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Synopsis

One of the main goals of theoretical computer science is to understand the complex-

ity of various problems. This work mainly focuses on problems that are of algebraic

flavor but are related to problems in number theory and graph theory. This thesis

builds a framework that gives new insights into the complexity of various seemingly

unrelated open problems and also derandomizes some problems that were previously

known to have efficient but randomized solutions.

The framework that this thesis keeps alluding to is that of the morphisms of

finitely presented rings. Rings are fundamental algebraic objects with associated

natural operations of addition and multiplication. A morphism is a map from a ring

R1 to a ring R2 such that it preserves the underlying ring operations of addition and

multiplication. An automorphism of a ring is a bijective morphism from the ring to

itself. An isomorphism from a ring R1 to another ring R2 is a bijective morphism

from R1 to R2. We begin with defining general morphism problems of rings and

then move on to specific applications.

The ring morphism problems that we study are – deciding whether a ring has a

nontrivial automorphism (RA), deciding whether there is an isomorphism between

two given rings (RI); finding a nontrivial ring automorphism (FRA), finding a ring

isomorphism (FRI); computing the number of automorphisms of a given ring (#RA),

computing the number of isomorphisms between two given rings (#RI); testing

whether a given map is a ring automorphism (TRA), testing whether a given map is

a ring isomorphism (TRI). A study of these problems, when the rings are finite and

are given in the basis representation, shows that none of these can be NP-hard (unless

the polynomial hierarchy collapses) but they can be harder than some well-known

problems – like, graph isomorphism, polynomial equivalence, integer factoring and
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polynomial factoring.

Next, we show an interesting connection of the isomorphism problem of rings

to the problem of polynomial equivalence. Given two polynomials f(x), g(x) ∈
F[x1, . . . , xn], polynomial equivalence is the problem of checking whether there is a

linear transformation τ ∈ Fn×n such that f(τx) = g(x). In most of the cases this

problem easily reduces to the ring isomorphism problem. More interestingly, we

show that the isomorphism problem for finite dimensional commutative F-algebras

(rings defined over a field F) reduces to solving the equivalence problem for cubic

forms (homogeneous polynomials of degree 3). Since we have shown that graph

isomorphism reduces to commutative F-algebra isomorphism, this means that graph

isomorphism reduces to cubic forms equivalence over any field F. This can be taken

as a new way of attacking graph isomorphism or as an evidence to the structural

hardness of cubic forms equivalence.

Next, we apply the properties of rings to solve a special case of the identity

testing problem. Given an arithmetic circuit C(x1, . . . , xn), the identity testing

problem is to check whether C ≡ 0 in time polynomial in the size of the circuit

C. There is an efficient randomized algorithm for identity testing since a long

time but there has been very little progress on the derandomization front. The

difficulty of derandomizing the identity testing problem was partly explained in

2003 by showing that such a derandomization would imply proving lower bounds.

In this work we assume that C is a depth 3 circuit with bounded top fanin and

give the first deterministic polynomial time algorithm for identity testing in this

case. The algorithm can be viewed as solving a special case of the ring isomorphism

problem and is based on the philosophy that polynomials over local rings imitate

the properties of polynomials over a field.

Finally, we apply the framework of rings to attack a famous problem – primality

testing. Primality testing is the problem of checking whether a given number n is

prime and the algorithm should take time polynomial in the number of input bits

log n. Prior to this work various randomized algorithms were known for primality

testing but the challenge was to eliminate the use of randomness. Here we consider

the cyclotomic ring R := (Z/nZ)[x]/(xr − 1) and study its Frobenius-like map

v



σn : a(x) 7→ a(x)n. We show that if σn is an automorphism of R then we get

strong conditions on n. This study culminates with the AKS algorithm – the first

deterministic polynomial time algorithm for primality testing.
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Chapter 1

Introduction

The primary goal of the study of computation is to ascertain upper and lower

bounds for the complexity of a specific problem at hand. It was realized early

on that the assumption of randomness, i.e., ability to toss coins, usually helps in

upper bounding the complexity of problems. However, it is widely believed that

the use of randomness in algorithms is dispensable. This belief is supported by the

recent results showing equivalence between lower bounds and derandomizations. All

these years of computer science research have had considerable successes in finding

upper bounds or efficient (maybe randomized) algorithms for many computational

problems but not much is known about proving lower bounds or getting general

derandomizations.

This work focuses on the various natural problems of algebraic flavor that are

not known to be in P but are not believed to be NP-hard. Some of these problems

are known to have randomized polynomial time algorithms and there are others that

do not even have randomized subexponential time algorithms yet. A better under-

standing of these problems of intermediate complexity would hopefully give us new

insights into NP computation. We give upper and lower bounds for these problems

as close as we can and also derandomize some problems that were previously known

to have only randomized algorithms.

The mathematical object that keeps recurring in this thesis is a ring. Rings are

algebraic structures with addition and multiplication operations defined on them
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and in all the applications we give in this thesis they are commutative with unity.

Study of the morphisms of these rings and the computational variants of morphism

problems forms the core of the next four chapters of this thesis. It was remarked

by Lenstra [Len04]: One has the strong feeling that essentially ANY problem in

mathematics can be ‘hidden’ in a finite local commutative ring! This work shows

that indeed many computational problems of intermediate complexity reduce to

questions of rings.

1.1 The Framework

The framework in this thesis constitutes of algebraic structures called rings and

computational problems defined on rings. A ring is a set R equipped with two

binary operations + and ·, called addition and multiplication, such that (a, b, c are

general elements in R):

1. (R,+) is an abelian group with identity element 0, i.e., R satisfies the following

properties:

• Associativity: (a+ b) + c = a+ (b+ c)

• Commutativity: a+ b = b+ a

• Identity: 0 + a = a+ 0 = a

• Inverse: ∀a ∃(−a) such that a+−a = −a+ a = 0

2. (R, ·) is a monoid with identity element 1 also called the unity, i.e., R satisfies

the following properties:

• Identity: 1 · a = a · 1 = a

• Associativity: (a · b) · c = a · (b · c)

3. Multiplication distributes over addition, i.e., R satisfies the following proper-

ties:

• a · (b+ c) = (a · b) + (a · c)
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• (a+ b) · c = (a · c) + (b · c)

If the multiplication operation satisfies commutativity then R is called a commuta-

tive ring. If (R \ {0}, ·) is an abelian group too then R becomes a field.

Example R0 := (Z/nZ,+, ·) is a ring, it is a field iff n is prime. R1 := R0[x]/(x
r−

1) is a commutative ring but never a field for r > 1. The set R2 :=
{
A | A ∈ R2×2

0

}
is a noncommutative ring under matrix addition and multiplication in R0.

1.1.1 Ring Representations

Normally, in this work we express commutative rings in the form:

R = (Z/nZ)[x1, . . . , xk]/(f1, . . . , fm)

where, f1, . . . , fm ∈ (Z/nZ)[x1, . . . , xk] are multivariate polynomials. This notation

means that all the polynomials
∑m

i=1 gifi – where, g1, . . . , gm ∈ (Z/nZ)[x1, . . . , xk]

– are zero in the ring R. This representation of rings, called the polynomial

representation, is very convenient but in the computational problems that we

define on rings we will need a more verbose way of representing rings in the input.

We will consider the following two ways of presenting a ring R:

Table Representation: Here, we assume that ring R has finitely many ele-

ments, say s, and provide two s×s addition and multiplication tables, thus defining

R completely.

Basis Representation: Here, ring R can be infinite but it should be finite

dimensional, i.e. the additive group of R should be decomposable as:

(R,+) ∼= (R1,+)⊕ · · · ⊕ (Rn,+) (1.1)

where R1, . . . , Rn are special rings, namely, Z, Z/mZ, or a field. Thus, there are

‘basis’ elements b1, . . . , bn ∈ R such that (R,+) = (R1,+)b1 ⊕ · · · ⊕ (Rn,+)bn and,

hence, to describe R it is sufficient to give the products bi ·bj as a ‘linear’ combination

of bk’s.
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In the basis representation of a ring R if the component rings of the additive

group are fields, say R1 = · · · = Rn = F, then R is called an F-algebra.

Example Consider the ring R := Q[x]/(x2 − x+ 1). Here, 1 and x can be taken

as basis elements and (R,+) = Q · 1⊕Q · x. Multiplication on the basis elements is

defined as: 1 · 1 = 1 · 1 + 0 · x, 1 · x = x · 1 = 0 · 1 + 1 · x and x · x = (−1) · 1 + 1 · x.
Also, note that R is a 2 dimensional commutative Q-algebra.

Note that the basis representation is more compact as it can represent a ring of

size s in O(log4 s) space whereas table representation requires Θ(s2 log s) space.

This exponential compactness of basis representation as compared to the table

representation suggests that the complexity of problems of rings would be different

for these two different representations.

In much of this thesis we will assume that the rings, whenever given as input

to an algorithm, are in the basis representation and the groups are in terms of

generators.

1.1.2 Ring Morphisms

A homomorphism φ from a ring R to S is a map that preserves addition and

multiplication operations, i.e., for all a, b ∈ R:

• φ(a+ b) = φ(a) + φ(b) in the ring S.

• φ(a · b) = φ(a) · φ(b) in the ring S.

A bijective homomorphism from ring R to S is called an isomorphism. A bijective

homomorphism from ring R to itself is called an automorphism. Observe that to

specify a homomorphism on a ring, given in the basis representation, it is enough

to specify the images of the basis elements together with a description of the

homomorphism on the component rings R1, . . . , Rn in Equation (1.1).
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Example Let R := Fp[x]/(x2). Then the map φ : 1 7→ 1, x 7→ 0 is a homo-

morphism from R to Fp. The map φ : 1 7→ 1, x 7→ ax (where a ∈ Fp \ {0}) is an

automorphism of R.

Study of automorphisms of fields has been very fruitful in understanding field

extensions. It was Galois who initiated this study and subsequently showed that

the roots of a general quintic polynomial cannot be expressed in terms of radicals.

In this work we study computational aspects of automorphism and isomorphism

problems of rings.

1.2 Our Contributions

Our contributions are twofold:

1) We study the complexity of problems related to computing ring morphisms

and relate it to the complexities of some well-known problems.

2) We design efficient algorithms for solving certain special cases of morphism

problems which, in turn, yield efficient algorithms for some well-known prob-

lems.

1.2.1 Complexity of Ring Morphism Problems

The computational problems of ring automorphisms that we study in this thesis

are: the ring automorphism problem (RA) to determine whether a given ring has

nontrivial automorphisms, the finding ring automorphism problem (FRA) to find a

nontrivial automorphism of a given ring, the counting ring automorphisms problem

(#RA) to compute the number of automorphisms of a given ring, and the testing

ring automorphism problem (TRA) to test whether a given map is an automorphism

of a given ring. Similarly, the computational problems of ring isomorphisms that we

study in this thesis are: the ring isomorphism problem (RI) to determine whether

two given rings are isomorphic or not, the finding ring isomorphism problem (FRI)

to find an isomorphism between two given rings, the counting ring isomorphisms
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problem (#RI) to compute the number of isomorphisms between two given rings,

and the testing ring isomorphism problem (TRI) to test whether a given map is an

isomorphism between two given rings.

This work shows that for finite rings given in the basis representation all these

problems are low for the polynomial hierarchy and, hence, are unlikely to be NP-

hard. We also lower bound the complexity of these problems by giving reductions

from well known problems of intermediate complexity, namely, graph isomorphism,

polynomial equivalence, integer factoring and polynomial factoring.

Graph Isomorphism: The problem is to determine whether two given graphs

are isomorphic. This is a fundamental open problem with no efficient algorithm

known yet. Schoning [Sch88] showed that this problem is unlikely to be NP-hard.

Using group-theoretic ideas, an algorithm was given by Luks [Luk82] that works

in polynomial time for graphs of bounded degree. This work shows that graph

isomorphism reduces to #RA, RI, FRI and #RI.

Polynomial Equivalence: Given two polynomials f, g the problem is to determine

whether there is a linear transformation that when applied on the variables of f

makes it equal to g. Not much is known about this problem (see [Har75, Pat96])

except that it is unlikely to be NP-hard over finite fields. We show that most of

the cases of this problem reduce to #RA, RI, FRI and #RI. More interestingly, the

ring isomorphism problem for finite dimensional commutative F-algebras reduces to

cubic forms equivalence. This, as a corollary, gives us that the graph isomorphism

problem reduces to testing equivalence of cubic forms over any field.

Integer Factoring: Given a composite number n the problem is to find a nontrivial

factor. There is no efficient algorithm known but the algorithms used in practice

are based on the number field sieve [LL93] and elliptic curves [Len87]. The best

known algorithm is conjectured to run in expected 2O(log
1
3 n log log

2
3 n) time. This is

a longstanding open problem that is of both theoretical and practical interest. We

show that integer factoring reduces to all of FRA, #RA, FRI and #RI.



7

Polynomial Factoring: Given a univariate polynomial over a finite field the

problem is to find a nontrivial factor. There are randomized polynomial time

algorithms known, for example, Berlekamp’s [Berl70]. Also, a deterministic subex-

ponential algorithm was given by Ronyai [Ron88] assuming the extended Riemann

Hypothesis (ERH). We show that polynomial factoring deterministically reduces to

FRA assuming ERH.

1.2.2 Efficient Algorithms for the Special Cases

Using the framework of rings we solve the problem of Identity Testing for depth 3

arithmetic circuits of bounded top fanin and the problem of Primality Testing.

Identity Testing: Given an arithmetic circuit C the problem is to check whether

C ≡ 0. The first randomized efficient algorithm was given by Schwartz, Zippel

[Sch80, Zip79] and no deterministic polynomial time algorithm is known yet. Im-

pagliazzo and Kabanets [IK03] showed that derandomizing identity testing would

mean proving lower bounds. In this work we solve a special case of the ring

isomorphism problem that consequently gives the first deterministic polynomial time

algorithm for the case of depth 3 circuits (ΣΠΣ circuits) having a bounded top fanin.

We view the problem of identity testing for ΣΠΣ circuits of bounded top fanin as a

special case of the ring isomorphism problem in the polynomial representation. We

utilise the nice structure of this special case to give a recursive solution invoking the

properties of commutative local rings.

Primality Testing: The problem is to determine whether a given number n

is prime or not. Several randomized polynomial time primality tests are there

([Mil76, Rab80, SoS77]). A deterministic subexponential time algorithm was given

by Adleman, Pomerance and Rumely [APR83]. In this work we view the problem of

primality testing as a special case of testing whether a given map is an automorphism

of a given ring (recall the TRA problem) and eventually give the first deterministic

polynomial time primality test. The ring in this case is the cyclotomic ring: R :=
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(Z/nZ)[x]/(xr − 1) and the map is the Frobenius map σn that sends any element

a(x) ∈ R to a(x)n.

1.3 Organization of the Thesis

The results to be presented in this thesis first appeared in the following five papers:

[AKS04, KS05, AS05, AS06, KS06]. This thesis expands on these published results

and gives a self-contained treatment based on the framework of ring automorphism

and isomorphism problems. For an alternative treatment of primality testing and

identity testing, and the full proof of RA ∈ P we refer the reader to the manuscript

[Kay06].

Chapter 2 studies the various morphism problems of rings, inspired from the

graph isomorphism problem, and gives upper and lower bounds for their complexity.

Connections are shown to graph isomorphism, integer factoring and polynomial

factoring. This chapter deals with finite rings.

Chapter 3 discusses the problem of polynomial equivalence. The emphasis is on

the equivalence problem of cubic forms and its relation to the isomorphism problems

of F-algebras and graphs. It also studies the cubic forms that we construct out of

F-algebras. This chapter deals with finite dimensional commutative rings.

Chapter 4 solves a special case of ring isomorphism that immediately yields an

identity test for ΣΠΣ arithmetic circuits of bounded top fanin. The chapter also

has some new ΣΠΣ identities that are of high rank. This chapter deals with local

rings.

Finally, the AKS algorithm for primality testing and the related results are

discussed in Chapter 5 using the ring automorphism framework. This chapter deals

with cyclotomic rings.

The basic notions of complexity theory and rings are given in chapter 2 and the

appendix with brief proofs. A familiarity with rings would be very helpful to the

reader in understanding most of the thesis.



Chapter 2

The Ring Morphism Problems

A ring consists of a set of elements together with addition and multiplication

operations. These structures are fundamental objects of study in mathematics and

particularly so in algebra and number theory. It has long been recognized that the

group of automorphisms of a ring provides valuable information about the structure

of the ring. Galois [Gal] initiated the study of the group of automorphisms of a field

and it was later applied by Abel [Ros95] to prove the celebrated theorem that there

does not exist any formula for finding the roots of a quintic (degree 5) polynomial.

However, to the best of our knowledge, the computational complexity of the ring

isomorphism and automorphism related problems has not been investigated so far.

In this chapter, we initiate such a study and show interesting connections to some

well known problems.

In this chapter we will restrict our attention to finite rings. We show that the ring

isomorphism problems are of intermediate complexity but are hard in the sense that

well-known problems of graph isomorphism and integer factoring reduce to them.

The results of this chapter mostly appear in [KS05].

2.1 Basics of Groups and Rings

A group is a set of elements with a suitably defined operation of multiplication while

a ring is a set of elements with two operations of addition (+) and multiplication (·)

9
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defined. There are two useful groups living in a ring R. Firstly, (R,+) is a group

with respect to addition called the additive group. If R∗ is the set of elements in R

having multiplicative inverse then (R∗, ·) is the second group called the multiplicative

group.

2.1.1 Representing Rings

For concreteness we first fix the way we are going to present the finite rings and

their homomorphisms in the input or the output.

Definition 2.1 Basis representation of rings: A finite ring R is given by first

describing its additive group in terms of n additive generators and then specifying

multiplication by giving for each pair of generators, their product as an element of

the additive group. More concretely, R is presented as:

(R,+, .) := 〈(d1, d2, d3, · · · , dn), ((ai,j,k))1≤i,j,k≤n〉

where, for all 1 ≤ i, j, k ≤ n, 0 ≤ ai,j,k < dk and ai,j,k ∈ Z.

This specifies a ring R generated by n elements b1, b2, · · · bn with each bi having

additive order di and (R,+) = (Z/d1Z)b1 ⊕ (Z/d2Z)b2 · · · ⊕ (Z/dnZ)bn. Moreover,

multiplication in R is defined by specifying the product of each pair of additive

generators as an integer linear combination of the generators: for 1 ≤ i, j ≤ n,

bi · bj =
∑n

k=1 ai,j,kbk.

Definition 2.2 Representation of maps on rings: Suppose R1 is a ring given

in terms of its additive generators b1, . . . , bn and ring R2 given in terms of c1, . . . , cn.

In this chapter maps on rings would invariably be homomorphisms on the additive

group. Then to specify any map φ : R1 → R2, it is enough to give the images

φ(b1), . . . , φ(bn). So we represent φ by an n× n matrix of integers A, such that for

all 1 ≤ i ≤ n:

φ(bi) =
n∑
j=1

Ai,jcj

and for all 1 ≤ i, j ≤ n, 0 ≤ Ai,j < additive order of cj.
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Example Consider the ring R := (Z/3Z)[x]/(x2 − x + 1). Here, 1 and x can be

taken as basis elements and (R,+) = (Z/3Z) · 1 ⊕ (Z/3Z) · x. Multiplication on

the basis elements is defined as: 1 · 1 = 1 · 1 + 0 · x, 1 · x = x · 1 = 0 · 1 + 1 · x
and x · x = 2 · 1 + 1 · x. Note that the map φ sending 1 7→ 1 and x 7→ −1 is

a homomorphism from R to itself and with respect to the basis {1, x} it can be

represented as: A =

(
1 0

2 0

)
.

2.1.2 The Problems

Now we define the ring isomorphism and related problems that we are going to

explore.

• The ring automorphism problem is to decide whether a given ring has a nontriv-

ial ring automorphism. If we let Aut(R) denote the group of automorphisms of

a ring R then the language corresponding to the ring automorphism problem

is:

RA := {R | R is a ring in basis form s.t. #Aut(R) > 1}

• The ring isomorphism problem is to decide whether two given rings are iso-

morphic. The corresponding language we define as:

RI := {(R1, R2) | rings R1, R2 are given in the basis form and R1
∼= R2}

• FRA is the functional problem of computing a nontrivial automorphism of a

ring R given in the basis form.

• FRI is the functional problem of computing an isomorphism (if one exists)

between two rings given in basis form.

• #RA is defined as the functional problem of computing the number of auto-

morphisms of a given ring. Its decision version can be viewed as the language:

cRA := {(R, k) | R is a ring in basis form s.t. #Aut(R) ≥ k} (2.1)
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• #RI is defined as the functional problem of computing the number of isomor-

phisms between two rings given in the basis form.

• Testing ring automorphism is the problem of deciding whether a given map is

an automorphism of a ring given in basis form. The corresponding language

we define as:

TRA := {(R, φ) | R, φ are given in basis form and φ ∈ Aut(R)}

Remark: If the map is given as a circuit C computing the value of φ

then the problem of primality testing becomes a special case of TRA where

R = (Z/nZ)[x]/(xr − 1) and φ : a(x) 7→ a(x)n (see chapter 5).

• Testing ring isomorphism is the problem of deciding whether a given map is

an isomorphism between two rings given in basis form. The corresponding

language we define as:

TRI :=

{
(R1, R2, φ) | R1, R2, φ are given in basis form and R1

φ∼= R2

}

2.1.3 The Preliminaries

If G,H are two groups then we use H ≤ G to denote that H is a subgroup of G.

For a finite group G: H ≤ G implies that #H divides #G. The converse does not

hold in general but if for a prime p, pk|#G then there always exist a subgroup of

size pk. If pk is the highest power of p dividing #G then a subgroup of size pk is

called a p-Sylow subgroup of G. A p-Sylow subgroup Sp of size pk can be broken into

a composition series, i.e., there are groups Gi of size pk−i such that:

Sp = G0 > G1 > G2 > . . . > Gk = {1}.

In analysing a ring R we use special subgroups of (R,+) called ideals.

Definition 2.3 A subset I ⊆ R is an ideal of R if:

• (I,+) is a subgroup of (R,+), and
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• for all i ∈ I, r ∈ R, both i · r and r · i are in I. This can also be stated as:

∀r ∈ R both r · I, I · r ⊆ I.

Ideals can be multiplied together to give new (smaller) ideals.

Definition 2.4 Let I,J be two ideals of a ring R. We define their product as:

I · J := ring generated by the elements {ij | i ∈ I, j ∈ J }

Powering of ideals, It for positive integer t, is defined similarly. It is easy to see

that I · J is again an ideal of R.

Algebraic structures mostly break into simpler objects. In the case of rings we

get the following simpler rings. This is discussed in more detail in the appendix.

Definition 2.5 Indecomposable or Local ring: A ring R is said to be indecom-

posable or local if there do not exist rings R1, R2 such that R ∼= R1 × R2, where

× denotes the natural composition of two rings with component wise addition and

multiplication.

Commutative local rings have nice properties (see [McD74]). For instance, if R

is a finite commutative local ring then for all r ∈ R either r is invertible or r is a

nilpotent i.e., ∃k, rk = 0. This makes M := R \ R∗ an ideal of R and it can be

shown that M is the unique maximal ideal of R.

Example Let n = p2q where p, q are distinct primes and define a natural ring

R := (Z/nZ,+, ·). Then observe that R decomposes as (Z/p2Z,+, ·)× (Z/qZ,+, ·)
where the two component rings are local.

Example Consider a ring R := F[x, y]/(x3, y2). The subset yR, denoted as (y),

is an ideal of R. Similarly, xR + yR, denoted by (x, y), is also an ideal of R. Note

that the product of these two ideals is (y) · (x, y) = (xy, y2) = (xy). Similarly in R,
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(x, y)2 = (x2, xy), (x, y)3 = (x2y) and (x, y)4 = 0. Moreover, it can be shown that

R is a local ring with M = (x, y) as its unique maximal ideal.

Example It is an interesting exercise to show that R1 := F[x, y]/(x3, y(x+ y)) is

a nonzero local ring while R2 := F(y)[x]/(x3, y(x+ y)) is the zero ring, where, F(y)

denotes a rational function field.

We collect some of the known results about groups and rings. Their proofs can

be found in algebra texts, e.g., [McD74, Lang].

There is a classification known for finite commutative groups. Basically, each

such group completely decomposes into a bunch of cyclic groups.

Proposition 2.1 [Structure theorem for abelian groups] If R is a finite ring then

its additive group (R,+) can be uniquely (up to permutations) expressed as:

(R,+) ∼=
⊕
i

(Z/piαiZ)

where pi’s are primes (not necessarily distinct) and αi ∈ Z≥1.

Remark: This theorem can be used to check in polynomial time whether for two

rings, given in basis form, the additive groups are isomorphic or not. Suppose the two

additive groups are G := (Z/d1Z)⊕· · ·⊕(Z/dnZ) and G′ := (Z/d′1Z)⊕· · ·⊕(Z/d′nZ).

Consider the set D = {di | i ∈ [n]} ∪ {d′i | i ∈ [n]}. We take gcds of all pairs of

integers from the set D and expand D in each such gcd-operation as: if α, β ∈ D

have a nontrivial gcd then replace them by α
gcd(α,β)

, β
gcd(α,β)

and gcd(α, β). We can

keep repeating this process on the new expanded D till all the elements of D become

mutually coprime. It is guaranteed to stop in polynomial time, for D can expand to

a maximum size of log(#G ·#G′) as the number of prime factors of a number N are

less than logN . Now factor di ’s and d′j ’s as much as possible using the numbers

from D. Say, di = de1i,1 · · · d
ek
i,k where di,1, . . . , di,k ∈ D are mutually coprime. We can

refine the decomposition of G by breaking (Zdi
,+) as:

(Z/de1i,1Z)⊕ · · · ⊕ (Z/dek
i,kZ).
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At the end of all this refining of di’s and d′j’s using D, let the finer structural

decompositions be: G ∼= (Z/m1Z) ⊕ · · · ⊕ (Z/mn′Z) and G′ ∼= (Z/m′
1Z) ⊕ · · · ⊕

(Z/m′
n′Z). Now by invoking the structure theorem: G will be isomorphic to G′ if

and only if the multi-sets (i.e. elements with repetition) {mi}i∈[n′] and {m′
i}i∈[n′] are

equal.

Using the structure theorem of abelian groups, we can compute #Aut(R,+) of a

ring R presented in terms of additive generators having prime-power additive orders.

Proposition 2.2 Given a ring R in terms of additive generators, all having prime-

power additive orders, we can compute the number of automorphisms of the additive

group of R, #Aut(R,+), in polynomial time.

Proof: Automorphisms of the additive group (R,+) are nothing but the invertible

linear maps on the additive generators of R. Thus, to compute #Aut(R,+) we

compute the number of invertible linear maps or the number of invertible matrices.

Let (R,+) be given as ∼=
⊕l

i=1

⊕
j(Z/piαi,jZ), where pi’s are distinct primes and

αi,j ∈ Z≥1. For 1 ≤ i ≤ l define subrings Ri of R as:

Ri := {r ∈ R | r has power-of-pi additive order}

Observe that

R ∼= R1 × · · · ×Rl

this is because if ri ∈ Ri and rj ∈ Rj (i 6= j) then for some ci, cj ∈ Z≥0, pcii rirj =

p
cj
j rirj = 0 which implies that rirj = 0 (since ∃a, b ∈ Z such that apcii + bp

cj
j = 1)

and by a similar argument r1 ∈ R1, . . . , rl ∈ Rl are linearly independent.

This decomposition of R gives us:

#Aut(R,+) =
l∏

i=1

#Aut(Ri,+)

Thus, it suffices to show how to compute #Aut(R,+) when (R,+) is given as

∼=
⊕n

i=1(Z/pαiZ) where p is a prime and αi ∈ Z≥1.
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Suppose we are given R in terms of the following additive basis:

(R,+) = (Z/pβ1Z)e1,1 ⊕ . . .⊕ (Z/pβ1Z)e1,n1 ⊕ . . .

. . .⊕ (Z/pβmZ)em,1 ⊕ . . .⊕ (Z/pβmZ)em,nm

where, n1 + . . .+ nm = n and 1 ≤ β1 < . . . < βm.

Observe that φ ∈ Aut(R,+) iff the matrix A describing the map φ is invertible

(mod p) and preserves the additive orders of ei,j’s. Our intention is to count the

number of all such matrices A. To do that let us see how A looks:

A =


B1,1 B1,2 . . . B1,m

B2,1 B2,2 . . . B2,m

... . . .
. . .

...

Bm,1 Bm,2 . . . Bm,m


n×n

where the block matrices Bi,j’s are integer matrices of size ni × nj. The properties

of these block matrices which make A describe an automorphism of (R,+) are:

• for 1 ≤ j < i ≤ m: entries in Bi,j are from {0, 1, . . . , pβj − 1}.

• for 1 ≤ i ≤ m: entries in Bi,i are from {0, 1, . . . , pβi − 1} and Bi,i is invertible

(mod p).

• for 1 ≤ i < j ≤ m: entries in Bi,j are from {0, 1, . . . , pβj − 1} and Bi,j ≡
0 (mod pβj−βi).

It is not difficult to see that the number of matrices satisfying these conditions can

be found in time polynomial in (n1β1 + . . . + nmβm)(log p), and hence the number

of A’s which describe an automorphism of (R,+).

Remark: When a ring R is given in terms of generators having composite

additive orders then computing #Aut(R,+) entails factoring integers. For example,

suppose n = pq where p 6= q are primes and ring R is given as (Z/nZ,+, ·). Then

#Aut(R,+) = (p− 1)(q − 1) = φ(n) and if we compute φ(n) then we can factorize

n in randomized polynomial time (see [Mil76]).

Unlike commutative groups, a classification of commutative rings is not known

yet. But as a first step rings can be decomposed uniquely into indecomposable rings.
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Proposition 2.3 [Structure theorem for rings] If R is a finite ring then it uniquely

(up to permutations) decomposes into indecomposable rings R1, . . . , Rs such that

R ∼= R1 × · · · ×Rs

Proof: Refer the appendix.

Remark: Decomposition of a finite commutative ring R can be found in polyno-

mial time given oracles to integer and polynomial factorizations (discussed at length

in the appendix). Observe that any commutative ring R with characteristic n can

be expressed as:

R ∼= (Z/nZ)[x1, . . . , xm]/(f1(x), . . . , f`(x))

where x = (x1, x2, . . . , xm) and f1, . . . , f` are polynomials in x1, . . . , xm capturing

the multiplicative relations in the ring R. The above expression hints that if we can

factor n into its prime factors and polynomials into irreducible factors then we can

effectively factor ring R into its indecomposable components.

Example Consider the ring R := (Z/p2q3Z)[x, y]/(x4, px, y2 − y). By factoring

the characteristic p2q3 we get:

R ∼= (Z/p2Z)[x, y]/(x4, px, y2 − y)× (Z/q3Z)[x, y]/(x4, px, y2 − y)

Further, by factoring y2− y into coprime irreducibles over the respective local rings

in x we get:

R ∼= (Z/p2Z)[x, y]/(x4, px, y)× (Z/p2Z)[x, y]/(x4, px, y − 1)

×(Z/q3Z)[x, y]/(x4, px, y)× (Z/q3Z)[x, y]/(x4, px, y − 1)

2.2 Basics of Complexity Theory

A decision problem in computer science is represented by a language L ⊆ {0, 1}∗

which is the set of all ‘yes’ strings. We say that L is in the complexity class NP if
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there is a polynomial time deterministic Turing Machine M and a positive number

c such that:

L =
{
x | ∃y ∈ {0, 1}|x|c , M(x, y) accepts

}
x is the input and y is called as witness, membership proof or nondeterministic guess.

