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Abstract—The memory wall continues to be a major perfor-
mance bottleneck. While small on-die caches have been effective
so far in hiding this bottleneck, the ever-increasing footprint of
modern applications renders such caches ineffective. Recent ad-
vances in memory technologies like embedded DRAM (eDRAM)
and High Bandwidth Memory (HBM) have enabled the integra-
tion of large memories on the CPU package as an additional
source of bandwidth other than the DDR main memory. Because
of limited capacity, these memories are typically implemented
as a memory-side cache. Driven by traditional wisdom, many of
the optimizations that target improving system performance have
been tried to maximize the hit rate of the memory-side cache.
A higher hit rate enables better utilization of the cache, and is
therefore believed to result in higher performance.

In this paper, we challenge this traditional wisdom and present
DAP, a Dynamic Access Partitioning algorithm that sacrifices
cache hit rates to exploit under-utilized bandwidth available at
main memory. DAP achieves a near-optimal bandwidth par-
titioning between the memory-side cache and main memory
by using a light-weight learning mechanism that needs just
sixteen bytes of additional hardware. Simulation results show
a 13% average performance gain when DAP is implemented on
top of a die-stacked memory-side DRAM cache. We also show
that DAP delivers large performance benefits across different
implementations, bandwidth points, and capacity points of the
memory-side cache, making it a valuable addition to any current
or future systems based on multiple heterogeneous bandwidth
sources beyond the on-chip SRAM cache hierarchy.

Index Terms—DRAM cache; memory system bandwidth; ac-
cess partitioning;

I. INTRODUCTION

Despite advances in CPU architecture and memory technol-
ogy, the memory wall continues to remain a major bottleneck to
application performance. The problem is further exacerbated by
the ever-increasing bandwidth demand and working set of appli-
cations. Large eDRAM [1], [17], [21], [22], [31], [42], [45] and
HBM [24], [46] memory-side caches located between the DDR
main memory and on-chip SRAM cache hierarchy have been
proposed as a solution to address this problem. These caches
are much larger than traditional SRAM caches and can deliver
4×-8× higher bandwidth than the DDR main memory [4], [25].
Like traditional caches, most of the architecture optimizations
for these memory-side caches have been focused on maximizing
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hit rates [26], minimizing hit latency [25], [39], or reducing
additional overheads [4].

In this paper, we make the key observation that increasing the
cache hit rate above a certain threshold no longer improves de-
livered bandwidth as the system bandwidth gets saturated to the
cache bandwidth. At this point, however, the bandwidth from the
main memory remains unused. Augmenting the cache bandwidth
with additional bandwidth from the main memory may improve
system performance. This is more useful for memory-side caches
because their bandwidth is only 4×-8× of that of DDR main
memory and latency is just slightly better [4], [26]; SRAM
caches, on the other hand, have orders of magnitude better
latency and bandwidth characteristics than DDR main memory.
However, this augmentation needs to be carefully managed as
the main memory is tightly coupled with the regular maintenance
operations of the memory-side cache.

This paper, hence, presents DAP, a Dynamic Access Parti-
tioning system, that improves delivered bandwidth by utilizing
all available bandwidth sources effectively. While attempting
to maximize delivered bandwidth, DAP may even sacrifice the
hit rate of the memory-side cache. Specifically, we make the
following contributions.

1) We present a simple, yet rigorous, analytical model to
understand the optimal bandwidth partitioning in a system
with multiple bandwidth sources.

2) Guided by this analytical model, we present DAP, a light-
weight learning mechanism, that intelligently recruits
under-utilized bandwidth at main memory to improve sys-
tem performance. DAP is the first holistic and analytically
complete solution to maximizing system bandwidth from
multiple bandwidth sources.

3) We demonstrate DAP’s natural scaling to different
memory-side cache architectures by examining its opera-
tions when the memory-side cache is based on die-stacked
HBM DRAM like the sectored DRAM cache [25], or the
Alloy cache [39], both of which have a single set of
bandwidth channels for serving reads and writes. We also
explore DAP on sectored eDRAM caches [42] that have
two independent sets of bandwidth channels for serving
reads and writes.

Our results show that on 44 multi-programmed workloads, DAP
improves the performance of an eight-core system with 4 GB of



die-stacked HBM DRAM cache having 102.4 GB/s bandwidth
and a dual-channel DDR4-2400 main memory by 13%, while
adding only sixteen bytes of hardware. We also show that DAP
elegantly overcomes several fundamental flaws in the current
memory-side cache optimizations and scales seamlessly to future
memory-side caches with higher bandwidth and capacity.

II. BACKGROUND AND MOTIVATION

Integrating stacked DRAM or eDRAM caches on the CPU
package can help scale the memory wall. However, cost and
technology constraints limit the capacity of these memories to
a few hundred megabytes in case of eDRAM [31] and a few GB
for DRAM cache [4]. Hence, such memories are always used
in conjunction with a commodity DRAM of higher capacity,
but much lower bandwidth. In such a capacity-limited scenario,
using these memories as a memory-side cache is more attractive
than using them as OS-visible memory. For brevity, we assume
that the stacked or in-package memory is a memory-side cache,
although the algorithms described can easily be extended to
OS-visible implementations. For this work, we focus on three
different implementations of the memory-side cache.
Die-stacked Sectored DRAM Cache. Sectored or sub-blocked
caches use an allocation unit (referred to as a sector) ranging
in size from 512 bytes to 4 KB. Each sector is composed
of a number of contiguous conventionally-sized cache blocks
(64 bytes). The data fetched from main memory on a demand
miss is only a cache block. Therefore, the sectored cache pro-
posals can simultaneously optimize the main memory bandwidth
requirement and the tag store size [13], [18], [23], [25], [26],
[33], [37], [38], [40], [47], [51], [52]. The metadata for each
sector is stored in the DRAM cache. Hence, additional metadata
reads and updates are needed. A small set-associative SRAM tag
cache [4], [19], [36], [50] can be used to reduce these bandwidth
overheads.
Die-stacked Non-sectored DRAM Cache. Alloy Cache [39]
proposes to organize the DRAM cache as a direct-mapped cache
with tag and data (TAD) of a cache block fused and maintained
together in the DRAM array. On a lookup, one TAD unit is read
from DRAM and used to determine a hit or a miss. This removes
the serialization latency of the tag and data, thereby reducing the
overall latency of hits. However, accessing a TAD (72B) instead
of just data (64B) reduces the useful data bandwidth available
in the alloy cache. Hence, alloy cache sacrifices bandwidth for
improved latency. A recent proposal (BEAR) addresses a few
bandwidth inefficiencies of the Alloy cache [4].
Sectored eDRAM Cache. Intel Crystalwell and Skylake archi-
tectures implement up to 128 MB sectored embedded DRAM
caches with all tags on die [17], [22], [31], [42]. Unlike DRAM
caches that have a single set of channels for serving reads and
writes, the eDRAM caches have two separate sets of channels
for serving reads and writes. Its operation is otherwise similar to
a sectored DRAM cache.

