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Abstract— We address the path planning problem for a team
of robots satisfying a complex high-level mission specification
given in the form of a Linear Temporal Logic (LTL) formula.
The state-of-the-art approach to this problem employs the
automata-theoretic model checking technique to solve this prob-
lem. This approach involves computation of a product graph of
the Büchi automaton generated from the LTL specification and
a joint transition system that captures the collective motion of
the robots and then computation of the shortest path using Di-
jkstra’s shortest path algorithm. We propose MT*, an algorithm
that reduces the computation burden for generating such plans
for multi-robot systems significantly. Our approach generates
a reduced version of the product graph without computing
the complete joint transition system, which is computationally
expensive. It then divides the complete mission specification
among the participating robots and generates the trajectories
for the individual robots independently. Our approach demon-
strates substantial speedup in terms of computation time over
the state-of-the-art approach and scales well with both the
number of robots and the size of the workspace.

I. INTRODUCTION

Path planning is one of the core problems in robotics,
where we design algorithms to enable autonomous robots
to carry out a real-world complex task successfully [1]. A
basic path planning task involves point-to-point navigation
while avoiding obstacles and satisfying some user-given
constraints. Recently, there has been an increased interest in
specifying complex paths for robots using Linear Temporal
Logic (LTL) (e.g. [2], [3], [4], [5], [?], [6], [7], [8], [9], [10]).
Using temporal logic [11], one can specify requirements that
involve a temporal relationship between different operations
performed by robots.

This paper focuses on the class of multi-robot LTL path
planning problems where the inputs are the discrete dynamics
of the robots and a global LTL specification. Though we
deal with any specification that can be captured in LTL,
our main focus is to deal with those specifications that
require the robots to repeat some tasks perpetually. Such
requirements arise in many robotic applications, including
persistent surveillance [6], search and rescue [12], assem-
bly planning [13], evacuation [14], localization [15], object
transportation [16], and formation control [17].

Traditionally, the LTL path planning problem for the
robots with discrete dynamics is reduced to the problem of
finding the shortest path in a weighted graph, and Dijkstra’s
shortest path algorithm [18] is employed to generate an op-
timal trajectory satisfying an LTL query [19], [6]. However,
for a large workspace and a complex LTL specification, this
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approach is merely scalable. We seek to design a compu-
tationally efficient algorithm to generate optimal trajectories
for the robots.

Heuristic-based search algorithms such as A* (for a single
robot) [20] and M* (for a multi-robot system) [21] have been
successfully applied to solving point-to-point path planning
problems and are proven to be significantly faster than
Dijkstra’s shortest path algorithm. Heuristic search-based
algorithms have also been applied to solving the temporal
logic path planning problem for a single robot [22], [23],
[24], [25], [9]. In this paper, we introduce the MT* algorithm
that, for the first time, attempts to incorporate the heuristic
search in generating an optimal trajectory for a multi-robot
system satisfying a global LTL query efficiently. We apply
our algorithm to solving various LTL path planning problems
for a multi-robot system in 2-D workspaces and compare
the results with that of the algorithm presented in [6]. Our
experimental results demonstrate that MT* in many cases
achieves an order of magnitude better computation time than
that of the traditional approach [6] to solve the optimal LTL
path planning problem.

Related Work. MT* is a special class of multi-agent path
finding (MAPF) problems. MAPF is a widely studied plan-
ning problem where the goal is to find collision-free paths
for a number of agents from their initial locations to some
specified goal locations [26], [27]. MAPF is a special class
of the finite LTL path synthesis problem [28] for multi-
agent systems where the specification of each robot is given
by the LTL formula “eventually goal”, where goal is the
proposition that becomes true when all the robots reach
their goal locations. A number of previous works addressed
the multi-robot path planning problem for general finite LTL
specifications [7], [29], [30].

On the contrary, our focus in the paper is to address the
planning problem for those LTL specifications that capture
perpetual behavior and is satisfied using infinite trajecto-
ries, like the work presented in [31], [32], [6], [33], [34],
[35], [36]. Among the above-mentioned work, Kloetzer et
al. [31] and Shoukry et al. [34] solve the problem without
discretizing the robot dynamics. However, such techniques
are computationally demanding and scale poorly with the
number of robots. In all the other papers, the robot dynamics
are discretized into weighted transition systems. The work
by Tumova et al. [33] assumes that the robots are assigned
their own tasks, with some communication requirements
among the robots. In this paper, we deal with a single
specification for the multi-robot system, where finding the
optimal distribution of the tasks is the core challenge. Chen
et al. [32] divide the problem by first decomposing the given
specification into the specifications for the individual robots
and then generating the plans for the robots based on their
own specification. This decoupling leads to suboptimality
as a given LTL specification may have a number of valid
decompositions, and their quality can be known only after the
plans are generated. Recent work by Kantaros and Zavlanos



to solve the LTL path planning problem scales for a large
number of robots [35], [36]. They employ the sampling-
based technique to compute the first feasible trajectory,
which might not be cost-optimal. Unlike their work, we focus
on generating trajectories with minimum cost.

II. PROBLEM

A. Preliminaries
1) Workspace, Robot Actions and Trajectory: We assume

that a team of n robots operates in a 2-D or a 3-D discrete
workspace W which we represent as a grid map. The grid
divides the workspace into square-shaped cells. Every cell in
the workspace W is referenced using its coordinates. Some
cells can be marked as obstacles and cannot be visited by any
robot. We denote the set of obstacles using O. We capture
the motion of a robot using a set of actions Act. The robot
changes its state in the workspace by performing the actions
from Act. An action act ∈ Act is associated with a cost,
which captures the energy consumption or time delay (based
on the need) to execute it. A robot can move to satisfy a
given specification by executing a sequence of actions in
Act generating a trajectory of states it attains. The cost of a
trajectory is the sum of the costs of the actions to generate
the trajectory.

