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Abstract— Online coverage path planning to explore an un-
known workspace with multiple homogeneous robots could be
either centralized or distributed. While distributed planners are
computationally faster, centralized planners can produce more
efficient paths, reducing the duration of completing a coverage
mission significantly. To exploit the power of a centralized
framework, we propose a receding horizon centralized online
multi-robot planner. In each planning horizon, it generates
collision-free paths that guide the robots to visit some obstacle-
free locations (aka goals) not visited so far, which in turn help
them explore some new regions with their laser rangefinders.
We formally prove that, under reasonable conditions, it enables
the robots to cover a workspace completely and subsequently
analyze its time complexity. We evaluate our planner for
ground and aerial robots by performing experiments with up
to 128 robots on six 2D grid-based benchmark obstacle maps,
establishing scalability. We also perform Gazebo simulations
with 10 quadcopters and real experiments with 2 four-wheel
ground robots, demonstrating its practical feasibility. Further-
more, a comparison with a state-of-the-art distributed planner
establishes its superiority in coverage completion time.

I. INTRODUCTION

Multi-robot coverage path planning (CPP) deals with ob-
taining safe navigational paths for the robots so that they can
visit obstacle-free workspace regions of interest exhaustively
to carry out some given tasks. It has numerous applications
that include precision agriculture [1], demining [2], search
and rescue [3], surveying [4], to name a few. A CPP
algorithm, which is often called Coverage Planner (CP), is
said to be complete if it ensures that the entire obstacle-
free region gets visited whenever feasible. A major objective
while designing a CP is to minimize the mission completion
time, where the mission is to achieve complete coverage.
Often, multiple robots [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14] are used to improve the mission completion time,
but at the cost of the additional complexity in algorithm
design to deal with the robots effectively.

In the vast literature on CPP (see [15], [16], [17] for recent
surveys), the workspace has been assumed to be either known
[18], [4], [19], where the robots are fully aware of obstacle
locations, or unknown [20], [9], [21], [2], [22], [14], [3],
where they are not. In a known workspace, the paths can
be obtained in one go (offline approach). In contrast, in an
unknown workspace, the subpaths are obtained in successive
iterations as more and more workspace regions get explored
by the robots (online approach).

Based on the placement, a CP can be classified as ei-
ther centralized or distributed. In a centralized framework
(e.g. [9], [23], [14], [24], [25], [3], [26], [27], [28], [29],
[30]), an instance of CP, solely responsible for obtaining
the paths, resides in a server. However, in a distributed
framework (e.g. [31], [32], [33], [34], [35], [10], [12], [36]),
the robots are delegated to obtain their paths collaboratively
as each robot runs an instance of the same CP locally. In
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this paper, we address the online multi-robot CPP problem.
Thus, let us focus on the strengths and weaknesses of the
existing online solutions that use any of the frameworks
mentioned above. Tree-based centralized CPs for offline
multi-robot coverage [28], [29] are easily extendable to
online scenarios. Frontier-based centralized CPs [30], [27],
[26], [25], however, are particularly designed for online
multi-robot coverage. Although most centralized CPs ensure
complete coverage, very few have addressed the scalability
with many robots. Coming to the distributed CPs, several
of them, like [31], [32], [34], [35], [36], ensure complete
coverage with any number of robots, whereas [33] needs
at least 4 robots to ensure the same. As distributed CPs
involve local decision-making and are free from dealing with
the global state space, they are often much more scalable
than centralized CPs. However, the local decisions made by
the distributed CPs hurt the overall efficiency of the multi-
robot system. Unlike the centralized CPs, the local decisions
lack global insights that can help distribute the robots’ tasks
optimally. Thus, an outstanding problem in online multi-
robot CPP is designing a solution that retains the efficiency
of the centralized CPs and scales like the distributed CPs.

