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Abstract— We present a method to find the optimal control
strategy for a robot using prior information of localization that
maximizes the probability of satisfaction of a temporal logic
specification while considering the uncertainty in both motion
and sensing, two major causes for localization uncertainty.
The specifications are given in the probabilistic computation
tree logic (PCTL) formulae over a set of propositions, which
capture the presence of the robot in some key locations in
the environment. A computation model that can deal with
the uncertainty in both motion and sensing is the Partially
Observable Markov Decision Process (POMDP), which is
computationally expensive. We approximate the underlying
POMDP using Augmented Markov Decision Process (AMDP)
and present a control synthesis algorithm for AMDP. We carry
out numerous experiments on workspaces with sizes up to
100×100 and three different PCTL specifications to evaluate the
efficacy of our technique. Experimental results show that our
technique for computing robot control policy using localization
prior can deal with localization uncertainty effectively and scale
to large environments.

I. INTRODUCTION

Traditionally, the path planning problem for a robot deals
with reaching a goal location from its initial location while
avoiding obstacles, which is known as reach-avoid specifica-
tion [1]. In the recent past, the path planning problem for a
mobile robot has been considered for complex specifications,
captured in some form of temporal logic. Linear Temporal
Logic (LTL) [2] has been widely used as the specification
language for complex robotic missions, and various algo-
rithms have been proposed for solving the LTL path planning
problem in various settings (e.g. [3], [4], [5], [6], [?], [7],
[8], [9], [10], [11], [12], [13], [14]).

A major limitation of most LTL motion planning algo-
rithms is that they consider the motion model of the robot to
be perfect. However, in practice, any mobile robot involves
uncertainty in its movement. To deal with this uncertainty
in motion, several recent work (e.g. [15], [16], [17], [18])
have devised the probabilistic motion planning approach for
a mobile robot, where the uncertain motion model of a robot
due to imprecision in action executions is represented as
Markov Decision Process (MDP) [19], and the specification
of the robot is captured in Probabilistic Computation Tree
Logic (PCTL) [20].

Apart from the uncertainty in the execution of the actions,
there is another significant source of uncertainty that is
ignored in most of the previous work on probabilistic motion
planning for temporal logic specifications. This uncertainty is
due to the incapability of state-of-the-art sensing methodolo-
gies to provide precise location information during a robot’s
movement. Like the motion uncertainty, error in sensing also
contributes significantly to localization uncertainty [19]. If
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the inaccuracy in sensing is not taken into account during
the path planning, the paths followed by the robot may be
significantly inefficient.

In this paper, we present a methodology for solving the
temporal logic path planning problem for a mobile robot
in the presence of localization uncertainty due to the error
in both action execution and sensing operation. Partially Ob-
servable Markov Decision Process (POMDP) [19] is a widely
used model in robot path planning, which can deal with
localization error due to both action execution and sensing
operation (e.g. [21], [22]). However, solving a path planning
problem on a POMDP is computationally expensive [19].
As dealing with temporal logic specifications introduces ad-
ditional complexity to the path planning problem, POMDP-
based algorithms to solve such path planning problems for
temporal logic specifications are computationally inefficient.

To deal with the intractability of path planning using
POMDP, we design a plan synthesis algorithm based on an
approximate model of POMDP, which is called Augmented
MDP (AMDP) [23], [24]. AMDP lies in-between MDP and
POMDP in terms of the computational complexity of the
algorithms designed for them. AMDP states are represented
using lower dimension statistics. Thus, working with AMDP
is computationally efficient and practical as compared to
POMDP. In this paper, we show how the probabilistic model
checking algorithm for MDP [16] can be extended to AMDP
so that we can solve the temporal logic path planning
problem for PCTL specifications in the presence of both the
motion and the sensing uncertainties.

We have implemented our algorithm in a software tool
that we have applied to solve the planning problem for
three PCTL specifications on complex environments. Our
experimental results show that the AMDP-based planning
algorithm can efficiently deal with the localization uncer-
tainty and generate the path in many situations where MDP-
based path planning algorithms perform poorly. We also
compare our algorithm with a recently developed point-based
method for synthesizing policies for POMDPs that shows
the potential to solve planning problems in the presence of
both the motion and sensing uncertainties [22]. Experimental
results establish that our algorithm can provide results equiv-
alent to the point-based POMDP solver, but in significantly
less computation time. Moreover, the methodology presented
in [22] can deal with only LTL formulae, whereas our
AMDP-based method can solve the planning problem for
arbitrarily complex PCTL formulae. To the best of our
knowledge, this paper, for the first time, presents an efficient
algorithmic procedure to solve complex temporal logic path
planning problems involving both the motion and the sensing
uncertainties.

II. PRELIMINARIES

This section provides the background concepts necessary
to understand the rest of the paper.
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Fig. 1: (a) Grid map Environment G, which is having six vertices. Each
pathways in grid map environment G are bidirectional. (b) Roadmap R
representation of Environment G.

A. Gridmap and Roadmap
The workspace of a robot is represented as a grid-map,

denoted by G. Some of the grid locations are obstacle-free,
and others are occupied by obstacles. Let X denote the set of
obstacle-free cells in G. Some of the cells in X , for example,
those that represent some intersections, are important for
robot navigation. Depending on the specifications, we define
a set of atomic propositions AP , which are true at some
of those important cells. We create a roadmap R from G
by keeping these important cells as vertices (V ) and their
connectivity as edges (E). We associate a roadmap with a
labeling function L : V → 2AP that maps each vertex in
the roadmap to a subset of atomic propositions in AP . For a
given grid map G, the corresponding roadmap is represented
as R = (V,E,AP,L).

