A Note on Decision versus Search for Graph
Automorphism*

M. Agrawal
Department of Computer Science & Engineering
Indian Institute of Technology
Kanpur, India
email: ma@iitk.ernet.in

V. Arvind
Institute of Mathematical Sciences
Madras 600113, India

email: arvind@imsc.ernet.in

Abstract

We show that for any graph G, k non-trivial automorphisms of G—if as many
exist—can be computed in time |G|O(10g k) with nonadaptive queries to GA, the
decision problem for Graph Automorphism. As a consequence we show that some
problems related to GA are actually polynomial-time truth-table equivalent to GA.
One of these results provides an answer to an open question of Lubiw [Lu81].

*A preliminary version was presented at the Computational Complexity’96 conference

tPart of the work done while working with SPIC Science Foundation, Madras, India and while visiting
Universitidt Ulm, Germany in 1995-96.

1 Introduction

The Graph Isomorphism problem (GI)—of testing if two graphs are isomorphic—and the
Graph Automorphism problem (GA)—of testing if a graph has a non-trivial automorphism—
are well-studied problems in the class NP. Much of the research interest in these problems
is due to the fact that they are neither known to be in P nor have they been shown to be
NP-complete. In fact they are in the class NP NcoAM and hence cannot be NP-complete
unless PH collapses to X5 [Sch8&8].

The subject of this note is the relative complexity of decision vs. search for Graph
Automorphism. For NP-complete problems decision and search are equivalent as there are
self-reducible NP-complete sets. The decision vs. search question can be nicely formalized
using the notion of self-computability due to Balcidzar [B89]. Let A € NP and R € P
be the polynomial-time binary relation defining solutions for A. Let Solg(x) denote
the set of solutions for x € A. The set A is said to have self-computable solutions if
there is a deterministic polynomial-time oracle machine that on input x € A outputs
a string w € Solg(x) using A as oracle. Let Prefiz(A) = {{z,z) | x € A and z is
a prefix of some w € Solg(x)}. If Prefiz(A) is Turing reducible! to A then A has
self-computable solutions [B89]. Since Prefiz(A) and A are many-one equivalent for
any NP-complete set A, it follows that NP-complete sets have self-computable solutions.
Since GI and Prefix(GI) (suitably defined) are many-one equivalent [KST92], GI also
has self-computable solutions.?

In general, if Prefiz(A) is reducible to A, there is an apparently stronger equivalence
between search and decision for A than implied by self-computability. If Prefiz(A) is
reducible to A then for every x € A the lexicographically smallest and largest solutions in
Solr(z) can be computed in polynomial time using A as oracle. In fact, given z € A and
any proper subset X of Solg(x) as input, there is a polynomial (in ||X||) time algorithm
that uses A as oracle and outputs w € Solg(x) — X. For GI an even stronger property
holds: since the counting problem #GI is equivalent to GI [Ma79], given an instance x
of GI and a natural number 7, the lexicographically ith solution for z (if it exists) can be
computed in time polynomial in |z| using GI as oracle.

The decision vs. search question for Graph Automorphism (GA) has interesting pe-
culiarities. On the one hand GA has self-computable solutions: the lexicographically
smallest nontrivial automorphism of a graph can be computed in polynomial time with
even nonadaptive queries to GA [LT92]. On the other hand, the set Prefiz(GA) is ap-
parently harder than GA. It is shown in [LT92] that Prefiz(GA) is many-one equivalent
to GI, and GI is not known to be reducible to GA. In particular, it is shown in [LT92] that
computing the lexicographically largest automorphism of a graph is equivalent to GI.

In a different line of research Lubiw [Lu81] studies several variations of Graph Iso-
morphism. It turns out that some variations are equivalent to GI, while others are NP-
complete. In [Lu81] Lubiw also makes a detailed study of some variations of GI which are
directed related to the complexity of computing solutions for instances of GI and GA. In
particular, she defines the following interesting decision problem which relates GI to GA:
Given two graphs G; and G5 and k£ distinct isomorphisms between G; and G, is there
yet another isomorphism between G and G5?

