
Approximation Algorithms for Charging Station Placement for
Mobile Robots

Tanmoy Kundu1 and Indranil Saha2

Abstract— Optimal placement of charging stations in a
workspace is a crucial problem to address, for efficient opera-
tion of battery-driven mobile robots. When the battery charge
of a robot reaches a certain threshold, the robot must be able to
reach a nearby charging station to recharge its battery. In this
paper, we deal with two different versions of the optimization
problem related to the optimal placement of charging stations
in a robot workspace. The first problem is formulated to find an
optimal number of charging stations given a battery threshold
deciding the need to move to a charging station, and the second
problem finds an optimal battery threshold for a given number
of charging stations. Both the problems involve finding the
locations of charging stations, such that from any obstacle-free
location at least one charging station is reachable with at most
threshold amount of battery charge remaining with the robot.
In this paper, we prove these optimization problems to be NP-
hard, i.e., computationally intractable. To handle intractability
of the above minimization problems, we design two polynomial-
time approximation algorithms to find near-optimal solutions.
Our algorithms achieve significantly high scalability without
compromising the quality of the solution beyond a certain
factor of the optimal solution. Experimental results show that
our algorithms run order-of-magnitude faster than a recently
proposed Satisfiability Modulo Theory (SMT)-based approach
and maintain solution quality within the theoretical bounds on
the optimal solution.

I. INTRODUCTION

Indoor mobile robots are widely used in many applica-
tions, including manufacturing and materials handling in
factories and warehouses, surveillance, and carrying out
domestic chores. Most of these applications require the
robots to carry out their tasks perpetually. However, as these
robots are generally battery-powered, they need to suspend
their work from time to time and move to a battery charg-
ing location to recharge their batteries. Several approaches
have been proposed in the past to ensure persistent power
supply to mobile robots, such as docking based autonomous
recharging (e.g., [1], [2], [3], [4], [5], [6]), tethering with a
continuous power supply (e.g., [7], [8], [9]), and exploiting
natural power resources (e.g., [10], [11], [12]). To optimize
performance, some recharge scheduling techniques have been
proposed with mobile rechargers in the past (e.g., [13], [14]).

The efficiency of the mobile robots depends on the lo-
cations of the charging stations. If the charging stations
are available in convenient locations, the off-time of the
robots may reduce significantly. On the other hand, if the

1Tanmoy Kundu is with the Department of Aerospace Engineer-
ing, Technion - Israel Institute of Technology, Israel. This work was
carried out when he was with the Department of Computer Sci-
ence and Engineering, Indian Insitute of Technology Kanpur, India.
tanmoy1040@campus.technion.ac.il.

2Indranil Saha is with the Department of Computer Science
and Engineering, Indian Insitute of Technology Kanpur, India.
isaha@cse.iitk.ac.in .

charging stations are not placed in proper locations in the
workspace, it may affect the performance of the system as
many robots may go down as they cannot reach a charging
station with their critically low battery charge. However, due
to the complex structure of the workspace and the dynamical
constraints of the robot control, solving the Charging Station
Placement Problem (CSPP) becomes challenging.

In a robot workspace, the charging stations should be
placed in a way that from any obstacle-free location in the
workspace, at least one charging station is reachable within
a specified distance. When the energy available to the robot
goes below a pre-decided threshold, the robot needs to abort
its mission and reach a nearby charging station to recharge
its battery. Assuming execution of each motion primitive
consumes a unit amount of battery charge, we use the terms
“number of robot transitions” and “amount of battery charge”
interchangeably. In this paper, two optimization versions of
the CSPP have been studied. The first one is FINDNCS,
which finds the optimal number of charging stations in a
workspace, ensuring that a robot can reach at least one of
the charging stations within a given number of transitions
(battery charge threshold). The second version is FINDD,
which finds the optimal battery charge threshold for a given
number of charging stations in a workspace. The charging
station placement may be restricted to a subset of obstacle-
free locations, i.e., to a set of potential charging station lo-
cations. Both versions handle optimal placement of charging
stations in the workspace, such that a robot can reach a
charging station from any location in the workspace with
a threshold amount of battery charge remaining with it.

In this paper, we establish the computational intractability
of FINDNCS and FINDD by proving those problems to be
NP-hard. We convert these problems into decision problems
and apply polynomial-time reductions from well-known NP-
hard problems, in order to establish their NP-hardness. We
design two polynomial time approximation algorithms to
solve the NP-hard problems. We derive approximation ratios
of the algorithms in order to specify the closeness of the
generated solutions to the optimal solutions. Our design
of algorithms incorporates ideas from the approximation
algorithms for finding the Set Cover and Dominating Set in
order to solve the versions of the CSPP. Our approximation
algorithms for FINDNCS and FINDD provide approximation
ratios of ln(n+1) (n is the number of obstacle-free locations
in the workspace) and 2 respectively.

We carry out experiments with five different workspaces
and three different robot dynamics and compare the per-
formance of our approximation algorithms with different
variants of SMT-based algorithms proposed in [15]. In terms
of computation time, our algorithms run order-of-magnitude

faster than the SMT-based techniques proposed in [15]. Also,
the quality of the solutions generated by our algorithms is at
par with the SMT algorithms.