Example 1: Consider the grid map environment G shown
in Figure 1a, The roadmap R for the environment G is
shown in Figure 1b. It consists of 6 vertices. The set of
vertices is V = {v1, v2, v3, v4, v5, v6}. Let us assume that
we are interested in three propositions D1, D2, D3 which
are satisfied at some important cells (vertices) of grid map G,
as shown in Figure 1b. Therefore AP = {D1, D2, D3}. The
mapping of the vertices to subsets of atomic propositions are
as follows: L(v1) = {D2}, L(v2) = {D1}, L(v3) = {D3},
L(v4) = {D3}, L(v5) = {D2}, and L(v6) = {D1}.

B. Robot Model
1) Motion model and sensing model: We assume that the

robot has discrete dynamics with Up, Down, Left, and Right
motion primitives that move the robot to the four neighboring
roadmap vertices. For sensing the environment, the robot
uses a laser range scanner, which helps the robot localize
itself with respect to its surroundings. In the real world, the
actuators and sensors of a robot might not be perfect, which
causes errors in the motion model and the sensing model of
the robot. We assume that the noises present in the motion
and sensing model are Gaussian in nature with the standard
deviation of σm and σl respectively. We refer to them as
motion uncertainty and sensing uncertainty, respectively.

2) Markov Localization: Localization is the problem of
estimating the state of the robot in a known environment
from uncertain sensor measurements. Due to motion and
sensing uncertainties, the robot cannot determine its exact
state. Instead, it estimates its location as the probability
distribution over possible states. This probability distribution
is known as robot belief. Let the state of the robot at time t be
denoted by xt. The belief of the robot at time t, represented
by bel(xt), is computed with the help of its belief bel(xt−1)
at time t−1, robot control action ut at time t, and sensor data
zt at time t [19]. Prediction and measurement update are two
essential steps in Markov Localization. Markov Localization

computes belief bel(xt) known as predicted belief during the
prediction step using bel(xt−1) and ut. We cannot directly
use this belief because the error in this belief increases
over time, and after some iterations, this belief becomes too
uncertain. Thus, we have to improve the robot’s belief with
sensor data. This step is known as measurement update. In
this step, bel(xt) is computed with the help of predicted
belief bel(xt) and sensor data zt at time t.

3) Localization Prior: Localization prior information in-
dicates how well a robot can localize itself at a particular grid
cell. We compute this prior information using the method
described in [25]. Localization prior information can be
calculated using the grid cell information about the obstacles
and the sensor model of the laser range finder. It computes
the covariance matrix for each grid location x ∈ X , higher
value of covariance at a particular grid cell indicates that
the robot is less likely to localize itself at that grid cell and
vice-versa. Since the environment is static, we compute the
localization prior once for each grid location.

4) Control Policy: When a robot arrives at a (concrete
or belief) state, it has to decide which action to choose. The
policy is the choice to pick a particular action at a given state
of the robot. The control policy maps the state space (S) of
the robot to the set of available actions or action space (A).
Therefore, given the state of the robot s ∈ S, the control
policy µ(a|s), a ∈ Act, is a probability distribution over a
set of actions.

C. MDP, POMDP, and AMDP
1) Markov Decision Process (MDP): MDP allows for

optimal decision-making in a fully observable environment
under only motion uncertainty. In MDP, the robot can com-
pute its location precisely at any time.

Definition 2.1 (MDP): An MDP is defined as a tuple,
M = (S, s0,Act, P,AP,L), where S is a finite set of
states, s0 ∈ S is the initial state, Act is the set of possible
actions, P : S×Act×S → [0, 1] is the probability transition
function such that for all states s ∈ S and action a ∈ Act,∑

s′∈S P (s, a, s
′) = 1, AP is the set of atomic propositions,

and L is the labeling function: S → 2AP .
We represent the cardinality of S and Act in an MDP by n
and m respectively. The Probability Transition function P is
represented using a matrix of dimension n×m× n, where
P (:, a, :) represents all the transitions from state si ∈ S to
state sj ∈ S on an action a ∈ Act.

2) Partially Observable Markov Decision Process
(POMDP): POMDP allows for optimal decision-making
under both motion uncertainty and sensor uncertainty [26],
[27]. In POMDP, the robot cannot predict its exact location.
Instead, it computes the probability distribution over all
possible states, also known as belief.

Definition 2.2 (POMDP): A POMDP is defined by a tuple
(S′, Act, P ′, R,O,Z), where S′ is set of belief states, Act
is the set of actions. For s, s′ ∈ S′ and a ∈ Act, P ′ is
the transition probability P ′(s, a, s′), R(s, a) is the reward
function. O is set of observations. For o ∈ O, Z(o, s′, a)
defines the observation probability Pr(o | s′, a).