L All reductions and reducibilities discussed in this paper are polynomial-time computable.
2This was already known since GI is self-reducible [Schn82].

As already observed, it is not known if GI is reducible to GA (although GA is many-
one reducible to GI [LT92]). Lubiw observes that the above problem, when & is allowed
to vary with the input, is many-one equivalent to GI. The interesting case is when £ is a
fixed parameter that is not part of the input. Here, she shows that for £ = 0 this decision
problem is essentially GI, and for £ = 1 it is equivalent to GA. She leaves the complexity
of the problem as an open question for larger values of k£ (see also [KST92]).

In this note we show that the lexicographically first £ automorphisms of a graph G—
or all automorphisms if there are fewer than k—can be computed in time |G|°1°8%) with
nonadaptive queries to GA. Thus, for fixed k, the first £ automorphisms of G—if they
exist—can be computed in polynomial time with nonadaptive queries to GA.

As a consequence, it follows that for each fixed parameter £, the corresponding problem
of Lubiw remains truth-table equivalent to GA.

Another corollary of our result is that the sets
GAg-rough = {G | the number of automorphisms of G' has at most k prime factors (with
multiplicities) }, and
Gli-rough = {(G1,G2) | G1,G2 € GAjpougn and G is isomorphic to Go} for each fixed
k > 0, are truth-table equivalent to GA.

2 Preliminaries

We consider directed labeled graphs in this paper. This is no loss of generality since we
polynomial-time many-one equivalent versions of the problems GI and GA irrespective of
whether we consider directed or undirected, labeled or unlabeled graphs [KST92].

The vertex set of a graph G is denoted V(G) and the edge set E(G). For a graph
G, let Aut(G) denote the automorphism group of G and let id € Aut(G) denote the
identity automorphism. Let 7 € Aut(G). A vertex i of G is said to be a fizpoint of 7 if
(i) =4 (and 7 is said to fix 7). Let X C V(G). The pointwise stabilizer of X is the set
Stab(X) = {m € Aut(G) | Vi € X, i is a fixpoint of 7}. Stab(X) is clearly a subgroup of
Aut(G).

For a graph G and a subset X = {i1,4,...,4} C V let G[x] denote the graph obtained
from G by labeling vertex i, with color ¢, vertex iy with color ¢y, ..., vertex i, with color
c,. This labeling of vertices with colors has the effect of distinguishing the labeled vertex
from the rest of the vertices of the graph. As described for example in [KST92], labeling
vertex ¢ of a graph G with a distinct color ¢; can be effected by attaching a special graph-
theoretic gadget of size O(|V(G)|) to vertex i. Let this new graph with vertex ¢ colored ¢;
be G'. It turns out that every ¢ € Aut(G") fixes ¢ and also fixes every other node in the
gadget attached to i. Thus Aut(G') is isomorphic to the subgroup of Aut(G) that fixes i.
Furthermore, given any automorphism of G’ the corresponding automorphism of G can
be easily constructed and vice-versa. The following proposition, which appears implicitly
in [Ma79] (also in [LT92, KST92]), summarizes this property.

Proposition 2.1 [Ma79] Let G be a labeled graph and X C V(G). Stab(X) is isomorphic
to the automorphism group Aut(Gix)). Furthermore, given any element of Aut(Gpx)) the
corresponding element of Stab(X) can be easily computed and vice-versa.

By abuse of notation we sometimes identify Aut(G|x)) with Stab(X).
The union graph,

GUH , of two graphs G and H is the graph obtained by first making their vertex sets
disjoint by renaming, and then taking the union of their vertex and edge sets [Har69].2

The following construction that we describe first appeared in [Ma79] (also see [Hof82,
KST92] for other applications of this construction).

Let G be a graph with vertex set V ={1,2,...,n},and i € V. Let I = {iy,...,4:} be
a list of ¢ distinct vertices from {7,714 1,...,n}. Similarly, let J = {j1,...,J:} be another
list of ¢ distinct vertices from {i,7 + 1,...,n}. We term such lists as ordered subsets.

