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Abstract

It is shown that for any class C closed under linear-time reductions, the complete sets for
C under sublogarithmic reductions are also complete under 2DFA reductions, and thus are
isomorphic under first-order reductions.
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1 Introduction

Logarithmic space is a critical bound in space complexity. For the class DLOG (= DSPACE(log n))
we do not have, till now, any non-trivial upper bound, while, on the other hand, it is not too
difficult to exhibit languages in DLOG − DSPACE(o(log n)) [16]. The reason for this is that
the TMs working within sublogarithmic space cannot even record the the length of the input,
and thus can be ‘fooled’ easily. In fact, when the space bound of a DTM is o(log log n), the
TM cannot recognize any non-regular language [20, 12]. So, there exists a gap between the
classes DSPACE(log log n) and DSPACE(1) (the class of regular sets) in the sense that an in-
termediate space bound does not yield a different class (this result has been generalized to even
alternating TMs [22, 14]). Similar gaps between time- and space-bounded complexity classes
were exhibited in [24, 7]. Because of the above-mentoined limitation of sublogarithmic TMs, it
also becomes possible to prove strong separation results for sublogarithmic classes, e.g., it has
been shown that the space hierarchy for any sublogarithmic bound in Ω(log log n) ∩ o(log n) is
infinite [25, 9, 18, 26, 10, 19]. This is in direct contrast with the result that for any space bound
in Ω(log n), the space hierarchy collapses to the second level [13, 23]. [17] contains an excellent
survey of the results on the sublogarithmic space classes.

Any sublogarithmic space class can be viewed as the smallest many-one degree under the
corresponding sublogarithmic space reducibility (such a reducibility may not be closed under
composition, and so we have to define degrees carefully—see next section). So the question
naturally arises: what can we say about the structure of other degrees, espacially the complete
degrees, under sublogarithmic space reducibilities? In particular, what is the relationship be-
tween the complete degrees under various sublogarithmic space reducibilities? An immediate
observation here is that for many well known classes, e.g., P, NP, PSPACE, EXP etc., while
there exist complete sets under logspace reductions, there are no complete sets under subloga-
rithmic reductions. This is because all these classes are closed under logspace reductions that
can ‘blowup’ the input size by a polynomial, while the sublogarithmic space functions cannot
even square the input size (see next section). However, for many classes that are not closed



under such reductions, e.g., DTIME(nk), NTIME(nk), DSPACE(nk) (k ≥ 1), E, NE etc., there
do exist complete sets under sublogarithmic space reductions (see next section for examples).

The complete degrees under logspace reductions have been investigated for long (see [15] for a
survey) and it is known that for well-known classes, e.g. NP, the complete degree under logspace
reductions contains a wide variety of languages [11]. On the other extreme, the complete degrees
under reductions computed by DTMs that have no space (referred as 2DFA reductions in [21]),
have also been investigated [6, 8, 4]. It can be easily shown that the complete degree of any
reasonable class under 2DFA reductions is properly contained in the complete degree of the
class under logspace reductions. However, there has been no work on complete degrees under
sublogarithmic space reductions so far (althogh much work has taken place on a different class
of sublogarithmic reductions: AC0 reductions [3, 2]). The question of interest for such degrees
would be to compare these with the degrees complete under logspace and 2DFA reductions. In
particular, does there exist a gap—as between DSPACE(log log n) and DSPACE(1)—between
some of these complete degrees? It is useful to note here that a similar gap is known to exist
between sets complete under AC0 and NC0 reductions [3].

In this paper, we show that such a gap indeed exists, and in fact, extends all the way from
complete degrees under 2DFA reductions to complete degrees under logspace reductions. In
other words, we show that for any class C closed under linear-time reductions, and for any
sublogarithmic space bounded reducibility, any complete set for C under the reducibility is also
complete under 2DFA reducibility. The result holds for all the classes DTIME(nk), NTIME(nk),
DSPACE(nk), E, NE etc. as all these are closed under linear-time reductions.