3) Augmented Markov Decision Process (AMDP):
POMDP considers every possible belief, but many of these
beliefs are unlikely in practice. This increases the com-
plexity of the underlying algorithm [19]. AMDP considers
both types of uncertainty while maintaining the degree of
tractability [24]. AMDP uses augmented state representation
to approximate a POMDP as a variant of MDP. The AMDP



states discretize the set of belief states in the POMDP, and
explicitly store the uncertainties present in the environment.
The states in the augmented MDP is represented as a tuple
of the vertex v ∈ V and variance σ2 ∈ W [28]. Let Q be
the set of augmented states. Formally, we can define Q as:

Q = {(vi, σ2
j ) | vi ∈ V, σ2

j ∈W}, (1)

where V is the set of vertices in the roadmap R and W
is the set of possible variances that discretizes the possible
range of uncertainty present in the environment. Thus, the
total number of states in the Augmented MDP is |V | ×
|W |, where |V | and |W | are the cardinality of the set V
and W respectively. Each augmented state q = (v, σ2)
represents the Gaussian probability distribution over the cells
of grid map G, whose mean is v, and isotropic covariance

Σ =

[
σ2 0
0 σ2

]
. Therefore, by representing the robot’s belief

using the tuple (v, σ2), which is independent of the number
of grid map cells, the complexity of the underlying algorithm
decreases significantly. Each vertex v ∈ V satisfies zero
or some propositions (See example 1). Thus, an augmented
state satisfies each proposition in AP with zero or some
probability (see Example 2).

Transition function P (q′|q, a) defines the probability to
reach augmented state q′ given that action a is executed at
augmented state q. We can compute the transition function
P (q′|q, a) between the augmented states q ad q′ in three
steps using the method proposed in [28]. Firstly, using
the localization prior information (See Section II-B.3), we
calculate the probability distribution about the position of the
robot given that the robot executes an action a from a vertex
v, represented by p(x|v, a) (x ∈ X ), and refer it as posterior
from vertex. In the second step, using posterior from a vertex,
we compute p(x|q, a) termed as posterior from a state, which
is defined as the probability distribution of the robot (or belief
of the robot) about its position given that robot executes an
action a from an augmented state q. Finally, we compute the
transition function P (q′|q, a) by mapping the posterior from
a state p(x|q, a) to one of the AMDP states.

We now present the formal definition of AMDP.
Definition 2.3 (AMDP): An AMDP is defined as a tuple,

A = (Q, q0,Act, P,AP,L′), where Q is a finite set of belief
states, q0 ∈ Q is the initial belief state, Act is the set of
possible actions, P : Q×Act×Q → [0, 1] is the probability
transition function such that for any belief state q ∈ Q
and action a ∈ Act,

∑
q′∈Q P (q, a, q

′) = 1, AP is the set
of atomic propositions, and L′ is the probability labeling
function: Q×AP → [0, 1].

Example 2: We construct the augmented MDP A (shown
in Figure 2) of the roadmap R (shown in Figure 1b)
using the method described in [28]. Consider the roadmap
environment R, which contains six vertices (|V | = 6).
Assume that |W | = 2, i.e., W = {σ2

1 , σ
2
2}, where

σ2
1 = 0.2m2 and σ2

2 = 1.0m2. Then the number of
augmented states |Q| in the augmented MDP A is 12.
Each state in Augmented MDP is represented by (vi, σ

2
j ),

where vi ∈ V and σ2
j ∈W . The transition function between

the augmented states is computed using the method
proposed in [28] (implementation details discussed in [28]).
Assume that the probability distribution represented by an
augmented state q over the vertices of roadmap R contains
p1, p2, p3, p4, p5, p6, which represent the probability of the
robot to be at vertex v1, v2, v3, v4, v5, and v6, respectively.
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Fig. 2: Augmented MDP ’A’ of Environment G with 2 cardinality of W , i.e.,
W = {σ2

1 , σ
2
2}, where σ2

1 = 0.2m2 and σ2
2 = 1.0m2. Act = {u, d, l, r},

where u, d, l, r represent action Up, Down, Left, and Right respectively.

Since proposition D1 is true at vertex v2 and v6, the
augmented state q satisfies proposition D1 with probability
p2 + p6. Similarly, q satisfies proposition D2 and D3 with
probability p1 + p5 and p3 + p4, respectively. Therefore,
from the calculated belief represented by each augmented
state, we obtain that proposition D1 is satisfied by
the augmented states [q2, q3, q4, q6, q8, q10, q11, q12] with
probability [0.0097, 1, 0.87, 0.0023, 0.21, 0.0097, 1, 0.87].
Similarly, proposition D2 and D3 are satisfied by
the augmented state [q1, q2, q4, q6, q8, q9, q10, q12],
and [q2, q4, q5, q6, q7, q8, q10, q12] respectively with
probability, [1, 0.87, 0.0097, 0.21, 0.0023, 1, 0.87, 0.0097],
and [0.12, 0.12, 1, 0.79, 1, 0.79, 0.12, 0.12].

D. Probabilistic Computation Tree Logic (PCTL)
PCTL is a probabilistic extension of Computation Tree

Logic (CTL) [2]. A PCTL state formula over a given set
AP of atomic propositions is recursively defined as :

ϕ = true | a | ϕ1 ∧ ϕ2 | ¬ϕ1 | PJ(ψ),

where a ∈ AP , ψ is a path formula, ∧ is the Boolean
conjunction operator, ¬ is Boolean negation operator, and
J is an interval between [0,1]. A PCTL path formulae is
defined as:

ψ = Xϕ | ϕ1Uϕ2 | ϕ1U≤kϕ2,

where ϕ1, ϕ2 and ϕ are state formulae, X is Temporal
Logic Next operator, U is Unbounded Until operator, U≤k

is Bounded Until operator and k ∈ N.

