
Equivalence of F-algebras and cubic forms

Manindra Agrawal and Nitin Saxena ∗

Department of Computer Science

IIT Kanpur, India

{manindra,nitinsa}@cse.iitk.ac.in

September 15, 2005

Abstract

We study the isomorphism problem of two “natural” algebraic structures – F-algebras and
cubic forms. We prove that the F-algebra isomorphism problem reduces in polynomial time
to the cubic forms equivalence problem. This answers a question asked in [AS05]. For finite
fields F with 3 6 |(#F − 1), this result implies that the two problems are infact equivalent.
This result also has the following interesting consequence:

Graph Isomorphism ≤P

m
F-algebra Isomorphism ≤P

m
Cubic Form Equivalence.

1 Introduction

For a field F, F-algebras are commutative rings of finite dimension over F. One of the fundamental
computational problems about F-algebras is to decide, given two such algebras, if they are
isomorphic. When F is an algebraically closed field, it follows from Hilbert’s Nullstellensatz
[Bro87] that the problem can be decided in PSPACE. When F = R, the problem is in EEXP

due to the result of Tarski on the decidability of first-order equations over reals [DH88]. When
F = Q, it is not yet known if the problem is decidable. When F is a finite field, the problem is
in NP∩ coAM [KS05]. In all of the above results, we assume that an F-algebra is presented by
specifying the product of its basis elements over F.

F-Cubic Forms are homogeneous degree 3 polynomials over field F. We call two such forms
equivalent if an invertible linear transformation on the variables makes one equal to the other.
The problem of equivalence of F-cubic forms has a very similar complexity to that of F-algebra
isomorphism for different F. This follows from the result of [AS05] showing that F-cubic form
equivalence reduces, in polynomial time, to F-algebra isomorphism (in case F is a finite field,
the result holds for 3 6 |(#F − 1) due to technical reasons).

Both the problems have been well studied in mathematics (for instance see [McD74, Har75,
MH74, Rup03]). Over the last ten years, these problems have been found to be useful in
computer science as well: [Pat96, CGP98] proposes a cryptosystem based on the hardness of
the cubic form equivalence over finite fields, [AS05] show that the Graph Isomorphism problem
reduces to both F-algebra isomorphism and F-cubic form equivalence for any F. Therefore, the
two problems are of an intermediate complexity but seemingly harder than Graph Isomorphism.

Of the two problems, cubic form equivalence might appear to be an easier problem because,
for example, the reduction from Graph Isomorphism to F-algebra isomorphism is simple while
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the reduction to F-cubic form equivalence is very involved. In this paper, we show that this is
not the case by exhibiting a reduction from F-algebra isomorphism to F-cubic form equivalence.
Apart from showing that the two problems are essentially equivalent, this has other interesting
implications. For example, this suggests that Q-algebra isomorphism is decidable because Q-
cubic form equivalence appears to be decidable due to the rich structure they possess.

Our reduction is a two step process. We first reduce F-algebras to local F-algebras of a special
form. Then we use the properties of these local algebras to show that a “natural” construction
of F-cubic forms works.

In section 2 we give an overview of the reduction. In section 3 we reduce general F-algebra
isomorphism to the isomorphism problem for local F-algebras and in section 4 we reduce F-
algebra isomorphism problem to F-cubic form equivalence.

2 The Basics

An F-algebra R is a commutative ring containing field F. We assume that R is specified in
terms of its additive generators over F, say b1, . . . , bn. Thus, R = Fb1⊕ . . .⊕Fbn. To completely
specify R, the product of pairs of basis elements is given in terms of a linear combination of b’s.
Thus, a’s ∈ F are given in the input such that:

∀i, j, bibj =
∑

1≤k≤n

aij,kbk (1)

Let S be another F-algebra with basis elements b1, . . . , bn satisfying:

∀i, j, bibj =
∑

1≤k≤n

a′ij,kbk

To specify an isomorphism ψ from R to S it is sufficient to describe ψ(bi), for each i, as a linear
combination of b1, . . . , bn in S.