2) Transition System: We model the motion of the robot i
in the workspace W as a weighted transition system defined
as T i := (Si, si0, E

i,Πi, Li, wi), where (i) Si is the set of
states denoting the obstacle-free cells in W , (ii) si0 ∈ Si is
the initial state of the robot i, (iii) Ei ⊆ Si×Si is the set of
transitions/edges allowed to be taken by robot i, (si1, s

i
2) ∈

Ei iff si1, s
i
2 ∈ Si and si1

act−−→ si2, where act ∈ Act, (iv)
Πi is the set of atomic propositions defined for robot i, (v)
Li : Si → 2Π

i

is a map which provides the set of atomic
propositions satisfied at a state, (vi) wi : Ei → N>0 is a
weight function.

3) Joint Transition System: A joint transition system
T is a transition system that captures the collective mo-
tion of a team of n robots in a workspace (W), where
each robot executes one action from the set of actions
Act available to it. We define a joint transition system as
T := (ST , s0, ET , ΠT , LT , wT ), where (i) ST is the set
of vertices/states in a joint transition system, where each ver-
tex is of form ⟨s1, s2, ..., sn⟩, si represents the state of robot i
in transition system T i, (ii) s0 := ⟨s10, s20, ..., sn0 ⟩ ∈ ST is the
joint initial state of the team of n robots, (iii) ET ⊆ ST × ST

is the set of edges, (s1, s2) ∈ ET iff s1, s2 ∈ ST and
(si1, s

i
2) ∈ Ei for all i ∈ {1, 2, ..., n}, (iv) ΠT :=

⋃n
i=1 Π

i

is the set of atomic propositions, (v) LT : ST → 2ΠT ,
and LT (sj) :=

⋃n
i=1 L

i(sij) gives us set of propositions
true at state sj , (vi) wT : ET → N>0, and wT (s1, s2) :=∑n

i=1 w
i(si1, s

i
2) is a weight function.

We can also think of the transition system as a weighted
directed graph with vertices, edges, and a weight function.
Whenever we use some graph algorithm over a transition
system, we mean to apply it over its equivalent graph.

EXAMPLE 1. Throughout this paper, we will use a surveil-
lance example for illustration purposes. The workspace W
is shown in Figure 1(a). We build a transition systems T i

for all the robots over W where Πi = ΠT = {P1, P2, P3}.
Throughout this paper, we will use a surveillance example for
illustration purposes. The workspace W is shown in Figure
1(a). We build a transition systems T i for all the robots over
W where Πi = ΠT = {P1, P2, P3}.

(a) Workspace W with proposi-
tions P1, P2 and P3

(b) Büchi automaton B for
query: □(3P1 ∧3P2 ∧ ¬P3)

Fig. 1: Workspace W and Büchi Automaton

The proposition P1 is satisfied if the robot visits the
location (6, 6), whereas the proposition P2 can be satisfied
by visiting either (0, 7) or (7, 0). The proposition P3 cor-
responds to the locations that are prohibited for the robots
to visit. Cells with black color represent obstacles (O). We
assume that from any cell in W , a robot can move to one
of its four neighboring cells with a cost of 1 or stay at the
same location with a cost of 0.

4) Linear Temporal Logic: The path planning query/task
in our work is given in terms of formulae written using
Linear Temporal Logic (LTL). LTL formulae over the set
of atomic propositions ΠT are formed according to the
following grammar [11]:

Φ ::= true | a | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | ϕ1 Uϕ2.

The basic ingredients of an LTL formula are the atomic
propositions a ∈ ΠT , the Boolean connectors like ∧ (con-
junction) and ¬ (negation), and two temporal operators X
(next) and U (until). The semantics of an LTL formula is
defined over an infinite trajectory σ. The trajectory σ satisfies
a formula ϕ, if the first state of σ satisfies ϕ. The logical
operators ∧ and ¬ have their usual meaning. For an LTL
formula ϕ, Xϕ is true in a state if ϕ is satisfied at the
next step. The formula ϕ1 Uϕ2 denotes that ϕ1 must remain
true until ϕ2 becomes true at some point in future. The
other LTL operators that can be derived are □ (Always) and
3 (Eventually). The formula □ϕ denotes that ϕ must be
satisfied all the time in the future. The formula 3ϕ denotes
that ϕ has to hold sometime in the future. We have denoted
negation ¬P as !P and conjunction as & in the Figures.

5) Büchi Automaton: For any LTL formula ϕ over a set of
propositions ΠT , we can construct a Büchi automaton with
input alphabet ΠB = 2ΠT that captures all the possible ways
in which the given task ϕ can be completed [37]. We can
define a Büchi automaton as B := (QB , q0,ΠB , δB , Qf ),
where (i) QB is a finite set of states, (ii) q0 ∈ QB is the
initial state, (iii) ΠB = 2ΠT is the set of input symbols,
(iv) δB ⊆ QB × ΠB × QB is a transition relation, and (v)
Qf ⊆ QB is a set of final states. A final state in the Büchi
automaton is the one that needs to occur infinitely often on
an infinite length string consisting of symbols from ΠB to
get accepted.

EXAMPLE 2. Figure 1(b) shows the Büchi automaton for
an LTL task □(3P1 ∧ 3P2 ∧ ¬P3), which means that the
robots should always repeat visiting locations corresponding
to proposition P1 and P2, and always avoid locations corre-



sponding to proposition P3. Here, q0 is the start state as well
as the final state. It informally depicts the steps to be followed
to complete the task ϕ. For example, the transitions q1 → q2
leads the robot to visit a state where P1 ∧ ¬P2 ∧ ¬P3 is
satisfied (only P1 is satisfied, but P2 and P3 are not satisfied)
by going through only those states which satisfy ¬P1∧¬P3.
This way, we can also understand the meaning of the other
transitions.