L is said to be in coNP iff L ∈ NP.

Example Consider the problem of satisfiability of boolean formulas:

3-SAT := {φ(x1, . . . , xn) | φ = ∧mi=1 (xi1 ∨ xi2 ∨ xi3) and has a satisfying assignment}

3-SAT is in NP as given a formula φ and a satisfying assignment v it can be verified

in polynomial time whether φ(v) is ‘true’.

We can also define a “randomized” version of the class NP called AM (for Arthur-

Merlin protocol). We will say a language L is in AM if there is a positive number c

and a polynomial time deterministic Turing Machine M such that:

x ∈ L ⇒ Proby∈{0,1}|x|c [∃z ∈ {0, 1}
|x|c , M(x, y, z) accepts] ≥ 2

3

x 6∈ L ⇒ Proby∈{0,1}|x|c [∃z ∈ {0, 1}
|x|c , M(x, y, z) accepts] ≤ 1

3

Typically, the proof of showing an L ∈ AM goes through by giving a protocol

between the Verifier (named Arthur – the ‘king’) who can do randomized polynomial

time computations and the Prover (named Merlin – the ‘advisor’ to the king) who

has unlimited computational resources. Arthur is interested in determining whether

the input x ∈ L and he sends (x, y) to Merlin who responds with a witness z. Arthur

does some computations on (x, y, z) following M and decides whether x ∈ L with

high confidence.

A classic example of a problem in AM is that of checking whether a set is large.

We keep referring to its AM protocol in this chapter.

Proposition 2.4 Suppose S is a set whose membership can be tested in nondeter-

ministic polynomial time and its size is either m or 2m. Then the decision problem

of testing whether S is of size 2m is in AM.
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Proof: The idea of the AM protocol is that if S is large then for a random hash

function h there will be an x ∈ S such that h(x) = 0 with high probability.

Suppose that the elements of S are represented as binary strings of length s.

Arthur first increases the ‘gap’ in the size of S by defining a new set T = S4. Now

#T is either m4 or 16m4. Also, the elements of T are binary strings of length 4s.

View them as a column vector. Arthur then chooses a random 0/1 matrix A of size

dlog 3m4e × 4s and sends it to Merlin. Merlin returns a column vector t ∈ {0, 1}4s

with a membership (in T ) proof t′. Arthur accepts iff t ∈ T and A · t = 0 (mod 2).

To analyse this AM protocol note that for a given x ∈ {0, 1}4s \ {0}4s:

Prob
A∈{0,1}dlog 3m4e×4s [A · x = 0 (mod 2)] =

1

2dlog 3m4e

Thus by linearity of expectation:

E
A∈{0,1}dlog 3m4e×4s [#{t ∈ T | A · t = 0 (mod 2)}] =

#T

2dlog 3m4e .

Now Markov inequalities give us that:

#T = 16m4 ⇒ Prob
A∈{0,1}dlog 3m4e×4s [∃t ∈ T, A · t = 0 (mod 2)] ≥ 5

8

#T = m4 ⇒ Prob
A∈{0,1}dlog 3m4e×4s [∃t ∈ T, A · t = 0 (mod 2)] ≤ 1

3

This shows that with high probability Arthur accepts only when set S is large.

Also, note that this AM protocol uses O(s logm) random bits (for A) and O(s+

|t′|) nondeterministic bits (for t and t′).

If a problem L is in NP ∩ coNP then intuition suggests that it should not be

“hard”. Similarly, if a problem L is in NP ∩ coAM (or AM ∩ coAM) then L is

‘unlikely’ to be NP-hard. What makes these classes interesting is that there are

many problems in NP ∩ coAM that are not known to be in P. Such problems are

called problems of “intermediate” complexity. To make these notions more precise

we need to form a polynomial-time hierarchy.

Let us denote NP by Σ1 and define Σ2 = NPNP, where by NPC we mean set of

languages L such that there is a polynomial time deterministic Turing Machine M

using an oracle to C and a positive number c such that:

L =
{
x | ∃y ∈ {0, 1}|x|c , M(x, y) accepts

}



20

Similarly, Σk := NPΣk−1 . The union of all these Σ’s is called the polynomial-time

hierarchy: PH = ∪k≥1Σk.

It is mostly believed that Σ1,Σ2, . . . are all distinct complexity classes and hence

there is no k such that PH collapses to Σk. Coming back to the intermediate

complexity classes, it is easy to see that if NP ∩ coNP has a NP-hard problem then

PH = Σ1. Also, if NP∩ coAM (or AM∩ coAM) has a NP-hard problem then it was

shown in [Sch88, Klap89] that PH collapses to the second level Σ2. The proof goes

through by showing that AM ∩ coAM is low for Σ2, i.e., ΣAM∩coAM
2 = Σ2 and thus,

NP ⊆ AM ∩ coAM implies Σ3 = ΣNP
2 ⊆ ΣAM∩coAM

2 = Σ2 which eventually results in

collapsing PH to Σ2.

This notion of intermediate complexity can be generalized to functional problems.

We define FP to be the set of functional problems computable in polynomial time.

Now the functional problems in FPAM∩coAM are of intermediate complexity. If a

function f ∈ FPAM∩coAM is NP-hard (i.e. NP ⊆ Pf ) then the techniques of Schoning

[Sch88] essentially show that PH collapses to Σ2, an ‘unlikely’ event. Further, define

functional AM – denoted by fnAM – to contain functions f : {0, 1}∗ → {0, 1}∗ such

that there is a deterministic polynomial time Turing machine M (that outputs a

string) and a positive number c such that, for all x, t ∈ {0, 1}∗:

f(x) = t iff Proby∈{0,1}|x|c [∃z ∈ {0, 1}
|x|c M(x, y, z) = t] ≥ 2

3
(2.2)

Remark: The above definition says that for “most” of the y ’s there is a z such

that M(x, y, z) outputs the correct value of f(x). On the other hand, for “most” of

the y ’s there is no z such that M(x, y, z) outputs an incorrect value.

Again the techniques of Schoning [Sch88] essentially show that fnAM is low for

Σ2, i.e. ΣfnAM
2 = Σ2. Thus, if a function f ∈ fnAM is NP-hard (i.e. NP ⊆ Pf ) then

PH collapses to Σ2. We sketch the proof here for the sake of completeness. Define

for all k ≥ 1, Πk := co-Σk.

Proposition 2.5 ΣfnAM
2 = Σ2.

Proof: Let a language L ∈ ΠfnAM
2 . Then, by definition, there is a positive number

c and a polynomial time deterministic Turing Machine A using functions from fnAM
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as oracles such that:

L =
{
x | (∀y ∈ {0, 1}|x|c)(∃z ∈ {0, 1}|x|c) [A{f1,...,fm}(x, y, z) accepts]

where, f1, . . . , fm ∈ fnAM and m ≤ |x|c} (2.3)

Suppose on input x, A queries fi at strings wi,j ∈ {0, 1}|x|c where i, j are upper-

bounded by |x|c. Now from defining-Equation (2.2) we have that there is a deter-

ministic polynomial time Turing machine Mi (that outputs a string) and a positive

number ci such that:

fi(wi,j) = ti,j iff Proby∈{0,1}|x|ci [∃z ∈ {0, 1}|x|ci Mi(wi,j, y, z) = ti,j] ≥
2

3
(2.4)

Now combining Equations (2.4) for various i, j (after probability amplification) and

then plugging in Equation (2.3) we get that there is a deterministic polynomial time

Turing machine B (that basically simulates Mi ’s to compute fi ’s and then runs A

to decide L) and a positive number d such that:

L =
{
x | (∀y ∈ {0, 1}|x|c)(∃z ∈ {0, 1}|x|c)

Prob
u∈{0,1}|x|d [∃v ∈ {0, 1}

|x|d , B(u, v, x, y, z) accepts] ≥ 2

3

}
=
{
x | (∀y ∈ {0, 1}|x|c) Prob

u∈{0,1}|x|d
′ [(∃z ∈ {0, 1}|x|c)

(∃v ∈ {0, 1}|x|d) B′(u, v, x, y, z) accepts] ≥ 2

3

}
[∵ By Swapping lemma there is a d′ and B′ such that the above holds]

=
{
x | (∀y ∈ {0, 1}|x|c)(∀u1 ∈ {0, 1}|x|

e

)(∃u2 ∈ {0, 1}|x|
e

)(∃z ∈ {0, 1}|x|c)

(∃v ∈ {0, 1}|x|d) [B′′(u1, u2, v, x, y, z) accepts]
}

[∵ e and B′′ exists by Lemma A.14]

∈ Π2

Consequently, ΠfnAM
2 = Π2 and hence, ΣfnAM

2 = Σ2.

The definitions of ring isomorphism problems are inspired from graph isomor-

phism (GI) problems that have been open for a long time. But the graph iso-

morphism problems are not believed to be NP-hard. The AM protocol for graph



22

nonisomorphism was one of the first interactive protocols (see [GMR85]) proving

that GI ∈ NP ∩ coAM.

The results in this chapter mostly reduce one problem L to another problem L′.

If there is a function f : {0, 1}∗ → {0, 1}∗ in class C such that x ∈ L iff f(x) ∈ L′

then we say that L is many-one reducible to L′ and denote it by L ≤C
m L′.

If a problem L can be solved in class C by using L′ as an oracle then we say that

L is Turing reducible to L′ and denote it by L ≤C
T L

′.

In the reductions given in this chapter C is either P or ZPP – the set of languages

(functions) that can be decided (computed) in expected polynomial time.

2.3 The Complexity of Ring Isomorphism Prob-

lem

In this section we prove upper and lower bounds on the complexity of Ring Iso-

morphism problem. Specifically, we show that RI is in NP ∩ coAM and the Graph

Isomorphism problem reduces to RI.

2.3.1 An Upper Bound

This work has been unable to solve the ring isomorphism problem in polynomial

time or even subexponential time. But we show in this section that at least the

problem is unlikely to be NP-hard. Thus, RI becomes a natural example of an

intermediate problem which also has a rich algebraic flavor to it.

Theorem 2.1 RI ∈ NP ∩ coAM.

Proof: We start with the easier part,

Claim 2.1.1 RI ∈ NP.

Proof of Claim 2.1.1. Suppose we are given two rings R and R′ together with a

map φ : R → R′. Following the remark of Proposition 2.1, we have an algorithm

that gives us a description of the rings R,R′ over the same additive basis, say,

(Z/m1Z)⊕ . . .⊕ (Z/mnZ)
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Thus, we can assume without loss of generality that the rings R,R′ are provided as:

(R,+) = (Z/m1Z)b1 ⊕ . . .⊕ (Z/mnZ)bn

(R′,+) = (Z/m1Z)b′1 ⊕ . . .⊕ (Z/mnZ)b′n

Now φ is an isomorphism from R→ R′ iff it satisfies the following conditions:

• φ preserves addition: check whether for all 1 ≤ i ≤ n, mi · φ(bi) = 0.

• φ preserves multiplication: check whether for all 1 ≤ i, j ≤ n, φ(bi) · φ(bj) =∑n
k=1 ai,j,kφ(bk), where ((ai,j,k))i,j,k∈[n] is the same matrix as given in the de-

scription of R.

• φ is an invertible map from (R,+) to (R′,+): check whether det(A) ∈
(Z/(m1m2 . . .mn)Z)∗, where A is the n×n integer matrix describing the map

φ : R→ R′.

The first two conditions above imply that φ is a homomorphism between the two

rings. The third condition ensures that φ is bijective. All these three conditions can

be checked in polynomial time. �

The next question is whether there are short certificates to prove that two given

rings are nonisomorphic i.e., is RI ∈ coNP? We are able to tweak the AM protocol

for graph nonisomorphism to show that RI is in the randomized version of coNP.

Claim 2.1.2 RI ∈ coAM.

Proof of Claim 2.1.2. Arthur has two rings R1, R2 in basis forms and he wants

a proof of their non-isomorphism from Merlin. Arthur checks whether (R1,+) ∼=
(R2,+) (see the remark of Proposition 2.1), if not then Arthur already has a proof

of non-isomorphism. So assume that (R1,+) ∼= (R2,+) and now Merlin can provide

the descriptions of (R1,+), (R2,+) in the form:

(R1,+) =
n⊕
i=1

(Z/pαi
i Z)bi and

(R2,+) =
n⊕
i=1

(Z/pαi
i Z)ci, where pi’s are primes and αi ∈ Z≥1.
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Arthur checks the primality of pi’s and that the above is a basis representation of

the rings R1 and R2. Let us define sets C(R1), C(R2) that we will be using to give

an AM protocol for ring non-isomorphism. They will have the nice property that

their sizes can be computed easily and that C(R1) = C(R2) if and only if R1
∼= R2.

C(R1) := {
〈
((ai,j,k))i,j,k∈[n], Aφ

〉
| ∃π ∈ Aut(R1,+) s.t.

for all i, j ∈ [n], π(bi) · π(bj) =
n∑
k=1

ai,j,kπ(bk);

for all i, j, k ∈ [n], 0 ≤ ai,j,k < pαk
k ;

Aφ is an integer matrix describing some φ ∈ Aut(R1)

with respect to the additive basis {π(bi)}ni=1 of R1 } .

C(R2) is defined similarly by replacing the bi’s above by the ci’s and R1 by R2.

(Note that in the case of graph isomorphism we consider all permutations on the

vertices, here we consider all automorphisms of the additive group.)

Observe that: #C(R1)

=

(
number of representations ((ai,j,k))i,j,k∈[n] of ring R1 over

n⊕
i=1

Z/pαi
i Z

)
·#Aut(R1)

=
#Aut(R1,+)

#Aut(R1)
·#Aut(R1)

= #Aut(R1,+)

that can be computed in polynomial time when (R1,+) is given in terms of basis

elements all having prime-power additive orders (see Proposition 2.2). Thus, Arthur

can compute s := #C(R1) = #C(R2).

Define C(R1, R2) := C(R1) ∪ C(R2). Note that:

R1
∼= R2 ⇒ C(R1) = C(R2)

⇒ #C(R1, R2) = #C(R1) = s.

R1 6∼= R2 ⇒ C(R1) ∩ C(R2) = ∅

⇒ #C(R1, R2) = #C(R1) + #C(R2) = 2s.

Thus, the size of the set C(R1, R2) has a gap factor of 2 between the cases of R1
∼= R2

and R1 6∼= R2, which can be distinguished by the AM protocol of Proposition 2.4.
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Note that this AM protocol for ring nonisomorphism requires:

O
(
(log4 #R1) · (log s)

)
= O(log7 #R1)

random bits, and O(log4 #R1) nondeterministic bits. �

The two claims show that RI is in NP ∩ coAM.

This shows that the ring isomorphism problem cannot be NP-hard (unless poly-

nomial hierarchy collapses to Σ2 [Sch88]). It also follows easily from the above proof

that the problems of testing ring automorphism and testing ring isomorphism can

be solved in deterministic polynomial time.

Corollary 2.1 TRA and TRI are in P.

Proof: Clearly, it is sufficient to show that TRI is in P. Suppose rings R1, R2

and a map φ between them are given in the basis representation. It is clear from

Claim 2.1.1 that there is a deterministic polynomial time algorithm to determine

whether φ is an isomorphism from R1 to R2.

2.3.2 A Lower Bound: Reduction from Graph Isomorphism

The proofs above were all similar in spirit to those for graph isomorphism which hints

a connection to graph isomorphism. Indeed, we can lower bound the complexity of

RI by graph isomorphism (GI). The reduction gives a way to construct a local

commutative F-algebra out of a given graph.

Theorem 2.2 GI ≤P
m RI.

Proof: The proof involves constructing a local commutative F-algebra. We

associate variables to each vertex (x-variable) and capture the “connectivity” of

the graph by defining the edges-polynomial –
∑

(u,v) is an edge xuxv – as zero in the

ring.

Let G be an undirected graph with n vertices and no self loops. Choose any field

F of characteristic not equal to 2. Define the following commutative F-algebra:
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R(G) := F[x1, . . . , xn]/I

where, ideal I has the following relations:

1. x’s are nilpotents of degree 2, i.e., for all i ∈ [n]: x2
i = 0.

2. the edges-polynomial is zero, i.e.,
∑

1≤i<j≤n
(i,j)∈E(G)

xixj = 0.

3. all cubic terms are zero, i.e., for all i, j, k ∈ [n] : xixjxk = 0.

Suppose (i0, j0) is an edge in G such that 1 ≤ i0 < j0 ≤ n. Then the additive

structure of the ring is:

(R(G),+) = F · 1⊕
⊕
i∈[n]

F · xi ⊕
⊕
i<j∈[n]

(i,j) 6=(i0,j0)

F · (xixj)

Thus, the dimension of the ring over F is
(
n+1

2

)
. Multiplication satisfies the asso-

ciative law simply because the product of any three variables (in any order) is zero.

Also, R(G) is a local commutative F-algebra.

Observe that if G ∼= G′ then any graph isomorphism φ induces a natural isomor-

phism between rings R(G) and R(G′). So we only have to prove the converse:

Claim 2.2.1 Let G and G′ be two undirected graphs having no self-loops. Further,

assume that graphs G and G′ are not a disjoint union of a clique and a set of isolated

vertices. Then, R(G) ∼= R(G′) implies G ∼= G′.

Proof of Claim 2.2.1. Suppose φ is an isomorphism from R(G) → R(G′). Let

φ(xi) = ci,0 + ci,1x1 + . . .+ ci,nxn + (quadratic terms). (2.5)

where all ci,j’s in the coefficients are in F.

By squaring the above we get:

0 = φ(x2
i ) = φ(xi)

2 = c2i,0 + (linear and quadratic terms)
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which means that ci,0 = 0. The next observation about φ is that there is at most

one nonzero linear term in φ(xi). Let Ci = {j ∈ [n] | ci,j 6= 0} be of size > 1. Then

φ(xi)
2 = 0 gives: ∑

j<k∈Ci

(2ci,jci,k)xjxk = 0 in R(G′)

We know that in R(G′) the quadratic relations are x2
i = 0 and

∑
1≤i<j≤n

(i,j)∈E(G′)
xixj = 0.

This means that the above equation holds only if there is a λ ∈ F:∑
1≤j<k≤n
j,k∈Ci

(2ci,jci,k)xjxk = λ ·
∑

1≤i<j≤n
(i,j)∈E(G′)

xixj = 0

This equality interpreted in graph terms means that G′ is a union of a clique on

Ci and a set of (n − #Ci) isolated vertices (remember that 2 6= 0 in F). This

we ruled out in the hypothesis, thus size of Ci ≤ 1. If #Ci = 0 then for any j,

φ(xixj) = 0 which contradicts the assumption that φ is an isomorphism. Thus, for

all i ∈ [n], #Ci = 1. Define a map π : [n] → [n] such that the nonzero linear term

occurring in φ(xi) is xπ(i).

Suppose π is not a permutation on [n] then there are i 6= j such that π(i) = π(j).

But then there will exist a, b ∈ F∗ such that there is no nonzero linear term in

φ(axi + bxj). Whence, we get that φ(axixk + bxjxk) = 0 for all k ∈ [n] which

contradicts the assumption that φ is an isomorphism. Hence, π is a permutation on

[n]. Now look at the action of φ on the edges-polynomial:

0 = φ

 ∑
1≤i<j≤n
(i,j)∈E(G)

xixj


=

∑
1≤i<j≤n
(i,j)∈E(G)

φ(xi)φ(xj)

=
∑

1≤i<j≤n
(i,j)∈E(G)

ci,π(i)cj,π(j)xπ(i)xπ(j)

Since the above is a zero relation in the ring R(G′), we get that the polynomial∑
1≤i<j≤n

(i,j)∈E(G′)
xixj divides the above. Hence, (π(i), π(j)) ∈ E(G′) if (i, j) ∈ E(G).
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By symmetry this shows that π is an isomorphism from G→ G′. �

The theorem follows from the claim.

Remark: The above reduction does not work for fields F of characteristic 2. We

can modify the ring R(G) slightly to make the reduction go through even when F is

a field of characteristic 2. Define the ring R(G) from a graph G, having n vertices,

as:

R(G) := F[x1, . . . , xn]/I

where, ideal I has the following relations:

1. x’s are nilpotents of degree 3, i.e., for all i ∈ [n]: x3
i = 0.

2. the modified edges-polynomial is zero, i.e.,
∑

1≤i<j≤n
(i,j)∈E(G)

(x2
ixj + xix

2
j) = 0.

3. all quartic terms are zero, i.e., for all i, j, k, l ∈ [n] : xixjxkxl = 0.

A similar proof as above shows that isomorphism problem for rings like R(G) solves

the graph isomorphism problem too.

Note that even if graph G is rigid (i.e., G has no nontrivial automorphism) the

ring R(G) has lots of nontrivial automorphisms, for example, φ : xi 7→ xi + x1x2.

Thus, unfortunately, this reduction does not reduce the problem of testing rigidity

of graphs to testing rigidity of rings.

2.3.3 Table Representation: Is it any easier?

One can also consider a different, exponentially larger, representation for rings:

when the rings are given in terms of the addition and multiplication tables of all

its elements. We do not know if the ring isomorphism problem even under this

representation can be solved in time polynomial in the size of the representation.

However, one suspects that this version of ring isomorphism should be easier as there

is a simple subexponential time algorithm: Suppose rings R1, R2 are of size n. Then

the additive group of R1 will have O(log n) generators and there are nO(logn) ways to
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map these generators into R2. Thus, a brute-force search over all these maps yields

a nO(logn) time algorithm for ring isomorphism.

Here we give another theoretical evidence that the problem is easy by showing

that it is “almost” in NP ∩ coNP.

Let us give this problem a name:

RITF := {(R1, R2) | R1, R2 are given in terms of tables, R1
∼= R2}

It is easy to see that RITF ∈NP. The nontrivial part is to show:

Theorem 2.3 There exists an NP-machine that decides all but 2log11 n instances of

RITF of length n and is always correct when the input rings are nonisomorphic.

Proof: The proof is basically the one given by Arvind and Toran [AT04] applied

to the case of rings.

We showed in Claim 2.1.2 that RITF ∈ AM(log7 n), where the parameter bounds

the number of random bits used by Arthur. We interpret this result to mean that

there is an advice-taking NP machine M(·, ·) for RITF such that:

∀ input x ∈ {0, 1}n, Prob
y∈{0,1}log7 n [M(x, y) is correct] ≥ 2

3
.

Notice that since a ring is completely defined once we specify the multiplication

on the additive generators, we have that the number of binary strings of length n

that define a ring, in table form, is no more than 2log4 n. Thus, using probability

amplification we modify M to get an advice-taking NP machine M ′ for RITF such

that:

Prob
y∈{0,1}log11 n [∀x ∈ {0, 1}n, M ′(x, y) is correct] ≥ 2

3
.

Since we are using only a “small” number of random bits we can apply techniques

of Goldreich and Wigderson [GW02] to get an NP-machine for RITF that fails for

at most 2log11 n inputs of size n and is always correct when the input rings are

nonisomorphic.
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2.4 The Complexity of Counting Ring Automor-

phisms

This section will explore the complexity of the problem of counting ring automor-

phisms. We will show that this problem is unlikely to be NP-hard but both graph

isomorphism and integer factoring reduce to it.

2.4.1 An Upper Bound

We will show that given a finite ring R there is an AM protocol in which Merlin

sends a number ` and convinces Arthur that #Aut(R) = `. The ideas in the proof

are basically from Babai and Szemeredi [BS84].

Theorem 2.4 #RA ∈ FPAM∩coAM.

Proof: Let R be a finite ring given in its basis form. We will first show how

Merlin can convince Arthur that #Aut(R) ≥ k. Recall that in Equation (2.1) we

defined this problem as cRA.

Claim 2.4.1 cRA ∈ AM.

Proof of Claim 2.4.1. Merlin can give Sylow subgroups Sp1 , . . . , Spm of Aut(R),

in terms of generators, to Arthur such that p1, . . . , pm are distinct primes and the

product |Sp1 |. · · · .|Spm| ≥ k. Arthur now has to verify whether for a given Sylow

subgroup Sp, |Sp| = pt or not. So Merlin can further provide the composition series

of Sp:

Sp = Gt > Gt−1 > . . . > G1 > G0 = {1}.

Suppose, by induction, that Arthur is convinced about |Gi| = pi. Then to prove

|Gi+1| = pi+1, Merlin will provide xi+1 ∈ Gi+1 to Arthur with the claim that xi+1 6∈
Gi but xpi+1 ∈ Gi. Latter can be verified easily by Arthur as Merlin can give the

way to produce xpi+1 from the generators of Gi. Finally, the only nontrivial thing

left for Arthur to verify is whether xi+1 6∈ Gi, which can be verified by a standard
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AM protocol (Proposition 2.4) as there is a gap in the size of the set X := (group

generated by xi+1 and Gi):

xi+1 6∈ Gi ⇒ #X = pi+1

xi+1 ∈ Gi ⇒ #X = pi

To avoid too many rounds, Merlin first provides x0 = 1, x1, . . . , xt ∈ Aut(R) with

the proof of: for all 1 ≤ i ≤ t, xpi ∈ Gi−1 := (group generated by x0, . . . , xi−1) to

Arthur and then provides the proof of: for all 1 ≤ i ≤ t, xi 6∈ Gi−1 in the second

round for Arthur to verify. �

Now we give the AM protocol that convinces Arthur of #Aut(R) ≤ k.

Claim 2.4.2 cRA ∈ coAM.

Proof of Claim 2.4.2. Arthur has a finite ring R and he wants a proof of #Aut(R) ≤
k. As in the proof of Claim 2.1.2, we can assume that R is given in terms of

generators having prime-power additive orders. For concreteness let us assume:

(R,+) =
n⊕
i=1

(Z/pαi
i Z)bi

Merlin sends Arthur a number ` ≤ k as a candidate value for #Aut(R) and also

provides some Sylow subgroups, the product of their sizes being equal to `, with the

AM-proofs for their sizes (as used in Claim 2.4.1). Let

X := {
〈
((ai,j,k))i,j,k∈[n]

〉
| ∃π ∈ Aut(R,+) s.t. π(bi) · π(bj) =

n∑
k=1

ai,j,kπ(bk);

for all 1 ≤ i, j, k ≤ n, 0 ≤ ai,j,k < pαk
k } .

Observe that #X = #Aut(R,+)
#Aut(R)

and #Aut(R,+) can be computed in polynomial time

when (R,+) is given in terms of generators having prime-power additive orders (see

Proposition 2.2). Thus, Arthur computes s := #Aut(R,+). Arthur is already

convinced that `|#Aut(R) and he now wants to verify #Aut(R) ≤ `. A standard

AM protocol (see Proposition 2.4) now follows by utilizing the gap in the size of X
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in the two cases:

#Aut(R) ≤ ` ⇒ #X ≥ s

`
.

#Aut(R) > ` ⇒ #Aut(R) ≥ 2` [∵ #Aut(R) has a subgroup of size `]

⇒ #X ≤ s

2`
.

�

The claims above show that #RA ∈ FPcRA ⊆ FPAM∩coAM.

Note that the AM protocols that we give for #RA not only count the number of

automorphisms but give a lot more information about the automorphism group. In

fact, these AM protocols compute the full automorphism group of a ring R in terms

of the generators of the Sylow subgroups of Aut(R). Let us denote the functional

problem of computing the group of automorphisms of a ring given in basis form by

GroupRA.

Corollary 2.2 Function GroupRA ∈ fnAM and hence is low for Σ2.

Proof: Let f be the function, corresponding to GroupRA, that maps a ring R

(given in basis form) to the tuple (#Aut(R), Aut(R)). Since cRA is in both AM

and coAM there are deterministic polynomial time Turing Machines A and B, and

positive constants c, d such that:

#Aut(R) ≤ k iff Proby∈{0,1}logc #R [(∃z ∈ {0, 1}logc #R) A(R, k, y, z) accepts]

≥
(

1− 1

2logd #R

)
#Aut(R) ≥ k iff Proby∈{0,1}logc #R [(∃z ∈ {0, 1}logc #R) B(R, k, y, z) accepts]

≥
(

1− 1

2logd #R

)
(2.6)

The parameter d above will be chosen large enough so that all the subsequent

arguments go through. To show that f ∈ fnAM we plan to run A and B in parallel.

We can modify A slightly to A′ by requiring that A(R, k, y, z) outputs (`,G) where,
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` is the number and G is the group, given by the generators of the (intended) Sylow

subgroups, as occurred in the proof of the Claim 2.4.2. It is easy to see that:

f(R) = (m,H)

⇒ Proby∈{0,1}2 logc #R [(∃`′zz′ ∈ {0, 1}3 logc #R), both A′(R, `′, y, z)

and B(R, `′, y, z′) accept and A′(R, `′, y, z) = (m,H)] ≥ 3

4
(2.7)

The above holds because Merlin can simply send `′ as equal to #G and a part

of the string z and z′ having the group Aut(R) in terms of the generators of

Sylow subgroups (see the proof of Claim 2.4.2). Then Equations (2.6) give us the

probability lower bound of 3
4
. Also, the output of A′(R, `′, y, z) for such `′, z will

trivially be (m,H).

To show the converse assume that there is a number m and a group H such that:

Proby∈{0,1}2 logc #R [(∃`′zz′ ∈ {0, 1}3 logc #R), both A′(R, `′, y, z)

and B(R, `′, y, z′) accept and A′(R, `′, y, z) = (m,H)] ≥ 3

4
(2.8)

Now if (m,H) 6= (#Aut(R), Aut(R)) then the way A′ outputs, it is clear that Merlin

tried to “fool” Arthur and so by the Equations (2.6) we get that for some positive

d′:

Proby∈{0,1}2 logc #R [(∃`′zz′ ∈ {0, 1}3 logc #R), both A′(R, `′, y, z) and

B(R, `′, y, z′) accept | A′(R, `′, y, z) 6= (#Aut(R), Aut(R))] ≤ 1

2logd′ #R

which together with the large probability lower bound of Equation (2.8) means that:

(m,H) = (#Aut(R), Aut(R)). Thus,

Proby∈{0,1}2 logc #R [(∃`′zz′ ∈ {0, 1}3 logc #R), both A′(R, `′, y, z)

and B(R, `′, y, z′) accept and A′(R, `′, y, z) = (m,H)] ≥ 3

4

⇒ f(R) = (m,H) (2.9)

Recall Equation (2.2) for the definition of fnAM, clearly, Equations (2.7) and (2.9)

tell us that: f ∈ fnAM.
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2.4.2 A Lower Bound: Reduction from Graph Isomorphism

and Integer Factoring

This section shows that #RA is a fairly interesting intermediate problem as two

well known problems – one of graphs and another of integers – reduce to it.

In the case of graphs it is easy to show that graph isomorphism (or counting

graph isomorphisms) reduces to counting graph automorphisms. The same result

continues to hold for rings with a slightly more involved proof. In the case of graphs

we take disjoint union of graphs to construct a new graph, here we take direct product

of rings to construct a new ring. It turns out that the number of automorphisms of

this new ring can be used to find out whether the original rings were isomorphic or

not.

Lemma 2.1 #RI ≡P
T #RA.

Proof: Suppose we are given a ring R. Clearly, we can compute #Aut(R) by

giving (R,R) as input to the oracle of #RI.

Conversely, let R1, R2 be the two rings given in basis form. Let us assume the

following about their decomposability into distinct local rings S1, . . . , Sk:

R1
∼= S1 × · · · × S1 × . . .× Sk × · · · × Sk

where, for all 1 ≤ i ≤ k, indecomposable ring Si occurs ai ≥ 0 times and #Aut(Si) =

mi.