In summary, we make the following contributions:
• We formally prove NP-hardness of the optimization

problems FINDNCS and FINDD (Sections III and IV).
• To solve the above NP-hard problems, we present two

polynomial-time approximation algorithms that take
into account complex robot motion primitives and
workspace designs. We provide guarantee on the quality
of the solutions obtained by our algorithms (Section V).

• We evaluate our algorithms exhaustively with several
workspace benchmarks and robot dynamics. The ex-
perimental results show the closeness of the generated
solutions to optimal solutions and the high scalability
of our algorithms (Section VI).

II. PROBLEM

A. Preliminaries
1) Workspace: We assume that the robots operate in a

2-D workspace which is represented as a 2-D occupancy grid
map. The grid decomposes the workspace into square-shaped
blocks, which are assigned unique identifiers to represent
their locations in the workspace. We denote the set of
locations in the workspace by W and the set of locations
covered by obstacles by O. The set of obstacle-free locations
in the workspace is denoted by F , where F = W \O.

2) Robot State: The state of a robot σ consists of (1)
its position in the space, σ.pos (which determines a unique
block in the occupancy grid) and (2) its velocity configu-
ration, σ.vel, which represents the current magnitude and
direction of the velocity of the robot. We denote the set of
all velocity configurations by U , and assume that it contains
a value v0 denoting that the robot is stationary.

3) Motion Primitives: We capture the motion of a robot
using a set of motion primitives Γ. We assume that the robot
moves in an occupancy grid in discrete steps of τ time units.
A motion primitive is a short controllable action that the
robot can perform at any time step. A robot can move from
its current location to a destination location by executing a
sequence of motion primitives. In this paper, we use the word
“step” to denote a transition effected by a motion primitive.

We assume that the robots are battery-powered. The
amount of battery charge available to the robot is denoted
by the number of motion primitives the robot will be able to
execute with the available battery charge.

4) Graph representation: In this work, we define the
versions of CSPP in the graph paradigm. We construct
a directed graph G = (V,E) that captures all possible
state transitions of the robot in the workspace. The set
of vertices V in G corresponds to the set of all possible
⟨position, velocity⟩ pairs, or the states S of the robot.
Mathematically, S = F ×U . We define a mapping f : S →
V that maps each state of the robot to a unique vertex in the
graph G. The edges E ⊆ V × V in G capture all possible
transitions between two vertices (i.e., states in S). For any
two vertices u, v ∈ V , there is a directed edge (u, v) ∈ E if
and only if the following holds:

1) There exists some states σ1 ∈ S and σ2 ∈ S such that
f(σ1) = u and f(σ2) = v , and

(a) FINDNCS: Charging station lo-
cations for fixed d = 6

(b) FINDD: Charging station loca-
tions for fixed ncs = 7

Fig. 1. Charging station (CS) locations are shown for: (a) fixed d = 6 and
(b) fixed ncs = 7, for Warehouse 17×17 workspace and Turtlebot motion
primitives. Charging station placements for optimal solution (circles) and
approximate solution (triangles) are shown for both (a) and (b).

2) There exists a motion primitive γ ∈ Γ that drives the
transition from σ1 to σ2, i.e., σ1

γ−→ σ2 .
The graph thus constructed contains edges with all possi-

ble transitions induced by any motion primitive of a given
type of robot. We assign each edge a weight of 1 because
applying one motion primitive counts to one transition. Also,
we denote the set of potential vertices to place the charging
stations as ĈS. Generally, ĈS is pre-decided and a subset
of the obstacle-free vertices in the workspace, i.e., ĈS ⊆ V .

B. Problem definition
With the necessary preliminaries, the two versions of the

CSPP are defined below.
Problem 2.1 (FINDNCS): Given a directed graph G =

(V,E) with a set of potential charging stations ĈS ⊆ V
and a battery threshold (number of transitions) d, Minimize
the number of charging stations ncs and find the charging
station vertices CS = {vc1 , . . . , vcncs

} from ĈS such that at
least one vertex in CS is reachable from any vertex v ∈ V
by traversing a path of length at most d.

Problem 2.2 (FINDD): Given a directed graph G =
(V,E) with a set of potential charging stations ĈS ⊆ V
and number of charging stations ncs, Minimize the value of
the battery threshold d and find the charging station vertices
CS = {vc1 , . . . , vcncs} from ĈS such that at least one vertex
in CS is reachable from any vertex v ∈ V by traversing a
path of length at most d.

In the next sections, after illustrating an example of the
CSPP, we prove that the two above-mentioned problems
are NP-Hard. Subsequently, we provide two polynomial-time
approximation algorithms to solve those problems.

C. Motivating Example
Consider a Turtlebot operating in a 17 × 17 workspace

(Figure 1) where optimal and approximate solutions for
CSPP are shown. Optimal solutions are obtained by a state-
of-the-art algorithm in [15], whereas the approximate solu-
tions are obtained by our algorithms proposed in this paper.

A Turtlebot can move one position straight or diagonally
in any direction. In Figure 1(a), for the battery threshold (or,
the number of transitions) d = 6, a charging station must be
reachable within at most 6 transitions from any obstacle-free

location in the workspace. The optimal number of charging
stations (ncs) is 4, which is obtained by executing the state-
of-the-art algorithm in [15] in 47min. Our algorithm finds
the approximate solution as ncs = 5 in 43 s.