A. Bandwidth and Hit Rate

Memory-side cache architectures are typically optimized for
average access latency. Predictors and prefetchers have been pro-
posed to further hide memory latency and improve hit rates [26],
[39]. However, we should note that the primary benefit of a
memory-side cache is its bandwidth and not the latency [4],

[42]. To understand the bandwidth delivery, we experiment with
a simple read bandwidth kernel that streams through read-only
arrays at different target hit rates of the memory-side cache.
We consider two different architectures for the memory-side
cache. The first one, based on HBM DRAM, has a bi-directional
102.4 GB/s bus to handle both reads and writes. The second one,
based on an eDRAM cache, has separate 51.2 GB/s channels
for reads and writes. In both these architectures, 38.4 GB/s
two-channel DDR4 is used as main memory.1 For simplicity,
we assume all memory-side cache tags on-die and no metadata
maintenance overheads for the memory-side caches. Figure 1
shows the bandwidth delivered as the hit rate in the cache is
increased.
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Fig. 1. Delivered bandwidth against memory-side cache hit ratio.

In the case of HBM DRAM cache, Figure 1 shows that the
delivered bandwidth increases initially as the hit rates increase.
In this region, the main memory limits the bandwidth and as the
hit rates increase, more traffic is served by the higher bandwidth
memory-side cache, thereby increasing the delivered bandwidth.
At around 70% hit rate, the bandwidth delivered is close to the
cache bandwidth. At this cache hit rate, 70% of the reads are
served by cache bandwidth, and 30% by memory bandwidth.
However, the cache fills arising from the 30% read misses reduce
the useful cache bandwidth. After this point, more requests are
served by the memory-side cache and read miss fills reduce.
At 100% hit rate, all requests are served by the memory-side
cache and the main memory bandwidth is completely unused.
The overall delivered bandwidth is almost constant from 70% to
100% hit rate because the bandwidth contribution from the main
memory reduces as hit rates increase.

The case of eDRAM cache is even more interesting. Figure 1
shows that once the hit rate increases beyond 50%, there is
actually a loss in delivered bandwidth. At 50% hit rate, half of
the requests are satisfied by the main memory and half by the
eDRAM cache’s read channels. We should note that the eDRAM
cache has separate write channels to handle the fills. Hence,
unlike the DRAM cache, the fills arising from the read misses are
served by the eDRAM cache’s write channels and do not reduce
the read bandwidth of the cache. As a result, the overall delivered
read bandwidth is the sum of the delivered bandwidth from the
main memory and the eDRAM read channels. However, at 100%
hit rate all requests have to be served by the eDRAM cache,
and hence, the bandwidth saturates to the eDRAM cache’s read
bandwidth. This phenomenon is also seen on real benchmarks.
The top panel in Figure 2 shows the performance impact of
doubling the eDRAM memory-side cache from 256 MB to
512 MB in an eight-core system for twelve bandwidth-sensitive
benchmarks that were run in rate-8 mode (eight copies of each

1 Simulation framework is discussed in Section V.



benchmark run on eight cores). Also shown is the drop in the
miss rate with increased eDRAM cache capacity (bottom panel).
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Fig. 2. Top panel: Weighted speedup with a 512 MB eDRAM cache
normalized to a 256 MB eDRAM cache. Bottom panel: Drop in miss rate
while going from a 256 MB eDRAM cache to a 512 MB eDRAM cache.

As expected, the performance of most applications improves
significantly with significant drop in miss rates. However,
gcc.s04 gains only 5% when its miss rate drops by almost
20%, and omnetpp suffers a 4% drop in performance even
though there is a 5% drop in miss rate. These results clearly
indicate that merely improving the hit rate or latency of the
memory-side caches may not yield the optimal performance.
For the best outcome, we need to utilize all available sources
of bandwidth effectively. To solve this optimization problem, we
first develop an analytical model to understand how bandwidth
is delivered in systems with multiple sources of bandwidth.

III. BANDWIDTH EQUATION

Consider a system with n distinct, non-blocking, parallel
sources of bandwidth. Let the number of accesses served by
these n sources be A1, A2, . . . , An. Then A =

∑n
i=1Ai, is

the total number of accesses that have to be satisfied by these
sources. Let the bandwidth of the sources be B1, B2, . . . , Bn

expressed as number of accesses per unit time, where each access
transfers a fixed amount of data (64 bytes in this study) over
the channels. In this section, we answer the following question:
given the bandwidth of each bandwidth source and the total
number of accesses that the bandwidth sources serve, how should
the accesses be distributed across the bandwidth sources so that
the overall bandwidth delivered by the system is maximized?

We know that bandwidth is work done divided by the
time taken to complete the work. The time taken to serve
A accesses together by all sources is given by T =
max(A1/B1, A2/B2, . . . , An/Bn). If we denote Ai/A by fi
(the fraction of work done by source i), the overall delivered
bandwidth is:

B =
A

T
=

1

max(f1/B1, f2/B2, . . . , fn/Bn)
. (1)

Equation 1 can be simplified to

B = min(B1/f1, B2/f2, . . . , Bn/fn). (2)

To understand Equation 2, let us consider a simple example
of a system comprising of two different memory modules, M1

and M2, one delivering 102.4 GB/s and the other delivering
51.2 GB/s. If all accesses go to M1 (f1 = 1, f2 = 0), then
the delivered bandwidth will be 102.4 GB/s. If exactly half of
the accesses go to each memory (f1 = 0.5, f2 = 0.5), then
Equation 2 shows that the delivered bandwidth of the system
will only be 102.4 GB/s, bottlenecked by M2. It also shows that
M1 is underutilized and the system is imbalanced. This simple
observation leads to a powerful conclusion that we derive in the
following.

We note that maximizing B would automatically minimize
T = A/B, given a constant A. Therefore, we can succinctly
state the optimization problem that we strive to solve: maximize
min(B1/f1, B2/f2, . . . , Bn/fn) subject to

∑n
i=1 fi = 1. Let

min(B1/f1, B2/f2, . . . , Bn/fn) = λ. Therefore, for all i,
Bi/fi ≥ λ or λfi ≤ Bi. Summing up on both sides of
this inequality yields the upper bound for λ: λ ≤

∑n
i=0Bi.

Therefore, the maximum possible value of λ is
∑n

i=0Bi leading
to

maxmin(B1/f1, B2/f2, . . . , Bn/fn) =

n∑
i=0

Bi. (3)

This is attained when fi = Bi/
∑n

i=0Bi and B1/f1 =
B2/f2 = · · · = Bn/fn =

∑n
i=0Bi. This solution also matches

with the intuition that the maximum delivered bandwidth of the
system is the sum total of the bandwidths available from different
sources. Therefore, we conclude that to maximize the delivered
bandwidth, we need to make sure that B1/f1 = B2/f2 =
· · · = Bn/fn. In other words, the accesses should be distributed
to the different bandwidth sources in the proportion of their
bandwidths. In our simple example discussed above, this means
sending 2

3 rd accesses toM1 and 1
3 rd accesses toM2.M1 should

do twice the work as compared to M2, since M1 has double the
bandwidth.

The calculation for bandwidth is slightly more involved for
our target systems with memory-side caches backed up by main
memory. This is because apart from serving accesses from the
CPU, some part of the cache and main memory bandwidth is
taken away by maintenance operations like read miss fills, dirty
evictions, etc..

Let us denote the actual volume of accesses served by
the bandwidth sources (including maintenance accesses) by
Ã1, Ã2, . . . , Ãn, where Ãi ≥ Ai ∀ i. We need to maximize
min(B1/f̃1, B2/f̃2, . . . , Bn/f̃n) subject to

∑n
i=1 f̃i = C ≥ 1,

where f̃i = Ãi/A and
∑n

i=0 Ãi = CA. In other words, C
is the overall access volume inflation factor due to additional
maintenance accesses. In this more general case also, it can
be shown that the access partitioning algorithm that decides f̃i
dynamically ∀ i must attempt to converge on

B1/f̃1 = B2/f̃2 = · · · = Bn/f̃n. (4)

The maximum delivered bandwidth in this case is∑n
i=0Bi/C. Therefore, to maximize system bandwidth,

we not only need to partition accesses appropriately according to
Equation 4, but also need to reduce maintenance overhead (C).