The isomorphism problem for these F-algebras is related to polynomial equivalence problem
over F because we can combine equations (1), by using new variables z for various i, j, to
construct:

fR(z, b) :=
∑

1≤i≤j≤n

zij



bibj −
∑

1≤k≤n

aij,kbk



 (2)

In the above expression we consider zij and bi as formal variables and thus fR is a degree-3 or
cubic polynomial. Similarly, construct fS(z, b) from S. It was shown in [AS05] that equivalence
of the polynomials fR and fS is sufficient to decide whether R and S are isomorphic. If φ is an
isomorphism from R to S then it is easy to see that there is a linear invertible map τ on z such
that: fR(τz, φb) = fS(z, b). More work is needed to show that if fR is equivalent to fS then
infact R ∼= S. The main idea being that any equivalence ψ from fR to fS will map bi’s to a
linear combination of b’s and hence ψ becomes our natural candidate for an isomorphism from
R to S (for details see [AS05]).

The question we resolve in this paper is whether there is a way to construct homogeneous
cubic polynomials, i.e. cubic forms over F (henceforth referred to as F-cubic forms), such that
their equivalence implies the isomorphism of R and S. The cubic form we construct looks like:

gR(z, b, v) :=
∑

1≤i≤j≤n

zij



bibj − v ·
∑

1≤k≤n

aij,kbk



 (3)
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Here v is a new formal variable. We reduce F-algebra isomorphism to F-cubic form equivalence
by first constructing special F-algebras R′, S′ from R,S (in section 3) and then showing that
equivalence of gR′ , gS′ implies the isomorphism of R,S (in section 4). The idea again is to show
that any equivalence ψ from gR′(z, b, v) to gS′(z, b, v) sends bi’s to a linear combination of b’s
and thus ψ leads us to an isomorphism from R to S.

3 Local F-algebra Isomorphism Problem

An F-algebra is local if it cannot be broken into simpler F-algebras i.e. if it cannot be written
as a direct product of algebras. Given an F-algebra this direct product decomposition can be
done by factoring polynomials over the field F. Any non-unit r in a local F-algebra is nilpotent
i.e., there is an m such that rm = 0 (see [McD74]).

In this section we give a many-to-one reduction from F-algebra isomorphism to local F-
algebra isomorphism. Moreover, the local F-algebras that we construct have basis elements
most of whose products vanish. We exploit the properties of this local F-algebra to give a
reduction from F-algebra to cubic forms in the next section.

Theorem 3.1. F-algebra isomorphism ≤P
m Local F-algebra isomorphism.

Proof. Given two F-algebras R and S, [AS05] constructs two cubic polynomials p and q respec-
tively such that p, q are equivalent iff R,S are isomorphic. These polynomials look like (as in
equation (2))):

p(z, b) =
∑

1≤i≤j≤n

zij

(

bibj −
∑

k

aij,kbk

)

q(z, b) =
∑

1≤i≤j≤n

zij

(

bibj −
∑

k

a′ij,kbk

)

Let

p3(z, b) =
∑

1≤i≤j≤n

zijbibj and p2(z, b) = −
∑

1≤i≤j≤n

(

zij
∑

k

aij,kbk

)

. (4)

Similarly define q3(z, b) and q2(z, b) from q. Thus, p = p3 + p2 and q = q3 + q2 where p3, q3 are
homogeneous of degree 3 and p2, q2 are homogeneous of degree 2.

Using p, q we construct the following F-algebras:

R′ := F[z, b, u]/
〈

p3, up2, u
2, I
〉

S′ := F[z, b, u]/
〈

q3, uq2, u
2, I
〉

(5)

where, I is the ideal generated by all possible products of 4 variables.
Note that all the variables in R′, S′ are nilpotent and hence the two rings are local F-algebras

(see [McD74]). The following claim tells us that it is enough to consider the isomorphism problem
for these local structures. Recall that R ∼= S iff p, q are equivalent polynomials.

Claim 3.1.1. p(z, b), q(z, b) are equivalent polynomials iff R′ ∼= S′.

Proof of Claim 3.1.1. If p, q are equivalent then the same equivalence, extended by sending
u 7→ u, gives an isomorphism from R′ to S′.