III. PROBLEM

Let us consider a gridmap G with the corresponding
roadmap R = (V,E,AP,L). During navigation on the
gridmap, when the robot executes an action, the robot’s
Markov localization system generates a belief bel(x) about
its position over the cells of the gridmap. When the max-
imum probability in the belief corresponds to a vertex in
the roadmap, the robot considers itself to be present at that
vertex. The robot keeps on executing the same action from
a roadmap vertex till it reaches a new vertex. When the



(a) at σl = 0.1m (b) at σl = 1.0m

Fig. 3: Environment G1 having grid size 19 × 12, and size of each
grid cell is 1m × 1m. G1 has 19 vertex. We are interested in 6 atomic
propositions, which are satisfied at the vertices of the environment. Different
atomic propositions are marked with different color: Service Station 1
(S1, Red) {v5, v14}, Service station 2 (S2, Purple) {v9, v15}, Depart-
ment Store (D, Green) {v18}, Warehouse (Wh, Orange) {v12}, Super
Market (M , Yellow) {v5, v7, v8, v10, v13, v18} and Checkpoint (C, Pink)
{v1, v2, v3, v4, v9, v11, v12, v16, v17}. Violet and Cyan arrow are showing
the trajectory of robot for Task 1 at sensor noise having standard deviation
of σl = 0.1m and σl = 1.0m respectively.

robot detects itself to be present at some vertex, it maps
the belief bel(x) to one of the augmented state qmin ∈ Q,
which has the minimum Bhattacharyya distance (Db) [29]
with the belief bel(x), i.e.,

qmin = arg min
qi∈Q

(Db(bel(x), qi)) , (2)

and then executes the action corresponding to qmin.
Thus, the execution of a control policy leads to a sequence

of roadmap vertices ξ = v0 v1 . . . through which the robot
moves. A trace corresponding to a trajectory ξ = v0 v1 . . .,
vi ∈ V , is the sequence π = L(v0)L(v1) . . . of the subset
of atomic propositions that are true at the corresponding
vertices in the trajectory. Our goal in this paper is to
synthesize a control policy µ : Q → Act for a robot that
leads to a trace π maximizing the probability of satisfaction
of a PCTL specification.

For a PCTL path formula ψ, we write Pmax(ψ) to denote
the maximum probability of reaching the states that satisfy
the path formula ψ. For synthesis, it is meaningful to define
a PCTL formula as Pmax(ψ) instead of PJ(ψ).

Now, we define our problem formally as follows:
Problem 3.1: Given a roadmap R corresponding to an

environment G and a task in PCTL formula ϕ = Pmax(ψ)
that uses the atomic propositions AP defined on R, find the
control policy for the robot that leads to a trace π having the
maximum probability of satisfying the PCTL path formula
ψ under both motion and sensing uncertainties.

Let us illustrate the problem with an example.
Example 3: Consider the gridmap G1 shown in Figure 3

(ignore the arrows at this moment). The dimension of
gridmap G1 is 19 × 12, where size of each grid cell is
1m× 1m. The roadmap R1 corresponding to G1 has 19 ver-
tices which have been marked in the figure. The propositions
true at different vertices have been provided in the caption
of the figure. Now let us consider the following PCTL task
on roadmap R1:

Task 1: The robot should visit the Department Store
within 8 steps, and before visiting the department store, it
should avoid visiting Service Station 1 and Service Station
2. Formally, ϕ1 = Pmax(¬S1 ∧ ¬S2) U

≤8 D.

Assume that the initial position of the robot is v1. Let
us compare the trajectories of the robot to satisfy Task 1 at
low sensor noise (at σl = 0.1m) and high sensor noise (at
σl = 1.0m). The results are shown in Figure 3.

When the sensor noise is low (at σl = 0.1m), the robot’s
trajectory for Task 1 starting at vertex v1 is as follows (shown
in Figure 3a with violet color). The robot reaches vertex v4
via vertex v2, v3, and then it reaches v18 via vertex v17 by
taking a right turn at vertex v4. However, at a high sensor
noise (when σl = 1.0m), the Markov localization system
computes more corrupted beliefs about the robot’s position.
In this case, the chances of reaching vertex v5 by missing
vertex v4 increases, and from vertex v5, Task 1 cannot be
satisfied as the robot has already satisfied proposition S1.
In this situation, the robot should follow another trajectory
to maximize its chance of satisfying the given specification.
Such a path is shown in Figure 3b with Cyan color. The
robot reaches vertex v3 via vertex v2 and then takes a right
turn at vertex v3 to reach vertex v11. Then it reaches vertex
v18 via vertices v12, v17, which is shown in Figure 3(b).

In the next section, we will describe how we can generate
such trajectories algorithmically using Augmented MDP.

IV. AMDP-BASED ALGORITHM

This section presents our approach for solving the path
planning problem for a PCTL formula ϕ in the presence of
both motion uncertainty and sensor uncertainty.