Let G® denote the graph G2, ;. We define a new graph G(Z DG G "1 such that
forevery 7 :1 < j <1, the Vertex J of the subgraph G() has the same color label as the
vertex j of the subgraph G . Furthermore, for every r:1<r <t the vertex 7, € I of
the subgraph G Y has the same color label as the vertex j, of the subgraph G(Z Y,

Observe that the graph G =Y G can have the following two klnds of automor—
phisms. In the ﬁrst case, an automorphlsm 7 can map the subgraph G) to itself and
the subgraph G Y to itself. For such an automorphism T, m(x) = x for every vertex
x € {1,2,...,i 1,21,12,...,zt} of the subgraph G[I} Y. Similarly, 7(y) = y for every
vertex y € {1,2,...,4 — 1,71, Jo,---, Jt} of the subgraph G(i_l). In the other case, an
automorphism 7 can map the subgraph G) to the subgraph G) and vice-versa.

The following crumal proposition relatlng the automorphisms of G aONY G "1 to the

automorphisms of G¢~1) is essentially from [Ma79]. For applications of thls property refer
to [LT92, KST92].

Proposition 2.2 [MaT79] The set of automorphisms of GS]_I) O Gg]_l) that map the sub-
graph G) to the subgraph G J]) and vice-versa is in 1-1 correspondence with the set of
automorphzsms of GV which maps vertex i, E I to vertex 3. € J for 1 < r < t. Fur-
thermore, gwen an automorphism ofG D0 G) that maps the subgraph GS]*I) to the

subgraph G[J] , it 15 easy to compute in polynomzal time the corresponding automorphism

of GG—1),

The basic complexity-theoretic concepts used in this paper like many-one and truth-
table reducibilities, can be found in a standard textbook, for example [BDGS88].

3 The result

For any graph G, we define Auto(k,G) as follows. If G has at least k& automorphisms,
then Auto(k,G) is defined as the list (id,my,...,m; 1) where 7y, ..., mx_1 are the lexi-
cographically first £ — 1 distinct non-trivial automorphisms of G; if G has j non-trivial
automorphisms with j < k — 1, then Auto(k, G) is defined as (id, 7, ..., ;) which is the
list of all automorphisms of G.

o
30ur notation is at variance with Harary’s who uses ‘U’ rather than ‘U’ to denote the union of graphs.
We do so because we frequently use ‘U’ to denote the union of sets of graphs.

Theorem 3.1 Auto(k,G) is computable in time |G|°U°8%) with nonadaptive queries to
GA.

Proof. Let G be the given graph with n vertices and ¢t = [log k]. We assume, w.l.0.g, that
G is connected (if not, we work with G which is connected and has the same automorphism
group as GG). We describe the algorithm in different components; the overall algorithm
can be obtained easily by composing these components. The algorithm that computes
Auto(k,G) has first a querying phase where it makes |G|°0°6%) parallel queries to GA.
The rest of the algorithm analyzes the answers to these queries and computes the function
Auto(k,G) in |G|CU°8k) time.

Let G be any graph on n vertices. For every i, 1 <1 < n, and for every pair of ordered
subsets 1, Jof{i i+1,...,n} such that 0 < |[I| = |J| < 2t + 2, let

Sins ={Gy " UG, I}U{G’ DOGH li<lm<nlglmgJ}!

Querying Phase:

Input G; (*G is a labeled graph with n vertices®)

fori:1<:<ndo

For every pair of ordered subsets I, J of {i,i+1,...,n} such that 0 < |I| = |J| < 2t + 2
and for each graph in S, ; ; query oracle GA in parallel and collect answers

endfor;

fori::1<i<ndo

In parallel query oracle GA for G® and

collect answers

endfor;

Notice that for a graph G on n vertices there are at most n- (2t +3) -n*™ . (n? +1) <
n**+10 graphs which are queried in the Querying Phase. We now explain how the function
Auto(k,G) can be computed from the answers to these queries Call the vertex ¢ of the
graph G free if there is an automorphism 7 of the graph G~ such that 7 (i) # i. It is
easy to see that G' has nontrivial automorphisms iff it has free vertices.