On the other hand, for fixed ncs = 7, optimal value of
d is 5, whereas our algorithm gives d = 6 (Figure 1(b)).
Obtaining a guaranteed optimal solution for this instance
takes 106min, whereas our algorithm obtains the approx-
imate solution in 5 s. In this case, we are allowed to have at
most 7 charging stations, but our algorithm finds the d value
with 6 charging stations. In Section V, we prove that the
solutions found by our algorithms lie within certain bounds
on the optimal solutions.

III. FINDING MINIMUM NUMBER OF CHARGING
STATIONS IS NP-HARD

In this section, we prove Problem 2.1 to be NP-hard. The
decision version of FINDNCS is as follows:

Problem 3.1 (FINDNCS_DEC): Consider a directed
graph G = (V,E), a set ĈS ⊆ V of potential charging
station locations, and a positive integer d which represents
the battery threshold in terms of the number of transitions
by a robot in G. Given a positive integer k, will it suffice
to install at most k number of charging stations CS ⊆ ĈS
such that at least one vertex in CS can be reached from
any vertex v ∈ V by traversing a path of length at most d?
We denote an instance of the problem by ⟨G, ĈS, d, k⟩.

We choose the Dominating Set Problem (DOMSET), an
NP-hard optimization problem, to prove the NP-hardness of
FINDNCS_DEC.

Problem 3.2 (DOMSET [16]): Consider a graph
G = (V,E). A dominating set in G is a subset S ⊆ V such
that every vertex v ∈ V is either in S or adjacent to a vertex
in S. Let domset(G) denote a dominating set in G. Find
the minimum cardinality domset(G) in G.

The decision version of DOMSET is as follows:
Problem 3.3 (DOMSET_DEC): Given a graph G = (V,E)

and a positive integer k, does there exist a dominating set
domset(G) in G, such that |domset(G)| ≤ k? We denote
an instance of this decision problem as ⟨G, k⟩.

Theorem 3.4: FINDNCS_DEC is NP-hard.
Proof: We show a polynomial time reduction from the

NP-hard problem DOMSET_DEC to FINDNCS_DEC. Given
a problem instance I : ⟨G, k⟩ of DOMSET_DEC, we create an
instance I ′ : ⟨G′, ĈS, d, k⟩ of FINDNCS_DEC as follows. G
in I is an undirected graph, whereas FINDNCS_DEC accepts
directed graphs. We transform the undirected graph G =
(V,E) into a directed graph G′ = (V,E′) by replacing each
undirected edge {u, v} in G with two directed edges (u, v)
and (v, u) in G′ while keeping the set of vertices same in
both the graphs.

For FINDNCS_DEC, the set of potential charging station
vertices ĈS can be any non-empty subset of V . To solve the
problem instance I of DOMSET_DEC, we choose ĈS in I ′

as the set of all vertices, i.e., ĈS = V .
DOMSET_DEC checks for a dominating set where the rest

of the vertices are directly connected, i.e., connected by path
length of 1. On the other hand, FINDNCS_DEC checks for
a set of charging station vertices CS of a graph G where the

rest of the vertices V \ CS are connected with some vertex
in CS through arbitrary-length paths (bounded by length d).
In problem instance I ′, we set d = 1.

Thus, the reduction algorithm converts an instance I of
DOMSET_DEC to an instance I ′ of FINDD_DEC. Clearly,
this conversion happens in polynomial time. With this, we
prove the following.

Claim: The graph G has a dominating set of size k if
and only if the graph G′ has a set of charging stations CS,
CS ⊆ V , of size k such that all vertices in V \ CS are
directly connected to some vertex in CS.

The claim can be proved as follows. In I ′, ĈS = V
and d = 1. The only difference between I and I ′ is that
G contains undirected edges, whereas G′ contains directed
edges. However, for any undirected edge {u, v} in G, there
exists a directed edge (u, v) in G′. Similarly, for any directed
edge (u, v) in G′ there exists an undirected edge {u, v} in G.
Now, as both the problems aim to find the answer to whether
there exists a dominating set of size k, the claim holds.

Thus, the polynomial-time reduction from DOMSET_DEC
to FINDD_DEC holds, and as DOMSET_DEC is NP-hard, the
NP-hardness of FINDD_DEC is proved.

IV. FINDING MINIMUM BATTERY THRESHOLD IS
NP-HARD

In this section, we prove Problem 2.2 to be NP-hard. The
decision version of FINDD is as follows:

Problem 4.1 (FINDD_DEC): Consider a directed graph
G = (V,E), a set ĈS ⊆ V of potential charging station
locations, and a positive integer k which represents the
number of charging station vertices in G. Given another
positive integer d, does there exist a set of charging station
locations CS ⊆ ĈS, |CS| = k, such that the maximum
distance of a vertex in CS from any vertex v ∈ V is at most
d? We denote an instance of the problem by ⟨G, ĈS, k, d⟩.

We prove NP-hardness of FINDD_DEC by showing a
polynomial-time reduction from a known NP-hard problem
Vertex Cover (VC). VC deals with covering all edges,
whereas FINDD deals with covering all vertices in a graph.

Definition 4.2 (Vertex Cover Problem (VC) [17]): Given
a graph G = (V,E), find a minimum-sized subset S ⊆ V
that includes at least one end-vertex of every edge in G.

The decision version of VC is as follows.
Definition 4.3 (VC_DEC): Given a graph G = (V,E) and

positive integer k, is there a vertex cover of size k in G? We
denote an instance of VC_DEC as ⟨G, k⟩.