To summarize, in order to improve the performance of
memory-side caches, we need to 1) partition total accesses (in-
cluding maintenance accesses) between the memory-side cache
and the main memory in the ratio of their bandwidths and 2)
reduce maintenance overheads. Guided by Equation 4, we now



explore dynamic access partitioning (DAP) to achieve optimal
system bandwidth.

IV. DYNAMIC ACCESS PARTITIONING

The goal of DAP is to detect execution phases where the
cache bandwidth is a bottleneck and direct some of the traffic
from the cache to the main memory while satisfying Equation 4.
To achieve this, DAP first needs to learn the system bandwidth
profile and find out whether partitioning is needed. In phases
where the main memory is a bottleneck (low memory-side cache
hit rate) or the bandwidth demand from the cores is low, DAP
should not partition any accesses. The second case is important
because needless partitioning when the demand is lower than
the cache bandwidth would incur the higher latency of the main
memory although the delivered bandwidth remains the same.
This may result in performance degradation.

To learn the temporal behavior of bandwidth demand, the
execution is divided into windows of lengthW CPU cycles. DAP
observes the bandwidth demand to the memory-side cache and
the main memory in window N . If the number of accesses to
the memory-side cache is higher than what the cache bandwidth
can serve, partitioning is invoked in window N + 1 based on
the estimates of bandwidth demand collected in the previous
window. The length of a window cannot be too large as the
bandwidth profile may change from windowN to windowN+1.
Likewise if W is too small, spurious bursts in bandwidth may
be learned as phases of high bandwidth demand. However, in
general, a relatively small window size of length few tens of CPU
cycles is expected to work best because access partitioning at a
very fine grain is important for achieving instantaneous optimal
bandwidth balance between the memory-side cache and the main
memory.

Once DAP has learned that partitioning is needed, it uses four
different techniques to maximize the impact.
(i) Fill Write Bypass (FWB) drops incoming read miss fills to
the memory-side cache to reduce the bandwidth demand. While
these drops have no immediate impact on the main memory
bandwidth, they may reduce the hit rate of the cache in future.
Note that fill write bypass is different from general cache by-
passing that targets potentially dead blocks in order to improve
hit rates [2], [5], [10], [11], [12], [28], [29], [30], [48].
(ii) Write Bypass (WB) steers a fraction of incoming L3 cache
dirty evictions to the main memory instead of writing to the
memory-side cache. In the baseline, these would have been
written to the memory-side cache. If the cache block is present
in the memory-side cache, it needs to be invalidated when write
bypassing is enabled for the block. Unlike fill write bypass, write
bypass needs main memory bandwidth as the bypassed blocks
have to be written to the main memory.
(iii) Informed Forced Read Miss (IFRM) forces clean hits in
the cache to be served out of the main memory. This alleviates
pressure at the memory-side cache but forces reads to be served
at a higher memory latency. However, as our results indicate in
the later sections, the overall bandwidth improvement signifi-
cantly reduces the queuing latency for hits and improves perfor-
mance. Like write bypass, IFRM also contributes to additional
traffic to the main memory.
(iv) Speculative Forced Read Miss (SFRM) is similar to IFRM,
except that this is done speculatively even before the state of the

read hit is known. SFRM is applicable to architectures where the
metadata is fetched from the memory-side cache itself. SFRM
may end up bypassing hits to modified cache lines and hence,
may need to be re-issued, thereby wasting bandwidth.

At the beginning of a window, DAP calculates the number
of FWB, WB, IFRM, and SFRM that it needs to do in the
current window to achieve optimal partitioning. DAP stores
these estimates in four separate credit counters. A credit counter
is incremented by the computed solution of the corresponding
technique at the beginning of a window. During the rest of
the window, each application of a technique decrements the
corresponding credit counter. A technique can be applied as long
as it has non-zero credits. All credit counters are saturating.

We now show how the credit counter values in a given win-
dow are calculated for three different implementations of the
memory-side cache.

A. Algorithm for Sectored DRAM Cache
The systems with die-stacked HBM DRAM caches have two

bandwidth sources beyond the on-chip SRAM cache hierarchy.
These are the DRAM cache (memory-side L4 cache) and the
DDR main memory.

For a given window N , DAP observes the number of ac-
cesses that need to be sent to the memory-side cache (denoted
by AMS$) and those that need to be sent to main memory
(AMM ). Read hits, dirty L3 cache evictions (L4 cache writes),
reads for dirty evictions from L4 cache, fill writes, and mainte-
nance operations like metadata fetch and update contribute to
the memory-side cache accesses (AMS$). The main memory
accesses (AMM ) are composed of read misses and dirty evictions
from the memory-side cache. IfBMS$ is the effective bandwidth
of the memory-side cache (expressed in accesses per cycle), then
the number of accesses that it is capable of serving in a window
of W CPU cycles is equal to BMS$.W . Similarly, the main
memory can serve BMM .W accesses. If the number of accesses
demanded from the cache in a window is greater than what it
can supply (AMS$ > BMS$.W ), then DAP invokes access
partitioning. DAP first invokes fill write bypass because fill
bypasses do not need any immediate main memory bandwidth.
After that it invokes write bypass as the higher latency of main
memory for bypassed writes does not affect performance. Forced
read misses suffer from higher memory latency for reads, and
hence, IFRM and SFRM are attempted last.
Fill Write Bypass (FWB). If the number of fill write bypasses
is denoted by NFWB , using Equation 4 we get

BMS$

AMS$ −NFWB
=
BMM

AMM
. (5)

If we denote the constant BMS$/BMM by K, the formula can
be simplified to

NFWB = AMS$ −K.AMM . (6)

Ideally, the denominator on the right-hand side of Equation 5
would be (AMM + δ.NFWB) where δ represents the fraction
of NFWB that causes additional memory-side cache misses at
a future time. We do not include this term for two reasons.
First, we are interested in computing the optimal bandwidth
partition for the present time-window, which is too short to
experience any additional memory-side cache misses due to fill



write bypass. Including the δ.NFWB term would lead to a sub-
optimal partition of the accesses in the current window. Second,
in a future window if the memory-side cache misses increase in
volume,AMM would automatically increase leading to a drop in
NFWB , which is computed as AMS$ −K.AMM .

We note that the maximum partitioning that is needed is
AMS$ − BMS$.W , which is basically the extent by which the
request demand on the memory-side cache exceeds what it can
supply in a window of lengthW . If the value ofNFWB is greater
than it, we cap its value to this maximum value. Also, NFWB

cannot be higher than the actual number of read miss fills. If
the number of read misses observed is lower than NFWB , we
cap NFWB to the number of read misses. This means that fill
bypass is insufficient to reduce all the pressure on the memory-
side cache and other steps are needed. We, hence, attempt write
bypasses next. If NFWB is negative, it means that the main
memory is a bottleneck and we need to exit partitioning. This
is done for WB, IFRM and SFRM also.
Write Bypass (WB). We reduce the number of accesses to the
memory-side cache by NFWB i.e., AMS$ = AMS$ − NFWB ,
and then calculate additionally how many write bypasses (de-
noted by NWB) are needed. If we reduce the number of writes
to the cache by NWB , we need to increase the number of writes
to the main memory by the same amount.