Our first aim is to compute as many free vertices of G as possible using the answers
obtained in the Querying Phase. The largest free vertex of G (call it j;) is easy to compute:
41 is the largest ¢ such that G0~ € GA and G ¢ GA. Observe that GG~V and G® are
queries already made to GA for all 7 in the Querying Phase.

Now suppose we have computed the r largest free vertices j, . .., j,, with j; > --- > j,.

Define the set _
T = {GE;]_I) J GEZJ]_I) | I and J are ordered sets such that 1 <i < j,,r+1<|I|=|J| <
2r +2,{t,jr,---,j51} € INJ, ioccurs as the first vertex in I and not as the first vertex
in J}.

The following claim is a crucial property of the sets 77

Claim 3.1.1 Let ji, ..., j,, with j; > --- > j,., be the r largest free vertices of G, and
suppose no j 11 < j < jr 1S a free vertex. If some graph GE;]_I ’ G(Z Ve 17 has a

nontrivial automorphism, then i is the (r + 1)”1 free verte.

4The subscript [I,1] stands for the ordered set I U {l}, and [J,m] is similarly defined.

Proof of Claim 3.1.1. Consider a graph GE;]_I) J Gfi]_l) in 77 that has a non-trivial
automorphism . If ¥ maps subgraph Gg]fl) to itself then it must also map subgraph

Gfi]_l) to itself. Since the set I contains {4, j,, ..., j1}, the restriction of ¢ to GE}TU yields

an automorphism of G~V in which the vertex i is a fixed point and also j,, ..., j; are
all fixpoints. This, in turn, yields an automorphism of G in which all free vertices of G
are fixpoints, which must therefore be id. Similarly, we can argue that the restriction of
Y to GES]_I) is also id. This contradicts our assumption that 1) is non-trivial. Therefore 1)

must map vertices of Gg]fl) to G%I) and vice-versa. Since the first vertex of J is different

from i it follows that 7 is a free vertex (the (r +1)"™ free vertex). Notice that from
Proposition 2.2 the corresponding nontrivial automorphism of G¢~Y is easy to compute
from . O

Claim 3.1.2 Vertex i is the (r + 1)th free vertex of G iff T7 N GA # 0 and for every j,
i <j<jr,] NGA = 0.

Proof of Claim 3.1.2. (=) Since i is the (r +1)™ free vertex of G, TTNGA =10
for every i < j < j,. Let 7 € Aut(GUY) with 7(i) =4, ¢ #i. Let K = {4, 5,...,51} U
7 ({7, 7r,...,71}). Order the vertices in K such that 7 is the first one and let this ordered
set be I. Let J = «(I). Clearly, the first vertex in J is i # i. The graph G{j;) U G{j "
belongs to 77 and has a non-trivial automorphism that maps vertices of the subgraph
G%ﬁl) to vertices of subgraph Ggf) according to 7 and vertices of G&fl) to vertices of
GE}fl) according to 71

(<:]) By the forward implication, since 77 NGA = (), vertex j cannot be a free vertex for

1 < j < jr. Suppose that vertex 7 is also not a free vertex. Consider a graph G&_l) U GEE]_I)
in 77 that has a non-trivial automorphism ¢. From the proof of Claim 3.1.1 it is clear

that ¢ must map the subgraph Gg]_l) to Gg]_l) and vice-versa. Since 7 is the first vertex

in I but not in J, ¢ yields an automorphism of G~ in which 7 is not a fixpoint. This
contradicts our assumption that ¢ is not free. O

Let s := min{t, the number of free vertices of G}. The following algorithm computes
the largest s free vertices of G using the answers from the Querying Phase. Notice that
the graphs in 7T, for r < ¢, have already been queried for membership in GA in the
Querying Phase. The working of the algorithm should be clear from the above claim.

