a deterministic algorithm with time complexity $\log O(\log \log \log n) n$.
- Was speeded up by Cohen and Lenstra (1981).

Adleman-Pomerance-Rumeli Test

- Proposed in 1980.
- Is conceptually the most complex algorithm of them all.
- Uses multiple groups, ideas derived from both themes, plus new ones!
- It is a deterministic algorithm with time complexity $\log O(\log \log \log n) n$.
- Was speeded up by Cohen and Lenstra (1981).

Adleman-Pomerance-Rumeli Test

- Proposed in 1980.
- Is conceptually the most complex algorithm of them all.
- Uses multiple groups, ideas derived from both themes, plus new ones!
- It is a deterministic algorithm with time complexity $\log O(\log \log \log n) n$.
- Was speeded up by Cohen and Lenstra (1981).

Overview of the Algorithm

- Tries to compute a factor of n.
- Let p be a factor of $n, p \leq \sqrt{n}$.
- Find two sets of primes $\left\{q_{1}, q_{2}, \ldots, q_{t}\right\}$ and $\left\{r_{1}, r_{2}, \ldots, r_{u}\right\}$ satisfying:

Overview of the Algorithm

- Tries to compute a factor of n.
- Let p be a factor of $n, p \leq \sqrt{n}$.
- Find two sets of primes $\left\{q_{1}, q_{2}, \ldots, q_{t}\right\}$ and $\left\{r_{1}, r_{2}, \ldots, r_{u}\right\}$ satisfying:

Overview of the Algorithm

- Tries to compute a factor of n.
- Let p be a factor of $n, p \leq \sqrt{n}$.
- Find two sets of primes $\left\{q_{1}, q_{2}, \ldots, q_{t}\right\}$ and $\left\{r_{1}, r_{2}, \ldots, r_{u}\right\}$ satisfying:

Overview of the Algorithm

- Tries to compute a factor of n.
- Let p be a factor of $n, p \leq \sqrt{n}$.
- Find two sets of primes $\left\{q_{1}, q_{2}, \ldots, q_{t}\right\}$ and $\left\{r_{1}, r_{2}, \ldots, r_{u}\right\}$ satisfying:
- $\prod_{i=1}^{t} q_{i}=\log ^{O(\log \log \log n)} n$.
* For each $j \leq u_{,} r_{j}-1$ is square-free and has only qi's as prime divisors.

Overview of the Algorithm

- Tries to compute a factor of n.
- Let p be a factor of $n, p \leq \sqrt{n}$.
- Find two sets of primes $\left\{q_{1}, q_{2}, \ldots, q_{t}\right\}$ and $\left\{r_{1}, r_{2}, \ldots, r_{u}\right\}$ satisfying:
- $\prod_{i=1}^{t} q_{i}=\log ^{O(\log \log \log n)} n$.
- For each $j \leq u, r_{j}-1$ is square-free and has only q_{i} 's as prime divisors.

Overview of the Algorithm

- Tries to compute a factor of n.
- Let p be a factor of $n, p \leq \sqrt{n}$.
- Find two sets of primes $\left\{q_{1}, q_{2}, \ldots, q_{t}\right\}$ and $\left\{r_{1}, r_{2}, \ldots, r_{u}\right\}$ satisfying:
- $\prod_{i=1}^{t} q_{i}=\log ^{O(\log \log \log n)} n$.
- For each $j \leq u, r_{j}-1$ is square-free and has only q_{i} 's as prime divisors.
- $\prod_{j=1}^{u} r_{j}>\sqrt{n}$.

Overview of the Algorithm

- Let g_{j} be a generator for the group $F_{r_{j}}^{*}$.
- Let $p=g_{j}^{\gamma_{j}}\left(\bmod r_{j}\right)$ and $\gamma_{j}=\delta_{i, j}\left(\bmod q_{i}\right)$ for every $q_{i} \mid r_{j}-1$.
- Compute 'associated' primes $r_{j_{i}} \in\left\{r_{1}, r_{2}, \ldots, r_{u}\right\}$ for each q_{i}.
- Cycle through all tuples $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)$ with $0 \leq \alpha_{i}<q_{i}$.
- From a given tuple $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)$, derive numbers $\beta_{i, j}$ for $1 \leq j \leq u, 1 \leq i \leq t$ and $q_{i} \mid r_{j}-1$ such that