This paper aims to design a scalable centralized solution
for the online multi-robot CPP problem, which ensures
complete coverage. We base our CP on the receding hori-
zon strategy [3] as it promises scalability. Existing works
on receding horizon online multi-robot CPP generate the
paths either synchronously [14] or asynchronously [9]. The
drawback of synchronous planning with a user-defined fixed
horizon length, as done in [14], is that the robots that reach
their goals earlier than others have to wait till the end of
the horizon, leading to suboptimal usage of resources. On
the other hand, asynchronous planning may reserve longer
paths for some robots when other nearby robots to the
reserved goals become available over time. Moreover, none
of these papers guarantees complete coverage. We present
a synchronous receding horizon online multi-robot CP that
dynamically sets the paths’ length for all the robots in each
horizon. The CP assigns a goal to each robot and finds
their collision-free paths based on the available information.
However, each robot executes its plan till the robot with the
shortest plan reaches its goal. In this way, we ensure that on
each horizon, at least one goal is visited, and all the robots
advance towards some goal. As replanning happens in the
next horizon for all the robots, the goal assignment may
change for some robots if some other robots can visit those
goals sooner. Thus, our CP is highly dynamic and efficient
in resource utilization.

For evaluation, we consider 6 different 2D grid-based
benchmark workspaces and two different types of robots for
their coverage. We compare our algorithm with the state-
of-the-art distributed coverage path planning algorithm BoB
[35], which outperforms the best known centralized coverage
path planning algorithm MSTC [28]. The comparison reveals
that our algorithm provides a significantly improved mission
completion time for multi-robot systems with a large number



of robots due to its capability of finding highly efficient plans
for each robot.

II. PROBLEM

A. Preliminaries
Let R and N denote the set of real numbers and natural

numbers, respectively, and N0 denotes the set N∪{0}. Also,
for m ∈ N, we write [m] to denote the set {n ∈ N |n ≤ m},
and [m]0 to denote [m] ∪ {0}. The size of the countable set
S is denoted by |S| ∈ N0. Furthermore, we denote the set
of Boolean values {0, 1} by B.

1) Workspace Representation: We consider an unknown
2D workspace (W = {(x, y) | x ∈ [X] ∧ y ∈ [Y ]}) with
stationary obstacles, where X, Y ∈ N are its size along the
x and the y axes, respectively. A workspace is decomposed
into non-overlapping square grid cells, some of which are
obstacle-free (Wfree), traversable by robots, and the rest
are fully obstacle-occupied (Wobs), which are not. In other
words, Wfree ∩Wobs = ∅ and Wfree ∪Wobs = W .

2) Robots and Motion Primitives: We employ a team of
R ∈ N location-aware and homogeneous robots where we
assume that they have unlimited battery capacity. Each robot
is fitted with 4 laser rangefinders on all four sides to detect
obstacles in W as per the field of view and can communicate
reliably over a network. Moreover, each robot fits entirely
within a grid cell. Let the i (∈ [R])-th robot be denoted by
ri. The state of ri at the j(∈ N0)-th discrete time step is
denoted by sij which is a tuple of its location and possibly
orientation. The robots have a set of motion primitives (M )
to change their current state at every time step. We assume
that M contains a special motion primitive H (Halt) to keep
any current state unchanged in the next time step. Each
motion primitive µ ∈ M has some cost cost(µ) ∈ R
(e.g., distance traversed, energy consumed, etc.) associated
with it. All the motion primitives take the same τ ∈ N
unit time for execution. Let L(sij) denote a tuple containing
only the location component of sij . Initially, the robots are
randomly deployed in different cells of Wfree, comprising
their start states S, where S = {si0 | i ∈ [R] ∧ L(si0) ∈
Wfree ∧ ∀j ∈ [R] \ {i} (L(si0) ̸= L(sj0))}.

Example 1: To illustrate our algorithm, we consider the
following two different sets of motion primitives of robots -
one for the aerial robots and the other for the ground robots.

(i) Quadcopter 2D. We consider the 2D movements of
a quadcopter with state sij = (xi

j , y
i
j) ∈ N2 which is its

location in W . The set of motion primitives is given by M =
{H, MT, MB, MR, ML} where H keeps a quadcopter in its current
cell, and MT, MB, MR, ML move it to its immediate top, bottom,
right, and left cells, respectively, in the next time step.