Computing free vertices:

Compute largest 4 such that G € GA and let j, := i; (*j, is the largest free vertex *)
re=17=n-L
while j >0 and r <t¢ do
if T/ N GA # () then
r=r+1 g =7;
endif
J=7-1
endwhile;

Let these computed free vertices of G be j1, jo,..., js, s < t. We now compute
the set of vertices to which j, can be mapped by an automorphism of GUr~D. ILe.,
orb(j,) :={j' € V | j' # jr, and there is an automorphism of GUr~Y) that maps j, to j'},
for each j,, 1 <r < s. The following claim characterizes orb(j,), for each j,, 1 <r <s.

Claim 3.1.3 For each j,, 1 <r < s, orb(j,) = {j' | G%_l J GEJ’_I) € T; ' NGA for
some I and J and j' is the first vertez in J}.

Proof of Claim 3.1.3. Let I and J be ordered subsets with j, as the first element
of I and j' as the first element of J. By definition both j, and j' have the same color

label. It follows that GE}]’ A G&_l) € T]?;_I N GA for some such I and J iff there is an
automorphism of GY~Y that maps j, to 5. O

Thus, for each j,, 1 <7 <'s, orb(j,) can be computed using the answers to the queries
in the set T;-;_l.

Claim 3.1.4 Any graph H = Gfif_l) U GE%_I) € Tj?;_l N GA has exactly one non-trivial
automorphism.

Proof of Claim 3.1.4. Since H is in GA, it has at least one non-trivial automorphism.
Let m; and 7y be two non-trivial automorphisms of H. By Claim 3.1.1, both 7; and
map the subgraph G(”_l) to G(”_l) and vice-versa. Therefore, the automorphism Ty
maps the vertices of the subgraph Gy JT Y to 1tself (and the subgraph G(J’“ to itself).
From the proof of Claim 3.1.1 it follows that 77y ! is id. Therefore, m; = 7o. O

Claim 3.1.5 Let H = G J’ Ay G(]’" Ve Tj’;1 N GA be any graph and ¢g be its unique
non-trivial automorphzsm For vertzces Im:j.<Ilm<n, &I andm & J, ¢g maps

to m iff the graph Gy P O GY D € GA.

Proof of Claim 3.1.5. From the proof of Claim 3.1.1 it follows that any nontrivial
automorphism of G ’ Ny Gy ”") maps the subgraph Gg:“lf) to G&};]l) and vice-versa.
Therefore, Ggfl] DY G[?]fm]l € GA iff must map [to m. The claim follows. O

From the above claim it is clear that ¢y is easy to compute from the answers to the
queries {G JT Ray G JT 1 | Jgr <lym < n,l ¢ I,m ¢ J} made in the Querying Phase to
the GA oracle

From Proposition 2.2 it follows that we can easily compute for each vertex j' € orb(j,)
an automorphism of G' mapping j, to j'. Let this set of computed automorphisms be
denoted as Maps(j,). Note that |Maps(j.)| = |orb(j,)|, for each j, and 1 < r < s.

Since Maps(j,)U{id} is a set of distinct coset representatives of the subgroup Aut(GUr))
of Aut(GUr—Y), it follows from elementary group theory that the set {Il;<,<s%, | ¥, €
Maps(j,) U {id}} of automorphisms of G is precisely the entire subgroup Aut(GUs=1)
of Aut(G). Moreover, |Aut(GUs—)| = H1<,<S(+ |orb(j,)|). We have computed the
automorphisms in the entire subgroup Aut(GUs=1).

If s < t, then the whole of Aut(G) is computed from the answers to the queries made
to GA in the Querying Phase. In particular, Auto(k,G) is computed. If s = ¢, then
i<, <:(1+]orb(j,)|) automorphisms of G are computed. Since |orb(j,)| > 1for 1 <r <t,
and t = [logk], it follows in this case also that Auto(k,G) is computed from the answers
to the queries in the Querying Phase.

It is easy to see that the time required to compute Auto(k,G) is bounded by a fixed
polynomial in the number of queries made in the Querying Phase which is n®U°8%) Tt is
also easy to see that the lexicographically smallest £ automorphisms are computed.