6) Product Automaton: The product automaton P be-
tween the joint transition system T and the Büchi automa-
ton B is defined as P := (SP , SP,0, EP , FP , wP ), where
(i) SP = ST × QB , (ii) SP,0 := (s0, q0) is an initial state,
(iii) EP ⊆ SP × SP , where ((si, qk), (sj , ql)) ∈ EP if and
only if (si, sj) ∈ ET and (qk, LT (sj) , ql) ∈ δB , (iv) FP :=
ST×Qf set of final states, and (v) wP : EP → N>0 such that
wP ((si, qk), (sj , ql)) := wT (si, sj). To generate a trajectory
in T which satisfies LTL query, we can refer P . Refer [19]
for examples.

B. Problem Definition
Consider a team of robots moving in a static workspace

W represented as transition systems {T1, . . . , Tn} and their
collective motion is modeled as a joint transition system T .
A run over the transition system T starting at initial state
s0 defines the trajectory of the robots in the W . Suppose
the robots are given a task in the form of an LTL query
ϕ over ΠT , which needs to be completed collectively by
them repetitively and infinitely many times. We construct a
Büchi automaton B from ϕ. Let Πc = {c | c ∈ ΠB and
∃δB(qi, c) = qj where, qi ∈ QB and qj ∈ Qf}. Let Fπ =
{si | si ∈ ST and si ⊨ πj where πj ∈ Πc}. Fπ represents
a set of all the possible final states. A final state signifies
the completion of task ϕ. Our objective is to find an infinite
length path R = s0, s1, s2, . . . over T which satisfies ϕ and
so, there exists f ∈ Fπ which occurs on R infinitely many
times. Such path can be divided into two components namely
prefix (Rpre) and suffix (Rsuf ) [11]. A prefix is a finite run
from the initial state s0 to a final state f ∈ Fπ and a suffix
is a finite length run starting and ending at f reached by the
prefix, and containing no other occurrence of f . The suffix is
repeated periodically and infinitely many times to generate
an infinite length run R. Thus, we can represent run R as
Rpre.Rω

suf , where Rpre = s0, s1, s2, . . . , sp be a prefix and
Rsuf = sp+1, sp+2, . . . , sp+r be a suffix, sp+r = sp and ω
denotes the suffix being repeated infinitely many times.

The cost of such run can be minimized if we minimize
the cost of the suffix, which can be given as

C(R) = C(Rsuf ) =

p+r−1∑
i=p+1

wT (si, si+1). (1)

PROBLEM 1. Given a joint transition system T capturing
the motion of the team of robots in workspace W and an
LTL formula ϕ representing the task given to the robots, find
an infinite length run R in prefix-suffix form over T which
minimizes the cost function (1).

Note: If we want to deal with the LTL specifications that
can be satisfied by the finite trajectories (for example, ♢a or
a1Ua2), we can define a cost function that captures the cost
of the prefix, denoted by C(Rpre).

C. Baseline Solution Approach
The state-of-the-art solution to the above problem [6] uses

the automata-theoretic model checking approach. It computes

the product automaton of T and B and then uses Dijkstra’s
shortest path algorithm to compute the required minimum
cost suffix run having a valid prefix (see the full version
of the paper [38] for details). The size of T increases
exponentially with the increase in the number of robots
and also the workspace size. It consumes a huge amount
of memory, which becomes a hindrance to scaling up this
algorithm. In the next section, we present our algorithm MT*
and use the algorithm proposed in [6] as the baseline for
quantitative comparison.

III. MT* ALGORITHM

In MT*, we divide a complex LTL path planning problem
into simpler problems systematically, which can be solved
individually and then combined to solve the original problem
optimally. MT* only computes a reduced version of the
product graph P , which we call the Abstract Reduced Graph
Gr. Its size is significantly smaller compared to P and thus
is faster to compute and consumes less memory.

A. Abstract Reduced Graph

We explain the intuition behind the construction of abstract
reduced graph Gr using a single robot example.

EXAMPLE 3. Consider a robot moving in workspace W
shown in Figure 1(a) and has been given an LTL task
□(3P1 ∧3P2 ∧ ¬P3) whose Büchi automaton B is shown
in Figure 1(b). Let T 1 be the transition system of the
robot constructed from W . For one robot system, the joint
transition system T is the same as T 1. Consider a product
automaton P of T and B. Suppose s0 = ⟨(4, 7)⟩ and
therefore SP,0 = (⟨(4, 7)⟩, q0). From here, we must use
the transitions in the Büchi automaton to find the path in
T in the prefix-suffix form. Suppose we find such a path
on which we move to state (⟨(4, 6)⟩, q1) which satisfies
¬P1 ∧ ¬P3 from (⟨(4, 7)⟩, q0) as per the definition of the
product automaton. From (⟨(4, 6)⟩, q1), we must visit a
location where P1 ∧ ¬P2 ∧ ¬P3 is satisfied so that we can
move to Büchi state q2 from q1. All the intermediate states
till we reach such a state must satisfy ¬P1∧¬P3 formula on
the self-loop on q1. Suppose we next move from (⟨(4, 6)⟩, q1)
to (⟨(6, 6)⟩, q2) on P which satisfies P1 ∧ ¬P2 ∧ ¬P3 and
this path is (⟨(4, 6)⟩, q1) → (⟨(4, 5)⟩, q1) → (⟨(4, 4)⟩, q1)
→ ... → (⟨(6, 5)⟩, q1) → (⟨(6, 6)⟩, q2). On the path from
(⟨(4, 6)⟩, q1) to (⟨(6, 6)⟩, q2), all the intermediate nodes sat-
isfy the self-loop transition condition on q1. We can consider
the self-loop transition condition ¬P1 ∧ ¬P3 over q1 as a
constraint that must be satisfied by the intermediate states
while completing a task of moving to the location satisfying
the transition condition from q1 to q2. Using this as an
abstraction method over the product automaton, we directly
add an edge from state (⟨(4, 6)⟩, q1) to state (⟨(6, 6)⟩, q2) in
the reduced graph assuming that there exists a path between
these two states. We explore this path opportunistically only
when it is required. This is the first idea behind MT*.