A. Control Synthesis for PCTL formula on Augmented MDP
In this subsection, given an AMDP A and a PCTL formula

ϕ = Pmax(ψ), we will discuss how to find the robot control
policy corresponds to the maximum probability of satisfying
the path formula ψ. Our algorithm for finding the control pol-
icy is motivated by [16]. However, we cannot directly apply
the equations described in [16] because, in [16], the goal is to
find the control policy for an MDP, where the robot knows
its position accurately at any point in time. Consequently,
by having accurate information about its position, the robot
deterministically knows which propositions are true or false
at any time. On the other hand, the robot does not know its
position accurately in our current setting. Therefore, at any
point, the robot cannot accurately decide which propositions
are true or false. It can only compute the satisfaction of a
proposition with some probability. So, we need to modify
the equations described in the [16]. In the next subsections,
we will discuss the modified equations for the next operator,
the bounded until operator, and the unbounded until operator
for the PCTL formula ϕ.

We categorize the PCTL formula into two types: simple
PCTL formula and complex PCTL formula. Simple PCTL
formulae are those formulas that contain at most one P-
operator, which is discussed in section IV-A.1. On the other
hand, complex PCTL formulae are those which contain more
than one path formulae. Section IV-A.2 discusses the control
synthesis for the complex PCTL formula.

1) Control Synthesis for simple PCTL formula:
a) Next Operator: This algorithm is used to find the

control policy for the PCTL formula: ϕ = Pmax(Xϕ1),
where Xϕ1 is a PCTL path formula. Consider the Augmented
MDP A shown in Figure 2 and PCTL state formula ϕ =
Pmax(Xϕ1). We have to find the action at each augmented
state such that the probability of satisfying ϕ1 at the next state
is maximum. Thus, we need to consider only the immediate
action at each state. We can find Prqi(ϕ), the maximum



probability of satisfaction ϕ for state qi, and µ∗(qi), the
corresponding control, using the below equations.

Prqi(ϕ) = max
a∈Act(qi)

 ∑
qj∈Sat(ϕ1)

P (qi, a, qj) · (ϕ1)qj

 (3)

µ∗(qi) = arg max
a∈Act(qi)

 ∑
qj∈Sat(ϕ1)

P (qi, a, qj) · (ϕ1)qj

 (4)

where Sat(ϕ1) denotes the set of states which satisfy the
PCTL formula ϕ1 with probability greater than zero, P is
the probability transition function for the AMDP, and (ϕ1)qj
is the probability to satisfy ϕ1 at state qj . In the matrix-
vector notation, the above probability and optimal policy can
be computed with constant matrix-vector multiplication and
one maximization operation. Let ϕ1 be the state indexed
vector, whose dimension is n × 1, where n denotes the
number of augmented states in Augmented MDP. For each
action a ∈ A, we multiply the probability transition function
represented as matrix P (:, a, :) with the state vector ϕ1. As a
result, we get m vectors, where m is the number of actions
possible in the AMDP.

Example 4: Consider the Augmented MDP given in Fig-
ure 2 and the PCTL formula ϕ = Pmax(XD3). For action Up
represented as ‘u’, Equation 3 can be written in matrix-vector
form as follow:

Pru(ϕ) = P (:, up, :)× ϕ1 (5)

By putting the values, we obtain vector Pru(ϕ) as:

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0

0.41 0.29 0 0 0.14 0.16 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

0.12 0.098 0.31 0.23 0 0 0.12 0.12 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0.2 0.25 0 0 0.55 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0.2 0.25 0 0 0.55 0 0 0 0 0





0
0.12
0

0.12
1

0.79
1

0.79
0

0.12
0

0.12


=



0
0
0
0
0
0.3
0

0.25
1

0.58
1

0.58


Similarly, we can find resultant vectors for action Down,

Left, and Right represented by Prd(ϕ), Prl(ϕ) and
Prr(ϕ) respectively.
Prd(ϕ) = [1 0.58 1 0.58 0 0.3 0 0.25 0 0 0 0]

T,
Prl(ϕ) = [0 0 0.05 0.31 0 0 1 0.61 0 0 0.05 0.31]

T,
Prr(ϕ) = [0.05 0.31 0 0 1 0.61 0 0 0.05 0.31 0 0]

T.
At the end, we have to perform the maximization

operation on each state. For example, for state q4:
Prq4(ϕ) = max(0, 0.58, 0.31, 0), which is equals to 0.58
and µ∗(q4)={d}. Similarly, for other states, we can find the
optimal probability and its corresponding action. It should
be noted that if the probability is zero for some state, then
there is no way the robot can satisfy the task from that state.

b) Bounded Until Operator: Now we will discuss how
to deal with the formula of the form ϕ = Pmax(ϕ1U

≤kϕ2),
where ϕ1 and ϕ2 contain only Boolean operators or propo-
sitions. Assume that Prkqi(ϕ) represent probability to satisfy
ϕ in k steps at augmented state qi. The overall probability
of satisfaction of ϕ can be computed recursively using the
following equations :

Prkqi(ϕ) = max
a∈Act(qi)

(
(ϕ2)qi + (1− ϕ2)qi(ϕ1)qix

k
(qi,a)

)
(6)

µ∗
k = arg max

a∈Act(qi)

(
(ϕ2)qi + (1− ϕ2)qi(ϕ1)qix

k
(qi,a)

)
(7)

where we can compute xk(qi,a) using

xk(qi,a) =
∑

qj∈Q P (qi, a, qj)Pr
k−1
qj (ϕ) (8)

Here, (ϕ1)qi represents the probability of satisfaction of ϕ1
at augmented state qi, (ϕ2)qi is probability to satisfy ϕ2 at
augmented state qi, P is probability transition function.