Theorem 4.4: FINDD_DEC is NP-hard.
Proof: We show a polynomial-time reduction from

VC_DEC to FINDD_DEC. Consider a problem instance
I : ⟨G, k⟩ of VC_DEC. From the instance I , we create an
instance I ′ : ⟨G′, ĈS, k, d⟩ of FINDD_DEC as follows.

As FINDD_DEC deals with directed graphs, we transform
G = (V,E) into a directed graph G′ = (V ′, E′). We replace
each undirected edge {u, v} between a pair of vertices
u, v in G with two oppositely directed edges (u, v) and
(v, u) between the same pair of vertices in G′. Furthermore,
we replace each edge (u, v) in G′ with a pair of edges
(u, x) and (x, v) by introducing a new vertex x on the

edge. Conceptually, each edge (u, v) in G is associated with
exactly one x-vertex in G′. We also set the weights of these
edges as: wt(u, x) = 1 and wt(x, v) = 0. Let the original
vertices in V be called as v-vertices and the newly introduced
vertices as the x-vertices. Therefore, V ′ contains v-vertices
and x-vertices. We consider only the v-vertices to be in the
set of potential charging stations ĈS. Moreover, as VC_DEC
deals with covering of adjacent edges, we set d = 1 in I ′.

Thus, the reduction algorithm converts an instance I of
VC_DEC to an instance I ′ of FINDD_DEC. Clearly, this
conversion happens in polynomial time. We show that the
above transformation is indeed a reduction by proving the
following claim.

Claim: The graph G has a vertex cover of size k if and
only if the graph G′ has a set of charging stations CS,
CS ⊆ V , of size k such that all vertices in V \ CS are
at most one distance away (d = 1) from some vertex in CS.

If: Suppose, in I ′, we obtain a set of charging station
vertices CS, CS ⊆ ĈS, such that |CS| = k and all the
vertices in V \ CS are at most d = 1 distance away from
some vertex in CS. This implies that besides v-vertices, all
the x-vertices are covered by CS. As each edge in E is
associated with exactly one x-vertex in E′, as mentioned
before, covering all the x-vertices in G′ implies covering all
the edges in G. Hence, CS is a vertex cover of size k in G.

Only If: Suppose, in I , the set S ⊆ V is a vertex cover
with |S| = k. Then any edge e ∈ E is covered by some
vertex in S. As per the construction of G′, any v-vertex not
in S or any x-vertex is at most d = 1 distance away from
some vertex in S. Hence, in G′, S is a set of charging station
vertices, with |S| = k, covering all v-vertices and x-vertices
within d = 1 distance away from some vertex in S.

Hence, the polynomial-time reduction from VC_DEC to
FINDD_DEC holds, and as VC_DEC is NP-hard, FIND_DEC
is also NP-hard.

V. APPROXIMATION ALGORITHMS

This section deals with designing approximation algo-
rithms to handle NP-hardness of the two variants of CSPP.

A. Approximation algorithm for finding minimum number of
charging stations (ncs)

The algorithm FINDNCS_SC_APPROX (Algorithm V.1)
approximately solves the FINDNCS problem with complex
motion primitives and complex design of the workspace. This
algorithm is based on an approximation algorithm for solving
the Set Cover problem [16].

Definition 5.1 (Set Cover Problem [17]): Given a set X
of n elements and a collection of subsets F = {S1, . . . , Sm}
of X , find the minimum-cardinality subset S ⊆ F such that
the union of the elements in S is X .

Algorithm V.1 finds a near-optimal number of charging
stations for a given battery threshold (d). With the given
set of motion primitives and workspace design, we create a
graph G capturing all possible movements of the robot in
the workspace. The graph G along with the set of potential
charging stations ĈS and maximum allowable number of
transitions d are inputs to FINDNCS_SC_APPROX. The ap-
proximation algorithm SET_COVER_APPROX is a technique
for finding a minimal set cover from a collection of subsets

Algorithm V.1: FINDNCS_SC_APPROX: An Ap-
proximation algorithm to find minimum number of
charging stations.

Input:
G: Transition graph G = (V,E).
ĈS: Potential vertices ĈS ⊆ V for deploying charging stations.
d: Maximum allowable number of steps to reach a charging

station from any obstacle-free location.

Output:
CS: The set with the approximately minimum number of

charging stations in G.

Functions :
DFT(v, l): A function returning the vertices reachable by

depth-first traversal starting at vertex v, and up to distance l from
v.
Set_Cover_Approx(X,F): An approximation algorithm to

solve the set cover problem.

1 function FINDNCS_SC_APPROX(G, ĈS,d)
2 begin
3 H(V,E′)← reverse_edge_directions(G)

4 ∀vi ∈ ĈS: Covervi ← DFT(vi, d)

5 Cover ← {Covervi | vi ∈ ĈS}
6 Cover∗ ← Set_Cover_Approx (V,Cover)
7 CS∗ ← {vi | Covervi ∈ Cover∗}
8 return CS∗

9 end

of the set. We use this algorithm in our approach for finding
the minimal set of charging station locations in a workspace.