2 Preliminaries

All the strings that we consider are over Σ = {0, 1}. 1+ denotes the set 1∗ − {ε}. Similarly, 0+

denotes the set 0∗ − {ε}. For a string x, x[i] denotes the ith bit of x for 1 ≤ i ≤ |x|.
Our model of computation is Turing Machines with a read-only input tape, a write-only

output tape, and a read-write work tape.
A 2DFA TM is a DTM that uses no space on any input. We shall be interested in the total

functions computed by these TMs. A 2DFA function is a total function computed by a 2DFA
TM.

A sublogarithmic space TM is one that uses o(log n) space on every input of size n. It is
straightforward to see that the number of different configurations of such TMs, on any input of
size n, are O(n ·2o(log n)) = o(n2). So, any such TM that always halts, works only for time o(n2).
A sublogarithmic space function is a total function computed by a sublogarithmic space DTM.

We shall be interested in complete sets for different classes under sublogarithmic space DTMs.
The above bound on the time of these TMs implies that several classes, e.g., P, NP do not have
any complete set under these reductions. The reason is easy to see. Let NPk = NTIME(nk).
If there is a complete set for NP under sublogarithmic space reductions, say in NPj , then
NP = NP2j violating the nondeterministic-time hierarchy theorem. Similarly one can argue
about P, PSPACE, EXP etc. However, the classes Pk = DTIME(nk), NPk, DSPACE(nk), E,
NE etc. have complete sets under even 2DFA reductions, and thus also under sublogarithmic
space reductions. An example is the set

{〈i, x, 1t〉 | NTM Mi accepts x in t steps}.

This set is complete for NP1 under 2DFA reductions. In [21], several ‘natural’ problems are
shown to be complete for E under 2DFA reductions.

For any resource bound r, we say that A ≤r
m B via f if the set A reduces to B via f and

there is a TM computing f that works within the resource bound of r. We say A ≤2dfa
m B when
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f is a 2DFA function and A ≤sublog
m B when f is a sublogarithmic space function. For any class

C, a set A is ≤r
m-hard set for C if for every set B ∈ C, B ≤r

m A. The set A is ≤r
m-complete for

C is A is ≤r
m-hard for C and A ∈ C. The ≤r

m-degrees are the strongly connected components of
the relation ≤r

m. The ≤r
m-complete degree of C is the ≤r

m-degree of the ≤r
m-complete sets for C.

3 The result

The structure of complete degrees has been investigated for long (see [15] for a survey of results
on polynomial-time and logspace complete degrees). For some of the reducibility classes weaker
than logspace, the structure of complete degrees under them can be completely described [5, 1, 3].
The structure of ≤2dfa

m -complete degrees has also been investigated [6, 8, 4]. In [4], it was
shown that for any class closed under linear-time reductions (the results there were shown for
classes closed under log-lin reductions but their proof works for classes closed under linear-time
reductions as well), the ≤2dfa

m -complete sets of the class are also complete under 2DFA reductions
that are one-one and size-increasing, and further, all such sets are first-order isomorphic (see [5]
for a definition of first-order isomorphism) to each other. Here, we show that for any class closed
under linear-time reductions, the ≤sublog

m -complete sets are also ≤2dfa
m -complete, and therefore,

are complete under 2DFA reductions that are one-one and size-increasing as well as first-order-
isomorphic to each other.

For proving our result, we shall make use of the following technical lemma proved in [17] (in
fact, the lemma is proved there even for alternating sublogarithmic space TMs while we use it
only for DTMs). The proof of the lemma uses essentially a generalization of the n 7→ n + n!-
technique developed by Hartmanis, Sterns, and Lewis for sublogarithmic space TMs [20].

For any string w, let wk denote the string ww · · ·w︸ ︷︷ ︸
k times

.

Lemma 3.1 Let M be a sublogarithmic space DTM. Then, there is a constant N such that for
every n ≥ N , for all strings z1, z2, w, and for every l ≥ 0, the space used by M on the input
z1w

n+l·n!z2 is the same as the space used on the input z1w
nz2.

The above lemma asserts that the TM M is ‘fooled’ by the string z1w
n+l·n!z2—it cannot

differentiate the string from z1w
nz2.