Throughout this paper, we call an atomic proposition with
negation a negative proposition and an atomic proposition
without negation a positive proposition. For example, ¬P2

is a negative proposition and P2 is a positive proposition.
We divide the transition conditions in B into two types.

Definition 1 (Negative and Positive Transition Condition).
A transition condition which is a conjunction of all negative
propositions is called a negative transition condition and is



Algorithm 1: MT*
1 Input: Transition systems {T 1, ..., Tn}, ϕ: An LTL

formula
2 Output: A run ⟨R1, ...,Rn⟩ that satisfies ϕ

3 B(QB , q0,ΠB , δB , Qf )← ltl to Buchi (ϕ)
4 for all qi, qj ∈ QB , where δB(qi, cpos) = qj do
5 S∗[cpos] = Abstract Distant Neighbors(cpos)
6 end
7 Gr(Sr, v0, Er, Fr,N )← Generate Redc Graph(B, T, S∗)
8 for all f ∈ Fr do
9 for each simple cycle Cf containing f in Gr do

10 B′ ← Extract Buchi Trans From Cf(Cf , B)
11 for i← {1, .., n} do
12 cif ← Project Cf Over Ti(Cf , i, Gr)
13 Bi ← Project Cif Over B′(cif , B

′, Gr)
14 Ri

f ← Optimal Run(Bi, cic, T
i)

15 end
16 Rsuf

f (⟨R1
s, ..,Rn

s ⟩)← Sync(⟨R1
f , ..,Rn

f ⟩)
17 Rpre

f (⟨R1
p, ..,Rn

p ⟩)← Compt Prefix(f,B,Gr)
18 end
19 end
20 Rsuf

P ← argmin
Rsuf

f
with a valid prefix

C
(
Rsuf

f

)
21 Rpre

P ← prefix of Rsuf
P

22 RP = Rpre
P .Rsuf

P
23 Project RP over T to compute RT

24 Project RT over {T 1, ..., Tn} to obtain runs ⟨R1, ...,Rn⟩

25 Procedure Generate Redc Graph(B, T, S∗)
26 vinit ← v0(s0, q0)
27 let Q be a queue data-structure
28 Initialize empty reduced graph Gr

29 label vinit as discovered and add it to Sr

30 Q.enqueue(vinit)
31 while Q is not empty do
32 vi(si, qi)← Q.dequeue()
33 if ∃δB(qi, cneg) = qi and ∄(δB(qi, cneg) =

qj such that qi ̸= qj) then
34 for all vl(sl, ql) such that sl ∈ S∗[cpos] and

δB(qi, cpos) = ql do
35 Er ← (vi, vl), N (vi, vl)← false
36 if vl is not labelled as discovered then
37 label vl as discovered, add it to Sr

38 Q.enqueue(vl)
39 end
40 end
41 end
42 else
43 for all vl(sl, ql) such that sl ∈ S∗[cpos] and

δB(qi, cpos) = ql do
44 Er ← (vi, vl), N (vi, vl)← true
45 if vl is not labelled as discovered then
46 label vl as discovered, add it to Sr

47 Q.enqueue(vl)
48 end
49 end
50 for all ql such that ∃δB(qi, cneg) = ql do
51 vl ← (s∗, ql), Er ← (vi, vl),

N (vi, vl)← true
52 if vl is not labelled as discovered then
53 label vl as discovered, add it to Sr

54 Q.enqueue(vl)
55 end
56 end
57 end
58 end
59 return Gr

denoted by cneg . The one which is not negative is called a
positive transition condition, and is denoted by cpos.

EXAMPLE 4. ¬P1 ∧¬P3 is a negative whereas P1 ∧¬P2 ∧
¬P3 is a positive transition condition.

Before we formally define abstract reduced graph, we
define the abstract state, abstract neighbor set, and the edges
in the abstract reduced graph.

Definition 2 (Abstract state). An abstract state in the ab-
stract reduced graph is a pair of a multi-robot state and
a Büchi automaton state where in the multi-robot state,
some robot states may be unknown. For a single robot, we
represent an unknown state symbolically as si∗ := (∗, ∗),
where i ∈ {1, ..., n}. If the locations of all the robots are
unknown, then we represent such state as s∗ := ⟨s1∗, ..., sn∗ ⟩.
We use a map L∗ to store the tasks and the constraints that
each robot satisfies in an abstract state.

Definition 3 (Abstract Neighbor Set). For a given positive
transition condition cpos, the abstract neighbor set is defined
as the set of all possible abstract states of the multi-robot
system that can be reached after executing the transition. We
represent it as S∗[cpos].

We can easily compute S∗[cpos] for any cpos transition
condition by distributing all the task propositions among the
robots in all possible ways and denoting the locations for
robots who do not receive any task from cpos as (∗, ∗).