BMS$

AMS$ −NWB
=

BMM

AMM +NWB

or, (K + 1)NWB = AMS$ −K.AMM

(7)

NWB cannot exceed the number of writes. If it does, it means
that the memory-side cache is still a bottleneck and, hence, we
will attempt to do forced read misses. The value of NWB will be
capped to the number of writes. Equation 7 avoids a costly divi-
sion by storing (K + 1)NWB . This makes the implementation
of this counter simple in hardware.
Informed Forced Read Miss (IFRM). The IFRM policy by-
passes read hits to clean lines. We reduce the number of ac-
cesses to the memory-side cache further by the number of
write bypasses (AMS$ = AMS$ − NWB) and increase the
number of accesses to the main memory by the number of write
bypasses (AMM = AMM+NWB). Next, we calculate the target
number of IFRM, NIFRM .

BMS$

AMS$ −NIFRM
=

BMM

AMM +NIFRM

or, (K + 1)NIFRM = AMS$ −K.AMM

(8)

The value of NIFRM can be at most the number of clean hits
observed. Our implementation of the IFRM policy does not dis-
tinguish between the latency-sensitive and the latency-insensitive
threads. A thread-aware IFRM policy would prioritize the clean
hits of the latency-insensitive threads before the latency-sensitive
ones for bypassing to the main memory.
Speculative Forced Read Miss (SFRM). The SFRM policy is
invoked for a read access to the memory-side cache even before
it is known whether the read will hit the cache, provided there is
excess main memory bandwidth available (AMM < BMM .W ).
This policy sends the read access to the main memory while
a traditional metadata fetch to the memory-side cache is hap-
pening. If the metadata lookup reveals that the block is absent
in the memory-side cache or is resident in clean state, the

response from the main memory is forwarded to the CPU. If
the block is found in the memory-side cache in dirty state, a
data read access is enqueued to the memory-side cache and
the response from the main memory is dropped. The SFRM
policy saves lookup latency for architectures with off-die tags
by trading the main memory bandwidth. The SFRM policy is
also useful in memory-side caches with on-die SRAM tag caches
because it can significantly reduce the lookup latency in the
case of a tag cache miss. DAP sets the number of speculative
forced read misses, NSFRM , to 0.8|BMM .W − AMM | and
leaves the remaining 20% main memory bandwidth for handling
any bandwidth emergency. AMM used here is assumed to be
adjusted for additional traffic arising from WB and IFRM. The
complete flow of the algorithm is shown in Figure 3.
Hardware Overheads: As is evident from Figure 3, we need
counters for number of read misses, writes, clean hits, NFWB ,
(K + 1)NWB , (K + 1)NIFRM , and NSFRM . We also need
four credit counters to execute each of the schemes. The ratio
of memory-side cache to main memory bandwidth, K, can be a
fraction. For example, for BMS$ = 102.4, and BMM = 38.4,
we have K = 8/3. We approximate K as 11/4 in this case so
that multiplication by K can be easily done in hardware. If we
restrict the maximum value of NWB to 63 and assume K to be
11/4, the maximum value of (K + 1)NWB can be contained
within an eight-bit counter. Therefore, the credit counters are of
eight-bit width. Based on these estimates, we can calculate the
total storage overhead to be only about sixteen bytes. Also, all
the calculations are off the critical path of the memory-side cache
controller and can be easily implemented.

B. Algorithm for Alloy Cache

The Alloy cache fetches a TAD from the DRAM cache before
it can do a read or a write. This leads to a significant bandwidth
bloat [4]. Since most of the writes coming from the last-level
SRAM cache are expected to hit in the much larger DRAM
cache, it is helpful to maintain a bit with each block resident
in the last-level SRAM cache indicating its presence/absence in
the Alloy cache. This bit obviates the need to fetch the TAD for
a dirty block. This optimization was proposed in BEAR [4] and
we also use it in our design.

Since the tag and state are stored along with the data in
Alloy cache, we cannot do write bypasses on hits as that would
take away Alloy cache bandwidth to invalidate the cache-line.
Similarly, fill bypasses need Alloy cache bandwidth to fetch the
TAD in order to determine if a fill would be needed. However,
to do a forced miss (IFRM), we only need to make sure that the
location of the accessed block is not dirty. To be able to know this
without fetching the corresponding TAD, we maintain a dirty bit
cache (DBC) in SRAM. Each entry of the DBC maintains the
dirty bits of a stretch of 64 consecutive Alloy cache sets (recall
that Alloy cache is direct-mapped). The entry also maintains the
group id of the stretch (the Alloy cache sets are divided into
groups of 64 consecutive sets). We organize the DBC to have
32K entries (of size twelve bytes each) and four ways. We borrow
one way of the L3 cache to accommodate the DBC (the baseline
Alloy cache has 16 ways in the L3 cache). The DBC lookup
latency is five cycles. We note that a previous study has explored
a decoupled organization of the dirty bits for the SRAM last-
level cache where each dirty bit array entry maintains a vector



From previous window, calculate 
𝐴𝑀𝑆$, 𝐴𝑀𝑀 , 𝑅𝑚 ,𝑊𝑚

Calculate Fill Write Bypass
𝑁𝐹𝑊𝐵 = 𝐴𝑀𝑆$ - 𝐾.𝐴𝑀𝑀

𝐴𝑀𝑆$ >
𝐵𝑀𝑆$.𝑊

DAP : Solve the below equation
𝐵𝑀𝑆$

𝐴𝑀𝑆$ −𝑁𝐹𝑊𝐵−𝑁𝑊𝐵 −𝑁𝐼𝐹𝑀𝑅
=

𝐵𝑀𝑀

𝐴𝑀𝑀 +𝑁𝑊𝐵 +𝑁𝐼𝐹𝑀𝑅

𝑁𝐹𝑊𝐵 = 0; 𝑁𝑊𝐵 = 0; 𝑁𝐼𝐹𝑀𝑅 = 0

N

Y

𝑁𝐹𝑊𝐵 > 𝑅𝑚
&&

𝑁𝐹𝑊𝐵 >0

(1 + 𝐾)𝑁𝑊𝐵 = 1 + 𝐾 𝑊𝑚

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝐼𝑛𝑓𝑜𝑟𝑚𝑒𝑑 𝐹𝑜𝑟𝑐𝑒𝑑 𝑀𝑖𝑠𝑠
(1 + 𝐾)𝑁𝐼𝐹𝑅𝑀 = 𝐴𝑀𝑆$ - 𝐾. (𝐴𝑀𝑀 + 

𝑊𝑚) - 𝑅𝑚 –𝑊𝑚

𝑁𝐹𝑊𝐵 = 𝑅𝑚
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑊𝑟𝑖𝑡𝑒 𝐵𝑦𝑝𝑎𝑠𝑠

(1 + 𝐾)𝑁𝑊𝐵 = 𝐴𝑀𝑆$ - 𝐾. 𝐴𝑀𝑀 - 𝑅𝑚

Y

𝑁𝑊𝐵 = 0; 𝑁𝐼𝐹𝑀𝑅 = 0
If (𝑁𝐹𝑊𝐵 < 0) 𝑁𝐹𝑊𝐵 = 0

N

(1 + 𝐾)𝑁𝑊𝐵

> (1+K) 𝑊𝑚

Y

N

𝑁𝐼𝐹𝑅𝑀 = 0

Acronyms
𝑅𝑚 = Read misses in MS$
𝑊𝑚 = Writes to MS$
𝐴𝑀𝑆$ = Accesses to MS$
𝐴𝑀𝑀 = Accesses to memory
𝑁𝐹𝑊𝐵 = Target fill write bypass
𝑁𝑊𝐵 = Target write bypass
𝑁𝐼𝐹𝑅𝑀 = Target forced read misses
𝑁𝑆𝐹𝑅𝑀 = Target speculative forced miss
Constants :
𝐾 = 𝐵𝑀𝑆$/𝐵𝑀𝑀