R2
∼= S1 × · · · × S1 × . . .× Sk × · · · × Sk

where, for all 1 ≤ i ≤ k, indecomposable ring Si occurs bi ≥ 0 times.

The following claim relates the (non)isomorphism of the rings to counting ring

automorphisms:

Claim 2.4.3 (Kayal) R1 6∼= R2 ⇒ #Aut(R1×R1) ·#Aut(R2×R2) > (#Aut(R1×
R2))

2.
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Proof of Claim 2.4.3. Due to the uniqueness of decomposition of a ring into

indecomposable rings (see Proposition 2.3):

#Aut(R1 ×R2) = #Aut(

a1+b1︷ ︸︸ ︷
S1 × · · · × S1 ) · · ·#Aut(

ak+bk︷ ︸︸ ︷
Sk × · · · × Sk )

= (a1 + b1)!m
a1+b1
1 · · · (ak + bk)!m

ak+bk
k

Similarly,

#Aut(R1 ×R1) = #Aut(

2a1︷ ︸︸ ︷
S1 × · · · × S1 ) · · ·#Aut(

2ak︷ ︸︸ ︷
Sk × · · · × Sk )

= (2a1)!m
2a1
1 · · · (2ak)!m2ak

k

#Aut(R2 ×R2) = #Aut(

2b1︷ ︸︸ ︷
S1 × · · · × S1 ) · · ·#Aut(

2bk︷ ︸︸ ︷
Sk × · · · × Sk )

= (2b1)!m
2b1
1 · · · (2bk)!m2bk

k

Notice that
(
2ai+2bi
ai+bi

)
≥
(
2ai+2bi

2ai

)
which implies (2ai)! · (2bi)! ≥ (ai+ bi)!

2. This clearly

shows:

#Aut(R1 ×R1) ·#Aut(R2 ×R2) ≥ (#Aut(R1 ×R2))
2

Now since R1 6∼= R2, there exists an i0 ∈ [k] such that ai0 6= bi0 in which case

(2ai0)! · (2bi0)!  (ai0 + bi0)!
2. Thus,

#Aut(R1 ×R1) ·#Aut(R2 ×R2) > (#Aut(R1 ×R2))
2.

�

As a corollary of this we get:

Theorem 2.5 Graph Isomorphism ≤P
T #RA.

Proof: Immediate from Theorem 2.2 and Lemma 2.1.

Another interesting problem that reduces to #RA is integer factorization (IF).

Theorem 2.6 IF ≤ZPP
T #RA.
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Proof: Let n be the odd integer to be factored. Consider the ring

R := (Z/nZ)[x]/(x2)

We will show that #Aut(R) = φ(n) := |(Z/nZ)∗|. The theorem is then immediate

as n can be factored in expected polynomial time if we are given φ(n), see [Mil76].

Suppose ψ ∈ Aut(R) and let ψ(x) = ax+ b, for some a, b ∈ Z/nZ. Since ψ is an

automorphism; a, b should satisfy the following two conditions:

(ax+ b)2 = 0 in R⇒ ab = b2 = 0 (mod n), and

a ∈ (Z/nZ)∗.

These two conditions force b = 0 and any a ∈ (Z/nZ)∗ will work. Thus, #Aut(R) =

|(Z/nZ)∗| = φ(n).

2.5 The Complexity of Finding a Ring Isomor-

phism

We have seen by now that ring isomorphism and its counting version are both of

intermediate complexity and some well known problems – integer factoring and

graph isomorphism – reduce to them. Another interesting variant of RI is its search

version – FRI – finding an isomorphism between two rings given in basis form. The

first question that arises here is whether we can find a ring isomorphism given oracles

to RI or #RI. This is still open but in this section we show that FRI seems to have

a complexity similar to that of RI and #RI.

2.5.1 An Upper Bound

FRI is unlikely to be NP hard as we show that it reduces to the problem of computing

the automorphism group of a ring – GroupRA. The idea is that if we want to find an

isomorphism from a ring R to R′ then we consider the ring S = R×R′ and compute

the generator set T of Aut(S). Now if R ∼= R′ then there will be a generator φ ∈ T
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that sends some elements of R to those of R′. We construct an isomorphism from

R→ R′ using this automorphism φ of R×R′.

Theorem 2.7 FRI ∈ FPGroupRA ⊆ fnAM.

Proof: Let R,R′ be the two isomorphic finite rings given in basis form. Let their

decomposition into indecomposable components be:

R = R1 × · · · ×Rs

R′ = R′
1 × · · · ×R′

s

Suppose an oracle to GroupRA queried on S := R × R′ gives the group Aut(S)

in terms of a generator set T . For concreteness, let us fix an additive basis of S:

{b1, . . . , bn, b′1, . . . , b′n} where {b1, . . . , bn} are the basis elements of R and {b′1, . . . , b′n}
are those of R′. Furthermore, as S is a direct product of R and R′ we have: for all

i, j ∈ [n], bi · b′j = b′i · bj = 0. If R ∼= R′ then there has to be an element φ ∈ T

that maps some basis elements of R outside R. Fix such an automorphism φ. For

i ∈ [n], let:

φ(bi) =
n∑
j=1

ai,jbj +
n∑
j=1

a′i,jb
′
j

where, ai,j’s and a′i,j’s are integers modulo the characteristic of S, say N .

Now using linear algebra (over Z/NZ) we can compute an additive basis of the

following subring of R:

K := {r ∈ R | φ(r) ∈ R}

Note that K is a (proper) subring of R simply because φ is a ring homomorphism.

Now since φ is an automorphism and the decomposition of a ring into indecom-

posable rings is unique (see Lemma A.2 for details) we get that φ applied on S

permutes R1, . . . , Rs, R
′
1, . . . , R

′
s up to isomorphism. This means that there are

{i1, . . . , it} ( [s] such that:

K = Ri1 × · · · ×Rit

Again by linear algebra we can compute the ‘other’ component ring:

K⊥ := {r ∈ R | K · r = r ·K = 0}
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which can be shown to satisfy:

R = K ×K⊥

Now what is the action of φ on these? Observe that φ(K) ⊆ R while φ(K⊥) ⊆ R′.

To get a decomposition of R′ too, define L := φ(K⊥) and compute:

L⊥ := {r ∈ R′ | L · r = r · L = 0}

which can again be shown to satisfy:

R′ = L× L⊥

(as φ is an isomorphism from K⊥ → L and R ∼= R′).

Now recursively find an isomorphism ψ from K to L⊥ using GroupRA as oracle.

φ and ψ together give us an isomorphism from R to R′.

Thus, FRI ∈ FPGroupRA.

2.5.2 A Lower Bound: Reduction from Integer Factoring

It turns out that solving FRI would mean solving integer factoring (IF).

Theorem 2.8 (Kayal) IF ≤ZPP
T FRI.

Proof: Suppose n is an odd number to be factored and it is not a prime power.

Pick a random a ∈ (Z/nZ)∗ and define the rings:

R1 := (Z/nZ)[x]/(x2 − a2) and R2 := (Z/nZ)[x]/(x2 − 1).

Query the oracle of FRI on (R1, R2) to get an isomorphism φ : R1 → R2. Let

φ(x) = bx+ c, b, c ∈ Z/nZ.

Firstly, observe that if b is a zero divisor, i.e., there is a b′ ∈ (Z/nZ) \ {0} with

bb′ = 0 then φ(b′x − b′c) = b′(bx + c) − b′c = 0 in R2. As φ is an isomorphism

this means that (b′x − b′c) = 0 in R1 implying that b′ = 0 in Z/nZ which is a

contradiction. Thus, b should be in (Z/nZ)∗.
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Secondly, φ(x2 − a2) should be zero in R2 which means that:

a2 = φ(x)2 = (bx+ c)2 (mod n, x2 − 1)

⇒ 2bc = 0(mod n) and b2 + c2 − a2 = 0(mod n)

⇒ c = 0(mod n) and b2 = a2(mod n)

This means that b is a square-root of a2 modulo n. It is easily seen that when n has

two or more prime factors then every square in (Z/nZ)∗ has 4 or more square-roots.

Thus,

Proba∈(Z/nZ)∗ [b 6= ±a(mod n) | b =
√
a2(mod n)] ≥ 1

2
.

Now once we have a b 6= ±a(mod n) such that b2 = a2(mod n) we can factor n by

using the standard trick of computing gcd(b− a, n).

Thus, we can factor n in expected polynomial time given an oracle to FRI.

2.6 The Complexity of Deciding and Finding Ring

Automorphism

This section studies the problem of checking whether a given ring is rigid (i.e., has

no nontrivial automorphism) and if not then finding a nontrivial automorphism. We

will show that RA can be decided in deterministic polynomial time but finding a

nontrivial automorphism (FRA) is as hard as integer factoring.

Thus, there appears to be a difference in the complexity of decision, search and

counting versions of ring automorphism problems. Also, note the contrast that

we (currently) have with the complexity of the corresponding versions for graph

automorphism problems, for instance, GA is not known to be in P.

2.6.1 Kayal’s algorithm for RA

Theorem 2.9 (Kayal) RA ∈ P.

Proof: We only give the outline here. Refer to [Kay06] for details.
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Let R be a finite ring given in basis form. The algorithm for checking whether

R is rigid or not follows from the classification of rigid rings that we prove.

Let us first dispose off the case when R is non-commutative.

Claim 2.9.1 If R is a non-commutative ring then it has a nontrivial automorphism.

Proof of Claim 2.9.1. It can be shown [Len04] that if the units in a ring R commute

with the whole of R then R = 〈R∗〉, and consequently R will be commutative. Thus,

if R is a noncommutative ring then there is a unit r ∈ R that does not commute

with the whole of R. Then clearly the map φ : x 7→ rxr−1 gives a nontrivial

automorphism of R. �

When R is commutative we first consider the case of odd sized R. We can

show that indecomposable components of a rigid commutative odd-sized ring R are

isomorphic to Z/pmZ, for some odd prime p:

Claim 2.9.2 If R is a rigid indecomposable commutative odd-sized ring then there

is a prime p and m ∈ N such that, R ∼= (Z/pmZ,+, ·).

Finally, we take up the case of even sized commutative ring. It is sufficient to

consider a ring R whose size is a power of 2. We can show that R is rigid only if

the indecomposable rings that appear in the decomposition of R are isomorphic to

either Z/2mZ or (Z/2Z)[x]/(x2).

Claim 2.9.3 If R is a rigid indecomposable commutative power-of-2 sized ring then

R is either (Z/2mZ,+, ·) or (Z/2Z)[x]/(x2).

There is a polynomial time algorithm (see [Kay06]) that checks whether all the

indecomposable components of a given finite ring R fall in one of the above categories

or not, hence proving RA ∈ P.

2.6.2 FRA is randomly equivalent to Integer Factoring

We just saw that deciding whether a ring has a nontrivial automorphism is in P,

here we give evidence that the search version of this problem is apparently harder.

We show that FRA is as hard as integer factoring (IF).
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Theorem 2.10 (Kayal) IF ≡ZPP
T FRA.

Proof: We only give the outline here. Refer to [Kay06] for details.

Let us first sketch how we can find a nontrivial ring automorphism if we can do

integer factoring. Suppose the given ring R is non-commutative then we know from

the proof of Claim 2.9.1: there is a unit of R that does not commute with the whole

of R and thus defines a nontrivial automorphism. So we compute the multiplicative

generators of R∗ in randomized polynomial time and surely one of the generators r

will not commute with the whole of ring R. Thus, φ : x 7→ rxr−1 is a nontrivial

automorphism of R.

Now assume the given ring R is commutative. It can be decomposed into local

rings, as remarked in Proposition 2.3, in expected polynomial time using randomized

methods for polynomial factorization and an oracle of integer factorization. Once

we have local rings it is easy to construct nontrivial automorphisms. For, suppose

that the maximal ideal of R is M and t ∈ N is such that Mt−1 6= 0 but Mt = 0

also let 1, b1, . . . , bn be an additive basis with b1, . . . , bn as nilpotents. Then in most

cases any element α ∈Mt−1 defines a nontrivial automorphism:

φ :



b1 7→ b1 + α

b2 7→ b2
...

bn 7→ bn

Conversely, suppose we can find nontrivial automorphisms of rings and n is a

given number. Let us assume for simplicity that input n is a product of two distinct

primes p, q. Randomly choose a monic cubic polynomial f(x) ∈ (Z/nZ)[x]. Define

R := (Z/pqZ)[x]/(f(x)) and suppose we can find a nontrivial automorphism φ of

R. It follows from the distribution of irreducible polynomials over finite fields (see

[LN86]) that with probability ∼ 1
9
: f(mod q) is irreducible and f(mod p) has exactly

two irreducible factors f1, f2, say f1 is linear. Thus ring R decomposes as:

R ∼= (Z/pZ)× (Z/pZ)[x]/(f2(x))× (Z/qZ)[x]/(f(x)).
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Note that we can compute Rφ, the set of elements of R fixed by φ, using linear

algebra (if at any point we cannot invert an element (mod n), we get a factor of n).

As φ is a nontrivial automorphism of R we have that φ is identity on at most one of

the component rings (Z/pZ)[x]/(f2(x)) or (Z/qZ)[x]/(f(x)). Thus, we have three

cases:

1) If φ fixes (Z/pZ)[x]/(f2(x)):

Then Rφ ∼= (Z/pZ)× (Z/pZ)[x]/(f2(x))× (Z/qZ). Thus, |Rφ| = p3q.

2) If φ fixes (Z/qZ)[x]/(f(x)):

Then Rφ ∼= (Z/pZ)× (Z/pZ)× (Z/qZ)[x]/(f(x)). Thus, |Rφ| = p2q3.

3) If φ moves both (Z/pZ)[x]/(f2(x)) and (Z/qZ)[x]/(f(x)):

Then Rφ ∼= Zp × Zp × Zq. Thus, |Rφ| = p2q.

Since, the size of Rφ is in no case of the form n, n2 or n3, the process of finding Rφ

by doing linear algebra (mod n) is going to yield a factor of n. In particular, this

means that if the matrix describing φ over the natural additive basis {1, x, x2} is:

A :=


1 0 0

a0 a1 a2

b0 b1 b2


then the determinant of one of the submatrices of (A− I) will have a nontrivial gcd

with n.

This idea can be extended to the case of composite n having more prime factors

(see [Kay06]).

Thus, the two problems: finding nontrivial automorphisms of commutative rings

and integer factoring have the same complexity (with respect to randomized poly-

nomial time reductions).

2.6.3 Reduction from Polynomial Factoring to FRA

Polynomial factorization over finite fields is still not known to have a deterministic

polynomial time algorithm. The randomized algorithms known for this problem (see

[LN86, vzGG99]) invariably use automorphisms of rings as a tool (see [AS05]).
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Here we give a specific relation of polynomial factorization to FRA assuming

the extended Riemann hypothesis (ERH). ERH needs to be invoked as it gives us a

deterministic polynomial time algorithm to find k-th roots in a finite field [vzGG99].

The reduction we give here uses the main idea of Evdokimov’s algorithm [Evd94].

Theorem 2.11 Assuming the ERH, Polynomial Factoring ≤P
m FRA.

Proof: Suppose we want to factor a polynomial f(x) over the finite field Fq. We

could assume wlog that f(x) is square free and splits completely over Fq. Let us

define a ring R := Fq[x]/(f(x)) and let d be the degree of f(x). Suppose an oracle

of FRA gives a nontrivial automorphism φ of the ring R. We will show how to find

a factor of f(x) assuming ERH.

We can first easily compute the subring Rφ of elements in R which are fixed by

φ. If x, φ(x), φ2(x), . . . , φd(x) are all distinct modulo f(x) then we have (d+1) roots

of degree-d-polynomial f(x) which implies that ∃i 6= j s.t. gcd(φi(x)− φj(x), f(x))

factors f(x). So we can assume that for some 2 ≤ k ≤ d, φk(x) = x.

Wlog we can assume that there is a k-th root of unity ζk ∈ Fq, for otherwise, we

can invoke ERH and construct an appropriate extension of Fq that has a k-th root

of unity [vzGG99]. Consider the element:

β :=
k−1∑
i=0

ζ ikφ
i(x) ∈ R

which satisfies φ(β) = ζ−1
k β. Thus, βk ∈ Rφ but β 6∈ Rφ. Also, note that βk has a

k-th root y in the ring Rφ, for, βk has a k-th root in R ∼= ×d
i=1 Fq and Rφ is just a

subring ×d′
i=1 Fq of R. Also, we can compute y ∈ Rφ as we are assuming ERH (the

k-th root finding algorithm either gives a k-th root of βk in Rφ or factors f(x)). But

then we have (k + 1) k-th roots of βk which are all distinct modulo f(x), namely:

β, ζkβ, . . . , ζ
k−1
k β, y; thus, there are two roots among these whose difference is a zero

divisor of the ring R and hence will give a nontrivial gcd with f(x).
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2.7 Discussion

This chapter studied the automorphism and isomorphism problems of rings. The

problems were all inspired from those of graphs. The rings considered in this chapter

were assumed to be finite which was used in showing that these problems are of

intermediate complexity and unlikely to be NP-hard. On the other hand all the lower

bound results of the chapter do not need this finiteness assumption, for example,

graph isomorphism reduces to the isomorphism problem of F-algebras for any field

F. This chapter showed that the automorphism problems of finite rings are related

to the classical problems – like, graph isomorphism, integer factoring and polynomial

factoring – and the most general automorphism problem is computing the group of

automorphisms of a finite ring.

The complexity of all the morphism problems, except RA and testing automor-

phism/isomorphism problems, that we considered in this chapter remain open. A

solution to any one of them will be very interesting as it would solve some of the

classical problems as well! To understand these problems more we would like to ask

the following questions:

• We have seen two well-known problems of intermediate complexity reduce

to #RA. Can one reduce some other such problem, e.g., finding discrete

logarithm?

• The ring problems differ from the graph ones in their (in)ability to efficiently

“fix” part of the automorphisms. This property allows one to prove the equiv-

alence between computing automorphism groups, counting automorphisms,

finding isomorphisms, and testing isomorphisms in the case of graphs. For

rings, we cannot prove such equivalence. Does there exist some way of doing

such “fixing” for rings which will allow us to prove similar equivalences?

• As #RA is an algebraic problem is there a polynomial time quantum algorithm

for it, i.e., is #RA ∈ BQP ?

• Consider the ring isomorphism problem over rationals: RIQ. It is not even

clear if this problem is decidable.
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The following figure shows the various relations we proved in this chapter. The

arrows are labelled by the type of reduction or relation and the dotted arrow signifies

a conditional result (assuming ERH). The well-known problems are in the central

circle and labelled as: IF for integer factoring, GI for graph isomorphism and PF

for polynomial factoring.
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Chapter 3

Polynomial Equivalence

Suppose we are given two polynomials f(x1, . . . , xn) and g(x1, . . . , xn) of total degree

d with coefficients in a field F. We say that f is equivalent to g, denoted by f ∼ g, if

there is an invertible linear transformation τ sending each xi to a linear combination

of x1, . . . , xn such that:

f (τ(x1), . . . , τ(xn)) = g(x1, . . . , xn).

The polynomials f, g are assumed to be provided in the input in expanded form:∑
0≤i1+...+in≤d

ai1,...,inx
i1
1 · · ·xinn

Example Suppose f(x, y) = x2 +y2 and g(x, y) = 2x2 +2y2 are polynomials over

Q. Then the map τ :

x 7→ x+ y

y 7→ x− y
applied on f gives g, i.e., τ ◦ f(x, y) = g(x, y).

Thus, f ∼ g over rationals.

Example Consider f(x) = x2 and g(x) = 2x2. Then f and g are not equivalent

over Q but they are equivalent over R as τ : x 7→
√

2x is an equivalence.

The computational problem of polynomial equivalence is to check whether two

input polynomials f, g ∈ F[x] are equivalent, in time polynomial in the size of

the input. We treat d as a constant while n varies. We show in this chapter

that this easily defined problem is apparently harder than commutative F-algebra

46
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isomorphism (F-algebras given in the basis form) and hence as a corollary the graph

isomorphism problem too reduces to polynomial equivalence. Also, in the other

direction most cases of polynomial equivalence reduce to the commutative F-algebra

isomorphism problem.

Previous research on polynomial equivalence has primarily focussed on a re-

stricted case – when f, g are homogeneous polynomials called forms. The most

celebrated case is perhaps when f, g are quadratic forms – homogeneous polynomials

of degree 2. The classification of quadratic forms is known due to the works of

Minkowski [Minkow], Hasse [Has21] and Witt [Witt]. The classification theorem of

quadratic forms is effective in the sense that it gives algorithms for deciding and

finding quadratic forms equivalence over “interesting” fields like finite fields, Q,R
and C.

In this work we focus on polynomial equivalence for homogeneous polynomials of

degree 3 – cubic forms. This case of polynomial equivalence seems to be significantly

harder than quadratic forms equivalence as we show that a fairly general case of

ring isomorphism – commutative F-algebra isomorphism – reduces to cubic forms

equivalence. This reduction implies that graph isomorphism reduces to cubic forms

equivalence too. Moreover, we also give evidence that the problem of equivalence

for higher degree forms reduces to that of cubic forms. Thus, cubic forms seem

to be the most important restricted case of polynomial equivalence. Cubic forms

equivalence has been well studied in mathematics (for instance see [Har75, HP88,

MH74, Rup03]). Over the last ten years, it has been found to be useful in computer

science as well: [Pat96, CGP98] propose a cryptosystem based on the hardness of

the cubic forms equivalence over finite fields.

The results of this chapter mostly appear in [AS05, AS06].

3.1 The Complexity of Polynomial Equivalence

For a given field F and degree d let us define the language for the problem of

polynomial equivalence over F as:

polyEquivd,F := {(f, g) | f, g are polynomials of total degree d over F and f ∼ g}



48

3.1.1 Upper Bounds

The complexity of polynomial equivalence depends upon the base field. In this

section we give upper bounds on polynomial equivalence for various “interesting”

fields.

Theorem 3.1 For any fixed d ∈ Z>0, the problem of polynomial equivalence satis-

fies:

1) For a finite field F, polyEquivd,F ∈ NP ∩ coAM.

2) When F = R, polyEquivd,F ∈ EEXP.

3) For an algebraically closed field F (eg. C), polyEquivd,F ∈ PSPACE.

Proof: [of 1)] Let F be a finite field of size q. Given a linear transformation τ on

the variables x1, . . . , xn, it is easy to check whether f(τx1, . . . , τxn) = g(x1, . . . , xn)

simply by substituting for τ in f and doing the computations in time poly(nd, log q).

Thus, polynomial equivalence over F is in NP.

Let us now see an AM protocol for polyEquivF. Suppose f, g ∈ F[x1, . . . , xn] are

two given polynomials. We call an invertible linear transformation φ ∈ (Fn×n)∗ an

automorphism of f if f(φx) = f(x). Let us define a set C(f) as:

C(f) :=
{
(f(τx), φ) | τ, φ ∈

(
Fn×n

)∗
and φ is an automorphism of f(τx)

}
If s is the number of invertible n × n matrices over F then observe that the size of

the set C(f) is:

#C(f) = (number of polynomials ∼ f(x)) ·#Aut(f)

=
s

#Aut(f)
·#Aut(f)

= s

Similarly, we have the set C(g) and we define C(f, g) = C(f) ∪C(g). It is a simple

exercise to show that given Fq and n we can compute the number s of n×n invertible

matrices over Fq in polynomial time. Now let us see how C(f, g) behaves:

f 6∼ g ⇒ C(f) ∩ C(g) = ∅ ⇒ #C(f, g) = 2s.

f ∼ g ⇒ C(f) = C(g) ⇒ #C(f, g) = s.
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Thus, the set C(f, g) is larger by a factor of 2 when f 6∼ g and we can give an AM

protocol for polyEquivd,F as in Proposition 2.4.

Proof: [of 2)] When F = R, we consider the equivalence as a matrix A over R in

n2 unknowns ((ai,j)) and then solve the system of equations that we get from:

f(Ax) = g(x)

This system of equations can be solved in EEXP due to the result of Tarski on the

decidability of first-order equations over reals [DH88].

Proof: [of 3)] When F is an algebraically closed field, we consider the equivalence

as a matrix A over F in n2 unknowns ((ai,j)) and then solve the system of equations

that we get from:

f(Ax) = g(x)

This system of equations can be solved over F in PSPACE by using Hilbert’s

Nullstellensatz [Bro87].

Remark: When F = Q, it is not yet known if the problem is decidable.

3.1.2 Reduction to F-algebra Isomorphism (in some cases)

At the first glance, the problem of polynomial equivalence does not appear to be

related to the problems of ring isomorphism. But in this section we exhibit a

connection of polynomial equivalence to the ring isomorphism problem. We show

that the problem of polynomial equivalence restricted to homogeneous polynomials

reduces to the ring isomorphism problem for most cases.

Theorem 3.2 Suppose F is a field having dth roots, i.e. ∀α ∈ F α
1
d ∈ F. Then

equivalence of homogeneous polynomials of degree d over F is many-one polynomial

time reducible to F-algebra isomorphism.

Proof: Suppose f, g are homogeneous polynomials of degree d in n variables over

F. Then construct a commutative F-algebra Rf from f as:

Rf := F[x1, . . . , xn]/ (f, Id+1)
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where, the ideal Id+1 is generated by all the monomials of degree d + 1. We claim

that the rings Rf and Rg are isomorphic iff f ∼ g.

Suppose ψ is an equivalence that sends f to g. Then ψ easily extends to an

isomorphism from Rf to Rg.

Conversely, suppose φ is an isomorphism from Rf → Rg. Then φ(f) has to map

to 0 in Rg thus, there is a c ∈ F such that:

φ(f) = cg(x) + (terms of degree d+ 1 or more) (3.1)

Since, xd+1
i = 0 in Rf , φ(xi) cannot have a constant term otherwise φ(xi)

d+1 6= 0.

Let us denote the linear part of φ(xi) by ψ(xi). Hence, for all i ∈ [n]:

φ(xi) = ψ(xi) + (quadratic and higher degree terms)

Since, f is homogeneous of degree d, the degree d terms of φ(f) are exactly those in

ψ(f). Thus:

φ(f) = ψ(f) + (terms of degree d+ 1 or more) (3.2)

The Equations (3.1) and (3.2) imply that ψ(f) = cg. Now since F has dth roots and

g is homogeneous of degree d we further get:

f(ψ(x1), . . . , ψ(xn)) = g(c
1
dx1, . . . , c

1
dxn)

Thus, f ∼ g.

Hence, Rf
∼= Rg iff f ∼ g.

Remark: If one slightly generalizes the definition of polynomial equivalence as

f ∼ g iff there is a τ ∈ Fn×n and a c ∈ F such that f(τ(x)) = c · g(x) then this

theorem works for all fields F.

3.1.3 A Lower Bound: Reduction from F-algebra Isomor-

phism

Here, we will show that a fairly general case of the ring isomorphism problem

– commutative F-algebra isomorphism – reduces to the equivalence problem of

polynomials having total degree 3 (called cubic polynomials).



51

An isomorphism of F-algebras has to preserve all the multiplicative relations,

which are ∼ n2 if there are n basis elements. On the other hand an equivalence of

polynomials has to satisfy only one equation. It is interesting that there is a way

to combine the various multiplicative relations of a commutative F-algebra into one

polynomial such that its equivalence gives an F-algebra isomorphism.

Theorem 3.3 Commutative F-algebra Isomorphism ≤P
m cubic polynomial equivalence.

Proof: Let R be a commutative F-algebra with additive basis b1, . . . , bn over F.

Furthermore, multiplication in R is defined as: for all 1 ≤ i ≤ j ≤ n,

bi · bj =
n∑
k=1

ai,j,kbk, where, ai,j,k ∈ F

Let us define a polynomial that captures the multiplicative relations defining ring

R:

fR(z, b) :=
∑

1≤i≤j≤n

zi,j

(
bibj −

∑
1≤k≤n

ai,j,kbk

)
(3.3)

Note that here z = (z1,1, . . . , zn,n) and b = (b1, . . . , bn) are formal variables and

fR is a polynomial in F[z, b]. Similarly, for another commutative F-algebra R′ the

polynomial would be:

fR′(z, b) :=
∑

1≤i≤j≤n

zi,j

(
bibj −

∑
1≤k≤n

a′i,j,kbk

)

An isomorphism from R to R′ easily gives an equivalence from fR to fR′ :

Claim 3.3.1 If R ∼= R′ then fR ∼ fR′.

Proof of Claim 3.3.1. Let φ be an isomorphism from R to R′. Note that φ

sends each bi to a linear combination of b’s and for all i ≤ j ∈ [n]: φ(bi)φ(bj) −∑
1≤k≤n ai,j,kφ(bk) = 0 in R′. This implies that there exist constants ci,j,k,` ∈ F such

that:

φ(bi)φ(bj)−
∑

1≤s≤n

ai,j,sφ(bs) =
∑

1≤k≤`≤n

ci,j,k,`

(
bkb` −

∑
1≤s≤n

a′k,`,sbs

)
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This immediately suggests that the linear transformation τ that sends:

for all 1 ≤ i ≤ n, bi 7→ φ(bi)

for all 1 ≤ k ≤ ` ≤ n,

( ∑
1≤i≤j≤n

ci,j,k,`zi,j

)
7→ zk,`

makes fR equal to fR′ . The linear transformation τ is an invertible map because

τ |b = φ is invertible and τ |z has a range space of full dimension implying that τ |z
is invertible too. �

The converse, i.e., getting an F-algebra isomorphism from a polynomial equiva-

lence, is more involved to show.

Claim 3.3.2 If fR ∼ fR′ then R ∼= R′.

Proof of Claim 3.3.2. Let φ be a linear transformation such that∑
1≤i≤j≤n

φ(zi,j)

(
φ(bi)φ(bj)−

∑
1≤k≤n

ai,j,kφ(bk)

)
=

∑
1≤i≤j≤n

zi,j

(
bibj −

∑
1≤k≤n

a′i,j,kbk

)
(3.4)

By comparing the cubic terms on both sides we get:∑
1≤i≤j≤n

φ(zi,j)φ(bi)φ(bj) =
∑

1≤i≤j≤n

zi,jbibj (3.5)

We aim to show that φ(bi) has no z’s, i.e., φ(bi) is a linear combination of only b’s.

We will be relying on the following property of the RHS of Equation (3.5): if τ is an

invertible linear transformation on the z’s then for all 1 ≤ i ≤ j ≤ n, the coefficient

of zi,j in
∑

1≤i≤j≤n τ(zi,j)bibj is nonzero.

Suppose φ(bi0) has z’s, i.e.,

φ(bi0) =
∑
j

ci0,jbj +
∑
j,k

ci0,j,kzj,k

We can apply an invertible linear transformation τ on z’s in Equation (3.5) such that

τ maps
∑

j,k ci0,j,kzj,k to z1,1. Then apply an evaluation map val that substitutes

z1,1 by
(
−
∑

j ci0,jbj

)
. Now val ◦ τ ◦ φ(bi0) = 0 and thus, Equation (3.5) becomes:∑

1≤j≤k≤n
j,k 6=i0

val ◦ τ ◦ φ(zj,kbjbk) =
∑

1≤j≤k≤n
(j,k) 6=(1,1)

zj,k(quadratic b’s) + (cubic b’s) (3.6)
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Notice that the LHS of Equation (3.5) had
(
n+1

2

)
summands while the LHS of

Equation (3.6) has at most
{(

n+1
2

)
− n

}
summands. These summands on the LHS

of Equation (3.6) are of two kinds: those that have a nonzero occurrence of a z-

variable and those that are cubic in b’s. So we repeat this process of applying

invertible linear transformations on z’s and fixing z’s in Equation (3.6) so that for

all 1 ≤ j ≤ k ≤ n, j, k 6= i0, val ◦ τ ◦ φ(zj,kbjbk) either maps to zero or to a cubic

in b’s. Thus, after
{
1 +

(
n+1

2

)
− n

}
z-fixings the LHS of Equation (3.5) is a cubic

in b’s while the RHS still has
(
n+1

2

)
−
{
1 +

(
n+1

2

)
− n

}
= (n− 1) unfixed z’s, which

is a contradiction.