Conversely, say φ is an isomorphism from R′ to S′. Our intention is to show that the linear
part of φ induces an equivalence from p to q. Note that since z, b, u are nilpotents in R′, therefore
∀i ≤ j ∈ [n], k ∈ [n], φ(zij), φ(bi), φ(u) can have no constant term.
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Let us see where φ sends u. Since φ(u)2 = 0 in S′ while for all i, j: z2
ij , b

2
i 6= 0, the linear

part of φ(u) can have no z, b’s. Thus,

φ(u) = c · u+ (terms of degree 2 or more), where c ∈ F. (6)

Now by the definition of φ:

φ(p3) = c1·q3+c2·uq2+(linear terms in z, b, u)·u2+(terms of degree 4 or more), where c1, c2 ∈ F.

By substituting u = 0 we get,

φ(p3) |u=0 = c1q3 + (terms of degree 4 or more) (7)

Also,

φ(up2) = d1·q3+d2·uq2+(linear terms in z, b, u)·u2+(terms of degree 4 or more), where d1, d2 ∈ F.

Using eqn (6) we deduce that d1 = 0. Thus,

φ(up2) = d2 · uq2 + (linear terms in z, b, u) · u2 + (terms of degree 4 or more)

Again using eqn (6) we deduce:

uφ(p2) = d′2 · uq2 + (linear terms in z, b, u) · u2 + (terms of degree 4 or more), where d′2 ∈ F.

Factoring out u and substituting u = 0 gives us:

φ(p2) |u=0 = d′2 · q2 + (terms of degree 3 or more) (8)

Let ψ be the linear part of φ after substituting u = 0, that is:

for all i ≤ j, ψ(zij) := linear terms of φ(zij) other than u and

for all i, ψ(bi) := linear terms of φ(bi) other than u

By comparing degree 3 and degree 2 terms on both sides of equations (7) and (8) respectively,
we get:

ψ(p3) = c1q3 (9)

ψ(p2) = d′2q2 (10)

Note that since φ is an isomorphism, ψ has to be an invertible map and thus, ψ(p3), ψ(p2) 6= 0.

As a result c1 and d′2 are both non-zero. Consider the map ψ′ := (
d′
2

c1
) ◦ ψ. The above two

equations give us: ψ′(p3 + p2) =
d′3
2

c2
1

· (q3 + q2). Denote
d′3
2

c2
1

by c. Thus,

ψ′(p(z, b)) = c · q(z, b)

Now we can get rid of the extra factor of c by defining a map ψ′′:

∀i, j, ψ′′(zij) :=
1

c
ψ′(zij)

∀i, ψ′′(bi) := ψ′(bi)

It follows that ψ′′(p) = q and thus p(z, b), q(z, b) are equivalent. �

Thus, R ∼= S iff R′ ∼= S′ and hence it is sufficient to study F-algebra isomorphism over local
F-algebras of the form (5).
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4 Cubic Form Equivalence

Given two cubic forms f(x), g(x) (homogeneous degree 3 polynomials over a field F) the equiv-
alence problem is to determine whether there is an invertible linear transformation (over the
field F) on the variables that makes the two forms equal. When field F is finite, cubic form
equivalence is in NP∩ coAM. For an infinite field F we expect the problem to be decidable but
it is still open for F = Q.

Here we show that F-algebra isomorphism reduces to cubic form equivalence. This improves
the result of [AS05] that graph isomorphism reduces to cubic form equivalence. The proof
involves the use of similar cubic forms as constructed in [AS05] but here we heavily use the
properties of the intermediate local F-algebras to study the equivalences of these cubic forms.

Theorem 4.1. F-algebra isomorphism ≤P
m F-cubic form equivalence.

Proof. Given F-algebras R, S we will construct cubic forms φR, φS such that the cubic forms
are equivalent iff the algebras are isomorphic. The construction involves first getting the local
F- algebras R′, S′ (as in thm 3.1) and then the cubic forms out of these local algebras (similar
to [AS05]).