In our main result below, we shall compose two functions, one a sublogarithmic space function
and the other a 2DFA function. We shall require their composition to be a 2DFA function.
Clearly, this does not hold in general. So, we define the conditions under which the composition
is a 2DFA function. A 2DFA function g is a simple 2DFA function if there exist two strings b0 and
b1 and a set of strings {c0, c1, . . . , ck} for a fixed k, such that for all x, g(x) = bx[1]bx[2] · · · bx[|x|]c
where c ∈ {c0, . . . , ck}.

Lemma 3.2 Let f be a sublogarithmic space function computed by the TM M , and g be a simple
2DFA function. If the TM M , on any string in the range of g, works within a constant space,
then the function f ◦ g is a 2DFA function.

Proof. The following TM computes f ◦ g:

On input x, first compute the string c by simulating the 2DFA TM computing g(x),
where g(x) = bx[1]bx[2] · · · bx[|x|]c for some c ∈ {c0, . . . , ck}. Now, start the simulation
of M on g(x) by writing the string bx[1] on the work tape. As and when M needs
more bits of g(x), look up the corresponding bit of x and write the appropriate string
b0 or b1 (write c if M needs the last |c| bits of g(x)) on the work tape (overwriting
the earlier string). Output any bit that M outputs.
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The above TM needs only a constant amount of worksapce as M works on g(x), for any x,
within a constant space. A TM that needs a constant amount of workspace can be replaced by
a TM that needs no workspace and does all the computation in its states. And so, the function
f ◦ g is 2DFA function.

Theorem 3.3 For any class C closed under linear-time reductions, the ≤sublog
m -hard sets for C

are also ≤2dfa
m -hard.

Proof. Let A be a ≤sublog
m -hard set for C. Let B ∈ C, B 6= ∅, Σ∗. We shall exhibit a 2DFA

reduction of B to A. Define a set D as accepted by the following procedure.

Input z. If z does not begin with a 1 and end with a 0, then reject. Otherwise, let
z = w1w2 · · ·wp such that wi ∈ 1+0+ for 1 ≤ i ≤ p. For 1 ≤ i ≤ p, let ai = 1 if wi has
more 1’s than 0’s, 0 if wi has more 0’s than 1’s, ε otherwise. Define x = a1a2 · · · ap.
Accept iff x ∈ B.

The set D reduces to B via a linear-time reduction: the TM computing the reduction first
scans the input to make sure that it begins with a 1 and ends with a 0. If not, then it outputs
a fixed string in B̄. Otherwise, it starts scanning the input from left keeping a count of the
number of ones and zeroes in wi, and outputs ai accordingly.

So, D ∈ C. Let D ≤sublog
m A via f and let f be computed by the sublogarithmic space

TM M . We now construct a reduction, g, of B to D such that the TM M , on the range of g,
requires only a constant space. Further, the function g is a simple 2DFA function. Therefore, by
Lemma 3.2, function f ◦ g—reducing B to A—would be a 2DFA function, proving the theorem.
Before giving the construction of g, we prove two claims on the behavior of the TM M on certain
strings.

Let S be a space bound in o(log n) such that for every x, the space used by M on input x is
bounded by S(|x|). Let N be the constant for the TM M as given by Lemma 3.1. Let u = 1N0N

and
R0 = {uN+l·N ! | l ≥ 0}.

Our first claim follows directly from Lemma 3.1.

Claim 3.3.1 For any string y ∈ R0, the space used by the TM M on the input y, is bounded
by S(|uN |) = S(2N2).

Proof of Claim 3.3.1. Let z1 = z2 = ε, w = u, n = N , and apply Lemma 3.1 with these
parameters. 2

The above claim shows that if we make the function g map strings to the set R0, then f ◦ g
becomes a 2DFA function (by Lemma 3.2). However, the set R0 is sparse and so g has to map
exponentially many strings to a single string to achieve this. As this does not appear feasible,
we define a dense set for which the same property holds. Define,

R = {v1v2 · · · vN+l·N ! | l ≥ 0 and for 1 ≤ i ≤ N + l ·N !, vi ∈ {1N+N !0N , 1N0N+N !, 1N0N}}.