EXAMPLE 5. Consider that cpos = P2∧¬P3 be a transition
condition from B. Suppose here we are planning the paths
for two robots. Thus, to satisfy this transition, one of the
robots must go to a location where P2∧¬P3 is satisfied, and
at the same time, the other robot must be at a location where
¬P3 is satisfied. There are 2 locations (0, 7) or (7, 0) which
satisfy P2 ∧ ¬P3 and 52 locations which satisfy ¬P3. So,
there are overall 2 · 2 · 52 = 208 ways in which both robots
can collectively satisfy P2 ∧ ¬P3 and we represent these
208 satisfying configurations symbolically as S∗[cpos] =
{⟨(0, 7), (∗, ∗), q0⟩, ⟨(7, 0), (∗, ∗), q0⟩, ⟨(∗, ∗), (0, 7), q0⟩,
⟨(∗, ∗), (7, 0), q0⟩}. Here, ⟨(0, 7), (∗, ∗), q0⟩ says that
robot 1 is at location (7, 0) whereas robot 2 could be
at any obstacle-free location which satisfies ¬P3. Here,
L∗[⟨(0, 7), (∗, ∗), q0⟩] = {{P2,¬P3}, {¬P3}} and so
on.

Using the above ideas, we represent the product graph
symbolically as a significantly smaller abstract reduced
graph.

Definition 4 (Edge in Abstract Reduced Graph). An edge
from node vi(si, qi) to some node vl(sl, ql) in the abstract
reduced graph is added under two conditions stated below.

(a) Distant Neighbor Condition: If ∃δB(qi, cneg) =
qi and ∄δB(qi, cneg) = qj , qi ̸= qj , i.e., if there exists
a negative self-loop over qi and there does not exist any
negative transition from qi to any other state qj in the Büchi
automaton, add an edge from vi(si, qi) to all vl(sl, ql) such
that ∃δB(qi, cpos) = ql and sl ∈ S∗[cpos]. Here, we do not
add nodes using cneg self-loop transition assuming that cneg
self-loop transition can be used to find the actual path from
vi to vl later in the algorithm. Here, qi and ql can be same.

(b) Product Automaton Condition: If the distant neighbor
condition is not satisfied, we add an edge from vi to all
vl(sl, ql) such that ∃δB(qi, cpos) = ql and sl ∈ S∗[cpos]. For
all cneg outgoing transitions from qi to some ql, we add an



Fig. 2: Abstract Reduced Graph for a 2 robot system having
the workspace and the Büchi automaton from Figure 1

edge from vi to vm(s∗, ql). Here s∗ := ⟨s1∗, ..., sn∗ ⟩, where
si∗ = (∗, ∗). Here, qi and ql can be same. At this moment,
we do not know the complete value of the nodes in si and
sl.

We use N to track neighbor information in the abstract
reduced graph. For an edge (va, vb), N (va, vb) = true says
that vb must be a neighbor of va in T . On the other hand,
N (vi, vl) = false says that vi and vl are not neighbors
(connected by an edge) in the product graph P .

EXAMPLE 6. In Figure 2, the edge between vi =
(⟨(6, 6)(∗, ∗)⟩, q2) and vl = (⟨(7, 0)(∗, ∗)⟩, q0) is added
using the distant neighbor condition. Here, the path between
(6, 6) and (7, 0) could be established through cneg transition
condition. Similarly, whatever value we fill for unknowns
(∗, ∗), an intermediate path between the two must satisfy
cneg condition. On the other hand, the edge between vi =
(⟨(∗, ∗)(7, 0)⟩, q0) and vl = (⟨(6, 6)(7, 0)⟩, q0) is added
using the product automaton condition. Here, the location
of robot 2 does not change. Robot 1’s location in vi is not
known (denoted by (∗, ∗)) and is (6, 6) in vl. So, later in the
algorithm, whenever we fill this unknown value, we have to
ensure that it is a neighbor of (6, 6) in T 1.

Now we provide the formal definition of Abstract Reduced
Graph.

Definition 5 (Abstract Reduced Graph). Given a joint tran-
sition system T and a Büchi automaton B, the Abstract Re-
duced Graph is defined as Gr := (Sr, vinit, Er, Fr), where
vinit = (s0, q0) is an initial state, Sr and Er are the set
of vertices and edges respectively added using the distant
neighbor condition and product automaton condition by
running the Breadth-First-Search (BFS) algorithm starting
from node (s0, q0). Fr ⊆ Sr denotes the set of final states.
For f ∈ Fr, the Büchi Automaton state component qf of f
is a final state of the Büchi Automaton B, i.e., qf ∈ Qf .

EXAMPLE 7. The abstract reduced graph generated for a
two robot system over the workspace W and the Büchi au-
tomaton B from Figure 1 is shown in Figure 2. All the nodes
enclosed in a rectangle represent an abstract neighbor set S∗
for some transition. Edges have transition conditions written
on them. We mention N on the transition to indicate that the
N value for that transition is true. The ∗ on the transition
says that this transition is applicable only if the nodes are

Fig. 3: Suffix computation in MT* algorithm

actual neighbors. The transition condition accompanied with
cneg condition in curly braces {} represents a cneg transition
that must be used to reach the next node. In every node below
the robot coordinates, we show the L∗ value for that node.