Example 5: To demonstrate this method, let us consider
the Augmented MDP given in Figure 2 and PCTL formula
ϕ = Pmax(D3 U≤2 D1). Now, we have to recursively
apply Equation (6) for each possible action. For action up,
Equation (8) can be written in matrix-vector form as follow:

xkup = P (:, up, :)× Prk−1(ϕ) (9)

Assume that diag(v) represents a square diagonal matrix
with the elements of vector v on the main diagonal. For
action up and k = 1, Equation (6) can be written in matrix-
vector form as follow:

Pr1u(ϕ) = D1 + diag(1−D1)× diag(D3)× x1up (10)

By putting the values of D1, D3 and x1up in Equation (10),
we obtain:

Pr1u(ϕ) = [0 0.0097 1 0.87 0 0.0048 1 0.55 0 0.01 1 0.88]T

Similarly, we can compute Pr1d(ϕ), Pr
1
l (ϕ), Pr

1
r(ϕ) as

follows:
Pr1d(ϕ) = [0 0.01 1 0.88 0 0.0048 1 0.55 0 0.0097 1 0.87]T,

P r1l (ϕ) = [0 0.0097 1 0.87 0 0.0023 0 0.21 0 0.0097 1 0.87]T,

P r1r(ϕ) = [0 0.09 1 0.87 0 0.3 0 0.21 0 0.09 1 0.87]T.

In the end, Pr1(ϕ) can be computed using one maximization
operation at each state. For example, for state q6, Pr1q6(ϕ) =
max(0.0048, 0.0048, 0.0023, 0.3), which is equals to 0.3 and
its corresponding control policy at first time step µ1(q6) =
{r}. Similarly, we can find the optimal probability and its
corresponding control policy for other states. In the next
iteration, when k = 2, we can compute Pr2(ϕ), using the
above equations. For example, for state q5, Pr2q5(ϕ) = 1.0
and its corresponding control policy at second time step
µ2(q5) = {r}.

c) Unbounded Until Operator: Now we compute the
control policy of satisfaction for the PCTL formula, which
is of the form ϕ = Pmax(ϕ1 U ϕ2), where ϕ1 and ϕ2 contain
only Boolean operators or propositions. The until operator is
the same as Uk as k → ∞. We use the algorithm of bounded
until operator discussed in Section IV-A.1.b. The iteration
terminates when the solutions converge sufficiently.

Example 6: To demonstrate the above
method, consider the PCTL formula ϕ =
Pmax(D3 U D1), we obtain the optimal probability
Pr(ϕ)=[0 0.12 1 0.89 1 0.68 1 0.66 0 0.12 1 0.89 0]T, and
the corresponding policy at states : µ2(q5) = µ2(q6) = {r},
µ2(q7) = µ2(q8) = {u}.

2) Control synthesis for complex PCTL formula: Com-
plex PCTL formulae are the ones that contain more than one
path formulae. We can construct a complex PCTL formula
by nesting the probabilistic operator, which specifies more
complex tasks. We have followed the same approach for the
complex PCTL formula described in [16]. The only differ-
ence is that we use the equations described in section IV-A.1
instead of the equations mentioned in [16]. In case when the
outermost temporal operator is bounded until or unbounded
until, the complex nested PCTL formula can be written as:

ϕ1 = Pmax(ϕL U ϕR) (11)

ϕ2 = Pmax(ϕL U≤k ϕR) (12)



where ϕL and ϕR are PCTL formulas, and at least one of
them contains the P-operator. We first compute the set of
states QϕR

satisfying the PCTL formula ϕR and its corre-
sponding control policy µϕR

using the algorithm described
in section IV-A.1. Similarly, we compute the control policy
µϕL

for the PCTL formula ϕL. In order to satisfy the PCTL
formula ϕ1 and ϕ2, the robot must reach a state in QϕR

only through the states present in the QϕL
. Therefore, we

construct another AMDP A′ ⊂ A by eliminating all the
actions from A which are not present in µϕL

. If, in this
process, any AMDP states contain no outgoing transitions,
a self-loop is inserted in that AMDP state to avoid having
any blocking AMDP state. Finally, we find the control policy
µϕ for the outermost temporal operator on the modified Aug-
mented MDP A′ using the algorithm described in section IV-
A.1.

When the outermost operator is Next operator, the complex
nested PCTL formula can be written as:

ϕ3 = Pmax(X ϕR) (13)

where ϕR must contain a probabilistic operator. In this case
also, we apply the same procedure as described above. We
first compute the set of states QϕR

and its corresponding
control policy µϕR

, then find the control policy µϕ for
the outermost Next operator discussed in section IV-A.1.a.
Therefore, the overall control policy µ∗ is as follows: Apply
the control policy µϕ until a robot reaches a state in QϕR

,
then apply control policy µϕR

.

V. EVALUATION

This section describes our experience in applying the algo-
rithm described in the previous section to solve various path
planning problems under motion and sensor uncertainties.

A. Experimental Setup
We have implemented our path planning algorithm in

C++. The implementation is available in the following repos-
itory: https://github.com/iitkcpslab/RTPlan.
The results shown in this section are obtained on a system
with a 3.40 GHz octa-core processor with 32 GB RAM. Most
of the experiments presented in this section are carried out
in the grid map environment G1 shown in Figure 3.