𝐵𝑀𝑆$ = Bandwidth of MS$
𝐵𝑀𝑀 = Bandwidth of memory
W         = Observation window

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑜𝑟𝑐𝑒𝑑 𝑀𝑖𝑠𝑠
𝑁𝑆𝐹𝑅𝑀 =0.8(𝐵𝑀𝑀 .𝑊 − 𝐴𝑀𝑀 − 𝑁𝑊𝐵 − 𝑁𝐼𝐹𝑅𝑀)

If (𝑁𝑆𝐹𝑅𝑀 < 0) 𝑁𝑆𝐹𝑅𝑀 = 0

Fig. 3. Flow of the proposed DAP algorithm for sectored DRAM caches.

of dirty bits corresponding to the blocks in some main memory
DRAM row [41]. In contrast, our DBC organization is designed
to augment the DRAM caches exercising fine-grain allocation
units (such as the Alloy cache) and helps improve bandwidth
utilization in such architectures as discussed below.

A read access looks up the DBC and on a hit, we get the dirty
bit of the accessed set. If the dirty bit is reset, the read access
can be considered for IFRM provided the IFRM credits are not
exhausted in the current window. It is important to note that a
DBC hit/miss does not correspond to an Alloy cache hit/miss. To
carry out IFRM, it is enough to know if the block resident in the
target set is dirty or not. We should also note that if the IFRM line
was actually not present in the Alloy cache, the corresponding
fill would also not happen (fill bypass). NIFRM is determined
using Equation 8. To maintain enough number of clean blocks in
the Alloy cache so that IFRM can be invoked sufficiently often,
we opportunistically use the residual main memory bandwidth
to do write-through for a fraction of writes coming to the Alloy
cache. After adjusting for IFRM, ifBMM .W−AMM is positive,
our algorithm uses 0.8|BMM .W − AMM | as the write-through
count in a window.

C. Algorithm for eDRAM Cache

The systems with sectored eDRAM caches have three band-
width sources beyond the on-chip SRAM cache hierarchy.
These are the independent read and write channels of the
memory-side cache (eDRAM cache) and the DDR main memory
channels. Let the peak bandwidth of these three sources be
BMS$−R, BMS$−W , and BMM , respectively. We will assume
that BMS$−R = BMS$−W = BMS$ and K = BMS$/BMM .
Since the metadata of the eDRAM cache is maintained on
die, there is no need of SFRM. To apply the FWB, WB, and
IFRM techniques, we consider three relevant scenarios discussed
below.
(i) AMS$−R > BMS$−R.W but AMS$−W < BMS$−W .W
(only read bandwidth shortage). DAP applies the IFRM tech-
nique only by solving

BMS$−R
AMS$−R −NIFRM

=
BMM

AMM +NIFRM
. (9)

(ii) AMS$−W > BMS$−W .W but AMS$−R < BMS$−R.W
(only write bandwidth shortage). DAP applies the FWB and WB

techniques. To apply fill write bypass, it solves

BMS$−W
AMS$−W −NFWB

=
BMM

AMM
. (10)

After adjusting the accesses, it then solves for write bypass:

BMS$−W
AMS$−W −NFWB −NWB

=
BMM

AMM +NWB
. (11)

(iii) AMS$−R > BMS$−R.W and AMS$−W > BMS$−W .W
(both read and write bandwidth shortage). DAP first computes
NFWB using Equation 10. Next, it simultaneously solves for
NWB and NIFRM by considering the following equations.

BMS$−W
AMS$−W −NFWB −NWB

=
BMS$−R

AMS$−R −NIFRM

=
BMM

AMM +NWB +NIFRM
(12)

These lead to (2K + 1)NWB = ((K + 1)(AMS$−W −
NFWB) −K.AMS$−R −K.AMM ) and (2K + 1)NIFRM =
((K + 1)AMS$−R − K.(AMS$−W − NFWB) − K.AMM ).
The implementation of the techniques makes use of the credit
counters, as already discussed.

V. EVALUATION METHODOLOGY

For our simulations, we model eight dynamically scheduled
x86 cores with an in-house modified version of the Multi2Sim
simulator [49]. Each core is four-wide with 224 ROB entries
and clocked at 4 GHz. The core microarchitecture parameters
are taken from the Intel Skylake processor [7]. The load/store
queues and the memory request buffers inside the core are scaled
up appropriately so that they can operate with a 224-entry ROB
without becoming a bottleneck to core bandwidth demand. Our
preliminary experiments with streaming microbenchmarks con-
firm that our core configuration can demand the peak total band-
width of the memory-side cache and the main memory. Each core
has 32 KB, 8-way L1 instruction and data caches with a latency
of three cycles and a private 256 KB 8-way L2 cache with a
round-trip latency of eleven cycles. The cores share an 8 MB 16-
way inclusive L3 cache with round-trip latency of twenty cycles.
Each core is equipped with an aggressive multi-stream stride
prefetcher that prefetches into the L2 and L3 caches. The main
memory DRAM model includes two DDR4-2400 channels (total
bandwidth 38.4 GB/s), two ranks per channel, eight banks per



rank, and burst length of eight. Each bank has a 2 KB row buffer
and 15-15-15-39 (tCAS-tRCD-tRP-tRAS) timing parameters.
An additional ten-cycle I/O delay (at 1.2 GHz) is charged for
each access to account for floorplan, board delays, etc.. Writes
are scheduled in batches to reduce channel turn-arounds.

We select seventeen applications from the SPEC CPU 2006,
HPCG [20], and Parboil [44] benchmark suites based on their
L3 cache MPKI. For each application, we select a snippet of
one billion dynamic instructions. To understand the bandwidth
sensitivity of these application snippets, we simulate them in
rate-8 mode (eight copies of an application snippet run on
eight cores) and check the performance impact of doubling the
bandwidth of a 4 GB die-stacked sectored DRAM cache from
102.4 GB/s to 204.8 GB/s (Figure 4). The top panel of Figure 4
shows that twelve of these seventeen snippets are bandwidth-
sensitive. The bottom panel shows that the average L3 cache
MPKI of the bandwidth-sensitive workloads is 20.4, while that
of the bandwidth-insensitive workloads is 11.6.
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Fig. 4. Top panel: Weighted speedup achieved when DRAM cache bandwidth
is doubled. Bottom panel: L3 cache MPKI.

In addition to these seventeen homogeneous multi-
programmed mixes, we prepare 27 eight-way heterogeneous
multi-programmed mixes by combining the seventeen
application snippets. These mixes are prepared carefully so
that roughly half of these mixes have application snippets with
similar bandwidth-sensitivity, while the rest have application
snippets with dissimilar bandwidth-sensitivity. In all these 44
multi-programmed mixes, each thread is simulated for one
billion dynamic instructions. Threads that finish early continue
to run.