Let b1, . . . , bn be the additive basis of R over F. Let the multiplication in the algebra be
defined as:

for all i, j ∈ [n] : bi · bj =

n
∑

k=1

aij,kbk, where aij,k ∈ F

Consider the following local ring R′ constructed from R:

R′ := F[z, b, u]/
〈

p3, up2, u
2, I
〉

(11)

where p3(z, b) :=
∑

1≤i≤j≤n zijbibj and p2(z, b) :=
∑

1≤i≤j≤n zij (
∑n

k=1
aij,kbk). I is the set of

all possible products of 4 variables.
Similarly, construct S′ from S and we know from thm 3.1 that R ∼= S iff R′ ∼= S′. Now we

move on to constructing cubic forms from these local algebras R′ and S′.
A natural set of generators of the ring R′ is: {1} ∪ {zij}1≤i≤j≤n

∪ {bi}1≤i≤n ∪ {u}. For

simplicity let us call them 1, x1, . . . , xg, u respectively, where g :=
(

n+1

2

)

+n. A natural additive
basis of R′ over F is:

{1}∪{xi}1≤i≤g∪{u}∪{xixj}1≤i≤j≤g
∪{uxi}1≤i≤g∪{xixjxk}1≤i≤j≤k≤g

∪{uxixj}1≤i≤j≤g
minus one

term each from p3 and up2.
(12)

For simplicity denote this additive basis by 1, c1, . . . , cd respectively, where

d := g + 1 +

(

g + 1

2

)

+ g +

(

g + 2

3

)

+

(

g + 1

2

)

− 2 = 2g + 2

(

g + 1

2

)

+

(

g + 2

3

)

− 1

Finally, we construct a cubic form φR using R′ as follows:

φR(y, c, v) :=
∑

1≤i≤j≤d

yijcicj − v
∑

1≤i≤j≤d

yij

(

d
∑

k=1

ãij,kck

)

(13)

where ∀i, j, ci · cj =
∑d

k=1
ãij,kck in R′, for some ãij,k ∈ F.

Observe that the v terms in this cubic form are “few” because most of the ã are zero. This
property is useful in analysing the equivalence of such forms. Let us bound the number of v
terms in φR.

5



Claim 4.1.1. The number of surviving v terms in the rhs of eqn (13) is < (3d− 6).

Proof of Claim 4.1.1. The number of surviving v terms in the rhs of eqn (13) is:

≤ #
{

(k, l) | 1 ≤ k ≤ l ≤ d, ckcl 6= 0 in R′
}

+ 3 [#(terms in p3) + #(terms in p2)]

The first expression above accounts for all the relations in R′ of the form ckcl = cm. The second
expression takes care of the relations that arise from p3 = 0 and up2 = 0. The factor of 3 above
occurs because a term xixjxk in p3, up2 can create v terms in atmost 3 ways: from (xi) · (xjxk)
or (xj) · (xixk) or (xk) · (xixj).

≤ #
{

(k, l) | k ≤ l, ck, cl ∈ {xi}1≤i≤g

}

+ #
{

(k, l) | ck ∈ {xi}1≤i≤g , cl = u
}

+#
{

(k, l) | ck ∈ {xi}1≤i≤g , cl ∈ {xixj}1≤i≤j≤g

}

+#
{

(k, l) | ck ∈ {xi}1≤i≤g , cl ∈ {uxi}1≤i≤g

}

+#
{

(k, l) | ck = u, cl ∈ {xixj}1≤i≤j≤g

}

+ 3 [#(terms in p3) + #(terms in p2)]

≤

[(

g + 1

2

)

+ g + g ·

(

g + 1

2

)

+ g2 +

(

g + 1

2

)]

+ 3

[(

n+ 1

2

)

+

(

n+ 1

2

)

· n

]

Note that the dominant term in the above expression is g3

2
while in that of d it is g3

6
. Computation

gives the following bound:
< (3d− 6)

�

Construct a cubic form φS from ring S in a way similar to that of eqn (13).

φS(y, c, v) :=
∑

1≤i≤j≤d

yijcicj − v
∑

1≤i≤j≤d

yij

(

d
∑

k=1

ẽij,kck

)

(14)

where ∀i, j, ci · cj =
∑d

k=1
ẽij,kck in S′ for some ẽij,k ∈ F.

The following claim is what we intend to prove now.

Claim 4.1.2. φR(y, c, v) is equivalent to φS(y, c, v) iff R′ ∼= S′ iff R ∼= S.

Proof of Claim 4.1.2. The part of this claim that needs to be proved is φR ∼ φS ⇒ R′ ∼= S′.
Suppose ψ is an equivalence from φR(y, c, v) to φS(y, c, v). We will show how to extract from ψ
an isomorphism from R′ to S′.