[|

We now show as a consequence of Theorem 3.1 that some interesting problems related
to GI and GA are truth-table equivalent to GA.

Corollary 3.2 The following problems are truth-table equivalent to GA:

1. Gl = {(G,H,m, 7o, ...,) | m1, Ta, ..., m are k different isomorphisms between
G and H and there exists another isomorphism between G and H different from
these}, for any k > 0.°

2. GAx = {G | the number of non-trivial automorphisms of G is at least k}, for any
k> 0.

3. GAprime = {G | the number of automorphisms of G is a prime number}.

Proof. ~ We first show that GA is many-one reducible to GI;, and GA,. Let G be an
instance of GA (assume w.l.o.g. that G is connected and |V (G)| > k). Let the graph H
be the directed cycle with k vertices. Notice that Aut(H) is a cyclic group of order k.

Let 1) be a generator of Aut(H). Now, consider the graph G U H. Since G U H has

exactly two connected components, any automorphism of GG U H either maps V(G) into
itself and V (H) into itself, or it maps V(G) into V(H) and V(H) into V(G). The latter

case is not possible since |V (G)| > k = |V(H)|. Therefore, any automorphism of G OH
is an automorphism of the subgraph G when restricted to G' and an automorphism of the
subgraph H when restricted to H. For 1 <1 < k, let m; be defined as the automorphism

of G U H such that 7; = id when restricted to G and m; = ' ! when restricted to
H. Consider the mapping from GA to GI; defined as G — (G UH,GUH,m,... ,Tk)-

Clearly, my,...,m are isomorphisms from G U H to G U H. Moreover G U H has
other isomorphisms iff G has a nontrivial automorphism. Thus the above mapping is a

reduction from GA to GI;. Similarly, it is easy to see that G — G U H is a reduction
from GA to GA;.

In [LT92] it is shown that GA is truth-table reducible to UniqueGA (the language con-
sisting of graphs that have a unique nontrivial automorphism). Observe that UniqueGA C
GAprime. Now, it is easy to see that the reduction described in [LT92] is in fact also a
truth-table reduction from GA to GAprime-

The truth-table reduction from GA; to GA is obvious from Theorem 3.1. The truth-
table reduction generates the polynomially many nonadaptive queries to GA required
to compute Auto(k,G) (as in Theorem 3.1). Next, Auto(k,) is computed (using the

5Recall that this is Lubiw’s open question mentioned in the introduction.

algorithm in Theorem 3.1 with the answers to the queries made to GA). The truth-table
evaluates to true iff G has at least k distinct automorphisms.

The reduction from GIj to GA is as follows. Let (G, H,7,...,m) be an instance of
GI;. Again, the truth-table reduction generates the polynomially many queries to GA
required to compute Auto(k + 1, G). If any one of {71, s, ..., 7} is not an isomorphism
from G to H then the truth-table evaluates to false regardless of the queries. Otherwise,
Auto(k + 1, G) is computed. If there are k + 1 automorphisms of G then the truth-table
evaluates to true (since it implies that there are at least £ 4+ 1 isomorphisms from G to
H) otherwise it evaluates to false.

Finally, we describe a truth-table reduction from GA, ;. to GA. Let G be any graph
such that |Aut(G)| is a prime number. Since |Aut(G)| = Il;<;<p| Aut (G| /] Aut (GD)]
it follows that there is exactly one vertex 7 such that |Aut(GY~V)|/|Aut(G®)| > 1. Thus
G has exactly one free vertex. Now, let G be any instance of GAp,;m.. The truth-table re-
duction first makes polynomially many nonadaptive queries (as explained in Theorem 3.1)
and using these query answers computes in polynomial time the largest two free vertices
of G (if they exist). If |Aut(G)| is a prime number, then, in fact, there is exactly one
free vertex of the graph G. So, if G has no free vertices or more than one free vertex
then the truth-table evaluates to false. Otherwise, compute all the automorphisms of G
(since there is only one free vertex, we can do this in polynomial time as explained in
Theorem 3.1) and accept if G has a prime number of automorphisms. Note that it is easy
to test |Aut(G)| for primality in polynomial time because if G has a unique free vertex it
holds that |Aut(G)| < n, which means |Aut(G)| is logarithmic in the input size. n