VI. SIMULATION RESULTS

In this section, we evaluate our proposal DAP on sectored
DRAM cache (Section VI-A), Alloy cache (Section VI-B), and
sectored eDRAM cache (Section VI-C).

A. Sectored DRAM Cache
We model a four-way set-associative sectored DRAM cache

with 4 KB sectors. The DRAM cache uses the single-bit not-
recently-used (NRU) policy for replacement and stores the NRU
replacement states in on-die SRAM. The cache is equipped with
a footprint prefetcher [26]. The DRAM cache array parameters
are drawn from the JEDEC HBM standard [24]. Our default set
of parameters corresponds to a 4 GB cache clocked at 800 MHz

having four 128-bit DDR channels with a burst length of four
(aggregate bandwidth of 102.4 GB/s). Each channel has a single
rank and 16 banks per rank. Each bank has a 2 KB row buffer and
10-10-10-26 timing parameters. Writes are scheduled in batches
to reduce channel turn-around. We also evaluate 2 GB and 8 GB
capacity points as well as 128 GB/s and 204.8 GB/s bandwidth
points. For simulating 128 GB/s bandwidth, we increase the
frequency to 1 GHz and the latency parameters are scaled up
to 12-12-12-32. The 204.8 GB/s bandwidth point is simulated
by modeling eight channels and frequency of 800 MHz. We note
that the main memory latency is almost same as the memory-side
cache latency if the additional ten-cycle I/O delay of the main
memory is excluded.

1) An Optimized Baseline: We improve the baseline by mod-
eling a 32K-entry four-way set-associative SRAM tag cache [4],
[19], [36], [50]. While addition of a tag cache is not essential
for our proposal, it significantly reduces the bandwidth overhead
arising from the metadata accesses in the baseline. Without a
tag cache, the baseline is sub-optimal in bandwidth delivery and
access partitioning algorithms will show much higher perfor-
mance sensitivity. Overall, the tag cache size is 32K×156 bits or
624 KB. We take one way of the L3 cache to accommodate the
tag cache. We conservatively charge five CPU cycles to model
the part of the tag cache lookup latency that cannot be overlapped
with the L3 cache lookup.
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Fig. 5. Top panel: Weighted speedup achieved with a 32K-entry tag cache.
Bottom panel: Miss rate of a 32K-entry tag cache.

Figure 5 quantifies the weighted speedup achieved due to
inclusion of the tag cache for the twelve bandwidth sensitive
applications run in rate-8 mode (top panel). The bottom panel
of Figure 5 quantifies the tag cache miss rate. The top panel
shows that a vast majority of the workloads benefit from the tag
cache leading to an average 16% improvement in performance.
The relatively high tag cache miss rates of astar.BigLakes and
omnetpp result from poor sector utilization in these two appli-
cations leading to low temporal utility of the tag cache entries.
For all subsequent results on sectored DRAM caches, we will
assume an optimized baseline that has a tag cache.

2) Evaluation of DAP: We first analyze the results for the
twelve bandwidth-sensitive workloads in the context of an eight-
core system having a 4 GB die-stacked HBM DRAM cache with
4 KB sectors and 102.4 GB/s bandwidth. The default value of
window size, W , is 64. We assume the bandwidth efficiency
of all sources to be 0.75 of the peak. The effective bandwidth



of a source is always less than the peak bandwidth due to
several inefficiencies such as non-zero row buffer miss rates,
less than ideal access schedulers, and write-induced interference
and channel turn-around (this inefficiency is not applicable to
eDRAM caches that have separate read and write channels).

The top panel of Figure 6 quantifies the weighted speedup
achieved by our dynamic access partitioning (DAP) proposal
normalized to the baseline. The performance profile of DAP
varies from a 1% loss (parboil-lbm) to a 2× gain (omnetpp). Sev-
eral workloads gain at least 10%. The average speedup achieved
by DAP for the twelve bandwidth-sensitive workloads is 15.2%.
The bottom panel of Figure 6 shows the average L3 cache read
miss latency of DAP normalized to baseline. The savings in
the average L3 cache read miss latency vary from 0% (parboil-
lbm) to 49% (omnetpp); the average saving is 18%. The speedup
figures correlate well with the savings in the average L3 cache
read miss latency.
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Fig. 6. Top panel: Weighted speedup achieved by DAP. Bottom panel:
Normalized L3 cache read miss latency for DAP.
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Fig. 7. Contributions of different components.

Figure 7 shows the contributions of the four different com-
ponents (FWB, WB, IFRM, SFRM) to all the decisions made by
DAP. The FWB and WB techniques are effective across the board
except in omnetpp. The gcc.expr and gobmk.score2 workloads
employ only FWB and WB. The IFRM and SFRM techniques
are beneficial to several workloads. Out of all DAP decisions
employed in omnetpp, 87% are SFRM and the rest are IFRM.
The high contribution of SFRM in omnetpp is due to a very high
tag cache miss rate (see Figure 5). As a result, a major portion
of the performance gain enjoyed by omnetpp arises from hiding
the tag cache miss latency achieved by SFRM. On average,
the contributions of FWB, WB, IFRM, and SFRM to all DAP
decisions for these twelve workloads are 23%, 40%, 12%, and
25%.
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Fig. 8. Top panel: The fraction of main memory CAS operations out of all
CAS operations. Bottom panel: DRAM cache hit rate.

To understand how well our proposal is able to partition
the accesses, the top panel of Figure 8 shows the number of
CAS operations done by the main memory as a fraction of the
total number of CAS operations done in the main memory and
the memory-side cache. This fraction, according to Equation 4,
should be BMM/(BMM + BMS$) i.e., 0.27 under optimal
access partitioning. On average, in the baseline system, 9% of all
CAS operations are served by the main memory, while with our
DAP proposal this fraction increases to 25%. It is encouraging
to see that this is close to the optimal fraction of 0.27. In fact,
except for omnetpp, this fraction for DAP is between 16% and
31% for all the workloads. For omnetpp, this fraction is 42% due
to high contribution of SFRM. We also note that for parboil-lbm
the baseline system has a main memory CAS fraction of 30%,
which is already close to the optimal main memory CAS fraction.
As a result, our proposal is unable to improve the performance
of this workload any further.

The bottom panel of Figure 8 quantifies the memory-side
cache hit rate (read and write hits combined). For baseline, the
average hit rate is 89%. When the FWB and WB techniques
are incorporated, the average hit rate drops to 80%. Further
introduction of IFRM and SFRM causes the average hit rate
to drop to 73%. In omnetpp, the IFRM and SFRM techniques
lower the memory-side cache hit rate from 99% to 33%. Another
application that experiences 10% drop in memory-side cache
hit rate due to IFRM and SFRM is mcf (84% to 74% hit rate).
Referring back to Figure 7, we see that for mcf out of all DAP
decisions, 56% are IFRM. Now, we turn to analyze our proposal
in more detail.

3) Sensitivity Studies: In the following, we evaluate the sen-
sitivity of DAP performance to the algorithm parameters, main
memory technology, and DRAM cache capacity and bandwidth.
Sensitivity to Algorithm Parameters. By default, our evalua-
tion uses a window size (W ) of 64 and a bandwidth efficiency
(E) of 0.75 for all the sources. Table I shows the normalized
weighted speedup achieved by our DAP proposal as these two
parameters are varied for the twelve bandwidth-sensitive work-
loads. We observe that the default parameter set, W = 64 and
E = 0.75, offers the best performance among the parameter
values explored. It is important to note that the 100% bandwidth
efficiency point delivers the worst performance among the three
efficiency points considered. This is because at 100% bandwidth



efficiency, the DRAM cache delivers the highest bandwidth
resulting in less partitioning from DAP. This lowers the benefit
that can be achieved by DAP.