We have the following starting equation to analyze:

∑

1≤i≤j≤d

ψ(yij)ψ(ci)ψ(cj) − ψ(v)
∑

1≤i≤j≤d

ψ(yij)

(

d
∑

k=1

ãij,kψ(ck)

)

=
∑

1≤i≤j≤d

yijcicj − v
∑

1≤i≤j≤d

yij

(

d
∑

k=1

ẽij,kck

)

(15)

The main property of this huge equation that we would like to show is: ψ(ci) consists of
only c terms. Thus, ψ(ci) has enough information to extract a ring isomorphism from R′ to S′.
In the rest of the proof we will rule out the unpleasant cases of ψ(ci) having y, v terms and ψ(v)
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having y terms.

Let for every i, ψ(ci) =
∑

j αi,jcj +
∑

j,k βi,jkyjk + γiv where α, β, γ’s ∈ F. For obvious
reasons we will call the expression

∑

j,k βi,jkyjk as the y part of ψ(ci). y parts of ψ(v) and ψ(yij)
are defined similarly. We will show that the rank of the y part of ψ(c1), . . . , ψ(cd), ψ(v) is less
than 3.

Assume that for some i, j, k the y parts of ψ(ci), ψ(cj), ψ(ck) are linearly independent over
F. By a term on the lhs of eqn (15) we mean expressions of the form ψ(yls)ψ(cl)ψ(cs) or
ψ(v)ψ(yls)ψ(ct) where l, s, t ∈ [d]. Let T0 be the set of all terms. There are atleast d + (d −
1) + (d − 2) = (3d − 3) terms on the lhs of eqn (15) that have an occurrence of ψ(ci), ψ(cj) or
ψ(ck), denote this set of terms by T1. Let the set of the remaining terms be T2. Let us build
a maximal set Y of linearly independent y parts and a set T of terms as follows: Start with
keeping y parts of ψ(ci), ψ(cj), ψ(ck) in Y and setting T = T1. Successively add a new y part
to Y that is linearly independent from the elements already in Y and that occurs in a term t in
T0 \ T , also add t to T . It is easy to see (by claim 4.1.1) that:

#Y ≤ 3 + #T2

< 3 +

[(

d+ 1

2

)

+ (3d− 6) − (3d− 3)

]

=

(

d+ 1

2

)

= # {yij}1≤i≤j≤d
(16)

Now apply an invertible linear transformation τ on the y variables in equation (15) such that
all the y parts in Y are mapped to single y variables, let τ(Y ) denote the set of these variables.
By substituting suitable linear forms, having only c, v’s, to variables in τ(Y ) we can make all
the terms in τ(T ) zero and the rest of the terms, i.e. τ(T0 \ T ), will then have no occurrence
of y variables (as Y is the maximal set of linearly independent y parts). Thus, the lhs of eqn
(15), after applying τ and the substitutions, is completely in terms of c, v while the rhs still has
atleast one free y variable (as we fixed only #τ(Y ) < # {yij}1≤i≤j≤d

y variables and as τ is an
invertible linear transformation). This contradiction shows that the y part of ψ(ci), ψ(cj), ψ(ck)
cannot be linearly independent, for any i, j, k. Using a similar argument it can be shown that
the y part of ψ(ci), ψ(cj), ψ(v) cannot be linearly independent, for any i, j. Thus, the rank of the
y part of ψ(c1), . . . , ψ(cd), ψ(v) is ≤ 2. For concreteness let us assume that the rank is exactly
2, the proof we give below will easily go through even when the rank is 1.

Again let Y be a maximal set of linearly independent y parts occurring in {ψ(yij)}1≤i≤j≤d

with the extra condition that y parts in Y are also linearly independent from that occurring
in ψ(c1), . . . , ψ(cd), ψ(v). As we have assumed the rank of the y part of ψ(c1), . . . , ψ(cd), ψ(v)
to be 2 we get #Y =

(

d+1

2

)

− 2. Let (i1, j1), (i2, j2) be the two tuples such that the y parts of
ψ(yi1j1), ψ(yi2j2) do not appear in Y . To make things easier to handle let us apply an invertible
linear transformation τ1 on the y variables in equation (15) such that:

• the y parts of τ1 ◦ ψ(c1), . . . , τ1 ◦ ψ(cd), τ1 ◦ ψ(v) have only yi1j1 and yi2j2 .