We can generalize the corollary for GA,.,e to a somewhat larger language. Call
a positive integer n k-rough if the prime factorization of n is pi'ps®....p¢" such that
Yi<i<r € < k. A rough positive integer has very few prime factors (even including the
multiplicities).®

Consider the decision problem: GAj_ougn = {G | the number of automorphisms of
G is a k-rough integer}.

Clearly, from the arguments in the above proof for GApm., it follows that if an
instance G is in GAj-rougn then G has at most k free vertices. Along similar lines as the
proof for GA,ime We can easily show the following corollary.

Corollary 3.3 1. For any k > 0, GAg—rougn = {G | the number of automorphisms of
G is a k-rough integer} is truth-table equivalent to GA.

2. For any k > 0, Gli—rough = {(G1, G2) | G1,G2 € GAjrougn and Gy is isomorphic to
Go} is truth-table equivalent to GA.

Proof Sketch. To see that GAj_,ougn is truth-table reducible to GA we first compute
k + 1 (if they exist) free vertices of a given instance G of GAy_,ougn With parallel queries
to GA. If G € GAjougn, then there will exist at most k free vertices. If j is a free
vertex then it contributes a factor |Aut(GW)|/|Aut(GU+Y)| (whose value is at most n) to
| Aut(G)|. Since |Aut(GY))|/|Aut(GU*D)] is logarithmic in the input size, it can be easily
factorized. Thus we can compute a prime factorization for |Aut(G)|. We can then check
that |Aut(G)| is k-rough.

6We choose to call these integers rough because in number theory a positive integer is called smooth if
it has only small prime factors. Intuitively, smoothness is just the opposite of what we term as roughness.

To see that GA is truth-table reducible to GAy_oygn, let G' be an instance of GA. Now,
it is easy to construct a graph H such that |Aut(H)| = 2% (H will be of size polynomial

in k, which is constant). Notice that |Aut(G U H)| = 2¥|Aut(G)|. Thus G € GA iff
G U H ¢ GAgmrougn-

We proceed to the second part. Let (G1,G2) be an instance of Glg-yougn such that
|Aut(G1)| = |Aut(Ga)| = M. Tt is known [KST92| that if (G1,Gs) € GI then |Aut(Gy U
G,)| = 2M? and if (G, Gs) & GI then |Aut(G; U Go)| = M2. In order to see that
Glj-rougn is truth-table reducible to GA, we can compute k + 1 free vertices of G (or all
of them if fewer exist) and k + 1 free vertices of Gy (or all of them if fewer exist) and

2k + 2 free vertices of G; U Gy (or all of them if fewer exist). Now, it can be checked
in polynomial time from the computed free vertices of G; and G5, whether G1,Gy €
GAk-rough- If G1,G2 € GAjg-rougn, then, using the algorithm explained in Theorem 3.1,
from the corresponding query answers obtained we can compute |Aut(G1)| and |Aut(Gs)|
and verify that |Aut(G1)| = |Aut(G3)|, which is, say M.

Now, (G1, Gs) & GLiff |Aut(Gy U Go)| = M2. Since |Aut(Gy U Gs)| is M2 or 2M?, in
any case |Aut(G, J G2)|is 2k+1-rough. This can be easily verified from the 2k+2 or fewer
free vertices of G, U G, that have already been computed. Now, since | Aut (G J Gs)|

is 2k + 1-rough we can actually compute |Aut(G; J G2)| exactly from the query answers
and therefore check that the value is M?2. Since k is a constant, as a consequence of
Theorem 3.1, this entire computation can be carried out in polynomial time with only
nonadaptive queries to GA.