Since φ(bi)’s have no z’s and there are no cubic b’s in the RHS of Equation (3.4)

we can ignore the b’s in φ(zj,k)’s. Thus, now φ(zj,k)’s are linear combinations of

z’s and φ(bi)’s are linear combinations of b’s. Again looking at Equation (3.4),

this means that
(
φ(bi)φ(bj)−

∑
1≤s≤n ai,j,sφ(bs)

)
is a linear combination of (bkb`−∑

1≤s≤n a
′
k,`,sbs

)
for 1 ≤ k ≤ ` ≤ n; implying that

(
φ(bi)φ(bj)−

∑
1≤s≤n ai,j,sφ(bs)

)
=

0 in ring R′. This combined with the fact that φ|b is an invertible linear transfor-

mation on b means that φ induces an isomorphism from ring R to R′. �

The above two claims complete the proof.

3.2 Another Lower Bound: F-algebra Isomorphism

reduces to Cubic Forms Equivalence

We had seen in Theorem 3.3 how to construct non homogeneous cubic polynomials

that capture the multiplicative relations of a given F-algebra. Now what happens

if we homogenize those cubic polynomials, does an equivalence between such cubic

forms give us isomorphism between the original F-algebras?

In this section we first give a reduction from commutative F-algebra isomorphism

to local commutative F-algebra isomorphism. Then from these local commutative

F-algebras we construct cubic forms (obtained by homogenizing Equation (3.3))

and prove that an equivalence between these cubic forms induces an isomorphism

between the local commutative F-algebras. Thus, cubic forms equivalence problem
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is at least as hard as the isomorphism problem of commutative F-algebras. Conse-

quently, for any field F, cubic forms equivalence problem is at least as hard as the

graph isomorphism problem.

3.2.1 Commutative F-algebras reduce to local F-algebras

An F-algebra is local if it cannot be broken into simpler F-algebras, i.e., if it cannot

be written as a direct product of algebras. Given a commutative F-algebra this

direct product decomposition can be done by factoring polynomials over the field F.

Any non-unit r in a finite dimensional local commutative F-algebra is nilpotent, i.e.,

there is an m such that rm = 0. For more details on local rings refer the appendix

or the text: [McD74].

In this section we give a many-to-one reduction from commutative F-algebra

isomorphism to local commutative F-algebra isomorphism. Moreover, the local com-

mutative F-algebras that we construct have basis elements most of whose products

vanish. We exploit the properties of this local F-algebra to give a reduction from

commutative F-algebra to cubic forms in the next subsection.

Theorem 3.4 F-algebra isomorphism ≤P
m Local F-algebra isomorphism.

Proof: Given two F-algebras R and S, Theorem 3.3 constructs two cubic poly-

nomials p and q respectively such that p, q are equivalent iff R,S are isomorphic.

These polynomials live in F[z1,1, . . . , zn,n, b1, . . . , bn] and look like:

p(z, b) :=
∑

1≤i≤j≤n

zi,j

(
bibj −

∑
k

ai,j,kbk

)

q(z, b) :=
∑

1≤i≤j≤n

zi,j

(
bibj −

∑
k

a′i,j,kbk

)
Let

p3(z, b) :=
∑

1≤i≤j≤n

zi,jbibj and p2(z, b) := −
∑

1≤i≤j≤n

(
zi,j
∑
k

ai,j,kbk

)
(3.7)

Similarly define q3(z, b) and q2(z, b) from q. Thus, p = p3 +p2 and q = q3 +q2, where

p3, q3 are homogeneous of degree 3 and p2, q2 are homogeneous of degree 2.
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Using p, q we construct the following commutative F-algebras:

R′ := F[z, b, u]/
〈
p3, up2, u

2, I
〉

S ′ := F[z, b, u]/
〈
q3, uq2, u

2, I
〉

(3.8)

where, I is the ideal generated by all possible products of 4 variables (with repeti-

tion) from the set:

{z1,1, . . . , z1,n, . . . , zn,1, . . . , zn,n, b1, . . . , bn, u}

Note that all the variables in R′, S ′ are nilpotent and hence the two rings are

local commutative F-algebras (see the appendix). The following claim tells us that

it is enough to consider the isomorphism problem for these local structures. Recall

that R ∼= S iff p, q are equivalent polynomials.

Claim 3.4.1 p(z, b), q(z, b) are equivalent polynomials iff R′ ∼= S ′.

Proof of Claim 3.4.1. If p, q are equivalent then the same equivalence, extended by

sending u 7→ u, gives an isomorphism from R′ to S ′.

Conversely, say φ is an isomorphism from R′ to S ′. Our intention is to show

that the linear part of φ, i.e., ignoring the quadratic or higher degree terms in

φ(v), where variable v ∈ {z1,1, . . . , zn,n, b1, . . . , bn, u}, induces an equivalence from

p to q. Note that since z, b, u are nilpotents in R′, therefore ∀i ≤ j ∈ [n], k ∈
[n], φ(zi,j), φ(bk), φ(u) can have no constant term.

Let us see where φ sends u. Since, φ(u)2 = 0 in S ′, while for all i, j: z2
i,j and b2i

are nonzero in S ′, thus, we deduce that the linear part of φ(u) can have no z, b’s.

Further, as φ is an isomorphism φ(u) should have at least one linear term. Thus,

φ(u) = c · u+ (terms of degree 2 or more), where c ∈ F∗. (3.9)

Now by the definition of φ there are c1, c2 ∈ F such that:

φ(p3) = c1 · q3 + c2 · uq2 + (linear terms in z, b, u) · u2 + (terms of degree 4 or more)

By substituting u = 0 we get,

φ(p3) |u=0 = c1q3 + (terms of degree 4 or more) (3.10)
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Also, there are d1, d2 ∈ F such that:

φ(up2) = d1 ·q3 +d2 ·uq2 +(linear terms in z, b, u) ·u2 +(terms of degree 4 or more)

Using Equation (3.9) we deduce that d1 = 0. Thus,

φ(up2) = d2 · uq2 + (linear terms in z, b, u) · u2 + (terms of degree 4 or more)

As c 6= 0 in Equation (3.9), we deduce that there is a d′2 ∈ F:

uφ(p2) = d′2 · uq2 + (linear terms in z, b, u) · u2 + (terms of degree 4 or more)

Factoring out u and substituting u = 0 gives us:

φ(p2) |u=0 = d′2 · q2 + (terms of degree 3 or more) (3.11)

Let ψ be the linear part of φ |u=0, that is:

for all i ≤ j, ψ(zi,j) := linear terms of φ(zi,j) other than u, and

for all i, ψ(bi) := linear terms of φ(bi) other than u

By comparing degree 3 and degree 2 terms on both sides of Equations (3.10) and

(3.11) respectively, we get:

ψ(p3) = c1q3 (3.12)

ψ(p2) = d′2q2 (3.13)

Note that since φ is an isomorphism, ψ has to be an invertible map and thus,

ψ(p3), ψ(p2) 6= 0. As a result c1 and d′2 are both non-zero. Consider the map

ψ′ := (
d′2
c1

) ◦ψ. The above two equations give us: ψ′(p3 + p2) =
d′32
c21
· (q3 + q2). Denote

d′32
c21

by c. Thus,

ψ′(p(z, b)) = c · q(z, b)

Now we can get rid of the extra factor of c by defining a map ψ′′:

∀i, j, ψ′′(zi,j) :=
1

c
ψ′(zi,j)

∀i, ψ′′(bi) := ψ′(bi)



57

It follows that ψ′′(p) = 1
c
ψ′(p) = q and thus, p(z, b), q(z, b) are equivalent under the

map ψ′′. �

Thus, R ∼= S iff R′ ∼= S ′ and hence it is sufficient to study F-algebra isomorphism

over local commutative F-algebras of the form occurring in Equation (3.8).

3.2.2 Local commutative F-algebras reduce to Cubic Forms

Here, we show that local commutative F-algebra isomorphism reduces to cubic forms

equivalence. This result when combined with the last subsection shows that cubic

forms equivalence is at least as hard as the commutative algebra isomorphism and

graph isomorphism (from Theorem 2.2).

We construct cubic forms from the rings of Equation (3.8) and then heavily

use the properties of the underlying local commutative F-algebra to study the

equivalences of these cubic forms. The reduction that we exhibit in the following

theorem holds for any field F.

Theorem 3.5 Commutative F-algebra isomorphism ≤P
m F-cubic forms equivalence.

Proof: Given commutative F-algebras R, S we will construct cubic forms φR, φS

such that the cubic forms are equivalent iff the algebras are isomorphic. The

construction involves first getting the local F-algebras R′, S ′ (as in Theorem 3.4)

and then the cubic forms out of these local commutative algebras.

Let b1, . . . , bn be the additive basis of R over F. Let the multiplication in the

algebra be defined as:

for all i, j ∈ [n] : bi · bj =
n∑
k=1

ai,j,kbk, where ai,j,k ∈ F

Consider the following local ring R′ constructed from R:

R′ := F[z, b, u]/
〈
p3, up2, u

2, I
〉

(3.14)

where, p3(z, b) :=
∑

1≤i≤j≤n zi,jbibj and p2(z, b) :=
∑

1≤i≤j≤n zi,j (
∑n

k=1 ai,j,kbk). I is

the set of all possible products of 4 variables (with repetition) from

{z1,1, . . . , zn,n, b1, . . . , bn, u}.
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Similarly, construct S ′ from S and we know from Theorem 3.4 that R ∼= S iff

R′ ∼= S ′. Now we move on to constructing cubic forms from these local commutative

algebras R′ and S ′.

A natural set of generators of the ring R′ is: {1}∪{zi,j}1≤i≤j≤n∪{bi}1≤i≤n∪{u}.
For simplicity let us call them 1, x1, . . . , xg, u respectively, where g :=

(
n+1

2

)
+ n. A

natural additive basis of R′ over F is:

{1} ∪ {xi}1≤i≤g ∪ {u} ∪ {xixj}1≤i≤j≤g ∪ {uxi}1≤i≤g ∪ {xixjxk}1≤i≤j≤k≤g

∪ {uxixj}1≤i≤j≤g minus one term each from p3 and up2

(3.15)

For simplicity denote the elements of this additive basis by 1, c1, . . . , cd respectively,

where,

d := g+1+

(
g + 1

2

)
+ g+

(
g + 2

3

)
+

(
g + 1

2

)
− 2 = 2g+2

(
g + 1

2

)
+

(
g + 2

3

)
− 1

Finally, we construct a cubic form φR using R′ as follows:

φR(y, c, v) :=
∑

1≤i≤j≤d

yi,jcicj − v
∑

1≤i≤j≤d

yi,j

(
d∑

k=1

ãi,j,kck

)
(3.16)

where ∀i, j, ci · cj =
∑d

k=1 ãi,j,kck in R′, for some ãi,j,k ∈ F.

Observe that the v terms in this cubic form are “few” because most of the ã are

zero. This property is useful in analysing the equivalence of such forms. Let us first

bound the number of v terms in φR.

Claim 3.5.1 The number of nonzero v terms in RHS of Equation (3.16) is less

than (3d− 6).

Proof of Claim 3.5.1. The number of nonzero v terms in RHS of Equation (3.16)

is:

≤ # {(k, `) | 1 ≤ k ≤ ` ≤ d, ckc` 6= 0 in R′}+ 3 [#(terms in p3) + #(terms in p2)]

The first expression above accounts for all the relations in R′ of the form ckc` = cm.

The second expression takes care of the relations that arise from p3 = 0 and up2 = 0.
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The factor of 3 above occurs because a term xixjxk in p3, up2 can create v terms in

at most 3 ways: from (xi) · (xjxk) or (xj) · (xixk) or (xk) · (xixj).

≤ #
{

(k, `) | k ≤ `, ck, c` ∈ {xi}1≤i≤g

}
+ #

{
(k, `) | ck ∈ {xi}1≤i≤g , c` = u

}
+#

{
(k, `) | ck ∈ {xi}1≤i≤g , c` ∈ {xixj}1≤i≤j≤g

}
+#

{
(k, `) | ck ∈ {xi}1≤i≤g , c` ∈ {uxi}1≤i≤g

}
+#

{
(k, `) | ck = u, c` ∈ {xixj}1≤i≤j≤g

}
+ 3 [#(terms in p3) + #(terms in p2)]

≤
[(
g + 1

2

)
+ g + g ·

(
g + 1

2

)
+ g2 +

(
g + 1

2

)]
+ 3

[(
n+ 1

2

)
+

(
n+ 1

2

)
· n
]

Note that the dominant term in the above expression is g3

2
while in that of d it is

g3

6
. Thus, the above expression should be around 3d. Exact computation gives the

following bound:

< (3d− 6)

�

Construct a cubic form φS from ring S in a way similar to that of Equation (3.16).

φS(y, c, v) :=
∑

1≤i≤j≤d

yi,jcicj − v
∑

1≤i≤j≤d

yi,j

(
d∑

k=1

ẽi,j,kck

)
(3.17)

where ∀i, j, ci · cj =
∑d

k=1 ẽi,j,kck in S ′ for some ẽi,j,k ∈ F.

The following claim is what we intend to prove now.

Claim 3.5.2 φR(y, c, v) is equivalent to φS(y, c, v) iff R′ ∼= S ′ iff R ∼= S.

Proof of Claim 3.5.2. The part of this claim that needs to be proved is φR ∼ φS ⇒
R′ ∼= S ′. Suppose ψ is an equivalence from φR(y, c, v) to φS(y, c, v). We will show

how to extract from ψ an isomorphism from R′ to S ′.

We have the following starting equation to analyze:

∑
1≤i≤j≤d

ψ(yi,j)ψ(ci)ψ(cj)− ψ(v)
∑

1≤i≤j≤d

ψ(yi,j)

(
d∑

k=1

ãi,j,kψ(ck)

)
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=
∑

1≤i≤j≤d

yi,jcicj − v
∑

1≤i≤j≤d

yi,j

(
d∑

k=1

ẽi,j,kck

)
(3.18)

The main property of this huge equation that we would like to show is: ψ(ci)

consists of only c terms. Thus, ψ(ci) has enough information to extract a ring

isomorphism from R′ to S ′. In the rest of the proof we will “rule out” the unpleasant

cases of ψ(ci) having y, v terms and ψ(v) having y terms.

Let for every i ∈ [d], ψ(ci) =
∑

j αi,jcj +
∑

j,k βi,j,kyj,k + γiv where α, β, γ’s ∈ F.

For obvious reasons we will call the expression
∑

j,k βi,j,kyj,k as the y part of ψ(ci).

y parts of ψ(v) and ψ(yi,j) are defined similarly. We will show that the rank of the

y part of ψ(c1), . . . , ψ(cd), ψ(v) is less than 3.

Assume that for some i, j, k the y parts of ψ(ci), ψ(cj), ψ(ck) are linearly inde-

pendent over F. By a term on LHS of Equation (3.18) we mean expressions of the

form ψ(y`,s)ψ(c`)ψ(cs) or ψ(v)ψ(y`,s)ψ(ct), where `, s, t ∈ [d]. Let T0 be the set of all

terms on LHS of Equation (3.18). There are at least d+(d− 1)+ (d− 2) = (3d− 3)

terms on LHS of Equation (3.18) that have an occurrence of ψ(ci), ψ(cj) or ψ(ck),

denote this set of terms by T1 and the set of the remaining terms by T2. Let us

build a maximal set Y of linearly independent y parts and a set T of corresponding

terms as follows:

Start with keeping y parts of ψ(ci), ψ(cj), ψ(ck) in Y and setting T = T1. Succes-

sively add a new y part to Y that is linearly independent from the elements already

in Y and that occurs in a term t ∈ T0 \ T , also, add t to T . When Y has grown to

its maximal size, it is easy to see that:

#Y ≤ 3 + #T2 [∵ initially, #Y = 3 and there are #T2 terms outside T ]

= 3 +

[(
d+ 1

2

)
+ #(terms having ψ(v))−#T1

]
< 3 +

[(
d+ 1

2

)
+ (3d− 6)− (3d− 3)

]
[by Claim 3.5.1 and ∵ #T1 ≥ (3d− 3)]

=

(
d+ 1

2

)
= # {yi,j}1≤i≤j≤d
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Now apply an invertible linear transformation τ on the y variables in Equation (3.18)

such that all the y parts in Y are mapped to distinct single y variables, let τ(Y )

denote the set of these variables. By substituting suitable linear forms, having only

c, v’s, to variables in τ(Y ) we can make all the terms in τ(T ) zero and the rest of

the terms, i.e. τ(T0 \ T ), will then have no occurrence of y variables (as Y is the

maximal set of linearly independent y parts). Thus, LHS of Equation (3.18), after

applying τ and the substitutions, is completely in terms of c, v while RHS still has at

least one free y variable (as we fixed only #τ(Y ) < # {yi,j}1≤i≤j≤d y variables and

as τ is an invertible linear transformation). This contradiction shows that the y part

of ψ(ci), ψ(cj), ψ(ck) cannot be linearly independent, for any i, j, k. Using a similar

argument it can be shown that the y part of ψ(ci), ψ(cj), ψ(v) cannot be linearly

independent, for any i, j. Thus, the rank of the y part of ψ(c1), . . . , ψ(cd), ψ(v) is

≤ 2. For concreteness let us assume that the rank is exactly 2, the proof we give

below will easily go through even when the rank is 1.

Again let Y be a maximal set of linearly independent y parts occurring in

{ψ(yi,j)}1≤i≤j≤d with the extra condition that y parts in Y are also linearly in-

dependent from those occurring in ψ(c1), . . . , ψ(cd), ψ(v). As we have assumed the

rank of the y part of ψ(c1), . . . , ψ(cd), ψ(v) to be 2 we get #Y =
(
d+1
2

)
− 2. Let

(i1, j1), (i2, j2) be the two tuples such that the y parts of ψ(yi1,j1), ψ(yi2,j2) do not

appear in Y . To make things easier to handle let us apply an invertible linear

transformation τ1 on the variables in Equation (3.18) such that:

• the y parts of τ1 ◦ ψ(c1), . . . , τ1 ◦ ψ(cd), τ1 ◦ ψ(v) are all linear combinations of

only yi1,j1 and yi2,j2 .

• for all (i, j) other than (i1, j1) and (i2, j2), the y part of τ1 ◦ ψ(yi,j) is equal to

yi,j.

• τ1 is identity on c, v.

For clarity let ψ′ := τ1 ◦ ψ. Rest of our arguments will be based on comparing

the coefficients of yi,j, for (i, j) 6= (i1, j1), (i2, j2), on both sides of the equation:∑
1≤i≤j≤d

ψ′(yi,j)

(
ψ′(cicj)− ψ′(v)

d∑
k=1

ãi,j,kψ
′(ck)

)
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=
∑

1≤i≤j≤d

yi,j(quadratic terms in c, v) (3.19)

For any ci, choose distinct basis elements cj, ck and c` satisfying cicj = cick = cic` = 0

in R′ (note that there is an ample supply of such j, k, `), such that by comparing

coefficients of yi,j, yi,k, yi,` (assumed to be other than yi1,j1 , yi2,j2) on both sides of

Equation (3.19) we get:

ψ′(cicj) + (ei,j,1E1 + ei,j,2E2) = (quadratic terms in c, v)

ψ′(cick) + (ei,k,1E1 + ei,k,2E2) = (quadratic terms in c, v)

ψ′(cic`) + (ei,`,1E1 + ei,`,2E2) = (quadratic terms in c, v) (3.20)

where, ei,j,1, ei,j,2, ei,k,1, ei,k,2, ei,`,1, ei,`,2 ∈ F and

E1 = ψ′(ci1cj1)− ψ′(v)
d∑

k=1

ãi1,j1,kψ
′(ck)

E2 = ψ′(ci2cj2)− ψ′(v)
d∑

k=1

ãi2,j2,kψ
′(ck)

Now there exist λ1, λ2, λ3 ∈ F (not all zero) such that Equations (3.20) can be

combined to get rid of E1, E2 and get:

ψ′(ci) (λ1ψ
′(cj) + λ2ψ

′(ck) + λ3ψ
′(c`)) = (quadratic terms in c, v)

This equation combined with the observation that both ψ′(ci) and (λ1ψ
′(cj) +

λ2ψ
′(ck) + λ3ψ

′(c`)) are non-zero (as ψ′ is invertible) implies that:

∀i, ψ′(ci) = (linear terms in c, v) (3.21)

This means that the y-variables are only in ψ′(yi,j)’s and possibly ψ′(v). Again

apply an invertible linear transformation τ2 on the y-variables in Equation (3.19)

such that τ2 ◦ψ′(v) has only yi0,j0 in the y part and the y part of τ2 ◦ψ′(yi,j) is equal

to yi,j for all (i, j) except possibly (i0, j0). For clarity let ψ′′ := τ2 ◦ψ′. Our equation

now is: ∑
1≤i≤j≤d

ψ′′(yi,j)

(
ψ′′(cicj)− ψ′′(v)

d∑
k=1

ãi,j,kψ
′′(ck)

)
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=
∑

1≤i≤j≤d

yi,j(quadratic terms in c, v) (3.22)

By comparing coefficients of yi,j (other that yi0,j0) on both sides of the above equation

we get:(
ψ′′(cicj)− ψ′′(v)

d∑
k=1

ãi,j,kψ
′′(ck)

)
+ e ·

(
ψ′′(ci0cj0)− ψ′′(v)

d∑
k=1

ãi0,j0,kψ
′′(ck)

)
= (quadratic terms in c, v), for some e ∈ F.

Pick i, j such that
∑d

k=1 ãi,j,kck 6= 0 in R′. Now if ψ′′(v) has a nonzero yi0,j0 term

then by comparing coefficients of yi0,j0 on both sides of the above equation we deduce:

d∑
k=1

ãi,j,kψ
′′(ck) + e ·

d∑
k=1

ãi0,j0,kψ
′′(ck) = 0 (3.23)

But again we can pick i, j suitably so that
(∑d

k=1 ãi,j,kck

)
6∈
{

0, −e ·
∑d

k=1 ãi0,j0,kck

}
and hence avoiding Equation (3.23) to hold. Thus, proving that ψ′′(v) has no yi0,j0

term. So we now have:

ψ′′(v) = (linear terms in c, v)

and

∀i, ψ′′(ci) = (linear terms in c, v) (3.24)

Since, y-variables are present only in ψ′′(yi,j)’s, comparing coefficients of yi,j’s on

both sides of Equation (3.22) gives:

∀i, j, ψ′′(cicj)−ψ′′(v)
d∑

k=1

ãi,j,kψ
′′(ck) = (quadratic terms in c)−v(linear terms in c)

(3.25)

Using this equation we will prove now that ψ′′(ci) has only c-variables.

Consider a ci such that c2i = 0 in R′, then from Equation (3.25):

ψ′′(ci)
2 = (quadratic terms in c)− v(linear terms in c) (3.26)

Now if ψ′′(ci) has a nonzero v term then there will be a v2 term above on LHS

which is absurd. Thus, ψ′′(ci) has only c-variables when c2i = 0 in R′. When c2i 6= 0
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then c2i =
∑d

k=1 ãi,i,kck in R′ where the ck’s with nonzero ãi,i,k satisfy c2k = 0. This

happens because the way c’s are defined in Equation (3.15) the expression of c2i will

have only quadratic or cubic terms in x and the square of these terms would clearly

be zero in R′. Thus, again if ψ′′(ci) has a v term then there will be an uncancelled

v2 term on LHS of the equation:

ψ′′(ci)
2 − ψ′′(v)

d∑
k=1

ãi,i,kψ
′′(ck) = (quadratic terms in c)− v(linear terms in c)

Thus, we know at this point that ψ′′(v) has only c, v terms and ψ′′(ci) has only

c terms. Since, τ1, τ2 act only on y’s we have what we intended to prove in the

beginning (recall Equation (3.18)):

ψ(v) = (linear terms in c, v)

and

∀i, ψ(ci) = (linear terms in c) (3.27)

We have now almost extracted a ring isomorphism from the cubic form equivalence

ψ, just few technicalities are left which we resolve next.

Apply an invertible linear transformation τ3 on the y-variables in Equation (3.18)

such that the y part of τ3 ◦ ψ(yi,j) is equal to yi,j for all i ≤ j ∈ [d]. Of course, we

assume that τ3 is identity on the c, v variables. So, on comparing coefficients of yi,j

on both sides of the Equation (3.18) after applying τ3 we get:

∀i, j, τ3◦ψ(cicj)−τ3◦ψ(v)
d∑

k=1

ãi,j,kτ3◦ψ(ck) =
∑
i≤j

λi,j

(
cicj − v

d∑
k=1

ẽi,j,kck

)
(3.28)

for some λi,j ∈ F.

Substitute v = 1 in the expression for τ3 ◦ ψ(v) = γv,vv +
∑

i αv,ici and denote

the result by m. Observe that γv,v 6= 0 and ∀i, ci is a nilpotent element in S ′ and

hence m is a unit in the ring S ′. On substituting v = 1 in Equation (3.28) we get:

∀i, j, τ3 ◦ ψ(ci) · τ3 ◦ ψ(cj)−m ·
d∑

k=1

ãi,j,kτ3 ◦ ψ(ck) = 0 in S ′
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If we define Ψ := τ3◦ψ
m

then we get:

∀i, j, Ψ(ci)Ψ(cj)−
d∑

k=1

ãi,j,kΨ(ck) = 0 in S ′ (3.29)

Now observe that if for some λi’s ∈ F, Ψ(
∑d

i=1 λici) = 0 in S ′ then τ3◦ψ(
∑d

i=1 λici) =

0 in S ′. Since τ3 ◦ ψ is an invertible linear map from R′ to equi-dimensional S ′ this

means that
∑d

i=1 λici = 0 in R′. Therefore, Ψ is a bijection from R′ to S ′. Together

with Equation (3.29) this tells us that Ψ is an isomorphism from R′ to S ′. �

This completes the reduction from commutative F-algebra isomorphism to cubic

form equivalence.

3.3 Equivalence of Forms: Known results

The last two sections indicate that the problem of cubic forms equivalence is quite

an interesting special case of polynomial equivalence. Not much is known about

the structure of cubic forms. On the other hand, structure of quadratic forms is

well understood. We collect in this section the main ideas that have been around

to understand forms equivalence. The notions of regularity and decomposability

of cubic forms given here will be used to study our cubic forms (that appeared in

Equation (3.16)) in the next section.

3.3.1 Quadratic Forms Equivalence

In this subsection we sketch the classification theorem known for quadratic forms.

As a byproduct we also get algorithms for solving quadratic forms equivalence over

finite fields, Q,R and C. The detailed proofs can be found in [Serre], we present the

main ideas here simply for their beauty.

Here we will assume that char F 6= 2. Let f ∈ F[x1, . . . , xn] be a quadratic

form and let V be the vector space Fn. Observe that the map Θ : V × V → F
defined as Θ(u, v) = f(u+v)−f(u)−f(v)

2
is symmetric and bilinear, i.e., Θ(u, v) = Θ(v, u)

and Θ(u + u′, v) = Θ(u, v) + Θ(u′, v). Also, f is recoverable from Θ as f(u) =
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Θ(u, u). Thus, there is a 1 − 1 correspondence from quadratic forms to symmetric

bilinear maps on the underlying vector space and this connection is quite fruitful in

classifying quadratic forms.

The Algorithm

Suppose we are given two nonzero quadratic forms f, g ∈ F[x1, . . . , xn]. We will

show how to check f ∼ g over F.

Step 0:(Base case) If f = aix
2
i and g = bjx

2
j then f ∼ g iff ai

bj
is a square in F.

Step 1:(Diagonalization) Let us express f as a matrix product:

f(x1, . . . , xn) =
n∑
i=1

ai,ix
2
i +

∑
1≤i<j≤n

2ai,jxixj

= (x1 . . . xn)A (x1 . . . xn)
T

where, A is a symmetric matrix with ai,j as the (i, j)th and (j, i)th entries. Since

A is a symmetric matrix over a field we can apply Gaussian elimination to get an

invertible matrix C such that CACT is diagonal, say diag[b1 . . . bn]. Then we have,

f ((x1 . . . xn)C) = (x1 . . . xn)CAC
T(x1 . . . xn)

T

=
n∑
i=1

bix
2
i

Thus, from now on we can assume that the input quadratic forms f, g are given as

sums of squares. Note that in this step we needed char F 6= 2.

Step 2:(Root-finding) Let f =
∑n

i=1 aix
2
i and g =

∑n
i=1 bix

2
i , where ai, bi’s are

nonzero in F. Find a root (α1, . . . , αn) ∈ Fn of the diagonal quadratic equation:

n∑
i=1

aix
2
i = bn (3.30)
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Step 3:(Witt’s decomposition) Let Θ be the symmetric bilinear map correspond-

ing to f . Using simple linear algebra compute the subspace:

U :=
{
u ∈ Fn | Θ

(
(α1 · · ·αn)T , u

)
= 0
}

Now Witt’s theorem states that subspace U and the “orthogonal” vector (α1 · · ·αn)T

span the full space V :

V = F


α1

...

αn

⊕ U

This means that any v ∈ V can be written as λ(α1 · · ·αn)T + u, where λ ∈ F and

u ∈ U . Thus,

f(v) = Θ(v, v)

= Θ
(
λ(α1 · · ·αn)T + u, λ(α1 · · ·αn)T + u

)
= λ2Θ

(
(α1 · · ·αn)T , (α1 · · ·αn)T

)
+ Θ(u, u)

= λ2f
(
(α1 · · ·αn)T

)
+ f(u)

= λ2bn + f(u)

This simply means that f ∼ bnx
2
n + f1(x1, . . . , xn−1) for some quadratic form f1 ∈

F[x1, . . . , xn−1].

Step 4:(Witt’s cancellation) So, we now have f(x1, . . . , xn) ∼ bnx
2
n+f1(x1, . . . , xn−1)

and g(x1, . . . , xn) = bnx
2
n +

∑n−1
i=1 bix

2
i . Witt’s cancellation lemma says that:

bnx
2
n + f1(x1, . . . , xn−1) ∼ bnx

2
n +

n−1∑
i=1

bix
2
i

iff

f1(x1, . . . , xn−1) ∼
n−1∑
i=1

bix
2
i

So, now we can recursively do steps 0-3 on these smaller quadratic forms of rank

n− 1.

Observe that steps 0, 1 and 3 are ‘easy’ to do, so the only part that needs

explanation is step 2 – solving diagonal quadratic equations.
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Solving diagonal quadratic equations

Here we are interested in solving Equation (3.30) in step 2. We will show how to

find roots when F is a finite field, C,R and Q.

Suppose F is a finite field, say Fq. If n = 1 we need to solve a1x
2
1 = bn which

is just finding square-roots. If n ≥ 2 a classic theorem of Weil (see [Bac96]) states

that for a random choice of x1, . . . , xn−1 ∈ Fq there exists an xn ∈ Fq satisfying the

Equation (3.30). Thus, in all the cases we can find roots of the Equation (3.30) over

Fq in randomized polynomial time.

Suppose F is R or C then it is easily seen that roots of the Equation (3.30) can

be found in deterministic polynomial time.