TABLE I
NORMALIZED WEIGHTED SPEEDUP

Attribute Variation in W Variation in E
E = 0.75 W = 64

Param. value 32 64 128 0.50 0.75 1.00
Speedup 1.13 1.15 1.14 1.14 1.15 1.12

Sensitivity to Main Memory Technology. Figure 9 explores
how the normalized weighted speedup achieved by our proposal
gets affected by the main memory latency and bandwidth. The
first three bars in each group show the sensitivity to latency.
The leftmost bar corresponds to the default main memory con-
figuration (Section V). The second bar shows the impact when
all additional board and I/O latencies are removed from the
main memory model. The third bar shows the effect of using a
higher-latency quad-channel (32-bit channels with burst length
16) LPDDR4-2400 24-24-24-53 main memory model (same
bandwidth as default, but nearly 70% higher row hit latency).
From these results we observe that the benefit of DAP typically
decreases with higher main memory latency. On average, remov-
ing I/O latency improves the benefit from 15.2% to 16%, while
introduction of a slower LPDDR4 module lowers the benefit to
8%. Such a trend is expected because the accesses steered to
the main memory will incur longer latency, thereby lowering
the overall benefit. Only bzip2.combined benefits from the
higher cross-channel parallelism in the quad-channel LPDDR4
system.

The rightmost bar in each group of Figure 9 shows the effect
of using a higher-bandwidth (51.2 GB/s) dual-channel DDR4-
3200 module with the same latency as the default DDR4-2400
module. A comparison of the leftmost and the rightmost bars
shows that higher memory bandwidth helps improve the benefit
of dynamic access partitioning across the board. This is an ex-
pected trend because a higher main memory bandwidth shifts the
optimal bandwidth partitioning point more toward main memory
leading to a higher fraction of accesses being steered to the main
memory (see Equation 4).
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Fig. 9. Sensitivity to main memory latency and bandwidth.

Sensitivity to DRAM Cache Capacity and Bandwidth. The
top panel of Figure 10 shows the normalized weighted speedup
achieved by our proposal as the memory-side cache capacity
is varied from 2 GB to 8 GB while the memory-side cache
bandwidth is held constant at the default value of 102.4 GB/s.
The main memory module uses the default DDR4-2400 parts.
With increasing memory-side cache capacity, our dynamic ac-
cess partitioning proposal gains in importance. This is expected
because as the memory-side cache grows in size, it can serve
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Fig. 10. Top panel: Impact of the memory-side cache capacity. Bottom panel:
Impact of the memory-side cache bandwidth.

more accesses in the baseline system leading to a larger de-
parture from the optimal operating point. The bottom panel of
Figure 10 shows the normalized weighted speedup achieved
by our proposal as the memory-side cache bandwidth is var-
ied from 102.4 GB/s to 204.8 GB/s holding the memory-side
cache capacity constant at 4 GB. With increasing cache band-
width, the speedup drops significantly (from average 15.2% with
102.4 GB/s to 7% with 204.8 GB/s). With increasing memory-
side cache bandwidth, the optimal bandwidth partitioning de-
cision steers a bigger fraction of accesses to the memory-side
cache (see Equation 4) making the baseline closer to the optimal
point.

4) Comparison to Related Proposals: Two existing pro-
posals have explored access partitioning for systems with die-
stacked DRAM caches. The first proposal, named self-balancing
dispatch (SBD), attempts to steer accesses to the cache or main
memory that has the lowest expected latency [43]. The expected
latency is estimated by taking into consideration the waiting
queue length and the average latency to serve an access at that
source. To avoid steering accesses to the main memory for blocks
that are dirty in the DRAM cache, the proposal identifies the
highly written to pages with the help of a bank of counting
Bloom filters and stores them in a Dirty List. The remaining
pages are operated in write-through mode. An access that finds
its page in the Dirty List is always steered to the DRAM cache.
For the remaining accesses, if a predictor predicts an access to be
a DRAM cache hit, the access is steered to the bandwidth source
with the lowest expected service latency.

The second related proposal, named bandwidth-aware tiered-
memory management (BATMAN), steers accesses to the main
memory so that the die-stacked DRAM cache operates at a
target hit rate dictated by the ratio of the bandwidths at the
sources [3]. When the DRAM cache operates at a hit rate higher
than the target hit rate, the proposal starts disabling a fraction
of the DRAM cache sets to achieve the target hit rate. Thus by
modulating hit rates, this proposal tries to steer a fraction of the
requests to the main memory.

Both these proposals attempt to utilize the spare bandwidth
of the main memory. However, unlike DAP that dynamically
calculates and tries to achieve optimal partitioning on small
windows of time, these proposals attempt to achieve only some
amount of partitioning, which is generally far from optimal and



can sometimes lead to losses. This is evident from Figure 11
which compares the performance achieved by SBD, BATMAN,
and our proposal (DAP) normalized to the baseline for the twelve
bandwidth-sensitive workloads.
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Fig. 11. Comparison of related proposals.

SBD degrades baseline performance by 16% on average,
while BATMAN performs within 1% of the baseline. We find
that both these proposals suffer from the congestion arising
from the need to write out dirty blocks from the memory-side
cache. In SBD, when a 4 KB page falls out of the Dirty List, it
must be cleaned. This requires reading out the dirty blocks and
writing them back to main memory. The original SBD proposal
was evaluated on smaller memory-side caches where a large
volume of cache evictions would reduce the necessity of such
forced write-outs. In BATMAN, when a memory-side cache set
is disabled, the dirty blocks from the set must be read out and
written to main memory. We consider a variant of SBD, named
SBD-WT, which disables forced writing out of dirty blocks and
relies on write-through for pages with low volume of writes for
creating enough clean blocks. SBD-WT improves performance
by 5.5% on average compared to the baseline, but still falls
significantly short of DAP.

BATMAN suffers from three shortcomings. First, in a large
cache, it is often the case that the disabled sets do not intersect
with the cache region in use in the current phase. Hence, a lot of
unrelated sets may have to be disabled to reach the cache region
of interest. This leads to significant overheads. Further, for such
a scheme to be effective over small time windows, it is necessary
that the access distribution be homogeneous over the cache sets.
For large caches, this is true only over large time windows.
In contrast, our proposal can affect optimal access partitioning
within time windows as small as 64 CPU cycles. Second, if
the hit rate of a workload fluctuates frequently, it may not be
possible to recover the lost hits quickly by opening the disabled
sets; it takes time to warm up the cold sets. We observe this
phenomenon in mcf, which experiences very poor performance
with BATMAN. Third, BATMAN would end up doing access
partitioning based on the memory-side cache hit rate even when
there is no shortage of bandwidth in the memory-side cache. To
understand this problem, we run BATMAN with no I/O latency
added to main memory. As can be seen, several workloads
improve by up to 5% (1% on average). This problem would
be worse if the main memory has much higher latency (like
LPDDR4) or the workloads are latency-sensitive. Both SBD and
BATMAN deliver excellent performance for omnetpp. Since this
workload suffers from a high tag cache miss rate, steering a
subset of accesses to the main memory always saves latency for
this workload. Overall, the performance of BATMAN that we
observe differs from what was reported originally [3] because
the original proposal was evaluated on top of Alloy cache which

has significant bandwidth inefficiencies arising from metadata
traffic [4].