We explain the construction of the Abstract Reduced
Graph shown in Figure 2. Initially, robot 1 is at location
(0, 0) and robot 2 is at (4, 7). So, here s0 = ⟨s10, s20⟩ =
⟨(0, 0), (4, 7)⟩. We start BFS with node v0 = (s0, q0) =
(⟨(0, 0), (4, 7)⟩, q0). For the first time vi = v0 is dequeued
from the queue Q, so we add the neighbors of v0 to Gr. Here,
q0 does not have cneg type self transition loop in B. So, we
first add all cpos satisfying nodes as neighbors of v0. Here,
there exists a transition from q0 to q0 on cpos = P1 ∧ P2 ∧
¬P3. We add edges from v0 to all the nodes in S∗[(P1∧P2∧
¬P3)], which are ⟨(6, 6)(0, 7)⟩, ⟨(6, 6)(7, 0)⟩, ⟨(0, 7)(6, 6)⟩,
and ⟨(7, 0)(6, 6)⟩ with q0 as the Büchi state. As these nodes
have been added as per product automaton condition, these
nodes must be neighbors to v0. However, none of these
nodes are neighbors to v0. So none of these edges will be
actually added to Gr. We have only shown these transitions
in Figure 2 for the sake of completeness and understanding
of the readers. This kind of infeasibility we represent using ∗
on the transition condition. Now, there also exists a transition
from q0 to q1 with transition condition ¬P1 ∧ ¬P3. And
as this is a cneg type transition, we add an edge from v0
to (⟨(∗, ∗), (∗, ∗)⟩, q1). Again this node has been added as
per the product automaton condition, so whatever value we
choose to put in place of ⟨(∗, ∗)(∗, ∗)⟩ must be a neighbor
of v0. Now, suppose vi = (⟨(∗, ∗), (∗, ∗)⟩, q1) has been
dequeued from the queue Q. Here, there exists a negative
self loop over q1 with transition condition cneg = ¬P1∧¬P3

and there does not exist any cneg transition from q1 to any
other state in B. So, we add all the nodes as neighbors to
vi which satisfy cpos transition conditions and ignore cneg
self-loop. There exists a positive transition from q1 to q2 with
transition condition cpos = P1∧¬P2∧¬P3. So, we add edges
from vi to all the nodes in S∗[(P1 ∧¬P2 ∧¬P3)] which are
⟨(6, 6), (∗, ∗)⟩, ⟨(∗, ∗), (6, 6)⟩ with Büchi state q2. As these
nodes have been added as neighbors to vi using the distant
neighbor condition, they may not be actual neighbors of vi
in P . We explain this in the next section. Like this, we add
nodes to Gr. The complete Gr is shown in Figure 2.



B. MT* Procedure
We outline all the steps of MT* in Algorithm 1 and explain

the concepts for the major steps in detail. Given the transition
systems for n robots {T 1, ..., Tn} and an LTL query ϕ, the
goal is to compute a minimum cost run Ri over T i for n
robots, satisfying ϕ in the form of prefix and suffix.

We first compute the Büchi automaton from the given
LTL task ϕ. Then for all cpos transition conditions present
in B, we compute the abstract neighbor set S∗[cpos] using
the procedure Abstract Distant Neighbor() as explained
in section (III-A). Then we generate Abstract Reduced
Graph (Gr) using procedure Generate Redc Graph() from
Algorithm 1. Now, for each state f ∈ Fr, we compute
all the possible simple cycles (cycles containing no other
cycle) starting and ending at f . We choose the one with
the minimum cost and reachable from vinit as our final
solution. We can easily find such cycles using Depth-First
Search (DFS) algorithm starting with node f .

For each f ∈ Fr and for each simple cycle Cf

starting and ending at f in Gr, we follow the fol-
lowing steps. We will also use the example mentioned
in Figure 3 for a better understanding of the readers.
(i) Extract Buchi Trans From cf( ): Each cycle Cf in Gr

also represents a cycle of transitions in the Büchi automaton.
For example, consider a cycle Cf starting and ending at
f = (⟨(∗, ∗), (0, 7)⟩, q0) in Figure 3(a). From this Cf , we
can extract an automaton B′, which is a sub-graph of B
and also shown in Figure 3(a). (ii) After this, we decou-
ple the joint suffix cycle into n cycles individual to each
robot. (iii) Project Cf Over Ti( ): We use this procedure
to project/extract Cf over T i to compute the trajectory cif for
robot i. In Figure 3, we decouple joint trajectory shown in
Sub-figure (a) into two trajectories c1f and c2f shown in Sub-
figure (b) and (c) respectively. Transitions are also divided
as per the constraints allocated to the individual robots.
(iv) Project Cif Over B′( ): Using this procedure, we derive
n automata {B1, ..., Bn} from the transitions of cycles
{c1f , ..., cnf }. These automata represent the path/constraints
that each robot must follow in this particular joint trajec-
tory/task Cf . Automata B1 and B2 are shown in Figure 3(b)
and Figure 3(c). (v) Optimal Run( ): In this procedure, we
complete the individual incomplete trajectories cif for all the
robots using their individual automaton Bi. For example, the
incomplete trajectory shown in Sub-figure (b) is completed
using automaton B1 to obtain the completed trajectory shown
in Sub-figure (d). In trajectory (b), we first find the first
known node which is s1source = (⟨(6, 6)⟩, q0). Then we find
the next known node on the cyclic trajectory which is also
s1dest = (⟨(6, 6)⟩, q0). Then we attempt to find the path from
s1source to s1dest with automaton B1 in T i using single robot
LTL pathfinding algorithms T* [9] or Optimal Run [19]. In
these algorithms, as we now have a concrete goal node, we
can use A∗ instead of Dijkstra’s algorithm to improve the
computation time. Here, there was only one known node in
the trajectory. However, in general, we continue like this till
we find all the unknown sub-trajectories in the suffix cycle.
(vi) This way, the problem of finding the joint trajectory
for n robots has been reduced to finding n trajectories for a
single robot system. As the size of the single robot transition
system is much smaller than the joint transition system,
MT* produces results much faster than the state-of-the-art
algorithm [6].