Suppose F = Q. If n = 1 then solving a1x
2
1 = bn is just finding square-roots over

rationals. The first nontrivial case is n = 2 when we need to solve a1x
2
1 + a2x

2
2 = bn.

We can first pre-process the equation by clearing the denominators of a1, a2, bn and

then taking the square parts of the integer coefficients ‘in’ x1, x2 to get an equation:

ax2 + by2 = z2 where a, b are square-free integers and we want coprime x, y, z ∈ Z.

We now demonstrate an algorithm, due to Legendre, to solve this equation. We

just need to define the norm of elements in the number field Q(
√
a). Elements of

Q(
√
a) are of the form (α+β

√
a) for some α, β ∈ Q and we define the norm function

N : Q(
√
a) → Q as: N(α + β

√
a) = α2 − aβ2. Observe that it is a multiplicative

function.

Wlog assume |a| < |b|. If ax2 + by2 = z2 has a solution then for any prime p|b,
p cannot divide x (otherwise p|z ⇒ p2|by2 ⇒ p|y ⇒ x, y, z are not coprime). Thus,

a is a square mod p. As a is a square mod p for every prime p|b we get that a is

a square mod b. Thus, there is a t ∈ Z such that |t| ≤ |b|
2

and a = t2(mod b). Let

b′ ∈ Z be such that:

t2 = a+ bb′ over Z (3.31)

Now we claim that ax2 + by2 = z2 has a solution iff ax2 + b′y2 = z2 has a solution.

This happens because (say) if ax2 + by2 = z2 has a solution then:

b = N

(
z + x

√
a

y

)
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Also, from Equation (3.31):

bb′ = N(t+
√
a)

⇒ b′ = N

(
yt+ y

√
a

z + x
√
a

)
Which on rationalizing the denominator effectively gives an integral solution of ax2+

b′y2 = z2. Conversely, if ax2 + b′y2 = z2 has a solution then ax2 + by2 = z2 can be

shown to have solutions in the exact same way as above.

Now notice that the equation ax2 + b′y2 = z2 is a “smaller” equation, for:

|a|+ |b′| = |a|+
∣∣∣∣t2 − a

b

∣∣∣∣
≤ |a|+

∣∣∣∣t2b
∣∣∣∣+ ∣∣∣ab ∣∣∣

< |a|+ |b|
4

+ 1

< |a|+ |b|

Thus, the above procedure can be repeatedly applied till we reach the equation

±x2 ± y2 = z2 or ±x2 = z2 which are trivial to solve over integers.

The interesting thing to note in the above algorithm is that it constructively

shows that the equation ax2 + by2 + cz2 = 0 has a solution over Q iff it has a

solution over R and mod p for all primes p. This property is famously known as the

local-global principle.

Rational root-finding for diagonal quadratic equations when n > 2 uses the above

algorithm and the ‘tool’ of local-global principle.

This completes the sketch of algorithms for quadratic forms equivalence and we

collect the results in the following theorem.

Theorem 3.6 (Hasse, Witt et al) 1. Over finite fields, quadratic forms equiv-

alence can be decided in P and found in ZPP.

2. Over R and C, quadratic forms equivalence can be decided and found in P.

3. Over Q, quadratic forms equivalence can be done in EXP.
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3.3.2 Cubic Forms Equivalence

Unlike quadratic forms the theory of cubic forms is still in its infancy. We collect

here some known notions useful in “pre-processing” a given cubic form (see Harrison

[Har75]).

Let f(x1, . . . , xn) be a cubic form over F. In this section we will assume that

characteristic of F is not 2 or 3. Let V = Fn. We say that a map Θ : V ×V ×V → F is

symmetric if for any permutation π on {1, 2, 3} and any v1, v2, v3 ∈ V , Θ(v1, v2, v3) =

Θ(vπ(1), vπ(2), vπ(3)). Θ is said to be 3-linear if it is linear in all the 3 arguments, where

linear in the first argument means that: for all u, u′, v, w ∈ V , Θ(u + u′, v, w) =

Θ(u, v, w) + Θ(u′, v, w). Now the claim is that we can define a symmetric 3-linear

map on V from any given cubic form f(x1, . . . , xn) =
∑

1≤i≤j≤k≤n ai,j,kxixjxk. Let

x1 =


x1,1

...

xn,1

 , x2, x3 be vectors in V = Fn. Define a map Θ from the cubic form f

as:

Θ (x1, x2, x3) = Θ



x1,1

...

xn,1

 ,


x1,2

...

xn,2

 ,


x1,3

...

xn,3




=
1

6

∑
α

Dα(f) · xα(1),1xα(2),2xα(3),3

where α ranges over all maps from {1, 2, 3} → {1, 2, . . . , n} and the coefficient Dα(f)

is given as:

Dα(f) :=
∂3f(x1, . . . , xn)

∂xα(1)∂xα(2)∂xα(3)

It is easily seen that this map Θ is symmetric 3-linear and moreover:

Θ



x1

...

xn

 ,


x1

...

xn

 ,


x1

...

xn


 = f(x1, . . . , xn)

Thus, we have a 1−1 correspondence between the cubic forms and the symmetric 3-

linear maps on the underlying vector space (compare this with a similar observation
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for quadratic forms in section 4.2).

Example Let f(x, y) = x3 + x2y be a cubic form. Then the corresponding

symmetric 3-linear map Θ on V = F2 is defined as:

Θ

((
x1

y1

)
,

(
x2

y2

)
,

(
x3

y3

))
= x1x2x3 +

1

3
x1x2y3 +

1

3
x1x3y2 +

1

3
x2x3y1

and verify that:

Θ

((
x

y

)
,

(
x

y

)
,

(
x

y

))
= f(x, y)

Regularity

The first thing we would like to ensure about a given cubic form f is that there

should not be “extra” variables in f , i.e., there is no invertible linear transformation

τ such that f(τx1, . . . , τxn) has less than n variables. Such a cubic form is called

regular.

Example The cubic form f(x) = x3 is regular while f(x, y) = (x + y)3 is not

regular as the invertible map:

τ :

x+ y 7→ x

y 7→ y

reduces the number of variables of f .

By regularizing a given cubic form f we mean finding an invertible linear trans-

formation that applied on f makes it regular.

Proposition 3.1 (Harrison) A given cubic form can be regularized in determin-

istic polynomial time.
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Proof: Suppose f ∈ F[x1, . . . , xn] is a given cubic form and Θ(·, ·, ·) is its

corresponding symmetric 3-linear map on V = Fn. Suppose f(x1, . . . , xn) is not

regular and its regularized form is f reg(x1, . . . , xm) in smaller number of variables

1 ≤ m < n. Further, let Θreg be the symmetric 3-linear map corresponding to f reg

and A be the invertible matrix in Fn×n such that for all x1, x2, x3 ∈ V :

Θ(Ax1, Ax2, Ax3) = Θreg



x1,1

...

xm,1

 ,


x1,2

...

xm,2

 ,


x1,3

...

xm,3




Now observe that the RHS above is independent of the last coordinates, i.e. xn,1, xn,2, xn,3.

Thus, if we fix x1 to be


0
...

0

1

 then for all x2, x3 ∈ V :

Θ

A


0
...

0

1

 , Ax2, Ax3

 = Θreg

0,


x1,2

...

xm,2

 ,


x1,3

...

xm,3


 = 0

As A is invertible v := A


0
...

0

1

 6= 0 and we have Θ(v, ·, ·) = 0.

More interestingly, we will now see that the converse holds too, i.e., if there is a

nonzero v ∈ V such that Θ(v, ·, ·) = 0 then f is not regular. Consider the following

equation in the variables x1,1, x2,1, . . . , xn,1:

for all x2, x3 ∈ V, Θ (x1, x2, x3) = 0 (3.32)

If we compare the coefficient of xi,2xj,3 on both sides of the equation we get a

linear equation and hence as i, j vary over all of {1, 2, . . . , n} we get a system of
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homogeneous linear equations, say:

M


x1,1

...

xn,1

 = 0

Now, if there is a nonzero v ∈ V such that Θ(v, ·, ·) = 0 then it means that Mv = 0

and hence, rank(M) < n. Now, by applying Gaussian elimination on M we get

invertible matrices C,D such that the last (n − rank(M)) columns of DMC =:

M ′ are zero. Thus, the elements of the column vector M(Cx1) = (D−1M ′)x1 are

independent of xrank(M)+1,1, . . . , xn,1. In other words, Θ (Cx1, x2, x3) is independent

of the last (n− rank(M)) coordinates of x1. Now since Θ is symmetric 3-linear and

C is an invertible linear transformation, the system of equations in the variables x2

that we get from the following equality:

for all x1, x3 ∈ V, Θ (Cx1, x2, x3) = 0

is equivalent to the system: Mx2 = 0. Thus, as before, M(Cx2) is independent of the

last (n− rank(M)) coordinates of x2 implying that Θ (Cx1, Cx2, x3) is independent

of the last (n − rank(M)) coordinates of x1 and that of x2. Repeating this same

argument again, we deduce: Θ (Cx1, Cx2, Cx3) is independent of the last (n −
rank(M)) coordinates of x1, x2, x3.

Thus, f

C

x1

...

xn


 = Θ

C

x1

...

xn

 , C


x1

...

xn

 , C


x1

...

xn


 is independent of

xrank(M)+1, . . . , xn and regular over the variables x1, . . . , xrank(M).

Note that all the steps in the above discussion require simple linear algebra and

hence can be executed in deterministic polynomial time.

Decomposability

Cubic forms do not satisfy the nice property of diagonalization unlike quadratic

forms, for example: x3 + x2y cannot be written as a sum of cubes. But there is a

notion of decomposability of cubic forms into simpler cubic forms. We call a cubic
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form f(x1, . . . , xn) decomposable if there is an invertible linear transformation τ , an

i ∈ [n] and cubic forms g, h such that:

f(τx1, . . . , τxn) = g(x1, . . . , xi) + h(xi+1, . . . , xn)

This is also denoted by: f ∼ g ⊕ h.

Example The cubic form f1(x, y) = x3 +y3 is decomposable while the cubic form

f2(x, y) = x3 + xy2 is indecomposable.

It is interesting that given a cubic form f the decomposition of f can be found

algorithmically. To show this we need the notion of centre of a cubic form that

captures the symmetries of the underlying 3-linear map.

Definition 3.1 Let f be a cubic form and Θ be the corresponding symmetric 3-

linear map on the space V . The center, Cent(f), of the cubic form f is defined

as: {
M ∈ Fn×n | for all v1, v2, v3 ∈ V, Θ(Mv1, v2, v3) = Θ(v1,Mv2, v3)

}
Example Let f(x) be the cubic form x3 then Cent(f) = F. If f(x, y) = x3 + y3

then Cent(f) ∼= Cent(x3)× Cent(y3) ∼= F× F.

The following properties of the center were first proved by Harrison [Har75]:

Lemma 3.1 Suppose f(x1, . . . , xn) is a regular cubic form and Θ is the correspond-

ing symmetric 3-linear map on V = Fn.

(1) Cent(f) is a commutative F-algebra.

(2) f is indecomposable if and only if Cent(f) is indecomposable.

Proof: [(1)] Suppose M1,M2 ∈ Cent(f) then M1 +M2 is also in the centre and it

is routine to show that (Cent(f),+) is an abelian group.

To see that M1 ·M2 ∈ Cent(f) observe that for any u, v, w ∈ V :

Θ(M1 ·M2u, v, w) = Θ(M2u, v,M1w) [∵ M1 ∈ Cent(f)]

= Θ(u,M2v,M1w) [∵ M2 ∈ Cent(f)]

= Θ(u,M1 ·M2v, w) [∵ M1 ∈ Cent(f)]
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Thus, by definition M1 ·M2 is in Cent(f). Multiplication in Cent(f) is associative

simply because it is matrix multiplication. To see commutativity observe that:

Θ(M1 ·M2u, v, w) = Θ(M2u, v,M1w) [∵ M1 ∈ Cent(f)]

= Θ(u,M2v,M1w) [∵ M2 ∈ Cent(f)]

= Θ(M1u,M2v, w) [∵ M1 ∈ Cent(f)]

= Θ(M2 ·M1u, v, w) [∵ M2 ∈ Cent(f)]

Thus, Θ ((M1 ·M2 −M2 ·M1)u, ·, ·) = 0. As f is regular this means that (M1 ·M2−
M2 ·M1)u = 0 (refer the proof of the Proposition 3.1). Since, this happens for all

u ∈ V we have that (M1 ·M2 −M2 ·M1) = 0 implying that M1 ·M2 = M2 ·M1.

Also, F is clearly contained in Cent(f). Thus, Cent(f) is a commutative F-

algebra.

Proof: [(2)] Here, we need a property of local commutative rings proved in the

appendix: a finite dimensional commutative algebra R is decomposable iff there is

a nontrivial idempotent element, i.e., there is a r ∈ R \ {0, 1}, r2 = r.

If the cubic form f decomposes as f1 ⊕ f2 then it is easy to show that Cent(f)

decomposes as Cent(f1)× Cent(f2).

Conversely, suppose Cent(f) is decomposable. Then there is a matrix M ∈
Cent(f) such that M2 = M but M 6= 0, I. Now we want to decompose f using M .

Firstly, observe that if there is a v ∈MV ∩ (I −M)V then Mv = (I −M)v = 0

and by adding the two we get v = 0. Next, observe that for any u, v, w ∈ V :

Θ(Mu, (I −M)v, w) = Θ(u,M(I −M)v, w) [∵ M ∈ Cent(f)]

= 0 [∵ M2 = M ]

Thus, for any v1 ∈MV, v2 ∈ (I −M)V, Θ(v1, v2, ·) = 0 or in other words: MV, (I −
M)V are orthogonal subspaces of V with respect to Θ. This means that for any

v ∈ V if we express v as v = v1 + v2, where v1 ∈MV, v2 ∈ (I −M)V , then:

f(v) = Θ(v, v, v)

= Θ(v1 + v2, v1 + v2, v1 + v2)

= Θ(v1, v1, v1) + Θ(v2, v2, v2) [∵ Θ is linear and v1, v2 are orthogonal]
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If f1 is the cubic form corresponding to Θ acting on MV and f2 is the cubic form

corresponding to Θ acting on (I −M)V then the above equation says that: f ∼
f1 ⊕ f2.

Note that given a cubic form f we can compute the center in terms of a basis

over F as it just requires linear algebra computations. Thus, the above lemma gives

a method of decomposing the cubic form if we can decompose its centre.

Proposition 3.2 (Harrison) Cubic form decomposition can be done in polynomial

time given an oracle of polynomial factoring over F.

Proof: Suppose f is a cubic form. Assume wlog that f is regular as otherwise

we can regularize f by applying Proposition 3.1. Now compute its centre, Cent(f),

in deterministic polynomial time. As Cent(f) is a commutative F-algebra, recall

the remark of Proposition 2.3, we can find the decomposition of the centre, using

polynomial factoring over F, into local commutative rings. In particular, if Cent(f)

is decomposable we can compute a nontrivial decomposition:

Cent(f) = R1 ×R2

from where we get a nontrivial idempotent, for example, the element of Cent(f)

corresponding to (0, 1) (where 0 is the zero of R1 and 1 is the unity of R2). Now, the

proof of Lemma 3.1 outlines a way of decomposing f using this nontrivial idempotent

of Cent(f).

3.4 Our Cubic Forms

The cubic forms that we worked with in this chapter were of a special form. They

owe their origin to local commutative F-algebras. Suppose R is such an F-algebra

and M is its unique maximal ideal (refer to Definition 2.5). Let b1, . . . , bn be a basis

of M over F and the multiplication in R is defined as:

for all 1 ≤ i ≤ j ≤ n, bi · bj =
∑

1≤k≤n

ai,j,kbk, where, ai,j,k’s are in F (3.33)
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Now if we combine these multiplicative relations by considering bi’s as formal vari-

ables, homogenizing variable u and ‘fresh’ formal variables zj,k’s then we get the

following cubic form f from M:

f(u, b, z) =
∑

1≤i≤j≤n

zi,j

(
bibj − u

∑
1≤k≤n

ai,j,kbk

)
These are more involved versions of hyperbolic cubic forms:

∑
1≤i≤j≤n zi,jbibj (see

[Keet93]). If R1, R2 are two F-algebras with maximal ideals M1,M2 and the

corresponding cubic forms f1, f2 then the proof of Claim 3.3.1 essentially says that

an isomorphism from R1 to R2 gives an equivalence from f1 to f2.

In this section we show that these cubic forms are regular and indecomposable

over any field F of char 6= 2, 3.

Theorem 3.7 Let F be a field with char 6= 2, 3. Let M be a maximal ideal of a

local commutative F-algebra R such that M2 6= 0. The multiplicative relations of M
are given by Equation (3.33) and additionally b2n−1 = 0, bnM = 0. Define a cubic

form f as:

f(u, b, z) =
∑

1≤i≤j≤n

zi,j

(
bibj − u

∑
1≤k≤n

ai,j,kbk

)
Then,

(1) f is regular.

(2) f is indecomposable.

Proof: [(1)] As M2 6= 0 note that f above is not u-free. Let Θ be the symmetric

3-linear map corresponding to f . Define the vector space V := Fm, where m :=

1 +n+
(
n+1

2

)
. Let us fix the notation for specifying the coordinates of a vector vi in

V as:

(ui, b1,i, . . . , bn,i, z1,1,i, . . . , z1,n,i, z2,2,i, . . . , z2,n,i, . . . , zn,1,i, . . . , zn,n,i)
T

or more compactly as: 
ui

bi

zi
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If f is not regular then there is a nonzero v ∈ V such that Θ(v, ·, ·) = 0. So

consider the following equation in the variables u1, b1, z1:

for all


u2

b2

z2

 ,


u3

b3

z3

 ∈ V, Θ



u1

b1

z1

 ,


u2

b2

z2

 ,


u3

b3

z3


 = 0 (3.34)

Therefore, by considering the coefficient of zi,i,3 in the above equation we get:

bi,1bi,2
3

− u1

6

∑
1≤k≤n

ai,i,kbk,2 −
u2

6

∑
1≤k≤n

ai,i,kbk,1 = 0 (3.35)

and by considering the coefficient of zi,j,3, for 1 ≤ i < j ≤ n, we get:

bi,1bj,2
6

+
bj,1bi,2

6
− u1

6

∑
1≤k≤n

ai,j,kbk,2 −
u2

6

∑
1≤k≤n

ai,j,kbk,1 = 0 (3.36)

If u1 = 0 then the coefficient of bi,2 in Equation (3.35) gives: bi,1 = 0. As i varies

over [1 . . . n] we get:

(
u1

b1

)
= 0.

If u1 6= 0 then considering the coefficient of bk,2 in Equation (3.35) we get:

ai,i,k = 0 for all k ∈ [n] \ {i}. Thus, in the ideal M: b2i = ai,i,ibi or bi(bi − ai,i,i) = 0.

This implies that ai,i,i = 0 for otherwise (bi−ai,i,i) is invertible (as bi is in the unique

maximal ideal M) forcing bi = 0. Thus, in the ideal M: b2i = 0 for all i ∈ [n].

Similarly, considering the coefficient of bk,2 in Equation (3.36) we get: ai,j,k = 0

for all k ∈ [n] \ {i, j}. Thus, in the ideal M: bibj = ai,j,ibi + ai,j,jbj. Multiplying

this equation by bi and using b2i = 0 we get: ai,j,jbibj = 0 and symmetrically,

ai,j,ibibj = 0. So if bibj 6= 0 then ai,j,i = ai,j,j = 0 and hence bibj = 0. Thus, in the

ideal M: bibj = 0 for all 1 ≤ i ≤ j ≤ n. But this contradicts the hypothesis that

M2 6= 0.

Thus, a solution of Equation (3.34) must satisfy:

(
u1

b1

)
= 0. Using this we can
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now expand Equation (3.34) as:

for all


u2

b2

z2

 ,


u3

b3

z3

 ∈ V,
∑

1≤i≤j≤n

zi,j,1

(
bi,2bj,3

6
+
bj,2bi,3

6
− u2

6

∑
1≤k≤n

ai,j,kbk,3

−u3

6

∑
1≤k≤n

ai,j,kbk,2

)
= 0

The above equation clearly means that: zi,j,1 = 0 for all 1 ≤ i ≤ j ≤ n. Thus,
u1

b1

z1

 = 0 and hence f is regular.

Proof: [(2)] We compute the center of f and then show that it is an indecompos-

able F-algebra which means, by Lemma 3.1, that f is indecomposable.

Let Θ be the symmetric 3-linear map corresponding to f . Define the vector

space V := Fm, where m := 1 + n+
(
n+1

2

)
. Let us fix the notation of specifying the

coordinates of a vector vi in V as:

(ui, b1,i, . . . , bn,i, z1,1,i, . . . , z1,n,i, z2,2,i, . . . , z2,n,i, . . . , zn,1,i, . . . , zn,n,i)
T

or more compactly as: 
ui

bi

zi


Recall that Cent(f) consists of matrices M ∈ Fm×m such that:

∀


u1

b1

z1

 ,


u2

b2

z2

 ,


u3

b3

z3

 ∈ V, Θ

M

u1

b1

z1

 ,


u2

b2

z2

 ,


u3

b3

z3




= Θ



u1

b1

z1

 ,M


u2

b2

z2

 ,


u3

b3

z3




(3.37)
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Consider the matrix M in block form as:

(
M11 M12

M21 M22

)
such that M11 is (n+ 1)×

(n+1) and M22 is
(
n+1

2

)
×
(
n+1

2

)
. We prove properties of these block matrices in the

subsequent claims.

Claim 3.7.1 M12 = 0.

Proof of Claim 3.7.1. Substitute

(
u1

b1

)
=

(
u3

b3

)
= 0 in Equation (3.37) to get:

∀

(
0

z1

)
,


u2

b2

z2

 ,

(
0

z3

)
∈ V, Θ


(
M12z1

M22z1

)
,


u2

b2

z2

 ,

(
0

z3

) = 0

If M12 6= 0 then we can assign z1 = v1 ∈ F(n+1
2 )×(n+1

2 ) such that M12v1 6= 0 and:

∀


u2

b2

z2

 ,

(
0

z3

)
∈ V, Θ


(
M12v1

M22v1

)
,


u2

b2

z2

 ,

(
0

z3

) = 0 (3.38)

Notice that we can now run the proof of the regularity of f , as equations similar to

Equation (3.35) and Equation (3.36) can be obtained by comparing the coefficients

of zi,i,3, zi,j,3 in the Equation (3.38), to deduce M12v1 = 0. This contradiction shows

that M12 = 0. �

Thus, an M ∈ Cent(f) looks like: M =

(
M11 0

M21 M22

)
. Let τ be a linear

transformation on V induced by M , i.e.,

M


ui

bi

zi

 =



τ(ui)

τ(b1,i)
...

τ(bn,i)

τ(z1,1,i)
...

τ(zn,n,i)
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Claim 3.7.2 There is an α ∈ F such that M11 = α · I.

Proof of Claim 3.7.2. To understand M more let us substitute: z1 = z2 =

0,

(
u3

b3

)
= 0 in the Equation (3.37):

∀


u1

b1

0

 ,


u2

b2

0

 ,

(
0

z3

)
∈ V, Θ



M11

(
u1

b1

)

M21

(
u1

b1

)
 ,


u2

b2

0

 ,

(
0

z3

)

= Θ



u1

b1

0

 ,


M11

(
u2

b2

)

M21

(
u2

b2

)
 ,

(
0

z3

)
(3.39)

In the above equation comparing the coefficient of zi,j,3, for 1 ≤ i ≤ j ≤ n, gives:

τ(bi,1)bj,2
6

+
τ(bj,1)bi,2

6
− τ(u1)

6

∑
1≤k≤n

ai,j,kbk,2 −
u2

6

∑
1≤k≤n

ai,j,kτ(bk,1)

=
bi,1τ(bj,2)

6
+
bj,1τ(bi,2)

6
− u1

6

∑
1≤k≤n

ai,j,kτ(bk,2)−
τ(u2)

6

∑
1≤k≤n

ai,j,kbk,1

(3.40)

We have bnM = 0 in R thus, b2n = 0 in R and so an,n,k = 0 for all k ∈ [n]. Thus,

the Equation (3.40) for (i, j) = (n, n) is simply:

τ(bn,1)bn,2
3

=
bn,1τ(bn,2)

3

Since, the above equation holds for all


u1

b1

0

 ,


u2

b2

0

 ∈ V we deduce that there is

an α ∈ F such that τ(bn,1) = α · bn,1.

Note that bibn = 0 in R, for any i ∈ [n], so ai,n,k = 0 for all k ∈ [n]. Thus,
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Equation (3.40) for (i, j) = (i, n), where 1 ≤ i < n, becomes:

τ(bi,1)bn,2
6

+
τ(bn,1)bi,2

6
=
bi,1τ(bn,2)

6
+
bn,1τ(bi,2)

6

⇒ τ(bi,1)bn,2
6

+
αbn,1bi,2

6
=
αbi,1bn,2

6
+
bn,1τ(bi,2)

6
[∵ τ(bn,1) = α · bn,1]

⇒ (τ(bi,1)− αbi,1) bn,2 = bn,1 (τ(bi,2)− αbi,2)

Since, the above equation holds for all


u1

b1

0

 ,


u2

b2

0

 ∈ V we deduce that there is a

β ∈ F such that

τ(bi,1)− αbi,1 = β · bn,1 for all i ∈ [n− 1] (3.41)

Since, b2n−1 = 0 in R, we have an−1,n−1,k = 0 for all k ∈ [n] and thus, Equation (3.40)

for (i, j) = (n− 1, n− 1) becomes:

τ(bn−1,1)bn−1,2

3
=
bn−1,1τ(bn−1,2)

3

Since, the above equation holds for all


u1

b1

0

 ,


u2

b2

0

 ∈ V we deduce that there is a

γ ∈ F such that τ(bn−1,1) = γ · bn−1,1. This together with Equation (3.41) gives:

τ(bn−1,1) = γ · bn−1,1 = α · bn−1,1 + β · bn,1
⇒ γ = α and β = 0

Finally, this together with Equation (3.41) gives us a nice form for τ :

τ(bi,1) = α · bi,1 for all i ∈ [n] (3.42)

Now choose i ≤ j ∈ [n] such that bibj 6= 0 in R so that there is a k ∈ [n] such that

ai,j,k 6= 0. Plugging Equation (3.42) in Equation (3.40) we get:

τ(u1)

6

∑
1≤k≤n

ai,j,kbk,2 +
αu2

6

∑
1≤k≤n

ai,j,kbk,1 =
αu1

6

∑
1≤k≤n

ai,j,kbk,2 +
τ(u2)

6

∑
1≤k≤n

ai,j,kbk,1

⇒ (τ(u1)− αu1)
∑

1≤k≤n

ai,j,kbk,2 = (τ(u2)− αu2)
∑

1≤k≤n

ai,j,kbk,1
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If bibj 6= 0 in R then there is a k ∈ [n] such that ai,j,k 6= 0 and as the above equation

holds for all


u1

b1

0

 ,


u2

b2

0

 ∈ V we deduce that there is a γ ∈ F such that:

τ(u1)− αu1 = γ ·
∑

1≤k≤n

ai,j,kbk,1 where r :=
∑

1≤k≤n

ai,j,kbk,1 6= 0

If γ 6= 0 then since the LHS of the above equation is independent of i, j we will have

that for all i ≤ j ∈ [n] either bibj = 0 or r. Thus, r2 = c · r for some c ∈ F. As r is a

nonzero element of the maximal ideal M this implies that r = 0. This contradiction

means that γ = 0 and hence:

τ(u1) = αu1

This together with Equation (3.42) gives:

M11

(
u1

b1

)
=


τ(u1)

τ(b1,1)
...

τ(bn,1)

 =


αu1

αb1,1
...

αbn,1


⇒ M11 = α · I

(3.43)

�

Claim 3.7.3 M22 = α · I, where α is the same as in the last claim.

Proof of Claim 3.7.3. Let us start by substituting:

(
u1

b1

)
= 0, z2 = z3 = 0 in the
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Equation (3.37):

Θ


(

0

M22z1

)
,


u2

b2

0

 ,


u3

b3

0


 = Θ


(

0

z1

)
,


M11

(
u2

b2

)

M21

(
u2

b2

)
 ,


u3

b3

0




⇒ Θ


(

0

M22z1

)
,


u2

b2

0

 ,


u3

b3

0


 = Θ


(

0

z1

)
,


α

(
u2

b2

)

M21

(
u2

b2

)
 ,


u3

b3

0




⇒ Θ


(

0

M22z1

)
,


u2

b2

0

 ,


u3

b3

0


 = Θ


(

0

z1

)
,

α
(
u2

b2

)
0

 ,


u3

b3

0




⇒ Θ


(

0

(M22 − αI)z1

)
,


u2

b2

0

 ,


u3

b3

0


 = 0

(3.44)

As the above equation holds for all

(
0

z1

)
,


u2

b2

0

 ,


u3

b3

0

 ∈ V we deduce:

M22 = αI

�

Thus, any element M in the center of f looks like:(
0 0

M12 0

)
+ αI where, α ∈ F

Now if M is idempotent then:

M2 = M

⇒ M(M − I) = 0
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But one of the matrices M or (M − I) will always be invertible and hence M =

0 or M = I. Thus, Cent(f) is an indecomposable F-algebra and, hence, f is

indecomposable by Lemma 3.1.

3.5 Discussion

This chapter studied the complexity of the problem of polynomial equivalence.

Over finite fields this problem is of intermediate complexity and, hence, unlikely

to be NP-hard. Over infinite fields we know very little about this general problem!

The special case of quadratic forms is completely understood due to the works

of Minkowski [Minkow], Hasse [Has21] and Witt [Witt]. Inspired from quadratic

forms we considered “slightly” more general case of cubic forms and proved some

interesting results. We gave a reduction from commutative F-algebra isomorphism

to F-cubic forms equivalence for any field F. Two of its consequences are: Graph

isomorphism reduces to the problem of cubic forms equivalence over any field F, and

equivalence of higher degree d-forms reduces to cubic forms equivalence over fields F
having d-th roots. Clearly, cubic forms equivalence seems to be the most important

special case of the problem of polynomial equivalence.

We hope that the rich structure of cubic forms will eventually give us more

insights about the isomorphism problems of commutative F-algebras and graphs.

As a first step to understanding cubic forms, we believe that the decidability of

cubic forms equivalence over Q should be shown.

In the case of quadratic forms over Q the problem of equivalence reduced to

questions of finding Q-roots of a quadratic form. In particular, if two quadratic

forms are equivalent over R and represent the same set of points over Q then they

are equivalent over Q. Here, we show that such a result does not hold for cubic

forms, thus, giving evidence that Q-root finding of a cubic form may not be related

to the problem of equivalence of cubic forms. Let us define two rings:

R := Q[x]/(x2 − 1) and S := Q[x]/(x2 − 2)
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Notice that the Q-algebras R,S are isomorphic over R but nonisomorphic over

Q. Thus, using the construction given in Theorem 3.5 we get two cubic forms

φR(y, c, v), φS(y, c, v) that are equivalent over R but nonequivalent over Q. But

what are the rational points that these cubic forms represent? If we choose an i

such that the coefficient of yi,i in φR is c2i then:

φR(0, . . . , yi,i, . . . , 0, c, v) = yi,ic
2
i

Clearly, there exists such an i (recall the way we constructed φR) and, hence, φR

represents all points in Q. Similarly, φS represents all points in Q. This gives us

two cubic forms that are equivalent over R, represent the same set of points over Q
but are yet nonequivalent over Q.

Finally, we pose some questions whose answers might unfold more structure of

cubic forms:

• What are the invariants of cubic forms (under equivalence)?