• for all (i, j) other than (i1, j1) and (i2, j2), the y part of τ1 ◦ ψ(yij) has only yij .

• τ1 is identity on c, v.

For clarity let ψ′ := τ1 ◦ψ. Rest of our arguments will be based on comparing the coefficients
of yij , for (i, j) 6= (i1, j1), (i2, j2), on both sides of the equation:

∑

1≤i≤j≤d

ψ′(yij)

(

ψ′(cicj) − ψ′(v)
d
∑

k=1

ãij,kψ
′(ck)

)

=
∑

1≤i≤j≤d

yij(quadratic terms in c, v) (17)
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For any ci, choose distinct basis elements cj , ck and cl satisfying cicj = cick = cicl = 0 in R′ (note
that there is an ample supply of such j, k, l), such that by comparing coefficients of yij , yik, yil
(assumed to be other than yi1j1 , yi2j2) on both sides of equation (17) we get:

ψ′(cicj) + (eij,1E1 + eij,2E2) = (quadratic terms in c, v)

ψ′(cick) + (eik,1E1 + eik,2E2) = (quadratic terms in c, v)

ψ′(cicl) + (eil,1E1 + eil,2E2) = (quadratic terms in c, v) (18)

where, eij,1, eij,2, eik,1, eik,2, eil,1, eil,2 ∈ F and

E1 = ψ′(ci1cj1) − ψ′(v)
d
∑

k=1

ãi1j1,kψ
′(ck)

E2 = ψ′(ci2cj2) − ψ′(v)

d
∑

k=1

ãi2j2,kψ
′(ck)

Now there exist λ1, λ2, λ3 ∈ F (not all zero) such that equations (18) can be combined to get
rid of E1, E2 and get:

ψ′(ci)
(

λ1ψ
′(cj) + λ2ψ

′(ck) + λ3ψ
′(cl)

)

= (quadratic terms in c, v)

This equation combined with the observation that both ψ′(ci) and (λ1ψ
′(cj)+λ2ψ

′(ck)+λ3ψ
′(cl))

are non-zero (as ψ′ is invertible) implies that:

∀i, ψ′(ci) = (linear terms in c, v) (19)

This means that the y-variables are only in ψ′(yij)s and possibly ψ′(v). Again apply an invertible
linear transformation τ2 on the y-variables in equation (17) such that τ2 ◦ ψ

′(v) has only yi0j0
in the y part and except for one tuple (i0, j0), the y part of τ2 ◦ψ

′(yij) has only yij for all other
(i, j). For clarity let ψ′′ := τ2 ◦ ψ

′. Our equation now is:

∑

1≤i≤j≤d

ψ′′(yij)

(

ψ′′(cicj) − ψ′′(v)
d
∑

k=1

ãij,kψ
′′(ck)

)

=
∑

1≤i≤j≤d

yij(quadratic terms in c, v) (20)

By comparing coefficients of yij (other that yi0j0) on both sides of the above equation we get:

(

ψ′′(cicj) − ψ′′(v)
d
∑

k=1

ãij,kψ
′′(ck)

)

+ e

(

ψ′′(ci0cj0) − ψ′′(v)
d
∑

k=1

ãi0j0,kψ
′′(ck)

)

= (quadratic terms in c, v), for some e ∈ F.

Pick i, j such that
∑d

k=1
ãij,kck 6= 0 in R′. Now if ψ′′(v) has a nonzero yi0j0 term then by

comparing coefficients of yi0j0 on both sides of the above equation we deduce:

d
∑

k=1

ãij,kψ
′′(ck) + e

d
∑

k=1

ãi0j0,kψ
′′(ck) = 0 (21)
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But again we can pick i, j suitably so that
(

∑d
k=1

ãij,kck

)

6∈
{

0, −e
∑d

k=1
ãi0j0,kck

}

and hence

avoiding equation (21) to hold. Thus, proving that ψ′′(v) has no yi0j0 term. So we now have:

ψ′′(v) = (linear terms in c, v)

and

∀i, ψ′′(ci) = (linear terms in c, v) (22)