1) PCTL Tasks: Along with Task 1 introduced in Exam-
ple 3, we consider the following two PCTL tasks for our
experiments. These properties are also defined for the grid
map environment G1 shown in Figure 3.
Task 2: The robot will eventually visit the Department
store starting from vertex v8 without going through any
checkpoints. Formally, ϕ2 = Pmax(¬C U D).
Task 3: The robot first reaches the Department store only
through the Super Market and Checkpoint while avoiding
Service Station 1. After reaching the Department store, the
robot reaches the Warehouse with a probability greater than
0.1 while avoiding Service Station 1 and the Super Market.
ϕ3 = Pmax((¬S1 ∧ (M ∨ C))U(D ∧ P>0.1((¬S1 ∧ ¬M)UWh))).

2) Success probability: For a given temporal logic spec-
ification ϕ, we define success probability as the simulation
probability for the robot to satisfy ϕ. Formally, we define
success probability as follow:

success probability (ϕ) =
H

N
, (14)

where H is the number of simulations when the robot
completes the task ϕ successfully, and N is the total number
of simulations.

(a) Task 1 (b) Task 2 (c) Task 3

Fig. 4: Success probability of AMDP (|W | = 5), MDP and POMDP-
based approach at motion noise having standard deviation σm = 0.1m and
σm = 0.15m, with varying sensor noise

B. Baseline for Comparison

We compare the simulation result of our AMDP-based
approach with both the MDP and POMDP-based approaches.

To solve Problem 3.1 using the MDP-based approach, we
construct the MDP in which states are vertices V of the
environment G1, and the transitions between the vertices of
the environment are defined by the transition function. Since
MDP assumes that the robot’s position is known exactly
and ignores the uncertainty in the belief of the robot, the
generated policy may lead to a wrong path when there is
significant uncertainty in the robot’s belief.

To solve Problem 3.1 using POMDP, we first construct the
POMDP by following the procedure in [22]. We have created
a partially observable grid world similar to G1. The robot
can use actions up, down, left, right to move on desired
cell. We intentionally added the noise in the movement of the
robot to make the motion model of the robot noisy. The robot
uses a noisy laser range scanner to localize itself in the grid
world. Then, we use SARSOP [30] as a POMDP solver. The
precision of the SARSOP solver is set to 1×10−2. Since [22]
can deal with only LTL path formulae, we cannot solve the
plan synthesis problem for the specification ϕ3 as it contains
the inner Probability term.

C. Results

We now present our experimental results in detail.
1) Effect of sensor noise: This experiment compares the

AMDP-based approach’s performance with that of the MDP
and the POMDP-based approaches for different sensor noises
having a standard deviation ranging from 0.6m to 1.8m. We
first construct our AMDP for Environment G1 (shown in Fig-
ure 3) using the set W = {0.1, 0.2, 0.3, 0.4, 0.5} and run our
algorithm 1000 times for each task and each sensor noise to
find the success probability. The results of this experiment are
shown in Figure 4. When the sensor noise is low, the MDP-
based approach’s performance is high, but when sensor noise
increases, the MDP-based approach’s performance decreases
rapidly. The reason behind this behavior is as follows. When
the sensor noise increases, the Markov localization system
generates a corrupted belief in the robot. Thus, in the case
of the MDP-based approach, when the robot reaches some
vertex with an enormous corrupted belief, the chances of
misclassifying the robot’s position increase. Due to this, the
probability of completing the task decreases. However, in the
AMDP-based approach, we approximate the robot’s belief
with the augmented states. We explicitly store the uncertainty
(variance) in the set W . Therefore, the chance of misclas-
sification of robot position decreases, and, consequently, the
AMDP-based approach performs much better than the MDP-
based approach at high sensor noise. This experiment also
shows that the performance of the AMDP-based approach is
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Fig. 5: Success probability of AMDP, MDP and POMDP-based approaches
with respect to cardinality of W at motion noise having standard deviation
σm = 0.15m and sensor noise with standard deviation σl = 1.0m

almost the same as that of the POMDP-based approach at
different sensor and motion noise.

2) Effect of cardinality of W : We conduct experiments
to measure the effect of the cardinality of W on the per-
formance of the Augmented-MDP approach. The results are
shown in Figure 5. In this experiment, we add motion noise
having standard deviation σm = 0.15m and sensor noise
in the robot’s sensors with standard deviation σl = 1.0m.
We start with two variances in W (|W | = 2), such that
W = {0.1, 0.2}, then we gradually add more variances
into the set W (e.g., when |W | = 4, the set W =
{0.1, 0.2, 0.3, 0.4}) to increase the cardinality of W . We
perform 1000 runs for each task for each cardinality of W .
The experimental results show that the success probability of
the AMDP-based approach increases with an increase in the
cardinality of W . The reason for this behavior is as follows:
Due to high sensor noise, the Markov localization system
computes the corrupted belief of the robot, so when the
cardinality of W is low, then the set of variances in W
cannot approximate the corrupted robot’s belief correctly,
which results in misclassification of the robot’s position.
However, when the cardinality of W increases, we add more
variances in W , which approximates the robot’s belief with a
more appropriate augmented state. As expected, MDP based
approach shows the poorest performance, and POMDP based
approach shows the best performance in terms of the success
probability. However, by increasing the cardinality of |W | in
AMDP, it is possible to achieve the performance of POMDP.