5) Performance Scaling: In the following, we evaluate DAP
on a larger set of workloads and larger core counts.
Performance on Larger Set of Workloads. Figure 12 eval-
uates our proposal on the entire set of 44 multi-programmed
workloads running on an eight-core system. The workloads are
classified into bandwidth-sensitive (twelve homogeneous rate
mixes), bandwidth-insensitive (five homogeneous rate mixes),
and heterogeneous (27 mixes). Within each category, the work-
loads are sorted in the increasing order of speedup. None of the
bandwidth-insensitive workloads suffer from any performance
loss, as DAP seldom invokes partitioning for these workloads.
The performance improvement of the heterogeneous workloads
varies from 4% to 72%. Overall, our dynamic access partitioning
proposal achieves a 13% speedup averaged over all 44 work-
loads.
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Fig. 12. Normalized weighted speedup.

Scaling to Larger Core Counts. We scale up our simulated sys-
tem to support 16 cores. The shared L3 cache is scaled to 16 MB
keeping the associativity unchanged at sixteen. The memory-
side cache considered in such a system has an 8 GB capacity
and 204.8 GB/s bandwidth. The main memory is dual-channel
DDR4-3200 20-20-20-52, offering an aggregate bandwidth of
51.2 GB/s. Figure 13 quantifies the speedup achieved by DAP
for the twelve bandwidth-sensitive workloads, run in sixteen-
way rate mode. Our proposal improves performance by average
14.6% in a sixteen-core system.
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Fig. 13. Normalized weighted speedup achieved by DAP on a 16-core system.

B. Alloy Cache
The DRAM array of the Alloy cache is modeled following

the JEDEC HBM standard and is identical to the sectored cache
model, as discussed in Section VI-A. The Alloy cache organizes
the 2 KB rows within each bank to hold the tag and data (TAD)
for a stretch of consecutive sets. We model a burst length of
six spread over three cycles in our simulations. The Alloy cache
model employs a program counter-based DRAM cache hit/miss
predictor to initiate miss handling early.

The top panel of Figure 14 presents the weighted speedup
achieved by DAP for the twelve bandwidth-sensitive workloads.
Also shown is the performance of BEAR [4], which attempts to
reduce the bandwidth bloat of the Alloy cache. BEAR bypasses
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Fig. 14. Top panel: Normalized weighted speedup in a system with an Alloy
cache. Bottom panel: Fraction of CAS operations served by main memory.

those fills that will potentially not give hits in the future. In
doing so it makes sure that the hit rate of the cache does not
suffer. In contrast, DAP bypasses fills to balance the accesses
between the Alloy cache and the main memory, in accordance
with Equation 4.

On average, BEAR improves the baseline Alloy cache per-
formance by 22%, while our proposal achieves a 29% speedup.
The bottom panel of Figure 14 quantifies the number of CAS
operations served by the main memory as a fraction of the total
number of CAS operations served by the main memory and the
Alloy cache. The average value of this fraction is 13% for the
baseline, 15% for BEAR, and 43% for our proposal. The Alloy
cache requires three channel cycles to transfer a TAD. Out of
these three cycles, only two cycles are used to transfer the data.
Therefore,BMS$ for Alloy cache is 2

3 ×102.4 GB/s. Equation 4
dictates that at the optimal partition point, the main memory
should serve 36% of the accesses. Our proposal comes close
to it. Across the board, the main memory CAS fraction for our
proposal varies between 39% and 49%.

C. Sectored eDRAM Cache
We model sectored eDRAM caches up to 512 MB capacity.

The sector size is 1 KB and the associativity of the cache is
sixteen. The metadata is maintained in on-die SRAM with an
eight-cycle (at 4 GHz) lookup latency. The cache access latency
is about two-third of the page hit latency of the main memory [6].
The separate read and write channels have 51.2 GB/s bandwidth
each.

The top panel of Figure 15 quantifies the weighted speedup
of three systems relative to the baseline system with a 256 MB
eDRAM cache for the twelve bandwidth-sensitive workloads.
Within each group of bars, the leftmost bar corresponds to a
system that employs our proposal on a 256 MB eDRAM cache.
The middle bar corresponds to the baseline with a 512 MB
eDRAM cache. The rightmost bar corresponds to a system that
employs our proposal on a 512 MB eDRAM cache. The bottom
panel shows the change in the eDRAM cache hit rate relative to
the baseline 256 MB eDRAM cache.

DAP, when applied to a 256 MB eDRAM cache, lowers the
average hit rate by 9.5% relative to the baseline 256 MB eDRAM
cache while improving performance by 7%. With 512 MB as
baseline, average hit rate increases by 4%, but performance
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Fig. 15. Top panel: Normalized weighted speedup in a system with an
eDRAM cache. Bottom panel: Change in memory-side cache hit rate relative
to baseline 256 MB.

improves by only 2%. DAP, working with a 512 MB eDRAM
cache, lowers the hit rate by 6.5% relative to the 256 MB baseline
while improving performance by 11%, on average.

VII. RELATED WORK

Recent research studies exploring the architecture of DRAM
caches have focused on traditional cache organizations with fine-
grain (64B/128B) [8], [9], [16], [34], [36], [39], [43], coarse-
grain (512B to 4KB) [23], [25], [26], [27], [32], or mixed-
grain [14] allocation units (referred to as the DRAM cache block
size). There are other studies that explore a range of allocation
units [52] and configurable block sizes ranging from 64 bytes to
512 bytes [35]. The studies assuming fine-grain or conventional
allocation units focus their efforts on managing the large tag store
and minimizing the impact of the serialization latency introduced
by tag lookup. Some studies have also looked at optimizations
for bandwidth delivery. BEAR is proposed to reduce some of the
bandwidth overheads found in Alloy cache [4]. SBD [43] and
BATMAN [3] propose heuristics to steer a fraction of requests
to be served out of the main memory, in order to reduce hit
latency. We discussed these schemes along with a quantitative
evaluation in Section VI. The MicroRefresh proposal also ob-
serves the under-utilization of the main memory bandwidth in
systems having DRAM caches [15]. This proposal explores the
possibility of not refreshing a fraction of DRAM cache pages
that have reuse distances larger than a dynamically determined
threshold exceeding the refresh interval. The accesses to such
pages are sent to the main memory. Overall, the idle main
memory bandwidth is utilized to save refresh energy in the
DRAM cache.

Unlike most of the recent work on memory-side caches that
focus on cache organization and architecture, the focus of our
proposal is on increasing the delivered bandwidth of a system
with multiple bandwidth sources. The algorithms described in
this paper will work on top of any memory-side cache architec-
ture and are additive to many of the other proposed optimiza-
tions.

VIII. SUMMARY

In this paper we have presented DAP, a holistic and analyti-
cally complete solution to the problem of maximizing delivered
bandwidth in a system with multiple bandwidth sources. We



demonstrate the effectiveness of this algorithm on systems with
memory-side cache and DDR main memory. We show that DAP
applied to an eight-core system with DDR4-2400 main memory
and 4 GB of die-stacked DRAM cache capable of delivering
102.4 GB/s improves the baseline performance by 13% on
average for 44 multi-programmed workloads, while requiring
only sixteen additional bytes of storage. We also show that the
algorithm is robust and scales seamlessly to future memory-side
caches with higher bandwidth and capacity.
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