The first step of our algorithm is to reverse the edges
of G. This is done for ease of computation. The robots
move towards a charging station from some location in the
workspace following the edges in G. However, for each
potential charging station, we want to compute the set of
locations from where the charging station is reachable within
d steps using depth-first traversal. To achieve this, we create
a graph H = (V,E′) from G, where E′ contains the
reversed edge for each edge in E. Depth-first traversal with
distance d is used to find the covers for the vertices in
ĈS. In line 5, the computed covers are stored in Cover.
The vertices V and the set of covers Cover are passed
to a known approximation algorithm SET_COVER_APPROX
for computing the minimal set cover of V , with a subset
of Cover. SET_COVER_APPROX returns the minimal set
cover of V and stores it in Cover∗. From the generated
set cover Cover∗, we extract the corresponding vertices for
each constituent set in Cover∗ and store the vertices in CS∗

(line 7). CS∗ is the approximately minimum-sized set of
charging station vertices that covers all the vertices in V . The
size of CS∗ is returned as the number of charging stations
in H and hence in G.

1) Approximation ratio: Given a transition
graph G = (V,E), the approximation factor of
FIND_SC_APPROX is ln(|V |+ 1).

FIND_SC_APPROX computes the set of covers Cover for
all potential charging stations exactly. Then the algorithm
calls the approximation algorithm SET_COVER_APPROX
and passes the graph parameters (V and Cover) to it (line 6).
There exists an approximation algorithm for the set cover
problem with approximation factor ln(n+ 1) [16], n being
the total number of elements in the set. Using this algorithm

Algorithm V.2: FINDD_DOMSET_APPROX: An Ap-
proximation algorithm for finding the minimum bat-
tery threshold.

Input:
G: Adjacency matrix representation of the graph G = (V,E),
ĈS: Potential vertices in V for deploying charging stations.
ncs: Maximum number of charging stations that can be installed

in the workspace.
Output:
CS: Set of charging stations.
d: Minimum battery threshold (or, number of transitions).

1 function FINDD_DOMSET_APPROX(G, ĈS,ncs)
2 begin
3 i← 1
4 while i ≤ |V | − 1 do
5 Construct Gi = (V,Ei)
6 Construct (Gi)2 = (V, (Ei)2)
7 Compute an IVS M of graph (Gi)2 s.t. M covers V

and M ⊆ ĈS
8 if |M | ≤ ncs then
9 d← 2 · i

/* because 2 · i is the maximum
edge-weight in the graph (Gi)2 */

10 return ⟨M,d⟩
11 end
12 i← i+ 1
13 end
14 if i reaches |V | then
15 Print: ncs charging stations are not sufficient.
16 end
17 end

as SET_COVER_APPROX, we can achieve an approximation
factor of ln(|V |+ 1) for FINDNCS_SC_APPROX.

2) Time complexity: Given a transition graph G =
(V,E), running time of FINDNCS_SC_APPROX is
O(|V |3).

In Algorithm V.1. line 4 finds the covers for each vertex
in ĈS ⊆ V . To compute the cover for a single ver-
tex, our algorithm applies depth-first traversal that runs in
O(|V |+ |E|) time. When ĈS = V , our algorithm computes
covers for all |V | vertices. This takes O(|V |)3 time, because
maximum value of |E| is O(|V |2). In line 5, computing the
minimum set cover using SET_COVER_APPROX algorithm
takes O(|V | · |Cover| · min(|V |, |Cover|)) time [17]. In
the worst case, our algorithm considers ĈS = V and
computes covers for all |V | vertices, giving the worst-case
time complexity as O(|V |3). Hence, the time complexity of
FINDNCS_SC_APPROX is O(|V |3).

B. Approximation algorithm for finding minimum battery
threshold (d)

This algorithm is based on the design of an approximation
algorithm for solving the Dominating Set problem [16].
We design our algorithm FINDD_DOMSET_APPROX (algo-
rithm V.2) to approximately solve the FINDD problem with
complex motion primitives of robots and complex design
of workspaces. Algorithm V.2 finds a near-optimal battery
threshold (number of transitions) for a given number of
charging stations (ncs).

We create the adjacency matrix G representing the graph
G = (V,E). To capture different path lengths in graph G,
algorithm V.2 converts an i-length path to a i-weight edge in

a modified graph Gi = (V,Ei) using matrix multiplication.
As denoted, Gi (derived from G) has maximum edge-weight
i. Thus, from an unweighted graph, our algorithm creates a
weighted graph with edge weights denoting the path lengths
in the original graph. Now, the problem of finding the
minimum battery threshold d for a given number of charging
stations ncs in G is converted to the following: Minimize
d for a given value of ncs, such that the graph Gd has a
dominating set domset(Gd) for which |domset(Gd)| ≤ ncs.
However, finding domset for a given graph is NP-hard. To
circumvent computational intractability, we use the concept
of an approximation algorithm (polynomial time) of domset.
This requires us to introduce Independent Vertex Set (IVS).

Definition 5.2 (Independent Vertex Set (IVS) [16]): In a
graph G = (V,E), IVS is a set S of vertices if, for any
two vertices in S, there is no edge connecting the two. That
means no two vertices in S are adjacent.

Lemma 5.3 ([16]): Given an adjacency matrix G of a
graph, let I be an IVS in G2. Then |domset(G)| ≥ |I|,
i.e., |I| sets a lower bound on |domset(G)|.

In connection with the above, our algorithm finds an IVS
covering all the vertices to find the approximate value of d
(battery threshold) in G. Algorithm V.2 takes the adjacency
matrix of graph G = (V,E), potential charging station
vertices ĈS, and ncs as input. The loop between lines 4
and 13 iterates for path length starting from 1 up to |V |−1. In
the i-th iteration, it constructs Gi using matrix multiplication
in line 5, computes (Gi)2 in line 6 and then computes an
independent vertex set (IVS) M of (Gi)2 such that M covers
V (line 7). Also, M ⊆ ĈS holds, as M represents the set
of charging station vertices in the workspace.