Overview of the Algorithm

- Let g_{j} be a generator for the group $F_{r_{j}}^{*}$.
- Let $p=g_{j}^{\gamma_{j}}\left(\bmod r_{j}\right)$ and $\gamma_{j}=\delta_{i, j}\left(\bmod q_{i}\right)$ for every $q_{i} \mid r_{j}-1$.
- Compute 'associated' primes $r_{j i} \in\left\{r_{1}, r_{2}, \ldots, r_{u}\right\}$ for each q_{i}.
- Cycle through all tuples $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)$ with $0 \leq \alpha_{i}<q_{i}$.
- From a given tuple $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)$, derive numbers $\beta_{i, j}$ for $1 \leq j \leq u, 1 \leq i \leq t$ and $q_{i} \mid r_{j}-1$ such that

Overview of the Algorithm

- Let g_{j} be a generator for the group $F_{r_{j}}^{*}$.
- Let $p=g_{j}^{\gamma_{j}}\left(\bmod r_{j}\right)$ and $\gamma_{j}=\delta_{i, j}\left(\bmod q_{i}\right)$ for every $q_{i} \mid r_{j}-1$.
- Compute 'associated' primes $r_{j_{i}} \in\left\{r_{1}, r_{2}, \ldots, r_{u}\right\}$ for each q_{i}.
- From a given tuple $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)$, derive numbers $\beta_{i, j}$ for

Overview of the Algorithm

- Let g_{j} be a generator for the group $F_{r_{j}}^{*}$.
- Let $p=g_{j}^{\gamma_{j}}\left(\bmod r_{j}\right)$ and $\gamma_{j}=\delta_{i, j}\left(\bmod q_{i}\right)$ for every $q_{i} \mid r_{j}-1$.
- Compute 'associated' primes $r_{j_{i}} \in\left\{r_{1}, r_{2}, \ldots, r_{u}\right\}$ for each q_{i}.
- Cycle through all tuples $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)$ with $0 \leq \alpha_{i}<q_{i}$.
- From a given tuple $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)$, derive numbers $\beta_{i, j}$ for $1 \leq j \leq u, 1 \leq i \leq t$ and $q_{i} \mid r_{j}-1$ such that

Overview of the Algorithm

- Let g_{j} be a generator for the group $F_{r_{j}}^{*}$.
- Let $p=g_{j}^{\gamma_{j}}\left(\bmod r_{j}\right)$ and $\gamma_{j}=\delta_{i, j}\left(\bmod q_{i}\right)$ for every $q_{i} \mid r_{j}-1$.
- Compute 'associated' primes $r_{j_{i}} \in\left\{r_{1}, r_{2}, \ldots, r_{u}\right\}$ for each q_{i}.
- Cycle through all tuples $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)$ with $0 \leq \alpha_{i}<q_{i}$.
- From a given tuple $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}\right)$, derive numbers $\beta_{i, j}$ for $1 \leq j \leq u, 1 \leq i \leq t$ and $q_{i} \mid r_{j}-1$ such that
- If $p=g_{j_{i}}^{\alpha_{i}}\left(\bmod r_{j}\right)$ for every j then $\delta_{i, j}=\beta_{i, j}$ for every j and for every i with $q_{i} \mid r_{j}-1$.

Overview of the Algorithm

- From $\delta_{i, j}$'s, p can be constructed easily:
- Use Chinese remaindering to compute γ_{j} 's from $\delta_{i, j}$'s.
- Use Chinese remaindering to compute $p\left(\bmod \prod_{j=1}^{u} r_{j}\right)$ from $g_{j}^{\gamma_{j}}$ s. - Since $\prod_{j=1}^{u} r_{j}>\sqrt{n} \geq p$, the residue equals p.
- $\beta_{i, j}$'s are computed using higher reciprocity laws in extension rings $Z_{n}\left[\zeta_{i}\right], \zeta_{i}^{q_{i}}=1$.
- For most of the composite numbers, the algorithm will fail during computation of $\beta_{i, j}$'s.