• If cubic forms f, g are equivalent over R and are equivalent modulo pk, for all

primes p (except finitely many primes) and k ∈ Z≥1, then are they equivalent

over Q?

• Can we reduce F-cubic forms equivalence problem to that of F-algebra isomor-

phism, over all fields F?



Chapter 4

Identity Testing

Given a polynomial f(x1, . . . , xn) over a field F, we want to test whether it is the

zero polynomial or not. For example, over F2, x
2 − x is a nonzero polynomial

while (x + y)2 − x2 − y2 is a zero polynomial. It is a trivial problem if f is

given in the expanded form, i.e., each of its coefficients are explicitly given. But

suppose f is given in a more compact form, say, as an arithmetic circuit C having

addition and multiplication gates, variables x1, . . . , xn and constants from the field F.

Then the problem of checking whether C(x1, . . . , xn) = 0 in time polynomial in the

size(C) becomes more interesting and is called identity testing. Several randomized

algorithms for the problem are known. Schwartz and Zippel [Sch80, Zip79] gave

the first such algorithm, it evaluates f at a random point a ∈ Fn and accepts

iff f(a) = 0. There are more involved randomized algorithms that require lesser

number of random bits [CK97, LV98, AB99, KS01].

The study of this simply-defined algebraic problem has led to many exciting

results in complexity theory. The results like – PSPACE has interactive protocols

[LFKN92, Sha92], NP has probabilistically checkable proofs [AS97, AS98, ALM+98],

equivalence testing of read-once branching programs [BCW80], multiset equality

testing [BK95], perfect matching is in RNC [Lov79, MVV87], primality testing is in

P [AKS04] – all have identity testing at their heart. Recently, identity testing gained

even more significance when its connection to proving lower bounds was shown. Im-

pagliazzo and Kabanets [IK03] showed that finding a deterministic polynomial time

87
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algorithm for identity testing is essentially equivalent to proving super polynomial

circuit lower bounds for NEXP.

Thus, derandomization of identity testing is most sought-after. The derandom-

ization results currently known are all for restricted classes of circuits C. When C is

a noncommutative formula identity testing can be done in deterministic polynomial

time [RS04]. For C of depth 3 with a bounded fanin top-gate, Dvir and Shpilka

[DS05] gave a deterministic quasi polynomial identity test. They achieved this by

giving a structural result about zero circuits of depth 3 with a bounded fanin top-

gate.

In this chapter we too focus on the special case of C being a depth 3, bounded

top fanin circuit. We give the first deterministic polynomial time algorithm using

the machinery of local commutative rings. We view the identity testing problem for

C as an isomorphism problem of rings given in the polynomial representation and

then solve this special case.

The results of this chapter mostly appear in [KS06].

4.1 ΣΠΣ Circuits

Proving lower bounds for general arithmetic circuits is one of the central problems

of complexity theory. Due to the difficulty of the problem research has focussed on

restricted models like monotone circuits and bounded depth circuits. For monotone

arithmetic circuits, exponential lower bounds on the size [ShS77, JS80] and linear

lower bounds on the depth [ShS80, TT94] have been shown. However, only weak

lower bounds are known for bounded depth arithmetic circuits [Pud94, RS01]. Thus,

a more restricted model was considered – the model of depth 3 arithmetic circuits.

A depth 3 circuit computes a sum of products of linear functions or a product of

sums of terms. Exponential lower bounds on the size of depth 3 arithmetic circuits

has been shown over finite fields [GK98]. For general depth 3 circuits over infinite

fields only the quadratic lower bound of [SW99] is known.

No efficient algorithm for identity testing of depth 3 circuits is known. Note that

if the top gate of a depth 3 circuit C is a multiplication gate then C = 0 iff one of the
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inputs to the top gate is zero, which in turn is easy to check. Thus, the hard case is

when the top gate is an addition gate and the next two layers are of multiplication

and addition gates respectively. Such a circuit is called a ΣΠΣ circuit. It is a sum

of products of linear functions and looks like:

C(x) =
k∑
i=1

di∏
j=1

Li,j(x) (4.1)

where, Li,j’s are (wlog) homogeneous linear functions called linear forms. The

identities of “small” ΣΠΣ circuits seem very natural, for example, the identities

taught in high-school algebra are mostly identities of this kind.

Example The zero circuit C(x1, . . . , xn) := (x1 + · · · + xn)
2 −

∑
1≤i,j≤n xixj is

clearly a O(n2)-sized ΣΠΣ circuit involving nontrivial linear forms.

Ben-Or [SW99] showed that polynomial-sized ΣΠΣ circuits can compute some

very nontrivial functions, for example, they can compute all symmetric polynomials

(of degree nO(1)) over x1, . . . , xn. This gives a related identity for ΣΠΣ circuits over

infinite fields.

Example [Ben-Or] There are constants (not all zero) a0, . . . , an ∈ Q such that the

O(n2)-sized ΣΠΣ circuit:

C(x1, . . . , xn) :=
n∑
i=0

ai(x1 + i) · · · (xn + i)

is a zero circuit.

Here, we are interested in studying the identity testing problem for a restricted

case of ΣΠΣ circuits – when the top fanin is bounded. This case was posed as a

challenge by Klivans and Spielman [KS01] and a quasi polynomial time algorithm

was given by Dvir and Shpilka [DS05].

4.2 Previous Approaches

Let C be a ΣΠΣ circuit, as in Equation (4.1), computing the zero polynomial. We

will call C to be minimal if no proper subset of the multiplication gates of C sums
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to zero. We say that C is simple if there is no linear function that appears in all the

multiplication gates (up to a multiplicative constant). Rank of C is the rank of the

linear forms appearing in C.

Example The circuit C1(x1, x2) := x2
1−x2

2−x2
1+x2

2 is not minimal as a sub-circuit

is zero: x2
1 − x2

1 = 0. The circuit C2(x1, x2) := x3
1 − x2

2x1 − (x1 − x2)(x1 + x2)x1 is

minimal but not simple as x1 is common to all multiplication gates. The circuit

C3(x1, x2) := x2
1 − x2

2 − (x1 − x2)(x1 + x2) is both minimal and simple.

All these circuits C1, C2 and C3 are of rank 2.

The quasi polynomial time algorithm of Dvir and Shpilka [DS05] is based on the

result that the rank of a minimal and simple ΣΠΣ circuit with bounded top fanin

and computing zero is “small”. Formally, the result says:

Theorem 4.1 (Thm 1.4 of [DS05]). Let k ≥ 3, d ≥ 2 and let C be a simple and

minimal ΣΠΣ zero circuit of degree d with k multiplication gates and n inputs, then

rank(C) ≤ 2O(k2) log(d)k−2.

Effectively, this means that if we have such a circuit C and k is a constant then we can

check whether it is zero or not by completely expanding-out C and checking whether

each of the O(drank(C)) coefficients is zero. Clearly, this takes time O(drank(C)) =

2O(log(d)k−1) as number of variables in C can be made equal to rank(C) by applying

a linear transformation. This gave hope of finding a polynomial time algorithm if

we can improve the upper bound on the rank(C) to a constant (i.e., independent of

d). In fact, Dvir and Shpilka [DS05] conjectured that rank(C) = O(k). Here, we

give identities that contradict this conjecture. Thus, methods of Dvir and Shpilka

[DS05] are unlikely to give an efficient algorithm and we give new techniques in the

subsequent sections that work.

For k = 3, [DS05] shows that a minimal, simple ΣΠΣ zero circuit should have

rank O(log d). We show below that this bound is tight.
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Lemma 4.1 Define

C(x1, . . . , xm, y) :=
∏

b1,...,bm∈F2

b1+···+bm≡0(mod 2)

(y + b1x1 + · · ·+ bmxm)

+
∏

b1,...,bm∈F2

b1+···+bm≡1(mod 2)

(b1x1 + · · ·+ bmxm)

+
∏

b1,...,bm∈F2

b1+···+bm≡1(mod 2)

(y + b1x1 + · · ·+ bmxm)

Then, over F2, C is a simple and minimal ΣΠΣ zero circuit of degree d = 2m−1 with

k = 3 multiplication gates and rank(C) = log(d) + 2.

Proof: For brevity denote the output of the three multiplication gates by T1, T2, T3

in order.

Let a1, . . . , am ∈ F be such that (a1 + · · ·+ am) = 1 (mod 2). Let us compute C
modulo (a1x1 + · · ·+ amxm). Since (a1x1 + · · ·+ amxm) occurs as a factor of T2 we

deduce T2 = 0 (mod a1x1 + · · ·+ amxm). Further,

T1 =
∏

b1,...,bm∈F2

b1+···+bm≡0(mod 2)

(y + b1x1 + · · ·+ bmxm)

≡
∏

b1,...,bm∈F2

b1+···+bm≡0(mod 2)

(y + (a1 + b1)x1 + · · ·+ (am + bm)xm) (mod a1x1 + · · ·+ amxm)

≡
∏

b1,...,bm∈F2

b1+···+bm≡1(mod 2)

(y + b1x1 + · · ·+ bmxm) (mod a1x1 + · · ·+ amxm)

≡ T3 (mod a1x1 + · · ·+ amxm)

Thus, we deduce: T1 +T2 +T3 ≡ 0 (mod a1x1 + · · ·+ amxm) for any a1, . . . , am ∈ F,

(a1 + · · ·+ am) = 1 (mod 2). Also, notice that T1 = 0 (mod y) (consider the linear

factor of T1 obtained by setting: b1 = · · · = bm = 0) and T2 = T3 (mod y) implying

that T1 + T2 + T3 = 0 (mod y). Thus, we get that:y · ∏
b1,...,bm∈F2

b1+···+bm≡1(mod 2)

(b1x1 + · · ·+ bmxm)

 divides C(x1, . . . , xm, y)
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But the divisor above has degree higher than that of C implying that C = 0 (see

Claim 4.1.3).

Moreover, it is easy to see that C is a minimal, simple ΣΠΣ circuit of degree

2m−1.

The above identity is over a very special field – F2. Are there minimal, simple

ΣΠΣ identities of bounded k but unbounded rank over any field F? We are not sure

about fields of characteristic 0 but over fields of prime characteristic the following

lemma answers in the affirmative.

Lemma 4.2 Let p be an odd prime. Define:

C(x1, . . . , xm, y) :=

p−1∑
i=0

∏
b1,...,bm∈Fp

b1+···+bm≡i(mod p)

(y + b1x1 + · · ·+ bmxm)

Then, over Fp, C is a simple and minimal ΣΠΣ zero circuit of degree d = pm−1 with

k = p multiplication gates and rank(C) = logp(d) + 2.

Proof: Fix an i0 ∈ Fp and let a1, . . . , am ∈ Fp such that (a1 + · · · + am) =

i0 (mod p). Now we compute C modulo (y + a1x1 + · · ·+ amxm):

C =

p−1∑
i=0

∏
b1,...,bm∈Fp

b1+···+bm≡i(mod p)

(y + b1x1 + · · ·+ bmxm)

≡
p−1∑
i=0
i6=i0

∏
b1,...,bm∈Fp

b1+···+bm≡i(mod p)

(y + b1x1 + · · ·+ bmxm) (mod y + a1x1 + · · ·+ amxm)

≡
p−1∑
i=0
i6=i0

∏
b1,...,bm∈Fp

b1+···+bm≡i(mod p)

((b1 − a1)x1 + · · ·+ (bm − am)xm) (mod y + a1x1 + · · ·+ amxm)

≡
p−1∑
i=1

∏
b1,...,bm∈Fp

b1+···+bm≡i(mod p)

(b1x1 + · · ·+ bmxm) (mod y + a1x1 + · · ·+ amxm)
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≡

p−1
2∑
i=1

 ∏
b1,...,bm∈Fp

b1+···+bm≡i(mod p)

(b1x1 + · · ·+ bmxm) +

∏
b1,...,bm∈Fp

b1+···+bm≡−i(mod p)

(b1x1 + · · ·+ bmxm)

 (mod y + a1x1 + · · ·+ amxm)

≡

p−1
2∑
i=1

 ∏
b1,...,bm∈Fp

b1+···+bm≡i(mod p)

(b1x1 + · · ·+ bmxm) +

(−1)p
m−1 ·

∏
b1,...,bm∈Fp

b1+···+bm≡i(mod p)

(b1x1 + · · ·+ bmxm)

 (mod y + a1x1 + · · ·+ amxm)

≡ 0 (mod y + a1x1 + · · ·+ amxm)

Thus, we deduce that for any a1, . . . , am ∈ Fp:

C(x1, . . . , xm, y) ≡ 0 (mod y + a1x1 + · · ·+ amxm)

⇒

 ∏
a1,...,am∈Fp

(y + a1x1 + · · ·+ amxm)

 divides C(x1, . . . , xm, y)

But the divisor above has a degree higher than that of C implying that C = 0 (see

Claim 4.1.3).

Moreover, it is easy to see that C is a minimal, simple ΣΠΣ circuit of degree

pm−1.

4.3 An Algorithm for bounded-ΣΠΣ

This section describes the first deterministic polynomial time identity test for ΣΠΣ

circuits of bounded top fanin. Assume that in the input we are given a circuit C
computing a polynomial in F[x1, x2, · · · , xn]. Let,

C = T1 + T2 + · · ·+ Tk
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where, k is treated as a constant and each Ti, wlog, is a product of d linear forms:

Ti = Li,1Li,2 · · ·Li,d.

Each linear form Li,j looks like:

Li,j = ai,j,1x1 + ai,j,2x2 + · · ·+ ai,j,nxn, ai,j,1, · · · , ai,j,n ∈ F

Our main idea of checking whether C = 0 is Chinese remaindering, i.e., we pick

suitable polynomials f1, . . . , fm ∈ F[x1, . . . , xn] and check whether C = 0 modulo

each of these fi’s. This idea is easy to demonstrate for the cases of k = 2 and k = 3.

The case k = 2:

In this case we need to verify if T1 = −T2. Since the ring F[x1, · · · , xn] is a unique

factorization domain and linear forms are irreducible elements in F[x1, · · · , xn],
therefore, T1,−T2 are equal if and only if there is a one-one correspondence between

the linear forms on the LHS and the linear forms on the RHS and the coefficient

of any one monomial occurring on the LHS equals the coefficient of that monomial

on the RHS. All this can easily be checked in deterministic polynomial time. This

solves the case k = 2.

The case k = 3:

By discarding the linear forms common to all the terms we can assume that T1, T2

and T3 are coprime. Let,

L ⊆ {Li,j | 1 ≤ i ≤ 3, 1 ≤ j ≤ d}

be the set of all distinct (up to constant multiples) linear forms occurring in the

terms T1, T2 and T3. We accept if and only if:

∀` ∈ L, C = 0 (mod `)

Note that the ring F[x1, · · · , xn]/(`) is isomorphic to the polynomial ring F[x1, · · · , xn−1]

and hence is also a unique factorization domain. Moreover, assuming (wlog) that `

occurs in T1 we have:

C = T2 + T3 (mod `)
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Thus verification of C = 0 (mod `) boils down to the case k = 2. Now let us see

what happens if C = 0 modulo every ` ∈ L:

∀` ∈ L, C = 0 (mod `)

⇒ C = 0 (mod
∏
`∈L

`)

Now if #L > d then clearly, C = 0. If #L ≤ d then C = T1+T2+T3 6= 0 by the ABC

theorem for polynomials [Sto81, Mas84]. This gives us a deterministic polynomial

time algorithm for k = 3.

Unfortunately, the ABC theorem for polynomials does not extend in the desired

way to sums of more than 3 terms (see [Pal93]). In order to get an algorithm for

larger values of k we need to generalize the above approach and go modulo products

of linear forms.

4.3.1 A special case of Ring Isomorphism

The problem of checking whether a polynomial f(z1, . . . , zn) is the zero polynomial

over F can be viewed as a ring isomorphism problem since:

Claim 4.1.1 f(z1, . . . , zn) = 0 iff F[z1, . . . , zn]/(f) ∼= F[z1, . . . , zn]

Proof of Claim 4.1.1. The forward direction is easy to see.

Conversely, suppose τ is an isomorphism from F[z1, . . . , zn]/(f) to F[z1, . . . , zn].

Thus, τ(f) is being mapped to the zero of F[z1, . . . , zn] implying:

0 = τ(f) = f(τ(z1), . . . , τ(zn))

Now since f is a polynomial and τ(z1), . . . , τ(zn) are all algebraically independent

transcendentals over F we deduce that f = 0. �

We aim to “solve” this version of ring isomorphism problem when f is of a special

form, i.e., f is a sum of bounded-many products of linear forms or in other words

f is a ΣΠΣ circuit of bounded top fanin. But first we need some definitions and a

lemma which is basically Chinese remaindering over local commutative rings.
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In this section we will consider local commutative rings R of the form:

R = F[x1, . . . , xk]/(x
e1
1 , . . . , x

ek
k , h1(x1, . . . , xk), . . . , h`(x1, . . . , xk)) (4.2)

This ring has a unique maximal ideal M of nilpotents such that: R/M ∼= F (refer

to Lemma A.4 in the appendix). Every element of R is of the form (a + α), where

a ∈ F and α ∈M. Moreover, there is a natural onto ring homomorphism φ : R→ F
such that φ : (a+ α) 7→ a and thus having M as its kernel.

Example Let R := F[x, y]/(x2, y(y + x)). The elements of R look like: a +

bx + cy + dxy. Note that in the ring R: y3 = −xy2 = −x(−xy) = x2y = 0. Thus,

both x, y are nilpotents and hence R is a local ring with M = (x, y) as its maximal

ideal (see Lemma A.4 in the appendix).

The map φ, that sends M to zero and fixes F, is a ring homomorphism from R

to F. Consider a polynomial f(z) := 2z2 + xyz + 1 ∈ R[z] then φ can be defined to

act on f as:

φ(f)(z) = φ(2)z2 + φ(xy)z + φ(1) = 2z2 + 1

Lemma 4.3 Let R be a local commutative ring (as mentioned in Equation (4.2))

and f(z1, . . . , zn) be a polynomial living in R[z1, . . . , zn] of total degree d. Let φ :

R→ F be the natural onto ring homomorphism of R with kernel M. Let f1, . . . , fm ∈
R[z1, . . . , zn] be polynomials such that:

• φ(f1), . . . , φ(fm) are mutually coprime polynomials over F.

• total degree of (φ(f1) · · ·φ(fm)) > d.

Then,

R[z1, . . . , zn]/(f) ∼= R[z1, . . . , zn] (4.3)

iff

R[z1, . . . , zn]/(f, fi) ∼= R[z1, . . . , zn]/(fi), for all i ∈ [m]
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Proof: Clearly, if R[z1, . . . , zn]/(f) ∼= R[z1, . . . , zn] then for all i ∈ [m],

R[z1, . . . , zn]/(f, fi) is isomorphic to R[z1, . . . , zn]/(fi). So the more interesting part

is the converse.

Suppose for all i ∈ [m], R[z1, . . . , zn]/(f, fi) ∼= R[z1, . . . , zn]/(fi). Note that if we

denote the second ring by R′
i then the first ring can be viewed as: R′

i/(f) where, (f)

is being considered as an ideal of R′
i (or equivalently (f) = fR′

i). Now notice that

R′
i/(f) ∼= R′

i iff f is zero in R′
i = R[z1, . . . , zn]/(fi) which in turn happens iff fi | f

over R. Thus, for all i ∈ [m]:

R[z1, . . . , zn]/(f, fi) ∼= R[z1, . . . , zn]/(fi) ⇐⇒ fi divides f over R

Now what can we say about f if for all i ∈ [m], fi | f over R? We answer this

question by the following two claims. The first one says that (f1 · · · fm) | f over R.

Claim 4.1.2 (Kayal) p, g, h ∈ R[z1, z2, · · · , zn] be multivariate polynomials such

that φ(g) and φ(h) are coprime. Moreover,

p ≡ 0 (mod g)

p ≡ 0 (mod h)

Then p ≡ 0 (mod g · h).

Proof of Claim 4.1.2. We reproduce the following proof from [Kay06].

Recall that the unique maximal ideal of R is M, φ : R → F is the natural onto

ring homomorphism of R with kernelM and let t be the least integer such thatMt =

0 in R. Let the (total) degrees of φ(g) and φ(h) be dg and dh respectively. Then

by applying a suitable invertible linear transformation on the variables z1, · · · , zn,
if needed, we can assume without loss of generality that the coefficients of z

dg
n in g

and that of zdh
n in h are both units of R (see Lemma A.8). Consequently, in the

product g · h the coefficient of z
dg+dh
n is also a unit of R.

Now think of g and h as polynomials in one variable zn with coefficients coming

from the ring of fractions – R(z1, z2, . . . , zn−1) – of R[z1, . . . , zn−1]. Now since φ(g)

and φ(h) are coprime over F, they are also coprime as univariate polynomials
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in zn over the function field F(z1, . . . , zn−1). Consequently, there exists a, b ∈
F(z1, . . . , zn−1) such that:

aφ(g) + bφ(h) = 1 over F(z1, . . . , zn−1)

That is, ag + bh = 1 in (R/M)(z1, . . . , zn−1) (since R/M ∼= F). By the well

known Hensel’s lifting lemma (see Lemma A.9) we get that there exist a∗, b∗ ∈
R(z1, . . . , zn−1) such that:

a∗g + b∗h = 1 over (R/Mt)(z1, . . . , zn−1) which is R(z1, . . . , zn−1).

Now by the initial hypothesis:

p ≡ 0 (mod g)

⇒ p = qg for some q in R[z1, . . . , zn−1][zn]

also, p ≡ 0 (mod h)

⇒ qg ≡ 0 (mod h)

⇒ a∗qg ≡ 0 (mod h) in R(z1, . . . , zn−1)[zn]

⇒ q ≡ 0 (mod h) in R(z1, . . . , zn−1)[zn]

∴ p = ghq′ for some q′ in R(z1, . . . , zn−1)[zn]

Since, the leading coefficient of zn in gh is in R∗ and p is in R[z1, . . . , zn−1][zn],

therefore by Gauss’ lemma (see Lemma A.10) we get that in fact a′ ∈ R[z1, . . . , zn−1][zn]

and so:

p ≡ 0 (mod gh) in R[z1, . . . , zn]

�

Since, by the hypothesis, φ(f1), . . . , φ(fm) are mutually coprime polynomials over

F, we repeatedly apply the above claim and deduce that:

The polynomial (f1 · · · fm) divides f over R.

Notice that the total degree of (f1 · · · fm) is larger than that of f . The next claim

shows that this means f is the zero polynomial over R.
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Claim 4.1.3 Suppose that p, g ∈ R[z1, . . . , zn] and p has total degree dp. Moreover,

g has total degree dg > dp and contains at least one monomial of degree dg whose

coefficient is a unit in R. Then, p ≡ 0 (mod g) ⇒ p = 0 in R[z1, . . . , zn].

Proof of Claim 4.1.3. Since p ≡ 0 (mod g) over R we have:

p = qg for some q ∈ R[z1, . . . , zn]

By applying a suitable invertible linear transformation on the variables z1, . . . , zn, if

needed, we can assume that the coefficient of z
dg
n in g is a unit of R (see Lemma A.8).

Now view p, g, q as univariate polynomials in zn over the ring R[z1, . . . , zn−1] and let

the degree of q with respect to zn be dq > 0. Then the coefficient of z
dq+dg
n on the

RHS is nonzero whereas all the terms on the LHS have degree at most dp < dq + dg,

a contradiction. This means that dq = 0 and hence, p = 0 over R. �

By the hypothesis we have that the total degree of (φ(f1) · · ·φ(fm)) > d. Thus,

(f1 · · · fm) has a monomial of degree larger than d whose coefficient is a unit of

R. Thus, the above claim together with (f1 · · · fm) | f implies that f ≡ 0 over R,

implying that:

R[z1, . . . , zn]/(f) ∼= R[z1, . . . , zn]

This completes the proof of our lemma.

4.3.2 Description of the Algorithm

In this section we sketch an algorithm for solving the special case of ring isomorphism

problem (as occurred in the Equation (4.3)) when f is a ΣΠΣ circuit of bounded

top fanin. This section is dedicated to proving the following main theorem:

Theorem 4.2 Let R be a local commutative ring over F (as mentioned in Equa-

tion (4.2)) with a unique maximal ideal M of nilpotents. Suppose f ∈ R[z1, . . . , zn]

is the given polynomial. f is a sum of product of linear functions, i.e.,

f = T1 + T2 + · · ·+ Tk
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where, each Ti is a product of di ≥ 1 linear functions:

Ti = Li,1 · · ·Li,di

where, each linear function Li,j looks like:

Li,j = ai,j,0 + ai,j,1z1 + · · ·+ ai,j,nzn, ai,j,0 ∈M while ai,j,1, · · · , ai,j,n ∈ F

Define d := max1≤i≤k{di}. Then the ring isomorphism problem:

R[z1, . . . , zn]/(f)
?∼= R[z1, . . . , zn]

can be solved in time poly(dk, n) assuming that the ring operations of R take constant

time.

Proof: Recall that the unique maximal ideal of R is M, φ : R→ F is the natural

onto ring homomorphism of R with kernel M and let t be the least integer such

that Mt = 0 in R.

If k = 1 then f = T1 = L1,1 · · ·L1,d1 which is just a product of linear functions.

Apply φ on these linear functions. Now if for all j ∈ [d], φ(L1,j) 6= 0 then clearly

f 6= 0 over R and, thus, R[z1, . . . , zn]/(f) is not isomorphic to R[z1, . . . , zn] by

Claim 4.1.1. So assume that there is at least one j ∈ [d1] such that φ(L1,j) = 0

which means that the linear function L1,j has no z-term and it is simply equal to

a1,j,0. Collect all such linear functions as:

`1 := {j ∈ [d1] | φ(L1,j) = 0}

Thus,

f =

(∏
j∈`1

a1,j,0

)
·

 ∏
j∈[d1]\`1

L1,j


and it is easy to see that f = 0 iff

(∏
j∈`1 a1,j,0

)
= 0 in R. Thus, we can solve:

R[z1, . . . , zn]/(T1)
?∼= R[z1, . . . , zn]

in time: poly(d, n) assuming that the ring operations of R take constant time.
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For larger k, we give a recursive algorithm using Lemma 4.3. As in the lemma

we need to collect suitable polynomials f1, . . . , fm such that φ(f1), . . . , φ(fm) are

coprime and the total degree of φ(f1) · · ·φ(fm) is greater than the total degree of f .

Form the largest set S := {s1, . . . , sm} of linear forms in R[z1, . . . , zn] such that

the elements of S satisfy:

• for each i ∈ [m] there is a j ∈ [k] such that (si + r) is a linear factor of Tj for

some r ∈M.

• for every i 6= j ∈ [m], si, sj are coprime over F.

If S is empty then it means that for all i ∈ [k], j ∈ [di], Li,j = ai,j,0 and hence we can

easily compute f using just ring operations of R. Thus, assume that S is nonempty.

For each i ∈ [m], let ei ∈ [d] be the largest number such that (si+ri,1), . . . , (si+ri,ei
),

for some ri,1, . . . , ri,ei
∈ M, are linear factors (with repetition) of some Tj, say Tπi

.

The way we have defined ei’s we have that for any j ∈ [k], the number of linear

functions Lj,∗ whose φ-image is si is at most ei. Thus, we get the following bound:

(e1 + . . .+ em) ≥ d

If we define: for all i ∈ [m], fi := (si+ri,1) · · · (si+ri,ei
) then one of the conditions of

Lemma 4.3 is satisfied as φ(f1), . . . , φ(fm) are coprime. But what about the second

condition: is the total degree of φ(f1) · · ·φ(fm) larger than the total degree of f ?

This is satisfied too when (e1 + · · · + em) > d. So we just need to handle the case:

(e1 + · · ·+ em) = d.

If (e1 + · · ·+ em) = d then form the set U = {Tj | total degree of Tj is d}. U is

nonempty. Wlog let U = {T1, . . . , Tk′}. Then, for i ∈ [k′], Ti looks like:

Ti = λi ·

(
e1∏
j=1

(s1 + αi,1,j)

)
· · ·

(
em∏
j=1

(sm + αi,m,j)

)

where, for all i1 ∈ [k′], i2 ∈ [m], i3 ∈ [ei2 ], αi1,i2,i3 , λi1 ∈ M. Note that the

coefficient of any degree d monomial (in the variables z1, . . . , zn) in T1 + . . .+ Tk′ is

a multiple (in F) of: ∑
i∈[k′]

λi
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By the definition of d, this means that the coefficient of any degree d monomial in

f is a multiple (in F) of:
∑

i∈[k′] λi. This can be computed using operations in R.

If it is nonzero then f 6= 0 over R and, thus, R[z1, . . . , zn]/(f) is not isomorphic

to R[z1, . . . , zn] by Claim 4.1.1. So assume that
∑

i∈[k′] λi = 0 and hence the total

degree of f is smaller than d = (e1 + · · ·+ em) = total degree of (φ(f1) · · ·φ(fm)).

Thus, f1, . . . , fm satisfy both the conditions of the Lemma 4.3. Before invoking

the lemma we try to optimise and choose the largest m′ ∈ [m] such that:

d ≤ total degree of φ(f1) · · ·φ(fm′) ≤ 2d (4.4)

Now we apply the Lemma 4.3 on the polynomials f1, . . . , fm′ and reduce the problem:

R[z1, . . . , zn]/(f)
?∼= R[z1, . . . , zn]

to m′ smaller problems:

R[z1, . . . , zn]/(f, fi)
?∼= R[z1, . . . , zn]/(fi) for all i ∈ [m′] (4.5)

Why are the above problems smaller? First of all observe that fi divides Tπi
and,

hence,

f ≡
∑

j∈[k]\{πi}

Tj (mod fi)

Next, recall: fi = (si+ri,1) · · · (si+ri,ei
), where, si is a linear form in R[z1, . . . , zn] and

ri,1, . . . , ri,ei
∈ M. Now if we apply a transformation τi on the variables z1, . . . , zn

such that:

• τi maps each zj to some linear combination
∑n

`=1 aj,`z`, where, aj,` ∈ F.

• τi is invertible.

• τi(si) = z1.
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Then fi transforms to a more amenable: τi(fi) = (z1 + ri,1) · · · (z1 + ri,ei
), and:

R[z1, . . . , zn]/(f, fi) ∼= R[z1, . . . , zn]/(fi)

iff

R[z1, . . . , zn]/ (τi(f), (z1 + ri,1) · · · (z1 + ri,ei
)) ∼= R[z1, . . . , zn]/ ((z1 + ri,1) · · · (z1 + ri,ei

))

iff

Ri[z2, . . . , zn]/

 ∑
j∈[k]\{πi}

τi(Tj)

 ∼= Ri[z2, . . . , zn] (4.6)

where,

Ri := R[z1]/ ((z1 + ri,1) · · · (z1 + ri,ei
)) (4.7)

This new ring Ri is also a local ring (see Lemma A.5 in the appendix) and since τi

is a F-linear transformation,
∑

j∈[k]\{πi} τi(Tj) is again a ΣΠΣ circuit but with top

fanin equal to (k − 1). Thus, Equation (4.6) is a smaller instance of the starting

problem and can be recursively solved. However, there is a point to be taken care

of: k reduces in the recursion but the ring R increases by one ‘dimension’ in every

recursive call. So R can increase to at most k ‘dimensions’ till the recursion reaches

the base step k = 1 and computations in that large a ring can be done in time

poly(dk) (by using the special form of Ri, see Lemma A.5 in the appendix).

Let time(k) be the time taken to solve the given ring isomorphism problem when

f is of top fanin k. We get an easy recursive equation for time(·):

time(k) ≤ m′ · time(k − 1) + (computation-time in the intermediate base rings)

≤ m′ · time(k − 1) + poly(dk, n)

≤ 2d · time(k − 1) + poly(dk, n) [by Equation (4.4)]

⇒ time(k) = poly(dk, n).