Line 7 adopts a greedy approach to iteratively select the
member vertices of M , which are selected in the descending
order of coverage size of the vertices. For example, the
algorithm selects a vertex v1 ∈ V with the maximum number
of covered vertices, includes v1 in M , and flags all the
covered vertices as covered. For the remaining uncovered
vertices, the algorithm selects another vertex v2 in a similar
way and adds it to M . This continues until all the vertices
in V are covered.

When the number of transitions i increases, the required
number of charging stations (|M |) decreases. When |M |
reaches within the allowable value of ncs for the smallest
value of i, the algorithm assigns 2 · i to d in line 9. As i is
the maximum edge weight in Gi, by the triangle inequality
law, (Gi)2 has a maximum edge weight of 2 · i. Finally, the
algorithm returns d (= 2·i) as the minimum battery threshold
with at most ncs number of charging stations in G.

1) Approximation ratio: The approximation factor of
FINDD_DOMSET_APPROX (Algorithm V.2) is 2.

Let us assume that the algorithm finds the required set
of charging stations M∗, |M∗| ≤ ncs, in the pth iteration.
Let the optimal battery threshold value be dopt for the graph
(Gp)2 with at most ncs charging stations. By Lemma 5.3,
|domset(Gp)| ≥ |M∗| where M∗ is an independent set of
(Gp)2. Also, in line 7, M∗ computes the charging station
vertices that cover all vertices in (Gp)2. Thus, M∗ is also a
dominating set of (Gp)2. Combining the above statements,
the required number of charging stations in Gp is greater than
or equal to that of (Gp)2. The battery threshold is inversely

proportional to the number of charging stations. Thus, the
battery threshold value in (Gp)2 is greater than or equal to
the battery threshold value for Gp. Hence, dopt ≥ p as the
battery threshold value of Gp is p. As the battery threshold d
returned by our algorithm is 2 · p (due to triangle inequality
as mentioned before), we obtain d ≤ 2 · dopt.

2) Time Complexity: Given a graph G = (V,E), the
running time of FINDD_DOMSET_APPROX is O(|V |4).

In FINDD_DOMSET_APPROX (Algorithm V.2), line 5
does matrix multiplication which runs in O(|V |2.8) time, due
to Strassen’s technique [17]. Line 7 adopts a greedy approach
to calculate M from the set of ĈS. As per the description of
computation of M , the greedy algorithm computes IVS M
covering all nodes in (Gi)2 in O(|V |)3 time [18]. Inside the
while loop, line 7 dominates all other instructions (including
line 5) in terms of time complexity. In the worst case,
in our algorithm, M is calculated at most |V | − 1 times,
which takes O(|V |)4. Hence, worst case time complexity of
Algorithm V.2 is O(|V |4).

VI. EVALUATION

A. Experimental Setup
The experiments were carried out in an Intel Core i7-

6500U processor with 2.50 GHz clock speed and 16 GB
RAM. The algorithms are implemented in C++. The SMT-
based algorithms, with which our algorithms are compared,
are implemented using Z3 SMT solver [19].

B. Baselines
We compare the performance of FINDNCS_SC_APPROX

and FINDD_DOMSET_APPROX with two Satisfiability Mod-
ulo Theory (SMT) based algorithms proposed in [15]. The
first algorithm SMT_BRUTE_FORCE is based on a brute-
force approach. Although this approach provides an optimal
solution, it scales poorly for larger workspaces. The second
algorithm SMT_UCORE uses an incremental approach and
leverages the unsatisfiable core of the constraints. This
algorithm provides higher scalability compared to the brute-
force approach. However, it does not guarantee an opti-
mal solution. Also, to improve the quality of the solution,
SMT_UCORE perturbs the charging station locations, ob-
tained in preceding iterations, to some neighboring locations
up to distance δ ∈ Z+. In this work, we use the baseline
algorithms SMT_BRUTE_FORCE and SMT_UCORE with
δ = 0 (no perturbation) and δ = 3.

C. Experimental Results
We carry out experiments with five workspaces and three

robot dynamics. The workspaces are Artificial floor 17×17,
Maze 17 × 17, Warehouse 17 × 17, Warehouse 35 × 21,
and Warehouse 46 × 33, as shown in Figure 2. The robot
dynamics are of Turtlebot, Dubins vehicle, and Quadcopter,
with 9, 16, and 57 motion primitives, respectively.

Our polynomial time approximation algorithms are theo-
retically proven to produce results that are not worse than
the optimal solution beyond certain bounds. Experimental
results validate the claims and show that our algorithms
can successfully solve many more instances of the NP-
hard FINDNCS and FINDD problems, which the SMT-based
techniques could not solve.

(a) Art.floor
17× 17

(b) Maze
17× 17

(c) Warehouse
35× 21

(d) Warehouse
46× 33

Fig. 2. Workspaces used in our experiments. Warehouse 17 × 17 is not
shown here as it is already shown in Figure 1.