This set is clearly dense. Now we show that,

Claim 3.3.2 For any string y in R, the space used by the TM M on the input y, is bounded by
S(2N2).
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Proof of Claim 3.3.2. Let y ∈ R and y = v1v2 · · · vN+l·N ! as above for some l ≥ 0. Let
yi = v1v2 . . . viu

N+l·N !−i for 0 ≤ i ≤ N + l ·N !. We show that the space used by the TM M on
the input yi, for any 1 ≤ i ≤ N + l ·N !, is bounded by S(2N2). The proof is by induction on i.

Induction hypothesis : The space used by the TM M on the input yi is bounded by S(2N2).

Base step (i = 0) : Follows from Claim 3.3.1 since y0 ∈ R0.

Induction step : Suppose the hypothesis holds for some i < N + l · N !. Consider yi+1 =
v1v2 · · · vivi+1u

N+l·N !−i−1. There are three cases: first, when vi+1 = u. In this case, the
hypothesis trivially holds for i + 1 since yi+1 = yi. The second case is when vi+1 =
1N+N !0N . For this case, let z1 = v1v2 · · · vi, w = 1, z2 = 0NuN+l·N !−i−1, n = N , and
l = 1. Applying Lemma 3.1 with these parameters, we get that the TM M , on input yi+1,
uses at most as much space as on input yi. Thus, by the induction hypothesis, the space
used by M on input yi+1 is at most S(2N2). The third case is when vi+1 = 1N0N+N !. For
this case, let z1 = v1v2 . . . vi1N , w = 0, z2 = uN+l·N !−i−1, n = N , and l = 1. Applying
Lemma 3.1 with these parameters, we again have that the space used by M on yi+1 is
bounded by S(2N2).

Since yN+l·N ! = y, the claim follows. 2

Now we construct the function g whose range is a subset of R, as promised. It is computed
by the following procedure.

On input x, let |x| = m. Let b0 = 1N0N+N ! and b1 = 1N+N !0N . Let ci = (1N0N )i

for 0 ≤ i ≤ k = N ! − 1 (assuming s0 = ε for any string s). Scan the bits of
x from left to right, and for every bit, output b0 if the bit is zero, b1 otherwise.
While scanning, also check if m−N is divisible by N ! (this can be done by counting
the first N bits, and after that counting every N ! successive bits). If not, then
let r = (m − N)(mod N !) (r will be automatically computed by doing the above
counting). Clearly, 1 ≤ r ≤ N !− 1. Output cN !−r.

Function g is a simple 2DFA function since g(x) = bx[1] · · · bx[m]ci for some 0 ≤ i ≤ N ! − 1,
and the TM computing g(x) requires at most O(N !) space—a constant. Therefore, by the above
claim and Lemma 3.2, f ◦ g is a 2DFA function. We now show that g is a reduction of B to
D. Firstly, notice that g(x) ∈ R for every x. We also have that g(x) = bx[1] · · · bx[m]ci for some
0 ≤ i ≤ N ! − 1. Moreover, for 1 ≤ j ≤ m, bx[j] ∈ 1+0+, and if x[j] = 1 then bx[j] has more
1’s, otherwise more 0’s. String ci is ui for u = 1N0N . Therefore, it follows that the procedure
accepting D given above, on input z = g(x), will accept iff x ∈ B.

Thus, f ◦ g is a 2DFA reduction of B to A.

Corollary 3.4 For any class C closed under linear-time reductions, the ≤sublog
m -complete sets

for C are also ≤2dfa
m -complete.

By a result in [4], it follows that,

Corollary 3.5 For any class C closed under linear-time reductions, the ≤sublog
m -complete sets

for C are also complete under one-one, size-increasing, 2DFA reductions and further, are first-
order-isomorphic to each other.
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The result of [4] in fact shows that the ≤2dfa
m -complete sets are complete under 2DFA reduc-

tions that are very similar to simple DFA functions that we have defined. Similar to Lemma 3.2,
it can be shown that the composition of a sublogarithmic space function with such a DFA
function remains a sublogarithmic space function. Therefore,

Corollary 3.6 For any class C closed under linear-time reductions, sets in the ≤sublog
m -complete

degree of C are complete for C under one-one, size-increasing, 2DFA reductions and further, are
first-order-isomorphic to each other.
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