(vii) Sync( ): When we generate the robot trajectories
independently for individual robots, the generated trajectories

can be of different lengths, and thus, the sequence in which
particular locations are visited may change and may not
satisfy ϕ. There are two types of transitions in Gr. One
is added using the product automaton condition, in which
both the nodes should be neighbors. In this case, all the
generated individual trajectories will have a consistent Büchi
state. The second one is the transition added using the
distant neighbor condition, in which we assume that the
added node will be reached using cneg type self-loop. In
such cases, generated individual trajectories could be of
different lengths. However, if the robots can be stopped at
some location during their operation, it is straightforward to
achieve synchronization by keeping the robot waiting at the
initial location of the transition for a sufficient duration. A
hypothetical example demonstrating this is shown in the full
version of the paper [38].

Single robot trajectories shown in Figure 3 (d) and (e)
have the same number of nodes and also have the same
Büchi states. Thus, they are in sync. We can combine them
as Rsuf

c = (⟨(6, 5), (0, 7)⟩, q1) → (⟨(6, 6), (0, 6)⟩, q2) →
(⟨(6, 6), (0, 7)⟩, q0) → (⟨(6, 5), (0, 7)⟩, q1) with cost equal
to sum of individual costs which is 2 + 2 = 4.

If, for a robot, all the nodes in the abstract individual
trajectory are (∗, ∗), then this robot is not doing any-
thing in this team task sequence Cf , and thus can be
ignored. For example, consider a Cf = (⟨(7, 0, )(∗, ∗)⟩, q0)
→ (⟨(∗, ∗)(∗, ∗)⟩, q1) → (⟨(6, 6)(∗, ∗)⟩, q2) in which all the
coordinates for robot 2 are (∗, ∗).
Compt Prefix( ): After synchronizing the individual tra-

jectories, we now know the exact coordinates of the final
state f ∈ Fr in Cf . For example, Cf in 3(a) has f =
(⟨(∗, ∗)(0, 7)⟩, q0) which we compute as (⟨(6, 6)(0, 7)⟩, q0).
Now, in this step, we can find a prefix path from the initial
state vinit = (s0, q0) to this computed f using the same
steps we used to compute the suffix (we find a path instead
of a cycle). If the suffix has a valid prefix (i.e., the suffix
is reachable from the initial state of the robots), we can
consider such suffix a valid suffix. From all those valid
suffix cycles, we choose the one with the minimum cost
as our final outcome and project it over {T 1, .., Tn} to
obtain {R1, ..,Rn}. For the Abstract Reduced Graph Gr

shown in Figure 2, the suffix cycle with the minimum cost
is Cf = (⟨(6, 6), (0, 7)⟩, q0) → (⟨(6, 6), (0, 7)⟩, q0) with cost
0. The prefix can be computed accordingly.
Memoization. We can store once generated paths for
individual robots and use them later in Optimal Run
to reduce the computation time. For example, we
can store the actual path computed for the abstract
path (⟨(6, 6)⟩, q2)

¬P2∧¬P3−−−−−−→ (⟨(∗, ∗)⟩, q0)
¬P1∧¬P3{N}−−−−−−−−−→

(⟨(∗, ∗)⟩, q1)
P1∧¬P2∧¬P3{¬P1∧¬P3}−−−−−−−−−−−−−−−−→ (⟨(6, 6)⟩, q2).

Correctness and Optimality. The proof of optimality and
correctness of MT* is available in the full version of the
paper [38], where we prove the following theorem.

Theorem 1. The trajectory RT computed by MT* algorithm
satisfies the given LTL formula ϕ, and it is the minimum cost
trajectory among all the trajectories satisfying ϕ.

Complexity. The computation time of MT* increases expo-
nentially with the increase in the number of robots and the
size of the LTL specification as these increase the size of
the abstract reduced graph and thus the number of cycles to
be explored. However, as the size of the abstract reduced
graph remains the same with an increase in the size of
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Fig. 4: Results for LTL Query ϕ2

the workspace, the computation time increases polynomially
with the increase in the workspace size due to the polynomial
increase in the computation time to find the distance between
two locations of interest. This provides a significant advan-
tage over the baseline algorithm. As the precise complexity
analysis of MT* is complex, we rely on the experimental
evaluation to demonstrate its efficacy.

IV. EVALUATION

In this section, we present several results to establish the
computational efficiency of MT* algorithm against the base-
line solution [6]. We implement our algorithm in C++. We
use LTL2TGBA tool [39] as the LTL query to Büchi automa-
ton converter. The results have been obtained on a desktop
computer with a 3.4GHz quadcore processor with 16GB of
RAM. The C++ implementations of MT∗ algorithm and the
baseline algorithm are available in the following repository:
https://github.com/iitkcpslab/MTStar.

We use the 2-D workspace shown in Figure 4(a) (borrowed
from [6]). Each grid cell has 4 neighbors. The cost of
each edge between the neighboring cells is 1 unit. In the
workspace, U1 and U2 are data upload locations, whereas
G1, G2, G3, and G4 are data gather locations.

We evaluate MT* algorithm for five LTL queries
ϕ1, ϕ2, . . . , ϕ5 borrowed from [6]. We define propositions
over the workspace in the following way: gather: Data is
gathered from a gather station, rXgather: Robot X gathers
data from a gather station, gatherY : Data is gathered from
gather station Y, rXgatherY : Robot X gathers data from
gather station Y. We define the propositions for ‘upload’ in
the same way. Due to space constraints, we discuss only
one of the five queries in this section. Detailed results for
all the five queries are available in the full version of the
paper [38].
Query ϕ2: The mission is “Each Robot must repeatedly visit
a data gather location at the same time synchronously to
gather data and then upload that data to an upload station
before gathering any new data again”.