1) Finding ncs: Given the workspace, robot dynamics and
battery threshold, FINDNCS_SC_APPROX finds the near-
optimal number and locations of charging stations (Table I).
SMT_BRUTE_FORCE produces optimal results if it does
not time out. Compared to the optimal values of ncs (by
SMT_BRUTE_FORCE), our algorithm produces ncs values
close to the optimal and within the claimed approximation
ratio. However, while the brute force algorithm times out
(in 3h) for most of the instances, our algorithm executes
in 7s − 102s (Table I). Table I also shows that for most
of the instances, our algorithm FINDNCS_SC_APPROX
provides better results than the SMT_UCORE algorithms.
Our algorithm provides better quality results compared to the
SMT_UCORE with δ=0 for all the instances. SMT_UCORE
with δ=3 generally provides results closer to the optimal
solutions. Our algorithm provides solutions at par or even
better in most of the cases compared to SMT_UCORE
with δ=3. In terms of scalability, our algorithm provides a
significant speedup over the SMT_UCORE algorithms.

2) Finding d: Table II compares the performance of
FINDD_DOMSET_APPROX with the SMT-based algorithms.
Given the workspace design, obstacles, and the num-
ber of charging stations (ncs), FINDD_DOMSET_APPROX
finds the near-optimal value of the battery threshold (d).
SMT_BRUTE_FORCE provides an optimal solution, though
it times out often. Our algorithm provides solutions close
to the optimal and satisfy the approximation ratio derived
in this paper. Also, FINDD_DOMSET_APPROX performs at
par with SMT_UCORE (δ=3) in terms of quality of the
solutions while providing a speedup of up to ≈ 200× over
SMT_UCORE with δ=3 (Table II).

3) Performance for a larger workspace: Our algorithms
perform well with large workspaces. Table III shows ex-
perimental results for a larger Warehouse workspace of
size 46× 33 and a wide range of values for the fixed
parameters. For different d values, we execute FIND-
NCS_SC_APPROX with Quadcopter motion primitives, and
the corresponding ncs values are shown. We execute
FINDD_DOMSET_APPROX for different ncs values with
Turtlebot motion primitives and show the changes in the ob-
tained values of d. Both algorithms scale well with increasing
values of the fixed parameters.

VII. CONCLUSION

We have formulated two versions of the charging station
placement problem and converted them to decision problems
in the graph paradigm. We have proved NP-hardness for
those problems using two well-known NP-hard problems. To
handle the NP-hardness of the problems, we have designed

TABLE I
FIND ncs FOR FIXED d: COMPARISON BETWEEN FINDNCS_SC_APPROX AND SMT BASED TECHNIQUES FOR FINDING ncs. RESULTS FOR DIFFERENT

WORKSPACES, ROBOT DYNAMICS AND FIXED d = 6. “TO” STANDS FOR TIMEOUT (3 HOURS).

Art.floor Maze Warehouse Warehouse
Robot type Algorithm 17× 17 17× 17 17× 17 35× 21

T ncs T ncs T ncs T ncs

Turtlebot
SMT_BRUTE_FORCE 47m 33s 4 57m 36s 5 47m 16s 4 TO -
SMT_UCORE (δ=3) 6m 34s 4 18m 34s 6 6m 26s 4 125m 20s 11
SMT_UCORE (δ=0) 1m 54s 8 1m 29s 8 1m 35s 7 14m 33s 12

FINDNCS_SC_APPROX 0m 43s 5 0m 36s 6 0m 43s 5 1m 36s 11

Quadcopter
SMT_BRUTE_FORCE TO - TO - TO - TO -
SMT_UCORE (δ=3) 117m 56s 3 97m 3s 6 41m 30s 4 77m 12s 10
SMT_UCORE (δ=0) 13m 36s 5 12m 33s 7 9m 8s 6 88m 22s 10

FINDNCS_SC_APPROX 0m 34s 3 0m 22s 5 0m 34s 2 1m 42s 5

Dubins vehicle
SMT_BRUTE_FORCE TO - TO - TO - TO -
SMT_UCORE (δ=3) TO - TO - TO - TO -
SMT_UCORE (δ=0) 71m 51s 10 82m 1s 21 56m 6s 14 TO -

FINDNCS_SC_APPROX 0m 7s 5 0m 6s 8 0m 7s 8 0m 14s 14

TABLE II
FIND d FOR FIXED ncs: COMPARISON BETWEEN FINDD_DOMSET_APPROX AND SMT BASED TECHNIQUES FOR FINDING ncs. RESULTS FOR

DIFFERENT WORKSPACES, ROBOT DYNAMICS AND FIXED ncs = 7. “TO” STANDS FOR TIMEOUT (3 HOURS).

Art.floor Maze Warehouse Warehouse
Robot type Algorithm 17× 17 17× 17 17× 17 35× 21

T d T d T d T d

Turtlebot
SMT_BRUTE_FORCE 34m 20s 4 83m 24s 5 106m 12s 5 TO -
SMT_UCORE (δ=3) 6m 58s 5 6m 54s 5 10m 13s 6 TO -
SMT_UCORE (δ=0) 1m 1s 6 2m 53s 9 0m 53s 6 78m 40s 13

FINDD_DOMSET_APPROX 0m 4s 4 0m 4s 6 0m 5s 6 0m 17s 8

Quadcopter
SMT_BRUTE_FORCE TO - TO - TO - TO -
SMT_UCORE (δ=3) 32m 2s 4 47m 36s 5 9m 10s 4 TO -
SMT_UCORE (δ=0) 16m 27s 8 9m 36s 7 6m 40s 7 TO -