(ii) Turtlebot. A Turtlebot [37], a standard differential
drive robot widely used for academic research, can move
in the forward direction and can rotate around its axis.
In this case, keeping track of the orientation of the robot
is essential. Thus, the state of the robot is denoted by
sij = (xi

j , y
i
j , θ

i
j), where (xi

j , y
i
j) ∈ N2 is its location in

W and θij ∈ {0 (East), 1 (North), 2 (West), 3 (South)}
denotes its direction at the j-th time step w.r.t. the positive x
axis. The set of motion primitives for this robot is given
by M = {H, TL, TR, MN}, where H keeps its current state
unchanged. Motion primitives TL and TR turn it 90◦ to its left
and right, respectively, while keeping it in its current cell.
Motion primitive MN moves it to the next cell in the direction
pointed by its current orientation θij .

3) Path of a Robot: The path πi of ri is a finite sequence
of states of ri, denoted by (sij)j∈[Λ]0 , where the length of πi

is denoted by Λ ∈ N0, which is equal for all the robots. This
is not an unrealistic assumption, as the paths of the robots
can be made equal by applying H at the end appropriately.
The path πi gets generated when a finite sequence of motion
primitives (µi

j ∈ M)j∈[Λ] is applied on si0 s.t.

sij
µi
j+1−−−→ sij+1, ∀j ∈ [Λ− 1]0.

B. Problem definition
Before defining the Coverage Path Planning (CPP) prob-

lem, we formally define collision-free paths of the robots and
complete coverage of W as follows:

Definition 2.1 (Collision-free Paths of the Robots): A set
of robot paths (Π = {πi | i ∈ [R]}) is collision-free if the
following three conditions hold for each πi:

1) ∀j ∈ [Λ]0 L(sij) ∈ Wfree [Avoids obstacles]
2) ∀j ∈ [Λ]0 ∀k ∈ [R] \ {i}

(L(sij) ̸= L(skj )) [Averts same cell collisions]
3) ∀j ∈ [Λ] ∀k ∈ [R] \ {i}

¬((L(sij−1) = L(skj )) ∧ (L(sij) = L(skj−1)))
BLANK [Averts head-on collisions]

Definition 2.2 (Complete Coverage of W ): A set of robot
paths Π completely covers a workspace W = ⟨Wfree,Wobs⟩
if every obstacle-free cell gets visited by at least one robot,
i.e.,

⋃
i∈[R]

⋃
j∈[Λ]0

{L(sij)} = Wfree.

Finally, we define the CPP problem formally as follows:
Definition 2.3 (Coverage Path Planning Problem):

Given a workspace W = ⟨Wfree,Wobs⟩, a set of R robots,
their initial states S, and the set of motion primitives M ,
find the collision-free paths Π of the robots that ensure
complete coverage of W . Mathematically, the CPP problem
can be defined as a function PCPP s.t.

Π = PCPP (W,R, S,M). (II.1)
To evaluate the performance of a CP, we choose the mission
time (Tm) as a metric, which is the duration from the
beginning till the CP attains complete coverage. Any CP
aims to minimize Tm. Observe the trade-off between the total
computation time (Tc) and the total path execution time (Tp),
spent at the planner’s end and the robots’ end, respectively.
A CP can spend a large Tc to generate highly efficient paths,
which reduces Tp, or spend a small Tc to generate relatively
inefficient paths, which increases Tp.

III. COVERAGE ALGORITHM

In this section, we present our coverage path planning
algorithm. We deal with an unknown workspace for which
only the boundary and the size are known to the coverage
planner, but the locations of the obstacles are not known
a priori. The planner divides the exploration into multiple
horizons. In each horizon, due to partial visibility of W ,
the workspace cells are classified as follows: (i) Unexplored
(Wu): yet to get explored by the robots, (ii) Obstacle (Wo):
explored and found occupied with obstacles, (iii) Goal (Wg):
explored, found obstacle free, and yet to get visited by the
robots, and (iv) Covered (Wc): already visited by the robots.
In other words, Wu,Wo,Wg , and Wc are pairwise disjoint,
and W = Wu ∪Wo ∪Wg ∪Wc.