3) Computation time: We also compare the computation
time of AMDP with the computation time of MDP and
POMDP at different cardinalities of set W . The compu-
tation time is the sum of time taken to construct the
AMDP/MDP/POMDP and the time taken to generate the
policy. The results are shown in Figure 6 and Table I.
Figure 6 shows that the computation time of AMDP increases
as the cardinality of W increases because the computation
time depends on the number of states in the AMDP. The
number of states in AMDP depends on the number of
vertices in the roadmap and the cardinality of set W . When
the number of states in the augmented MDP increases, the
total cost of matrix-matrix and matrix-vector multiplication
increases. Consequently, the computation time increases. We
can also conclude from Figure 6 that the computation time
for the AMDP is much lower than POMDP based approach
and slightly more than MDP based approach. Therefore,
our approach provides similar results as the POMDP-based
approach in a reasonable time.

4) Scalability: We have created a 50×50 grid map (shown
in Figure 7) and a 100 × 100 grid map (similar to the
50×50 one), having 49 and 144 vertices in the corresponding
road maps respectively. In this experiment, we measure the
success probability and the computation time for these grid

(a) Task 1 (b) Task 2 (c) Task 3

Fig. 6: Computation time for Task 1, 2, 3 for POMDP, AMDP and MDP
at motion noise having standard deviation σm = 0.15m and sensor noise
having standard deviation σl = 1.0m.

TABLE I: Time taken by AMDP, POMDP and MDP for different task

Construction Policy generation time (in s)

AMDP/MDP/POMDP time (in s) Task 1 Task 2 Task 3

AMDP (|W | = 2) 0.382 0.072 0.082 0.105
AMDP (|W | = 4) 0.45 0.168 0.176 0.225
AMDP (|W | = 6) 0.772 0.252 0.243 0.35
AMDP (|W | = 8) 0.852 0.325 0.32 0.463

AMDP (|W | = 10) 1.12 0.398 0.42 0.529
POMDP 8.25 10.28 11.56 −

MDP 0.35 0.092 0.101 0.24

map environments at different cardinalities of set W (|W | =
1, 4, 8). Then we compare the results with the POMDP
approach. The computation time and success probability for
both the environment are shown in Figure 8. From Figure 8,
it is clearly seen that the success probability using the
AMDP-based approach is similar to that of the POMDP-
based approach. However, it is evident that the computation
time for the POMDP is significantly more as compared to
the AMDP based approach. From the experiments, we can
conclude that, unlike POMDP based technique, our technique
can solve the temporal logic motion planning problem con-
sidering both motion and sensor uncertainty scalably without
compromising on the performance.

5) ROS+Gazebo simulation: In this experiment, we per-
form simulations with Turtlebot3 [31] on ROS+Gazebo [32],
[33]. The video of the simulation has been submitted as a
supplementary material and is also available at https://
youtu.be/7WBqyoo4V5M. Turtlebot3 is equipped with a
laser range scanner mounted at the top. We added sensor
noise with standard deviation σl = 0.6m in the range sensor
readings, and motion noise having standard deviation of
σm = 0.1m for each movement of the robot. Consider the
grid map environment G1 shown in Figure 3. Assume that
the initial position of the robot is v8. We run 50 Gazebo

Fig. 7: Grid map having size 50 × 50. Different atomic propositions are
marked with different color: Service Station 1 (S1, Red), Service station
2 (S2, Purple), Department Store (D, Green), Warehouse (Wh, Orange)
Super Market (M , Yellow) and Checkpoint (C, Pink)
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(c) Task 1 (d) Task 2

Fig. 8: Comparison between the AMDP and POMDP based method on the
success probability and the computation time for environment having grid
size 50× 50 and 100× 100 respectively

TABLE II: Success Probability of ROS-Gazebo setup (50 runs) and C++
setup (1000 runs) at sensor noise having standard deviation σl = 0.6m and
motion noise having standard deviation σm = 0.1m.

Success proabability

MDP or AMDP Gazebo-ROS C++ setup

M 0.86 0.88
A1 (|W | = 2) 0.92 0.9
A2 (|W | = 5) 0.94 0.92
A3 (|W | = 8) 0.96 0.925

simulation for Task 2 and compare the success probability
of MDP-based and Augmented MDP-based approaches. We
also compare the ROS+Gazebo success probability with the
success probability of the C++ setup, which is discussed in
Section V-A.

The obtained results are shown in Table II. We construct
the augmented MDP A1,A2,A3 having cardinality of W to
be 2, 5, and 8 respectively. The simulation results corroborate
the efficacy of our method in dealing with high sensor and
motion noise in comparison with the MDP-based approach.

VI. CONCLUSION AND FUTURE WORK

In this work, we present an approach to find the robot con-
trol strategy to maximize the probability of satisfying a task
given as a PCTL formula in the presence of uncertainty in
both action and sensing. Our algorithm is computationally as
efficient as MDP based approach and provides performance
almost similar to that of POMDP based approach. Thus, the
proposed algorithm provides a scalable and precise solution
to deal with the problem of temporal logic motion planning
under localization uncertainty.

The performance of our algorithm depends on the set
W (set of variance that discretizes the possible range of
uncertainty). In future work, we plan to devise an algorithm
that can automatically generate the optimal set of variance
W , resulting in maximizing the probability satisfaction of
a task. Furthermore, we plan to experiment with a real
robot that uses the Vicon Motion capture system [34] for
indoor localization by introducing noise in the localization
measurement. We also plan to carry out outdoor experiments
by using various kinds of GPSs, providing different degrees
of accuracy.
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