ϕ2 = □3gather ∧□(gather ⇒ (r1gather ∧ r2gather))

∧ □(r1gather ⇒ X(¬(r1gather)U(r1upload)))

∧ □(r2gather ⇒ X(¬(r2gather)U(r2upload)))

The generated trajectory for ϕ2 is shown in Figure 4(a) in
which the hollow circle represents the start of the trajectory.
For ϕ2, Robot 1 gathers from G1 and Robot 2 from G2
at the same time to induce the synchronization constraint
□(gather ⇒ (r1gather ∧ r2gather)). They upload it to
the nearest upload station to minimize the total cost and
move again to G1 and G2 respectively, to complete the cyclic
trajectory. The total cost of the multi-robot trajectory for the
robots is 24.

In Table I, we list down the computation times of the
baseline solution and MT*, and the speed-up achieved by
MT* over the baseline solution for queries ϕ1, . . . , ϕ5. Büchi
states column lists the number of states in the Büchi au-
tomaton for the corresponding LTL mission. We list these
results for different sizes of workspaces. A 9× 9 workspace
is shown in Figure 4(a). The 15×15 and 30×30 workspaces
are similar to the 9× 9 map with the same number of data
gather and data upload locations. In the table, we can observe
a significant speed up that MT* achieves over the baseline
solution. We have shown ‘-’ for the entries which we could
not compute due to insufficient RAM (16GB) or very high
computation time (> 10000 sec). For 8 robots, we have only
shown computation time for MT* as we could not generate
results for baseline solution beyond 3 robots.

For the graphs in Figure 4, we have used workspaces
from size 9 × 9 till 50 × 50. In Figure 4(b), we observe
the performance of MT* with the increase in workspace size
for 2 and 3 robot systems for query ϕ2. The computation
time of MT* increases almost linearly for all the LTL
queries. This is because the size of the abstract reduced
graph remains the same with the increase in the workspace
size. The computation time for single robot trajectories in
the procedure Optimal Run faces polynomial increase with
the increase in the workspace size, and thus MT* achieves
a polynomial increase in the computation time with the
increase in the workspace size. In Figure 4(c), we observe
that the computation time of MT* increases exponentially
with the increase in the number of robots for query ϕ2. This
is because, with the increase in the number of robots, the
number of possible task assignments increases exponentially.
These results are consistent for other queries and workspaces.

In Table II, we compare the number of vertices and
edges in Product Graph P with Abstract Reduced Graph
Gr for different workspace sizes |W| and different number
of robots |n|. The Abstract Reduced graph remains the same
with the increase in the workspace size. It is significantly
smaller than the product graph, and that is why it has
superior performance over the baseline solution in terms of
computation time. The sizes of the graphs are also a direct
indicator of the memory requirement of the algorithms.

A video simulation of a ground robot for two differ-
ent specifications has been submitted as a supplementary
material and is also available at https://youtu.be/
3iAhycehys8.

V. DISCUSSIONS

Our proposed algorithm MT* is substantially faster than
the state-of-the-art algorithm to solve the multi-robot LTL
optimal path planning problem. MT* does not attempt to
provide collision-free trajectories unless the requirement of
collision avoidance is explicitly specified in the input LTL
formula. Thus, MT* is useful for high-level strategic planning
for a temporal logic specification. We assume that, during
the actual execution of the plans, some dynamic real-time
collision avoidance algorithms such as the ones presented
in [40], [41], [42] will be employed to ensure collision
avoidance among the robots.

In MT*, we evaluate the cost of the cycles containing a
final state one by one while keeping track of the minimum
cost cycle. Once we complete the computation of the first
cycle, we have a valid solution (a trajectory satisfying the
LTL specification). In the subsequent iterations, we look for
a more optimal solution. Thus, MT* is a good candidate for



TABLE I: Baseline Solution (B.S.) Vs MT*

9× 9 Workspace 15× 15 Workspace 30× 30 Workspace

2 Robots 3 Robots 8 Robots 2 Robots 8 Robots 2 Robots 8 Robots

ϕ Büchi B.S. MT* Speed B.S. MT* Speed MT* B.S. MT* Speed MT* B.S. MT* Speed MT*
States (s) (s) Up (s) (s) Up (s) (s) (s) Up (s) (s) (s) Up (s)

ϕ1 12 20.60 13.60 1.50 − 266.00 − 5397.19 3635 19.80 184 5513.59 − 37.41 − 6022.69
ϕ2 5 2.80 0.10 21.90 9786 0.61 16037 147.11 74 0.30 243 151.54 985 1.00 985 163.47
ϕ3 5 22.30 0.90 23.70 11665 5.50 2107 1211.12 496 2.50 198 1196.55 9043 8.30 1086 1311.95
ϕ4 5 1.80 0.04 40.0 1150 0.10 11500 66.36 38 0.06 664 66.48 728 0.12 6129 67.53
ϕ5 5 11.40 0.05 218.8 − 0.19 − 382.33 579 0.07 7846 383.66 10937 0.14 80633 383.99

TABLE II: Comparison of No. of Vertices and Edges in Product
Graph (P) and Abstract Reduced Graph (Gr) for Query ϕ2

|W| |n| P Gr

|SP | |EP | |Sr| |Er|
9× 9 2 9605 305767 15 26
15× 15 2 152101 6329687 15 26
30× 30 2 2762245 126946183 15 26
40× 40 2 9375845 442918092 15 26
9× 9 3 480254 60541878 19 66

an anytime implementation (like anytime A* [43]). Moreover,
it is possible to parallelize the evaluation of the suffix cycles
(for different final states) in MT* to boost the performance
further.
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