This completes the proof of the theorem.

Corollary 4.1 Identity testing for ΣΠΣ circuits C ∈ F[x1, . . . , xn], having top fanin

equal to k, can be done in time: poly(dk, n) assuming that the field operations of F
take constant time.
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Proof: This follows directly, if we put R = F in the statement of the above

theorem and apply Claim 4.1.1.

4.4 Discussion

This chapter considered the problem of identity testing for ΣΠΣ arithmetic circuits

C. Suppose C(x1, . . . , xn) has at most k inputs to the top addition gate and at

most d inputs to the multiplication gate. Then we gave an identity test for such a

circuit that works in time poly(dk, n). The machinery we used was that of local rings

and a special case of their isomorphism problem. This chapter also gave examples of

bounded top fanin ΣΠΣ circuit identities, over any fixed field of prime characteristic,

that have “high” rank. Are there identities of this kind over fields of characteristic

0, say Q?

The problem of identity testing for general ΣΠΣ arithmetic circuits remains

open. It would be interesting to see if this method can be generalized for ΣΠΣΠ

circuits where the fanin of the topmost addition gate is bounded.



Chapter 5

Primality Testing

Primality testing – given a number test if it is prime – is one of the fundamental

problems concerning numbers. Starting from ancient Chinese and Greek, many have

worked on the problem of finding an efficient algorithm for primality testing. In

recent times this problem has become more important from a practical perspective

because of its applications in cryptography. For example, the widely used RSA

public-key cryptosystem does computations modulo n, where, n = pq for suitably

chosen primes p and q.

An unconditional, deterministic, polynomial-time algorithm for primality testing

was given for the first time in 2002 by Agrawal, Kayal and Saxena [AKS02]. In

the months following the discovery new variants appeared (Lenstra 2002, Pomer-

ance 2002, Berrizbeitia [Berr03], Cheng [Chen03], Bernstein [Bern], Lenstra and

Pomerance [LP03], [AKS04]). All these algorithms are sometimes called AKS-

type algorithms (see a nice survey by Granville [Gran]). The basic idea of the

primality test is to give a characterization of prime numbers via cyclotomic rings

R := (Z/nZ)[x]/(xr − 1). We study the Frobenius-type map σn : a(x) 7→ a(x)n and

ask the question: when is σn an automorphism of R? It turns out that for a suitable

r, σn ∈ Aut(R) iff n is prime and more importantly, it is sufficient to test σn on a

‘few’ elements of R for automorphism.

The results of this chapter mostly appear in [AKS02, AS05].

105
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5.1 Previous Work

The Sieve of Eratosthenes (ca. 240 BC) is the most ancient algorithm that works

correctly for all primes, however, its time complexity (= Ω(n) where n is the input

number) is exponential in the size of input. In the 17th Century, Fermat proved what

is referred as Fermat’s Little Theorem stating that for any prime number p, and any

number a not divisible by p, ap−1 = 1 (mod p). Although the converse of this

theorem does not hold (and in fact fails spectacularly for Carmichael numbers), this

result has been the starting point for several efficient primality testing algorithms.

In 1976, Miller [Mil76] used this property to obtain a deterministic polynomial-

time algorithm for primality testing assuming Extended Riemann Hypothesis (ERH).

His test was modified by Rabin [Rab80] to yield an unconditional but randomized

polynomial-time algorithm.

If we take the “square-root” of Fermat’s congruence then we get: a
p−1
2 = ±1 (mod p).

It turns out that the sign here is positive iff a is a square modulo p. This fact is

usually stated in terms of Legendre symbol
(
a
p

)
as:

a
p−1
2 =

(
a

p

)
(mod p)

There is a generalization of Legendre symbol, over composite numbers n, called

Jacobi symbol :(
a

n

)
:=

k∏
i=1

(
a

pi

)
where, n factors into primes as n =

k∏
i=1

pi.

It is an interesting fact that given a, n we do not know how to factor n but still we

can compute
(
a
n

)
by using Gauss’ Reciprocity Law and Euclidean gcd-type algorithm

(see [BS96]). Thus, the congruence: a
n−1

2 =
(
a
n

)
(mod n) is a candidate for a

primality test and in fact was first used by Solovay and Strassen [SoS77] to design a

randomized polynomial-time algorithm. Their algorithm can also be derandomized

under ERH.

In 1983, Adleman, Pomerance, and Rumely [APR83] achieved a major break-

through by giving a deterministic algorithm for primality that runs in (log n)O(log log logn)

time (all the previous deterministic algorithms required exponential time). The
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algorithm is based on an analytic number theory estimate stating that there is

always an integer m < (log n)log log logn for which:∏
prime q
(q−1)|m

q ≥
√
n

In 1986, Goldwasser and Kilian [GK86] proposed a randomized algorithm based

on Elliptic curves running in expected polynomial-time on almost all inputs (all

inputs under a widely believed hypothesis) that produces a certificate for primality

(until then, all randomized algorithms produced certificates for compositeness only).

A similar algorithm was developed by Atkin [Atk86]. Adleman and Huang [AH92]

modified Goldwasser-Kilian algorithm to obtain a randomized polynomial-time al-

gorithm that always produced a certificate for primality.

5.2 The Beginning

Suppose p is a prime number and consider the ring R0 := Z/pZ. Note that by

Fermat’s little theorem the map σp : a 7→ ap is an automorphism of R0. This

exponentiation-map σp is called the Frobenius map. Is the Frobenius map σn

an automorphism of the ring Z/nZ for composite n? Note at this point that

Aut(Z/nZ) = {id} simply because 1 is the additive generator of the ring Z/nZ
and any automorphism fixes it.

Lemma 5.1 (Carmichael) σn is an automorphism of the ring (Z/nZ) iff n is

square-free and for every prime p | n, (p− 1) | (n− 1).

Proof: Suppose σn ∈ Aut(Z/nZ) and n = ps · t where, p is some prime and

gcd(p, t) = 1. We have the following ring decomposition:

Z/nZ ∼= (Z/psZ)× (Z/tZ)

Thus, σn ∈ Aut(Z/nZ) implies that σn ∈ Aut(Z/psZ).

First we show that s = 1. Suppose s ≥ 2. If p = 2 then σn(−1) = 1 (mod ps)

while −1 6= 1 (mod ps) which contradicts σn ∈ Aut(Z/psZ). On the other hand,
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if p 6= 2 then (Z/psZ)∗ is a cyclic group of size ps−1(p − 1) (see Lemma A.6 in the

appendix) which has a nontrivial gcd with n and hence σn cannot be injective on the

cyclic group: (Z/psZ)∗, again contradicting σn ∈ Aut(Z/psZ). These contradictions

force s = 1 implying that n is square-free and:

Z/nZ ∼= ×prime p|n (Z/pZ) (5.1)

Now σn ∈ Aut(Z/nZ) iff for all prime p | n, σn ∈ Aut(Z/pZ). But the ring Z/pZ
has only trivial automorphism implying that for a generator g of the group (Z/pZ)∗:

σn(g) = g (mod p) ⇒ gn−1 = 1 (mod p) ⇒ (p− 1) | (n− 1).

Conversely, suppose n is square-free and for every prime p | n, (p− 1) | (n− 1).

Thus, for all prime p | n and for all a ∈ Z/pZ, an = a · an−1 = a (mod p). This

means that σn is identity on Z/pZ for all p | n which means by Equation (5.1) that

σn is the trivial automorphism of the ring Z/nZ.

Composite numbers n as in Lemma 5.1 are called Carmichael numbers [Car10]

and they are infinitely many [AGP94]. Thus, Frobenius map σn being an auto-

morphism of the ring Z/nZ imposes some conditions on n but they are not strong

enough to characterize primes. What if we consider “larger” rings over Z/nZ? It

was suggested at the end of the paper [AB99] that cyclotomic rings over Z/nZ might

be useful.

Let n be the given odd number to be tested for primality. For any number r

coprime to n define a ring Rn,r := (Z/nZ)[x]/(xr−1) called a cyclotomic ring. When

is the Frobenius map σn : a(x) 7→ a(x)n an automorphism of Rn,r? We attempt to

answer this question both theoretically and algorithmically in the next sections. We

show that interesting things happen when r is chosen suitably and eventually we

get an efficient characterization of primes.

5.3 Cyclotomic Rings Characterize Primes

The central question that we explore in this section is: when is σn ∈ Aut(Rn,r)? We

show that there is a suitable r ∼ log3 n such that σn ∈ Aut(Rn,r) iff n is prime. Thus,
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we can get a primality test if we can efficiently test whether σn ∈ Aut(Rn,r) for that

r. In the first subsection we show how to do this in randomized polynomial time

while in the second subsection we show an Extended Riemann Hypothesis (ERH)

connection.

The size of (Z/rZ)∗ is classically denoted by φ(r) and φ is called the Euler’s

totient function. It is easily seen that r is prime iff φ(r) = (r−1). Note that (Z/rZ)∗

is a finite group and, hence, for any element a ∈ (Z/rZ)∗, aφ(r) = 1 (mod r). We

will use the notation or(a) to denote the least nonzero positive integer m such that:

am = 1 (mod r). or(a) is called the order of a modulo r. It is a simple exercise to

show that or(a) | φ(r). For a natural number m we will use P (m) to denote the

largest prime factor of m.

Theorem 5.1 Let n be an odd number. Let r be a prime (coprime to n) such that

P (or(n)) > log n. Define the cyclotomic ring Rn,r := (Z/nZ)[x]/(xr − 1) and the

Frobenius map σn : a(x) 7→ a(x)n. Then,

n is prime

iff

σn ∈ Aut(Rn,r)

Proof: If n is a prime then for any polynomial f(x), f(x)n = f(xn) (mod n)

(proof is simply by the multinomial expansion of f(x)n) and hence σn ∈ Aut(Rn,r)

for any r. So it is the converse that we intend to show next.

Note that since r and n are coprime we have that (x− 1) and xr−1
x−1

are coprime

polynomials modulo n. Thus,

Rn,r = (Z/nZ)[x]/(xr − 1) ∼= (Z/nZ)[x]/(x− 1)× (Z/nZ)[x]/

(
xr − 1

x− 1

)
Now σn ∈ Aut(Rn,r) means that σn ∈ Aut((Z/nZ)[x]/(x− 1)) = Aut(Z/nZ) which

by Lemma 5.1 means that n is a Carmichael number and hence is square-free. Thus,

Rn,r can be decomposed into fields as:

(Z/nZ)[x]/(xr − 1) ∼= ×prime p|n (Z/pZ)[x]/(xr − 1)

∼= ×prime p|n (Z/pZ)[x]/(x− 1) ×prime p|n (Z/pZ)[x]/(xr−1 + · · ·+ 1)

∼= ×prime p|n Fp ×prime p|n ×
r−1
or(p)

i=1 Fpor(p) (5.2)
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The last congruence follows from the fact that the polynomial (xr−1 + xr−2 + · · ·+
1) factors over the field Fp into r−1

or(p)
irreducible factors each of degree or(p) (see

Lemma A.7). The above decomposition tells us that σn ∈ Aut(Rn,r) means that

σn ∈ Aut(Fpor(p)). But Aut(Fpor(p)) is generated by σp (see Lemma A.7). Thus,

there is an 0 ≤ m < or(p) such that σn ≡ (σp)
m over Fpor(p) . Since F∗

por(p) is

cyclic there is a generator element g ∈ F∗
por(p) which has to satisfy σn(g) = (σp)

m(g)

implying that gn−p
m

= 1 which in turn means that n = pm (mod por(p) − 1). Thus,

∀prime p | n, ∃m, n = pm (mod por(p) − 1)

If for some prime p | n, por(p) is larger than n then the above equation gives us that

n = pm which means that n = p as n is square-free. Now observe that:

or(n) |
∏

prime p|n

or(p)

Thus, the prime P (or(n)) divides or(p0) for some prime p0 | n and hence p
or(p0)
0 >

p
P (or(n))
0 which is larger than n. Thus, we conclude that n is a prime.

But why do we expect the existence of an r satisfying P (or(n)) > log n? The

reason is an estimate of prime numbers proved by Tchebycheff. Here, we use a

stronger estimate due to Fouvry [Fou85] as it gives a better result for our purposes.

Claim 5.1.1 For a sufficiently large n there always exist an r = O∼(log3 n) such

that P (or(n)) > log n.

Proof of Claim 5.1.1. The two analytic number-theoretic estimates that are useful

for us here are the Tchebycheff’s and Fouvry’s estimate. Tchebycheff [Apo97] showed

that for all x ≥ 2:

1

5
· x

log x
≤ |{q | q is prime, q ≤ x}| ≤ 5 · x

log x
(5.3)

Fouvry [Fou85, BH96] showed a much stronger result about primes – there exist

constants c > 0 and n0 such that, for all x ≥ n0:

|{q | q is prime, q ≤ x and P (q − 1) > q
2
3}| ≥ c · x

log x
(5.4)
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which roughly means that the density of primes q, such that (q − 1) has a large

prime factor, is Θ
(

x
log x

)
.

Now consider a possible sample space for r –

S := {r | prime r, log3 n(log log n)3 ≤ r ≤ d log3 n(log log n)3, P (r − 1) > r
2
3}

where, constant d > 0 will be fixed later. Note that it follows from the above

estimates that |S| ≥ d′ log3 n(log log n)2 for some constant d′ > 1 (fix d suitably).

For how many r’s in S is P (or(n)) > r
2
3 ? Note that if for some r ∈ S, P (or(n)) ≤ r

2
3

then P (or(n)) < r
1
3 (since P (r− 1) > r

2
3 and or(n) | (r− 1)). Thus, all the r’s in S

with P (or(n)) ≤ r
2
3 divide the product:

Π = (n− 1) · (n2 − 1) · · · (nr
1
3 − 1) < nr

2
3

Thus, such r’s are at most log Π = r
2
3 log n in number. Note that r

2
3 log n <

d
2
3 log3 n(log log n)2 < |S| (fix d such that d′ > d

2
3 ). Thus, there is a prime

r = O∼(log3 n) in S such that P (or(n)) > r
2
3 > log2 n(log log n)2 which is better

than what we desired! �

This theorem shows that cyclotomic rings do give a nice algebraic characteriza-

tion of prime numbers. Our next desire is to use this to find an efficient primality

test. The clue lies in studying the action of σn on the elements of Rn,r.

5.3.1 A Randomized Algorithm

Here we will present a simple randomized algorithm to check whether σn ∈ Aut(Rn,r)

in time poly(r, log n). The surprising thing about it will be that by checking just

two congruences of the form a(x)n = a(xn) (mod n, xr − 1) we can gain confidence

about whether σn satisfies them for all a(x) ∈ Rn,r.

Theorem 5.2 Given coprime positive integers n, r. There is a randomized algo-

rithm to check whether σn ∈ Aut(Rn,r) in time poly(r, log n).

Proof: Recall from Lemma 5.1 that if σn ∈ Aut(Rn,r) then n has to be square-

free. This necessary condition can be checked easily by doing Fermat’s little test for
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all 1 ≤ a ≤ 4 log2 n (see Lemma A.11). Thus, let us assume from now on that the

given n is square-free.

Recall Equation (5.2) and for clarity let the decomposition of ring Rn,r be:

Rn,r
∼= F

p
d1
1
× · · · × F

p
dk
k

Since size of Rn,r is nr and each pi ≥ 2 we have that k, d1, . . . , dk ≤ r log n. Firstly,

we can assume that all pi are larger than 8r log n for otherwise we can factor-out

these “small” pi from n and then σn ∈ Aut(Fpdi
i

) iff n is a power of pi modulo (pdi
i −1)

which can be easily checked in time poly(r, log n).

Consider the following set G of elements in Rn,r:

G :=
{
a(x) ∈ R∗

n,r | σn(a(x)) = a(σn(x))
}

Clearly, 1 ∈ G. Also, it is easy to see that if a(x), b(x) ∈ G then a(x) · b(x) ∈ G.

Thus, the set G is a subgroup of R∗
n,r. Can G = R∗

n,r? Note that if G = R∗
n,r =

×k
i=1(Fpdi

i
)∗ then σn is an automorphism of each F

p
di
i

and hence σn ∈ Aut(Rn,r). On

the other hand if G 6= R∗
n,r then G is a proper subgroup and hence #G ≤ 1

2
#R∗

n,r.

Now our randomized algorithm is simple:

1. Randomly and independently choose a(x), b(x) ∈ Rn,r.

2. Check whether: σn(a(x)) = a(σn(x)) and σn(b(x)) = b(σn(x)) in Rn,r.

3. Output YES iff both the above tests pass.

We will show that the probability of error of the above algorithm is ≤ 1
2
. If σn ∈

Aut(Rn,r) then clearly the above algorithm returns YES. So assume that σn 6∈
Aut(Rn,r) and thus, by the above discussion: #G ≤ 1

2
#R∗

n,r.

Firstly, note that a(x) is not a unit of Rn,r iff its image in at least one of the

fields F
p

di
i

is zero. Thus,

Proba(x),b(x)∈Rn,r [a(x) or b(x) is not in R∗
n,r] ≤ 2 ·

k∑
i=1

1

pdi
i

≤ 2 · (r log n) · 1

8r log n

≤ 1

4
(5.5)
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Also, Proba(x)∈R∗
n,r

[a(x) ∈ G] ≤ 1
2
. Thus,

Proba(x),b(x)∈R∗
n,r

[σn(a(x)) = a(σn(x)) and σn(b(x)) = b(σn(x)) in Rn,r] ≤
1

4
(5.6)

The above two probabilities (Equations (5.5) and (5.6)) together upper bound the

probability of our algorithm saying YES when σn 6∈ Aut(Rn,r) by 1
2
.

It is routine to verify that all the steps of the above algorithm can be implemented

in time poly(r, log n).

5.3.2 Results assuming ERH

The Extended Riemann Hypothesis (ERH) is a longstanding open conjecture in

complex analysis. Our interest in ERH arises from its following connection to

number theory (see [BS96]): If ERH is true then the set of primes p ≤ 2 log2 n

multiplicatively generate the group (Z/nZ)∗. Thus, under ERH it is easy to check

whether σn ∈ Aut(Z/nZ) as checking: an = a (mod n) for all 1 ≤ a ≤ 2 log2 n

suffices. But for larger r it is not clear how ERH helps in checking σn ∈ Aut(Rn,r)

as it is not known yet whether ((Z/nZ)[x]/(xr − 1))∗ has “small” generators (some

results in that direction are given in [Shou92]).

We study in this section the properties that r and n would have to satisfy if

σn(a(x)) = a(σn(x)) for some “special” a(x) ∈ Rn,r and then invoke ERH to get a

new primality test.

Lemma 5.2 Let n be an odd number and r be an odd prime not dividing n. Then,

σn(1− x) = (1− σn(x)) in the ring Rn,r ⇒ r
n−1

2 =

(
r

n

)
(mod n)

Proof: Let B := 16−1 (mod r). If σn(1− x) = (1− σn(x)) in Rn,r then:

(1− x)n = (1− xn) (mod n,Qr(x)), where Qr(x) :=
xr − 1

x− 1
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By applying the ring automorphism x 7→ xi (where i, r are coprime) to the above

equation we get:

(1− xi)n = (1− xin) (mod n,Qr(x))

⇒

xB r−1
2∏
i=1

(1− xi)

n

=

xBn r−1
2∏
i=1

(1− xin)

 (mod n,Qr(x))

⇒

xB r−1
2∏
i=1

(1− xi)

n

=

(
n

r

)
·

xB r−1
2∏
i=1

(1− xi)

 (mod n,Qr(x)) [by Lemma A.12]

⇒

xB r−1
2∏
i=1

(1− xi)

n−1

=

(
n

r

)
(mod n,Qr(x))

⇒
(
(−1)

r−1
2 · r

)n−1
2

=

(
n

r

)
(mod n,Qr(x)) [by Lemma A.12]

⇒ r
n−1

2 = (−1)
r−1
2

n−1
2

(
n

r

)
(mod n,Qr(x))

⇒ r
n−1

2 =

(
r

n

)
(mod n,Qr(x)) [by Quadratic Reciprocity Lemma A.13]

⇒ r
n−1

2 =

(
r

n

)
(mod n)

Remark: Thus, for a given n checking whether σn(1−x) = (1−σn(x)) in the ring

Rn,r is an algebraic version of Solovay-Strassen’s primality test [SoS77] and hence

can be derandomized under ERH to give a ‘new’ cyclotomic primality test.

5.4 A Deterministic and Efficient Characteriza-

tion of Primes

Theorem 5.1 showed us that the condition σn ∈ Aut(Rn,r) forces n to be prime

if P (or(n)) is large enough. Also, in the previous section we saw that checking

σn(a(x)) = a(σn(x)) for a couple of a(x) ∈ Rn,r gives us information whether σn ∈
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Aut(Rn,r). We now try to combine these two ideas by making P (or(n)) larger and

testing σn(x + a) = (σn(x) + a) for various “small” a’s. It turns out, as we prove

below, that this gives us an unconditional, deterministic, polynomial-time primality

test.

Theorem 5.3 Let n be a positive integer. Fix an integer r of magnitude O∼(log6 n)

such that r ≥ (16 log2 n) and P (or(n)) > d
√
re · dlog ne. Suppose r, n are coprime

and all prime factors of n are larger than d
√
re · dlog ne. Define the ring Rn,r :=

(Z/nZ)[x]/(xr − 1). Then, the following are equivalent:

(i) n is prime.

(ii) σn ∈ Aut(Rn,r).

(iii) σn(x+ a) = (σn(x) + a) in Rn,r, for all 1 ≤ a ≤ d
√
re · dlog ne.

Moreover, the condition (iii) above gives a deterministic primality test that takes

time: O∼(log12 n).

Proof: Let ` := d
√
re·dlog ne. It is easy to see that (i) implies (ii) and (ii) implies

(iii). So what we intend to show now is that (iii) implies (i).

Suppose σn(x+ a) = (σn(x) + a) in Rn,r, for all 1 ≤ a ≤ `. Then firstly observe

that:

σn(x+ a) = (σn(x) + a) (mod n, x− 1) for all 1 ≤ a ≤ 4 log2 n

⇒ (a+ 1)n = (a+ 1) (mod n) for all 1 ≤ a ≤ 4 log2 n

But then by Lemma A.11 the above tests tell us that n is square-free. As or(n) |∏
prime p|n or(p) we get that the prime P (or(n)) divides or(p) for some prime p | n.

Thus, there is a prime p | n such that P (or(p)) > `. We will now work modulo this

prime p. Note that (xr − 1) modulo p has an irreducible factor h(x) of degree > `

(see Lemma A.7).
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Let n = mp where gcd(m, p) = 1. Now we have, for all 1 ≤ a ≤ `:

(x+ a)mp = (xmp + a) (mod p, xr − 1)

⇒ (xp + a)m = (xmp + a) (mod p, xr − 1) [∵ (x+ a)p = (xp + a) (mod p, xr − 1)]

⇒ (x+ a)m = (xm + a) (mod p, xr − 1) [send x 7→ xp
−1(mod r) in the above eqn.]

Next we observe that if positive integers m1,m2 satisfy (x + a)m1 = (xm1 + a) and

(x+ a)m2 = (xm2 + a) in Rn,r then :

(x+ a)m1m2 = {(x+ a)m1}m2 (mod n, xr − 1)

= (xm1 + a)m2 (mod n, xr − 1)

= (xm1m2 + a) (mod n, xr − 1)

[by sending x 7→ xm1 in (x+ a)m2 = (xm2 + a) (mod n, xr − 1)]

Since (x+ a)m = (xm + a) (mod p, xr − 1) and (x+ a)p = (xp + a) (mod p, xr − 1),

thus, we obtain from the above observations that for any positive integers i, j and

for all 1 ≤ a ≤ `:

σmipj(x+ a) = (σmipj(x) + a) (mod p, xr − 1) (5.7)

Consider the set I := {mipj | 0 ≤ i, j < d
√
re}. Since m, p, r are mutually coprime,

we have #I ≥ r and hence, I has two distinct elements with equal residue modulo

r. Let mi1pj1 ,mi2pj2 ∈ I be two such elements.

Consider another set J := {(x+1)e1 · · · (x+ `)e` | e1, . . . , e` ∈ {0, 1}} of elements

in Rn,r. Note that all these elements remain distinct even in the subring Fp[x]/(h(x))
of Rn,r, simply because all polynomials in J are of degree ≤ ` while h(x) is of degree

> ` and because by the hypothesis we have p > `.

Thus, a generator g(x) of the cyclic subgroup of (Fp[x]/(h(x)))∗ generated by J

has order o(p,h(x))(g(x)) ≥ #J ≥ 2`.

Now by Equation (5.7) we have that:

g(x)m
i1pj1 = g(xm

i1pj1 ) (mod p, h(x))

= g(xm
i2pj2 ) (mod p, h(x)) [∵ xm

i1pj1 = xm
i2pj2 (mod h(x))]

= g(x)m
i2pj2 (mod p, h(x))
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The above means that g(x)m
i1pj1−mi2pj2 = 1 (mod p, h(x)). Thus,

mi1pj1 ≡ mi2pj2 (mod o(p,h(x))(g(x))) (5.8)

But now observe that:

mi1pj1 , mi2pj2 < md
√
repd

√
re = nd

√
re

while o(p,h(x))(g(x)) ≥ 2` ≥ nd
√
re. This means that mi1pj1 = mi2pj2 . As gcd(m, p) =

1 this is only possible when either m = 1 or (i1, j1) = (i2, j2). As the latter

contradicts the choice of (i1, j1), (i2, j2) the only possibility left is m = 1 which

means n = p, a prime.

Let us now show that there is an r of magnitude O∼(log6 n) such that P (or(n)) >

d
√
re · dlog ne. Consider a possible sample space for r –

S := {r | prime r, log6 n(log log n) ≤ r ≤ d log6 n(log log n), P (r − 1) > r
2
3}

where, constant d > 0 will be fixed later. Note that it follows from the estimates

of Equations (5.3) and (5.4) that |S| ≥ d′ log6 n for some constant d′ > 1 (fix

d suitably). For how many r’s in S is P (or(n)) > r
2
3 ? Note that if for some

r ∈ S, P (or(n)) ≤ r
2
3 then P (or(n)) < r

1
3 (since P (r− 1) > r

2
3 and or(n) | (r− 1)).

Thus, all the r’s in S with P (or(n)) ≤ r
2
3 divide the product:

Π = (n− 1) · (n2 − 1) · · · (nr
1
3 − 1) < nr

2
3

Thus, such r’s are at most log Π = r
2
3 log n in number. Note that r

2
3 log n <

d
2
3 log5 n(log log n)

2
3 < |S|. Thus, there is a prime r = O∼(log6 n) in S such that:

P (or(n)) > r
2
3 > d

√
re · dlog ne (as r ≥ log6 n(log log n)).

To estimate the time taken by the algorithm just observe that the most expensive

step is to compute: (x + a)n (mod n, xr − 1). This can be done in time log n ·
O∼(r log n) by Fast Fourier multiplication techniques (see [vzGG99]). Thus, the

total time complexity is:

√
r log n ·O∼(r log2 n) = O∼(r

3
2 log3 n) = O∼(log12 n)
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5.5 Discussion

This chapter studied the automorphism group of the cyclotomic ring: Rn,r :=

(Z/nZ)[x]/(xr − 1). The aspect of Aut(Rn,r) that we are especially interested in,

is whether the n-th powering map σn ∈ Aut(Rn,r). We showed that when r is

suitably chosen then σn is an automorphism of the ring Rn,r iff n is prime. So the

next question was how to check σn ∈ Aut(Rn,r) efficiently. On further studying

the action of σn on the elements of Rn,r and invoking an analytic number theoretic

estimate it turned out that checking σn(x + a) = (σn(x) + a) in Rn,r for a suitable

r and for a “few” a ’s is sufficient to decide whether n is a prime. Thus, giving us a

deterministic polynomial time primality test.

The complexity of the primality test that we give is O∼(log12 n). Lenstra and

[AKS04] improved the algebraic arguments in the proof of the Theorem 5.3 to

give a faster primality test that takes time O∼(log7.5 n). Note that there are two

groups that vaguely appear in the proof of the Theorem 5.3: first group G1 :=

(m, p) ≤ (Z/rZ)∗ that contains I and the second group G2 := (x + 1, . . . , x + `) ≤
(Z/pZ)[x]/(h(x)) that contains J . Now observe that #G1 > or(n) =: t and it can

also be shown that any two polynomials generated by (x+ 1), . . . , (x+ `) of degree

< t are distinct modulo (p, h(x)), thus, #G2 > 2t. Thus, if we fix t > log2 n then

in Equation (5.8) we have o(p,h(x))(g(x)) > 2t while the numbers mipj < nd
√
te < 2t

that again forces n to be a prime! But now the requirement on r is less strong:

or(n) > log2 n and by the Claim 5.1.1 we can find such an r of magnitude O∼(log3 n).

This gives a primality test of complexity O∼(log7.5 n).

A faster but more complicated primality test based on ours was given by Lenstra

and Pomerance [LP03]. It takes time O∼(log6 n) which is the best known till now.

It might be possible to get a faster cyclotomic primality test if we can show that:

checking (x+ a)n = (xn + a) (mod n, xr− 1) for a constant many a ’s and a suitable

r forces n to be prime. We mention the following conjecture – given in [BP01] and

verified for r ≤ 100 and n ≤ 1010 in [KS02]:

Conjecture 5.1 If r > log n is a prime number that does not divide n and if

(X − 1)n = Xn − 1 (mod Xr − 1, n), (5.9)
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then either n is prime or n2 = 1 (mod r).

If this conjecture is true, we can modify the algorithm slightly to first search for

an r which does not divide n2 − 1. Such an r can assuredly be found in the range

[log n, 30(log n)(log log n)] by Tchebycheff’s estimate (see [Apo97]). Thereafter, we

can test whether the congruence Equation (5.9) holds or not. Verifying the congru-

ence takes time O∼(r log2 n). This gives a time complexity of O∼(log3 n).

Lenstra and Pomerance [LP03b] have given a heuristic argument that the above

conjecture might fail when r = 5.

In this chapter we also gave a randomized polynomial time test to check whether

σn ∈ Aut(Rn,r) for any given coprime n and r. Is there a deterministic polynomial

time test to check this? For r = 1, such a test would give a way to test Carmichael

numbers!



Chapter 6

Conclusion and Open Problems

This work studied various morphism problems of rings and also gave efficient so-

lutions to some specific cases, solving well-known problems of identity testing for

ΣΠΣ circuits of bounded top fanin and primality testing. We summarize below our

main results and mention the questions that remain to be answered.

6.1 Ring Morphism Problems

We defined computational variants of automorphism and isomorphism problems of

rings and studied their complexity in Chapter 2. The ring automorphism problems

are: testing a map for ring automorphism (TRA), deciding whether there is a

nontrivial ring automorphism (RA), finding a nontrivial ring automorphism (FRA)

and counting ring automorphisms (#RA). The ring isomorphism problems are:

testing a map for ring isomorphism (TRI), deciding whether two given rings are

isomorphic (RI), finding a ring isomorphism (FRI) and counting ring isomorphisms

(#RI). The complexity of these problems, of course, depends on the way rings or

maps are provided in the input. We showed that if the rings are finite and presented

in basis representation in the input then all of these problems are low for Σ2 and,

hence, unlikely to be NP-hard. In this case TRA, TRI and RA are in P while we

lower bound the complexity of the other problems by well-known problems, namely,

graph isomorphism, integer factoring and polynomial factoring. Also, all these ring

120
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morphism problems reduce to the problem of computing the automorphism group

of a ring (given in basis form in the input) which itself is low for Σ2.