Since y-variables are present only in ψ′′(yij)’s, comparing coefficients of yij ’s on both sides
of equation (20) gives:

∀i, j, ψ′′(cicj) − ψ′′(v)

d
∑

k=1

ãij,kψ
′′(ck) = (quadratic terms in c) − v(linear terms in c) (23)

Using this equation we will prove now that ψ′′(ci) has only c-variables.
Consider a ci such that c2i = 0 in R′, then from equation (23):

ψ′′(ci)
2 = (quadratic terms in c) − v(linear terms in c) (24)

Now if ψ′′(ci) has a nonzero v term then there will be a v2 term above on the lhs which is absurd.
Thus, ψ′′(ci) has only c-variables when c2i = 0 in R′. When c2i 6= 0 then c2i =

∑d
k=1

ãii,kck in R′

where the ck’s with nonzero ãii,k satisfy c2k = 0. This happens because the way c’s are defined
in eqn (12) the expression of c2i will have only quadratic or cubic terms in x and the square of
these terms would clearly be zero in R′. Thus, again if ψ′′(ci) has a v term then there will be
an uncancelled v2 term on the lhs of the equation:

ψ′′(ci)
2 − ψ′′(v)

d
∑

k=1

ãii,kψ
′′(ck) = (quadratic terms in c) − v(linear terms in c)

Thus, we know at this point that ψ′′(v) has only c, v terms and ψ′′(ci) has only c terms. Since
τ1, τ2 act only on the y’s we have what we intended to prove from the beginning (recall eqn
(15)):

ψ(v) = (linear terms in c, v)

and

∀i, ψ(ci) = (linear terms in c) (25)

We have now almost extracted a ring isomorphism from the cubic form equivalence ψ, just few
technicalities are left which we resolve next.

Apply an invertible linear transformation τ3 on the y-variables in equation (15) such that
the y part of τ3 ◦ψ(yij) has only yij for all i ≤ j ∈ [d]. Of course we assume that τ3 is identity on
the c, v variables. So on comparing coefficients of yij on both sides of the eqn (15) after applying
τ3 we get:

∀i, j, τ3 ◦ ψ(cicj) − τ3 ◦ ψ(v)
d
∑

k=1

ãij,kτ3 ◦ ψ(ck) =
∑

i≤j

λij

(

cicj − v
d
∑

k=1

ẽij,kck

)

(26)

for some λij ∈ F.
Substitute v = 1 in the expression for τ3 ◦ ψ(v) = γvvv +

∑

i αvici and denote the result by
m. Observe that γvv 6= 0 and ∀i, ci is a nilpotent element in S′ and hence m is a unit in the
ring S′. On substituting v = 1 in eqn (26) we get:

∀i, j, τ3 ◦ ψ(ci) · τ3 ◦ ψ(cj) −m ·
d
∑

k=1

ãij,kτ3 ◦ ψ(ck) = 0 in S′
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If we define Ψ := τ3◦ψ
m

then we get:

∀i, j, Ψ(ci) · Ψ(cj) −
d
∑

k=1

ãij,kΨ(ck) = 0 in S′

Now observe that if for some λi’s ∈ F, Ψ(
∑d

i=1
λici) = 0 in S′ then τ3 ◦ ψ(

∑d
i=1

λici) = 0 in S′.

Since τ3 ◦ ψ is an invertible linear map this means that
∑d

i=1
λici = 0 in R′. Thus, showing

that Ψ is an injective map from R′ to S′. Since R′ and S′ are of the same dimension over F, Ψ
becomes surjective too. Thus, Ψ is an isomorphism from R′ to S′. �

This completes the reduction from F-algebra isomorphism to cubic form equivalence.

5 Conclusion

In this paper we gave a reduction from F-algebra isomorphism to F-cubic form equivalence for
any field F. Thus, cubic form equivalence, in addition to being a natural algebraic problem, is
also directly related to isomorphism problems for F-algebras and graphs. We would like to pose
the following questions related to cubic forms:

• Is there a subexponential algorithm for F-cubic forms for any field F? Such an algorithm
will result in a subexponential time algorithm for Graph Isomorphism.

• Is Q-cubic form equivalence decidable? This will make Q-algebra isomorphism decidable
too.
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