Overview of the Algorithm

- From $\delta_{i, j}$'s, p can be constructed easily:
- Use Chinese remaindering to compute γ_{j} 's from $\delta_{i, j}$'s.
- Use Chinese remaindering to compute $p\left(\bmod \prod_{j=1}^{U} r_{j}\right)$ from $g_{j}^{\gamma_{j}}$'s. - Since $\prod_{j=1}^{u} r_{j}>\sqrt{n} \geq p$, the residue equals p.
- $\beta_{i, j}$'s are computed using higher reciprocity laws in extension rings $Z_{n}\left[\zeta_{i}\right], \zeta_{i}^{q_{i}}=1$.
- For most of the composite numbers, the algorithm will fail during computation of $\beta_{i . j}$'s.

Overview of the Algorithm

- From $\delta_{i, j}$'s, p can be constructed easily:
- Use Chinese remaindering to compute γ_{j} 's from $\delta_{i, j}$'s.
- Use Chinese remaindering to compute $p\left(\bmod \prod_{j=1}^{u} r_{j}\right)$ from $g_{j}^{\gamma_{j}}$'s.
- Since $\prod_{j=1}^{u} r_{j}>\sqrt{n} \geq p$, the residue equals p.
- $\beta_{i, j}$'s are computed using higher reciprocity laws in extension rings $Z_{n}\left[\zeta_{i}\right], \zeta_{i}^{q_{i}}=1$.
- For most of the composite numbers, the algorithm will fail during computation of $\beta_{i, j}$'s.

Overview of the Algorithm

- From $\delta_{i, j}$'s, p can be constructed easily:
- Use Chinese remaindering to compute γ_{j} 's from $\delta_{i, j}$'s.
- Use Chinese remaindering to compute $p\left(\bmod \prod_{j=1}^{u} r_{j}\right)$ from $g_{j}^{\gamma_{j}}$'s.
- Since $\prod_{j=1}^{u} r_{j}>\sqrt{n} \geq p$, the residue equals p.
- $\beta_{i, j}$'s are computed using higher reciprocity laws in extension rings $Z_{n}\left[\zeta_{i}\right], \zeta_{i}^{q_{i}}=1$.
- For most of the composite numbers, the algorithm will fail during computation of $\beta_{i, j}$'s.

Overview of the Algorithm

- From $\delta_{i, j}$'s, p can be constructed easily:
- Use Chinese remaindering to compute γ_{j} 's from $\delta_{i, j}$'s.
- Use Chinese remaindering to compute $p\left(\bmod \prod_{j=1}^{u} r_{j}\right)$ from $g_{j}^{\gamma_{j}}$'s.
- Since $\prod_{j=1}^{u} r_{j}>\sqrt{n} \geq p$, the residue equals p.
- $\beta_{i, j}$'s are computed using higher reciprocity laws in extension rings $Z_{n}\left[\zeta_{i}\right], \zeta_{i}^{q_{i}}=1$.
- For most of the composite numbers, the algorithm will fail during computation of $\beta_{i, j}$'s.

Overview of the Algorithm

- From $\delta_{i, j}$'s, p can be constructed easily:
- Use Chinese remaindering to compute γ_{j} 's from $\delta_{i, j}$'s.
- Use Chinese remaindering to compute $p\left(\bmod \prod_{j=1}^{u} r_{j}\right)$ from $g_{j}^{\gamma_{j}}$'s.
- Since $\prod_{j=1}^{u} r_{j}>\sqrt{n} \geq p$, the residue equals p.
- $\beta_{i, j}$'s are computed using higher reciprocity laws in extension rings $Z_{n}\left[\zeta_{i}\right], \zeta_{i}^{q_{i}}=1$.
- For most of the composite numbers, the algorithm will fail during computation of $\beta_{i, j}$'s.

Outstanding Questions

- Is there a 'practical', polynomial time deterministic primality test?
- Is there a 'practical', provably polynomial time, primality proving test?
- Are there radically different ways of testing primality efficiently?

Outstanding Questions

- Is there a 'practical', polynomial time deterministic primality test?
- Is there a 'practical', provably polynomial time, primality proving test?
- Are there radically different ways of testing primality efficiently?

Outstanding Questions

- Is there a 'practical', polynomial time deterministic primality test?
- Is there a 'practical', provably polynomial time, primality proving test?
- Are there radically different ways of testing primality efficiently?