To see that GA is truth-table reducible to Gli—,ougn, We use the result from [KST92]
that GA is truth-table equivalent to UGI (for Unique Graph Isomorphism whose ‘yes’
instances (G, G2) have a unique isomorphism). It suffices for us to show that UGI is
truth-table reducible to Gli-yougn. Let (G1,G2) be an instance of UGL If (G, G,) is a
‘yes’ instance then clearly both G; and G5 are rigid graphs. As said earlier it is easy to
construct a graph gadget H such that |Aut(H)| = 2*.

Then, |Aut(Gy U H)| = 2 and |Aut(Gy U H)| = 2 iff both G; and G, are rigid. Thus
G, U H and G5 U H are in GAgyougn iff both G and G5 are rigid. Furthermore, notice
that it can be ensured easily that G, O H and Gy O H are isomorphic iff G; and G, are
isomorphic. Finally, it is easy to see that (G, Gy) € UGIiff (G, U H.Gy ¥ H) € Gli—rough-
This completes the proof. [

Finally, we mention an interesting consequence concerning program checking for the
problems considered in this paper. The definitions and fundamental results can be found
in [BK95].

It is known that GI is checkable [BK95]. It follows from the results of [LT92] (also
see [KFM93]) that GA is nonadaptively checkable. Le. the program checker needs to ask
just one round of parallel queries to a purported program for GA in order to check it.
However, it is an open question if GI is nonadaptively checkable.

The following theorem is a nonadaptive version of Beigel’s trick for program check-
ing [BK95]. We omit the proof of this theorem since it is essentially the same as that for
Beigel’s trick.

Theorem 3.4 (Beigel’s trick for nonadaptive checkers) Let m1 and o be two decision

10

problems that are truth-table equivalent. The problem 1 is nonadaptively checkable iff mo
1s nonadaptively checkable.

As a consequence of the above theorem and the fact that GA is nonadaptively check-
able it follows that the problems considered in Corollaries 3.2 and 3.3 in this paper are
nonadaptively checkable.

Corollary 3.5 For any k > 0, Glx, GAg, GAg-rough, Gli-rougn are nonadaptively check-
able. The problem GAp,ime is also nonadaptively checkable.

Acknowledgements. We are grateful to the referees for providing useful comments.

References

[B89] J. L. Balcézar. Self-reducibility structures and solutions to NP problems. Revista
Matemdtica, Universidad Complutense de Madrid, vol. 2, no. 2/3 (1989), 175-184.

[BDG88| J. L. Balcdzar, J. Diaz, and J. Gabarrdé. Structural Complezity I. EATCS
Monographs on Theoretical Computer Science, Springer-Verlag, 1988.

[BK95] M. Blum and S. Kannan. Designing programs that check their work. Journal of
the ACM, pages 269-291, Vol. 43, No. 1, 1995.

[KFM93] L. Fortnow, S. Kannan, and S. Mahaney. Graph automorphism is nonadaptively
checkable. Manuscript, 1993.

[LT92] A.Lozano and J. Tordn. On the nonuniform complexity of the graph isomorphism
problem. In Proceedings of the Structure in Complexity Theory Conference, pages
118-129, 1992.

[Har69] F. Harary. Graph Theory. Addison-Wesley, Reading, 1969.

[Hof82] C. M. Hoffmann. Group-Theoretic Algorithms and Graph Isomorphism. Lecture
Notes in Computer Science, vol. 136, Springer-Verlag, 1982.

[KST92] J. Kobler, U. Schoning, and J. Tordn. Graph isomorphism: its structural
complexity. Birkhauser, Boston, 1992.

[Lu81] A. Lubiw. Some NP-complete problems similar to Graph Isomorphism. SIAM
Journal on Computing, 10:11-21, 1981.

[Ma79] R. Mathon. A note on the graph isomorphism counting problem. Information
Processing Letters, 8:131-132, 1979.

[Schn82] C. P. Schnorr. On self-transformable combinatorial problems. Math. Program-
ming Study, 14:95-103, 1982.

[Sch88] U. Schéning. Graph isomorphism is in the low hierarchy. Journal of Computer
and System Sciences, 37:312-323, 1988.

11