Are there more well-known problems that reduce to ring morphism problems?

For example, can we reduce the problem of computing discrete logarithm to ring

morphism problems?

Our reduction of graph isomorphism to RI and #RA gives us a natural alge-

braic formulation for the problem of isomorphism of graphs which is open even for

quantum computers. Is there a quantum algorithm for #RA, i.e., is #RA ∈ BQP ?

We have shown that RI is unlikely to be NP-hard when the rings are finite and

presented in the basis representation. We believe that to further understand the

complexity of ring isomorphism it might be useful to consider RI for finite dimen-

sional Q-algebras. The first question that arises here: is RI for finite dimensional

Q-algebras a decidable problem ?

6.2 Cubic Forms Equivalence

We studied special cases of the polynomial equivalence problem in Chapter 3. We

focussed on the equivalence of homogeneous polynomials, also known as forms. We

connect the complexity of the problem of equivalence of degree r forms to that of ring

isomorphism by showing that if a field F has r-th roots then r-forms equivalence over

F reduces to F-algebra isomorphism. More interestingly, we prove a converse: for any

field F, finite dimensional commutative F-algebra isomorphism reduces to F-cubic

forms equivalence. Thus, cubic forms equivalence seems to be the “hardest” case of

forms equivalence and subsumes the isomorphism problem of algebras. Moreover,

new insights into cubic forms might help us in tackling the graph isomorphism

problem as graph isomorphism reduces to commutative F-algebra isomorphism, thus,

reduces to F-cubic forms equivalence over any field F.

We study the cubic forms obtained from F-algebras (thus, from graphs too) and

show that they satisfy the known notions of indecomposability and regularity (or

non degeneracy). We conjecture that cubic forms equivalence over Q is decidable

and such an algorithm might give us new insights into the structure of cubic forms.
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The first question that we ask towards this end: If cubic forms f, g are equivalent

over R and are equivalent modulo pk, for all primes p (except finitely many primes)

and k ∈ Z≥1, then are they equivalent over Q?

For any field F, can we reduce r-forms equivalence, over F, to commutative F-

algebra isomorphism? Currently, we know such a reduction only for fields F having

r-th roots.

6.3 Identity Testing

We studied a special case of the identity testing problem in Chapter 4. We gave

the first deterministic, polynomial-time identity test for ΣΠΣ arithmetic circuits of

bounded top fanin. Suppose the given circuit C, over a field F, has top fanin k,

total degree d and n variables. Then the problem of identity testing is equivalent to

testing whether:

F[x]/(C(x)) ∼= F[x]

Using the nice structure of the circuit C, we reduce this ring isomorphism question

to at most d recursive questions of the form:

Ri[x]/(Ci(x)) ∼= Ri[x]

where, Ci is of smaller fanin and Ri is a local ring of dimension at most d times that

of the older one. This easily gives us a complexity of poly(dk, n).

The obvious question is: how can we generalize this algebraic solution to un-

bounded fanin k? In our algorithm the application of linear transformations on C
was very useful and we hope that it will be instrumental in derandomizing identity

testing for ‘larger’ k too.

Dvir and Shpilka [DS05] in their study of the structure of ΣΠΣ identities con-

jectured that: if a minimal, simple, ΣΠΣ circuit of top fanin k is zero then its rank

should be O(k). We refuted this conjecture for fields of prime characteristic by

giving minimal, simple ΣΠΣ identities having large rank. However, we believe that

the conjecture of Dvir-Shpilka might hold over fields of characteristic 0.
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6.4 Primality Testing

We studied the classical problem of primality testing in Chapter 5. We gave the

first deterministic, polynomial-time primality test. Given a number n we relate its

primality to the testing of the Frobenius map σn : a(x) 7→ a(x)n for automorphism

of the cyclotomic ring:

Rn,r := (Z/nZ)[x]/(xr − 1)

It turns out that for a “suitably” chosen r ∼ poly(log n) there is an l ∼ poly(log n)

such that: for all 1 ≤ a ≤ l, σn(x + a) = σn(x) + a in Rn,r iff σn ∈ Aut(Rn,r) iff n

is a prime.

Currently, there are many variants known based on the above idea. But none of

them are within the realm of practical usage. We make a conjecture below that has

the potential of yielding a “practical” primality test. The following conjecture was

given in [BP01] and verified for r ≤ 100 and n ≤ 1010 in [KS02]:

Conjecture 6.1 If r > log n is a prime number that does not divide n and if

(X − 1)n = Xn − 1 (mod Xr − 1, n) then either n is prime or n2 = 1 (mod r).

In Chapter 5, Theorem 5.2 gave a randomized polynomial time test to check

whether σn ∈ Aut(Rn,r) for any given coprime n and r. Is there a deterministic

polynomial time test to check this? For r = 1, such a test would give an efficient

and deterministic way to test Carmichael numbers.



Appendix A

Appendix: Useful Facts

We first collect some results related to decomposition of rings into simpler rings. A

ring R is said to be decomposable if there are subrings R1, R2 such that:

• R1 ·R2 = R2 ·R1 = 0, i.e., for all r1 ∈ R1, r2 ∈ R2, r1 · r2 = r2 · r1 = 0.

• R1 ∩R2 = {0}.

• R = R1 + R2, i.e., for every r ∈ R there are r1 ∈ R1, r2 ∈ R2 such that

r = r1 + r2.

Such a ring decomposition has been denoted by R = R1 × R2 in this thesis. The

subrings R1, R2 are called component rings of R.

Example The ring R := F[x]/(x2−x) decomposes as: R = R ·x × R · (1−x) ∼=
F × F. Here, R · x is a short-hand for the set {r · x | r ∈ R}. Note that R · x,
R · (1 − x) are subrings of R and have x, (1 − x) as their (multiplicative) identity

elements respectively.

An element r ∈ R is called an idempotent if r2 = r. The following lemma shows

how idempotents help in decomposing a commutative ring.

Lemma A.1 A commutative ring R decomposes iff R has an idempotent element

other than 0, 1.

124



125

Proof: Suppose R = R1 × R2 is a nontrivial decomposition and let the identity

element 1 of R be expressible as 1 = s+ t where s ∈ R1, t ∈ R2. Then we have:

1 · 1 = (s+ t) · (s+ t)

⇒ 1 = s2 + t2 [∵ s · t = 0]

⇒ s+ t = s2 + t2

⇒ s− s2 = t2 − t

⇒ s− s2 = 0 [∵ s− s2 ∈ R1 ∩R2 = {0}]

⇒ s is an idempotent.

Note that if s = 0 then t = 1 and then R1 = 0 (as for all r1 ∈ R1, r1 · t = 0).

Similarly, if s = 1 then R2 = 0. As R1, R2 are nonzero subrings of R we deduce

that s 6= 0, 1 and hence s is an idempotent other than 0, 1.

Conversely, suppose that s 6= 0, 1 is an idempotent of R. Then consider the

subrings R · s and R · (1 − s). Note that s, (1 − s) are the identity elements of

Rs, R(1− s) respectively. For any two elements rs ∈ Rs and r′(1− s) ∈ R(1− s):

rs · r′(1− s) = rr′(s − s2) = 0. If r ∈ Rs ∩ R(1− s) then rs = 0 and r(1− s) = 0

implying that r = 0. Finally, we can express any r ∈ R as: r = rs+ r(1− s). Thus,

R decomposes as: R = Rs×R(1− s).

The following lemma shows that a decomposition of a ring into indecomposable

rings is unique.

Lemma A.2 Let R be a ring and R1, . . . , Rk be indecomposable nonzero rings such

that:

R = R1 ×R2 × · · · ×Rk

Then this decomposition is unique up to ordering, i.e., if we have indecomposable

nonzero Sj’s such that:

R = R1 × · · · ×Rk = S1 × · · · × Sl

then k = l and there exists a permutation π on [k] such that for all i ∈ [k], Ri =

Sπ(i).
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Proof: Assume wlog that k ≥ l. Let φ1 be a homomorphism of the ring R such

that φ1 is identity on S1 and φ1(S2) = · · · = φ1(Sl) = 0. φ1 is well defined simply

because R = S1 × · · · × Sl.

Clearly, φ1(R1), φ1(R2), · · · , φ1(Rk) are all subrings of S1 and:

φ1(R) = φ1(R1) + φ1(R2) + · · ·+ φ1(Rk) = S1

Can these subrings have nontrivial intersection? Say, s1 ∈ φ1(Ri)∩ φ1(Rj) for some

i 6= j then there are some s, s′ ∈ S2 + · · ·+Sl such that s1 + s ∈ Ri and s1 + s′ ∈ Rj.

Let a be the (multiplicative) identity of R1 + · · ·+Ri−1 +Ri+1 + · · ·+Rk and b be

the identity of Ri. Then:

(s1 + s)a = 0 and (s1 + s′)b = 0 [∵ R = R1 × · · · ×Rk]

⇒ (s1 + s)a+ (s1 + s′)b = 0

⇒ s1(a+ b) + sa+ s′b = 0

⇒ s1 + (sa+ s′b) = 0 [∵ 1 = a+ b]

⇒ s1 = (sa+ s′b) = 0 [∵ s1 ∈ S1 and sa, s′b ∈ S2 + · · ·+ Sl]

⇒ φ1(Ri) ∩ φ1(Rj) = {0}, for all i 6= j ∈ [k]

Also, for any ri ∈ Ri, rj ∈ Rj, rirj = 0 implying that φ1(ri) · φ1(rj) = 0. The

properties above together mean that:

S1 = φ1(R1)× φ1(R2)× · · · × φ1(Rk)

Since S1 was assumed to be indecomposable we have that exactly one of the subrings

above is nonzero. Wlog, say, φ1(R2) = · · · = φ1(Rk) = 0 and then it is implied that

φ1(R1) = S1.

Similarly, we can define φi to be a homomorphism of the ring R such that φi is

identity on Si and φi(Sj) = 0 for all j ∈ [l] \ {i}. Then the above argument says

that there is an injective map τ : [l] → [k] such that for all i ∈ [l]:

φi(Rτ(i)) = Si and φi(Rj) = 0 for all j ∈ [k] \ {τ(i)} (A.1)

Now consider an l×k matrix D = ((δi,j)), where, δi,j = 1 if φi(Rj) = Si else δi,j = 0.

Equation (A.1) tells us that each row of D has exactly one 1. Now if k > l then D
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has more columns than rows and hence there is a zero column, say j-th, implying

that φi(Rj) = 0 for all i ∈ [l]. But this means that Rj = 0 which is a contradiction.

Hence, k = l and D has exactly one 1 in each row and column, thus making τ a

permutation.

So now we have that for any j ∈ [k], φτ−1(j)(Rj) = Sτ−1(j) and φi(Rj) = 0 for

all i ∈ [k] \ {τ−1(j)}. In other words for any j ∈ [k], Rj = Sτ−1(j).

This completes the proof of unique decomposition of rings into indecomposable

subrings.

So what is the structure of these indecomposable rings that appear in the de-

composition? Here, we sketch the form of indecomposable rings that are finite and

commutative.

Lemma A.3 Let R be a finite commutative indecomposable ring. Then,

1) R has a prime-power characteristic, say pm, for some prime p.

2) R can be expressed in the form:

R = ((Z/pmZ)[z]/(h(z))) [y1, . . . , yk]/ (ye11 , . . . , y
ek
k , h1(z, y1, . . . , yk), . . . ,

. . . , h`(z, y1, . . . , yk))

where, h(z) is irreducible over Z/pZ and hi’s are multivariate polynomials over

Z/pmZ.

Remark: The ring (Z/pmZ)[z]/(h(z)), where h(z) is irreducible over Z/pZ, is

called Galois ring. It is a finite field if m = 1.

Notice that the form of R claimed in 2) above says that the generators y1, . . . , yk

of R are nilpotents, i.e., they vanish when raised by a suitable integer.

Proof: [1)] Suppose R is a finite commutative indecomposable ring with charac-

teristic n. Suppose n non trivially factors as: n = ab, where a, b ∈ Z>1 are coprime,

then by Euclidean-gcd algorithm we have a′, b′ ∈ Z such that a′a+ b′b = 1. Then:

R = (a′a)R× (b′b)R
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(Convince yourself that this is a decomposition.) This contradiction shows that n

is a prime power, say n = pm.

Proof: [2)] We assume m = 1 for simplicity of exposition. These ideas carry

forward to larger m’s (see [McD74]). So suppose that R is an Fp-algebra and is

given in terms of basis elements b1, . . . , bn. Let g1(b1, . . . , bn), . . . , g`(b1, . . . , bn) be

the multivariate polynomials that define the multiplication operation of the ring R.

Thus, we have an expression for R as:

R ∼= Fp[x1, . . . , xn]/(g1(x1, . . . , xn), . . . , g`(x1, . . . , xn)) (A.2)

Since R is of dimension n, {1, x1, x
2
1, . . . , x

n
1} cannot all be linearly independent and,

hence, there is a polynomial f1(z) ∈ Fp[z] of degree at most n such that f1(x1) = 0

in R. Further, assume that f1 is of lowest degree. Now if f1 non trivially factors as:

f1(z) = f11(z)f12(z), where f11, f12 are coprime, then there are a1(z), a2(z) ∈ Fp[z]
such that a1f11 + a2f12 = 1 and R decomposes as:

R ∼= (a1(x1)f11(x1) ·R)× (a2(x1)f12(x1) ·R)

As R is assumed to be indecomposable we deduce that f1 is a power of an irreducible

polynomial. Say, f1(z) = f11(z)
e1 where f11 is an irreducible polynomial over Fp of

degree d1. Now we claim that there are g′1, . . . , g
′
` ∈ Fpd1 [x1, . . . , xn] such that:

R ∼= Fpd1 [x1, . . . , xn]/(x
e1
1 , g

′
1(x1, . . . , xn), . . . , g

′
`(x1, . . . , xn)) (A.3)

To prove the above claim we need the following fact:

Claim A.0.1 If f(x) is an irreducible polynomial, of degree d, over a finite field Fq
then

S = Fq[x]/(f(x)e) ∼= Fqd [u]/(ue)

Proof of Claim A.0.1. Consider the ring S ′ := (Fq[x]/(f(x)))[u]/(ue) isomorphic to

RHS. We claim that the map φ : S → S ′ which fixes Fq and maps x 7→ (x + u), is

an isomorphism.

Note that f(x+ u)e = 0 in the ring S ′ simply because f(x+ u)− f(x) = u · g(x)
for some g(x) ∈ Fq[x]. Thus, φ is a ring homomorphism from S to S ′. Next we show
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that the minimal polynomial of φ(x) over Fq is of degree de, thus, the dimension of

φ(S) is the same as that of S ′ over Fq and hence φ is an isomorphism.

Suppose g(z) :=
∑d′

j=0 ajx
j is the least degree polynomial over Fq such that

g(x+ u) = 0 in S ′. This means that in S ′:

0 = g(x+ u) = g(x) + u · g(1)(x) + u2 · g
(2)(x)

2!
+ · · ·+ ue−1 · g

(e−1)(x)

(e− 1)!

where, g(i)(x)
i!

=
∑d′

j=i
j(j−1)···(j−i+1)

i!
ajx

j−i. But since 1, u, . . . , ue−1 are linearly inde-

pendent over Fq[x]/(f(x)). We have:

g(x) = g(1)(x) = · · · = g(e−1)(x) = 0 over Fq[x]/(f(x))

Whence we get, f(z)e|g(z) which by the definition of g means that g(z) = f(z)e.

Thus, φ is an isomorphism from S to S ′. �

From the above claim we now deduce:

R ∼= Fp[x1, . . . , xn]/(f11(x1)
e1 , g1(x1, . . . , xn), . . . , g`(x1, . . . , xn))

∼= Fpd1 [u, x2, . . . , xn]/(u
e1 , g′1(u, x2, . . . , xn), . . . , g

′
`(u, x2, . . . , xn))

∼= Fpd1 [x1, x2, . . . , xn]/(x
e1
1 , g

′
1(x1, x2, . . . , xn), . . . , g

′
`(x1, x2, . . . , xn))

This new ring which we obtained has x1 as a nilpotent. We can now consider

the lowest degree polynomial f2(z) ∈ Fpd1 [z] such that f2(x2) = 0 in R. The above

process when repeated on f2, x2 in place of f1, x1 gives us that there are d2, e2 ∈ Z≥1

and g′′1 , . . . , g
′′
` ∈ Fpd1d2 [x1, . . . , xn] such that:

R ∼= Fpd1d2 [x1, . . . , xn]/(x
e1
1 , x

e2
2 , g

′′
1(x1, . . . , xn), . . . , g

′′
` (x1, . . . , xn))

Continuing this way we get that there is a d ∈ Z≥1 and polynomials h1, . . . , h` ∈
Fpd [x1, x2, . . . , xn] such that:

R ∼= Fpd [x1, . . . , xn]/(x
e1
1 , . . . , x

en
n , h1(x1, . . . , xn), . . . , h`(x1, . . . , xn))

Remark: Note that the above proof can be viewed as an algorithm to decompose

a finite dimensional commutative ring, given in basis form, into indecomposable
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rings. It is indeed a deterministic polynomial time algorithm given oracles to integer

and polynomial factorization.

Let us now see a structural property of commutative indecomposable rings.

Lemma A.4 For a field F, consider a ring R of the form:

R = F[x1, . . . , xn]/(x
e1
1 , . . . , x

en
n , h1(x1, . . . , xn), . . . , h`(x1, . . . , xn))

Then,

1) R is indecomposable.

2) R has a unique maximal ideal M and M = set of nilpotents of R.

Proof: [1)] Any element r of R looks like a0 + a1(x)x1 + · · · + an(x)xn, where,

a0 ∈ F and a1(x), . . . , an(x) ∈ F[x1, . . . , xn].

Suppose a0 = 0. Since, xe11 = · · · = xen
n = 0 we have that:

re1+···+en = (a1(x)x1 + · · ·+ an(x)xn)
e1+···+en

= 0

Suppose a0 6= 0. Let r0 := r − a0 and e := e1 + · · ·+ en. Then we have:

(a0 + r0)(a
e
0 − ae−1

0 r0 + · · ·+ (−1)e−1a0r
e−1
0 + (−1)ere0) = ae+1

0 + (−1)ere+1
0

= ae+1
0 [∵ re0 = 0]

∈ F∗

⇒ r ∈ R∗

Thus, every element r of R is either a nilpotent or a unit depending upon whether

a0 = 0 or not.

Now suppose R is decomposable. By Lemma A.1 there has to be a nontrivial

idempotent t ∈ R. But we have:

t2 = t

⇒ t(t− 1) = 0

⇒ t = 0 or 1 [∵ t or (t− 1) is a unit]
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This contradiction shows that R is indecomposable.

Proof: [2)] Define a set M := R \R∗. As shown above M is the set of nilpotents

of R and hence is an ideal. M is maximal because any element outside it is a unit.

M is unique because it contains all the non-units of R.

Now we consider the special form of local rings that appear in Equation (4.7)

and show how to do computations in that ring in an “efficient” way.

Lemma A.5 Let us define a sequence of local rings, over a field F, as:

S0 := F having maximal ideal M0 = 0

S1 := S0[x1]/(x
e1
1 ) having maximal ideal M1 = (x1) = x1 · S1

...

Sk := Sk−1[xk]/ ((xk + rk,1) · · · (xk + rk,ek
)) , where, rk,1, . . . , rk,ek

∈Mk−1.

Also, the maximal ideal of Sk is Mk = (x1, . . . , xk)

Define Di := e1 · · · ei, for all i ∈ [k]. Then the addition operation in Sk takes time

O(Dk) and the multiplication operation in Sk takes time O(kD2
k), assuming field

operations in F take constant time.

Proof: Inductively we can show that Sk is a local ring. Since (xk + rk,1) · · · (xk +

rk,ek
) = 0 and rk,1, . . . , rk,ek

∈Mk−1 we have that, in the ring Sk:

xek
k = rk−1x

ek−1
k + · · ·+ r1xk + r0 for some rk−1, . . . , r0 ∈Mk−1

As rk−1, . . . , r0 are nilpotents in Sk we deduce from the above equation that xk is

a nilpotent too and hence Sk is a local ring with the ideal of nilpotents equal to

(x1, . . . , xk).

Assume that the addition operation in Sk−1 takes time: O(Dk−1). Let r :=

(αek−1x
ek−1
k + · · · + α1xk + α0) and r′ := (α′ek−1x

ek−1
k + · · · + α′1xk + α′0) be two

elements in Sk such that for all 0 ≤ i ≤ ek − 1, αi, α
′
i ∈ Sk−1. Now the addition

operation: r+ r′ entails computing ek additions (of the form αi+α′i) in Sk−1. Thus,

addition in Sk takes time: ek ·O(Dk−1) = O(Dk).



132

Assume that the multiplication operation in Sk−1 takes time: O((k − 1)D2
k−1).

Then the multiplication operation: r ·r′ entails e2k multiplications (of the form αi ·α′j)
in the ring Sk−1 and those many additions. Hence, the time taken is:

e2kO((k − 1)D2
k−1) + e2kO(Dk−1) = O((k − 1)D2

k) + ekO(Dk)

= O(kD2
k)

The next lemma gives an important property of the multiplicative group of the

ring: Z/psZ.

Lemma A.6 Let p be a prime and G := (Z/psZ)∗ be the multiplicative group of

invertible elements modulo ps. Then,

• If p = 2 then G is a cyclic group only if s ∈ {1, 2}.

• If p ≥ 2 then G is always a cyclic group.

Proof: See [NZM91].

It is easy to see that a finite field Fq has to be of size q = pm, for some prime p.

The following lemma describes some more interesting properties of finite fields.

Lemma A.7 Let Fq be a finite field. Then,

• F∗
q is a cyclic group of size (q − 1).

• The automorphism group of the ring Fq is generated by the Frobenius map

σq : α 7→ αq, i.e., Aut(Fq) = (σq).

• For any r coprime to q, the polynomial (xr − 1) factorizes into irreducible

polynomials over Fq as:

(xr − 1) =
∏
di|r

φ(di)

odi
(q)∏

j=1

fi,j(x), where, fi,j is of degree odi
(q)
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Proof: See [LN86] for the proofs.

Suppose we are given a multivariate polynomial f ∈ F[x1, . . . , xn] having total

degree d. Then there exists a linear transformation τ on the variables x1, . . . , xn

that transforms f to a multivariate polynomial τ(f) having a nonzero term xd1. This

observation was useful in the proofs of chapter 5.

Lemma A.8 Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] has total degree d. Then there is an

invertible linear transformation τ : Fn → Fn such that f(τ(x1), · · · , τ(xn)) has a

nonzero coefficient of xd1. (F is the algebraic closure of F.)

Proof: Collect the degree d terms of f in the polynomial:

fd(x1, . . . , xn) :=
∑

i1+···+in=d

ai1,...,inx
i1
1 · · ·xinn , where, ai1,...,in ’s ∈ F

By the hypothesis, fd 6= 0. If we apply a linear transformation τ on f such that:

τ(xi) =
∑

1≤j≤n

τi,jxj, where, τi,j ∈ F

Then the coefficient of xd1 in the polynomial f(τ(x1), · · · , τ(xn)) is:∑
i1+···+in=d

ai1,...,inτ
i1
1,1 · · · τ inn,1

which is nothing but fd(τ1,1, . . . , τn,1). By the Schwartz-Zippel lemma we have that

there are values for τ1,1, . . . , τn,1 ∈ F such that fd(τ1,1, . . . , τn,1) 6= 0 and, hence, the

coefficient of xd1 in the polynomial f(τ(x1), · · · , τ(xn)) is nonzero.

Suppose R is a ring, I is an ideal of R and f ∈ R[z]. Then a factorization of

f(z) modulo I can be “lifted” to one modulo I2 by a well known trick in algebra

called Hensel’s Lifting. This is a useful trick in many situations, for example, given

a root of f(x) modulo p we can lift it to a root of f(x) modulo p2.

Lemma A.9 (Hensel’s Lifting) Let R be a ring and I be an ideal. Let f(z) ∈
R[z] and f = gh (mod I) be a factorization of f over R/I such that there exists

a, b ∈ R[z], ag + bh = 1 (mod I). Then,
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• There are easily computable g∗, h∗, a∗, b∗ ∈ R[z] satisfying:

f = g∗h∗ (mod I2)

g∗ = g (mod I) and h∗ = h (mod I)

a∗g∗ + b∗h∗ = 1 (mod I2)

• Also, g∗, h∗ above are unique in the sense that for any other g′, h′ satisfying

the above conditions we have some u ∈ I such that:

g′ = g∗(1 + u) (mod I2)

h′ = h∗(1− u) (mod I2)

Proof: See [LN86] for the proof.

We can define the ring of fractions Sfr of a ring S as the set of elements u
v
, where,

u, v ∈ S and v is not a zero divisor of S. Clearly, Sfr is also a ring. We will be

considering polynomials over rings S and Sfr. A polynomial f(z) ∈ S[z] is called

monic if its leading coefficient is a unit of S. The following is a well known lemma

that relates polynomial factorization over the ring S to its ring of fractions Sfr.

Lemma A.10 (Gauss’ Lemma) Suppose f, g ∈ S[z] and h ∈ Sfr[z] such that

f = gh. If g is monic then h ∈ S[z].

Proof: A proof for the case of S = Z can be found in any algebra text, eg.,

[NZM91]. The proof for general S is similar in spirit.

It was shown by Hendrik Lenstra, Jr. that if Fermat’s little test modulo n passes

for all a ≤ 4(log2 n) then n has to be square-free.

Lemma A.11 (Lenstra) Let n be a positive integer. If an = a (mod n), for all

1 ≤ a ≤ 4(log2 n), then n is square-free.
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Proof: Suppose n = pkm where prime p does not divide m. Suppose k ≥ 2. We

have that:

ap
km = a (mod n)

⇒ ap
km = a (mod p2)

⇒ apm = a (mod p2)

[∵ ap
2−p = aφ(p2) = 1 (mod p2). Thus, ap = ap

2

= · · · = ap
k

(mod p2).]

Now the above gives us that apm = a (mod p) implying that am = a (mod p). Thus,

there is an integer b such that am = a+ bp and now raising both sides by p gives us

that: apm = ap (mod p2). Thus,

ap = a (mod p2), for all 1 ≤ a ≤ 4(log2 n)

The equation xp = x (mod p2) can have at most p distinct solutions. Since all the

1 ≤ a ≤ 4 log2 p numbers are its solution, so will be their products. But the bound

in [CEG83] shows that the (4 log2 p)-smooth numbers smaller than p2 are more than

p, which gives us a contradiction. Thus, k = 1 and n is square-free.

We give below some interesting identities in Q(ζr), where ζr is a primitive r-th

root of unity. Note that Qr(y) := yr−1
y−1

is a polynomial having ζr as a root.

Lemma A.12 Let n be an odd integer and r be an odd prime not dividing n. Let

B = 16−1(mod r). Then,

1) (1− x)(1− x2) · · · (1− xr−1) = r (mod Qr(x)).

2)
(
xB(1− x)(1− x2) · · · (1− x

r−1
2 )
)2

= (−1)
r−1
2 · r (mod Qr(x)).

3) xBn(1−xn)(1−x2n) · · · (1−x r−1
2
n) =

(
n
r

)
xB(1−x)(1−x2) · · · (1−x r−1

2 ) (mod Qr(x)).

Proof: [1)] Since x is an r-th primitive root of unity we have that Qr(y) factorizes

as:

Qr(y) = (y − x) · · · (y − xr−1) (mod Qr(x))
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Substituting y = 1 above we get: (1 − x)(1 − x2) · · · (1 − xr−1) = r (mod Qr(x)).

Proof: [2)] Starting from the identity we got above, we deduce:

(1− x)(1− x2) · · · (1− xr−1) = r (mod Qr(x))

⇒ (1− x)(1− x2) · · · (1− x
r−1
2 )(1− x

r+1
2 ) · · · (1− xr−1) = r (mod Qr(x))

⇒ (1− x)(1− x2) · · · (1− x
r−1
2 )x

r+1
2 (x

r−1
2 − 1) · · ·xr−1(x− 1) = r (mod Qr(x))

⇒ (−1)
r−1
2 · x( r+1

2
)+···+(r−1)

(
(1− x)(1− x2) · · · (1− x

r−1
2 )
)2

= r (mod Qr(x))

⇒
(
xB(1− x)(1− x2) · · · (1− x

r−1
2 )
)2

= (−1)
r−1
2 · r (mod Qr(x))

Proof: [3)] Consider the set T := {1 · n, 2 · n, . . . , r−1
2
· n}. Let s1, . . . , su ∈ T

be the numbers that are congruent (modulo r) to a number between 1 and r
2
. Let

l1, . . . , lv be the numbers that are congruent (modulo r) to a number between r
2

and

(r − 1). It is easy to show that the set {s1, . . . , su, (r − l1), . . . , (r − lv)}(modulo r)

has all the elements
[
1.. r−1

2

]
. We now have:

r − 1

2
! = s1 · · · su · (r − l1) · · · (r − lv) (mod r)

= (−1)v · s1 · · · su · l1 · · · lv (mod r)

= (−1)v · n · 2n · · · r − 1

2
n (mod r)

= (−1)v · n
r−1
2 ·
(
r − 1

2
!

)
(mod r)

= (−1)v ·
(
n

r

)
·
(
r − 1

2
!

)
(mod r)

Finally, we get that:

(−1)v =

(
n

r

)
(A.4)

Also, s1 + · · ·+su+ l1 + · · ·+ lv = n+2n+ · · ·+ r−1
2
n = (r+1)(r−1)

8
n = −2Bn (mod r).

And s1 + · · ·+ su− l1− · · · − lv = 1 + 2 + · · ·+ r−1
2

= (r+1)(r−1)
8

= −2B (mod r). By

taking the difference of the two equations we get that:

l1 + · · ·+ lv = (−Bn+B) (mod r) (A.5)
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Now we have enough ‘machinery’ to tackle the original problem:

xBn(1− xn)(1− x2n) · · · (1− x
r−1
2
n)

≡ xBn(1− xs1) · · · (1− xsu)(1− xl1) · · · (1− xlv) (mod Qr(x))

≡ (−1)v · xBn+l1+···+lv(1− xs1) · · · (1− xsu)(1− xr−l1) · · · (1− xr−lv) (mod Qr(x))

≡
(
n

r

)
xB(1− x)(1− x2) · · · (1− x

r−1
2 ) (mod Qr(x)) [by Equations (A.4) and (A.5)]

The following lemma states the famous Quadratic Reciprocity Law which gives

a beautiful relation between the Jacobi symbols:
(
m
n

)
and

(
n
m

)
.

Lemma A.13 (Quadratic Reciprocity) If m and n are two odd and coprime

positive integers then, (
m

n

)
·
(
n

m

)
= (−1)

m−1
2

·n−1
2

Proof: See [NZM91].

The following lemma lists two useful results regarding the polynomial hierarchy

(PH): BPP is low for Σ2 and the Swapping lemma.

Lemma A.14 1) BPP ∈ Σ2 ∩ Π2.

2) Let M be a polynomial time deterministic Turing machine and c be a positive

constant then there is a polynomial time deterministic Turing machine M ′ and

a positive c′ such that:

L =

{
x | (∃y ∈ {0, 1}c)Probz∈{0,1}c [M(x, y, z) accepts] ≥ 2

3

}
=

{
x | Probz∈{0,1}c′ [(∃y ∈ {0, 1}c) M ′(x, y, z) accepts] ≥ 2

3

}
Proof: See [Sch88].
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