FINDD_DOMSET_APPROX 5m 1s 4 3m 47s 4 5m 17s 6 149m 22s 6

Dubins vehicle
SMT_BRUTE_FORCE TO - TO - TO - TO -
SMT_UCORE (δ=3) 122m 58s 5 118m 51s 5 155m 50s 6 TO -
SMT_UCORE (δ=0) 24m 21s 8 41m 30s 10 23m 40s 10 TO -

FINDD_DOMSET_APPROX 2m 2s 6 0m 46s 6 0m 37s 8 27m 4s 10

TABLE III
EXPERIMENTAL RESULTS FOR WAREHOUSE 46× 33 AND VARYING

FIXED PARAMETERS FOR THE APPROXIMATION ALGORITHMS.
FINDNCS_SC_APPROX FINDD_DOMSET_APPROX

Robot fixed T derived Robot fixed T derived
d ncs ncs d

Quad

2 0m 29s 66

Turtle

1 12m 22s 28
3 0m 30s 42 3 11m 29s 26
4 0m 37s 22 5 8m 36s 20
5 1m 05s 15 10 5m 5s 12
6 3m 12s 10 15 3m 17s 8
7 12m 40s 10 20 2m 14s 6

two polynomial time approximation algorithms, theoretically
proved the polynomial run-time of our approximation al-
gorithms, and provided a guarantee on the quality of the
solutions within a certain factor of the optimal solution.
Experimental results validate the theoretical claims about the
quality of solutions and the high scalability of our algorithms.

REFERENCES

[1] B. Kannan, V. Marmol, J. Bourne, and M. B. Dias, “The autonomous
recharging problem: Formulation and a market-based solution,” in
ICRA, 2013, pp. 3503–3510.

[2] G. P. Strimel and M. M. Veloso, “Coverage planning with finite
resources,” in IROS, 2014, pp. 2950–2956.

[3] T. Kundu and I. Saha, “Energy-aware temporal logic motion planning
for mobile robots,” in ICRA, 2019, pp. 8599–8605.

[4] I. Shnaps and E. Rimon, “Online coverage of planar environments by
a battery powered autonomous mobile robot,” IEEE Transactions on
Automation Science and Engineering, vol. 13, pp. 425–436, 2016.

[5] T. Kundu and I. Saha, “Smt-based optimal deployment of mobile
rechargers,” in ICRA, 2021, pp. 8165–8171.

[6] S. Mishra, S. Rodriguez, M. Morales, and N. M. Amato, “Battery-
constrained coverage,” in CASE, 2016, pp. 695–700.

[7] N. Xu, P. Braß, and I. Vigan, “An improved algorithm in shortest path
planning for a tethered robot,” Tech. Rep., 2012.

[8] S. Kim, S. Bhattacharya, and V. Kumar, “Path planning for a tethered
mobile robot,” in ICRA, 2014, pp. 1132–1139.

[9] S. McCammon and G. A. Hollinger, “Planning and executing optimal
non-entangling paths for tethered underwater vehicles,” in ICRA, 2017,
pp. 3040–3046.

[10] I. Kelly, O. Holland, and C. Melhuish, “Slugbot: A robotic predator in
the natural world,” in International Symposium on Artificial Life and
Robotics, 2000, pp. 470–475.

[11] D. Wettergreen, P. Tompkins, C. Urmson, M. Wagner, and W. Whit-
taker, “Sun-synchronous robotic exploration: Technical description and
field experimentation,” IJRR, vol. 24, no. 1, pp. 3–30, 2005.

[12] J. Wawerla and R. T. Vaughan, “Near-optimal mobile robot recharging
with the rate-maximizing forager,” in Advances in Artificial Life, 2007,
pp. 776–785.

[13] T. Kundu and I. Saha, “Mobile recharger path planning and recharge
scheduling in a multi-robot environment,” in IROS, 2021, pp. 3635–
3642.

[14] T. Gao, Y. Tian, and S. Bhattacharya, “Refuel scheduling for multi-
robot charging-on-demand,” in IROS, 2021, pp. 5825–5830.

[15] T. Kundu and I. Saha, “Charging station placement for indoor robotic
applications,” in ICRA, 2018, pp. 3029–3036.

[16] V. V. Vazirani, Approximation algorithms. Springer, 2001.
[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to algorithms. MIT press, 2009.
[18] G. K. Das, M. De, S. Kolay, S. C. Nandy, and S. S. Kolay, “Approxi-

mation algorithms for maximum independent set of a unit disk graph,”
Information Processing Letters, vol. 115, no. 3, pp. 439–446, 2015.

[19] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
TACAS, 2008, pp. 337–340.

	Introduction
	Problem
	Preliminaries
	Workspace
	Robot State
	Motion Primitives
	Graph representation

	Problem definition
	Motivating Example

	Finding Minimum Number of Charging Stations is NP-hard
	Finding Minimum Battery Threshold is NP-hard
	Approximation Algorithms
	Approximation algorithm for finding minimum number of charging stations (ncs)
	Approximation ratio
	Time complexity

	Approximation algorithm for finding minimum battery threshold (d)
	Approximation ratio
	Time Complexity

	Evaluation
	Experimental Setup
	Baselines
	Experimental Results
	Finding ncs
	Finding d
	Performance for a larger workspace

	Conclusion
	References