Our overall coverage methodology, named GAMRCPP
(stands for Goal Assignment-based Multi-Robot
CPP), is shown in Algorithm 1. In each horizon, the



Algorithm 1: GAMRCPP (W = (Wu,Wo,Wg,Wc), R, S,M )
Result: Paths of the robots (Π)

1 Π← ∅
2 while Wg ̸= ∅ do
3 Σ← GAMRCPP_Horizon(W,R, S,M) // Algo. 2

4 parallel for i ∈ [R] do
5 W i ← send_path_and_get_local_view(σi)
6 πi ← πi : σi // Concatenate
7 W ← update_workspace({W i | i ∈ [R]})
8 S ← update_init_states(Σ)

GAMRCPP_Horizon function in Algorithm 2 is invoked
(line 3) to compute the paths for the robots based on the
current view of the workspace W and the current states
of the robots S. The generated paths (Σ = {σi | i ∈ [R]})
are simultaneously sent to the robots which follow them
synchronously to cover the cells on the paths (lines 4-5).
While following the paths, the robots use their laser
rangefinders to detect whether an obstacle occupies any
cell newly visible to them. Consequently, each robot ri

updates its local view W i = (W i
u,W

i
o,W

i
g,W

i
c) of the

workspace W , where W i
u,W

i
o,W

i
g , and W i

c are the sets of
unexplored cells, obstacle cells, goal cells, and the covered
cells according to ri. Upon finishing, the robots directly
send their local views to the planner (line 5) so that the
planner can generate the global view of W (line 7) as
follows:

Wc =
⋃

i∈[R]

W i
c , Wg =

( ⋃
i∈[R]

W i
g

)
\Wc,

Wo =
( ⋃
i∈[R]

W i
o

)
\Wc, Wu = W \ (Wc ∪Wg ∪Wo).

Note that a robot may appear as an obstacle to another
robot (e.g., when two robots are on two neighboring cells) as
it cannot distinguish between obstacles and other robots. But,
the planner can while generating the global view. Finally,
the initial states of the robots for the next horizon are set to
their final states in the current horizon (line 8). The entire
procedure is repeated in a while loop (lines 2-8) if there is
at least one goal left to be visited.

A. Computing Collision-Free Paths in Each Horizon
In each horizon, the problem of optimally visiting Wg by

R robots is a Multiple Traveling Salesman Problem [38],
which is NP-hard. Thus, solving the problem with large
R and/or G = |Wg| is computationally challenging. So,
we propose a goal assignment-based method that generates
collision-free paths, but without guaranteeing optimality.
GAMRCPP_Horizon binds the robots to distinct goals in

a cost-optimal manner (lines 1-2) and then generates their
paths that avoid Wu∪Wo (line 3). Next, if needed, the paths
are adjusted to avert inter-robot collisions (line 4), and ac-
cordingly, the horizon length λ gets determined dynamically
(line 5). Finally, all the paths are made of equal length λ (line
6), and returned to GAMRCPP. We now describe the steps of
GAMRCPP_Horizon in further detail.

1) Optimal costs (∆): First, we construct a state tran-
sition graph G∆ = (V,E), where V denotes all possible
states of the robots such that ∀u ∈ V , L(u) ∈ Wg ∪ Wc.
There exists a directed transition edge e ∈ E from state
u ∈ V to state v ∈ V if it is possible to reach state v by
applying a motion primitive µ ∈ M to state u. The weight
of the edge e is equal to cost(µ). Let Vgoals ⊆ V be the set

Algorithm 2: GAMRCPP_Horizon (W,R, S,M )
Result: Equal length collision-free paths (Σ)

1 ⟨∆, L∆⟩ ← compute_optimal_costs(W,S,M)
2 Γ← compute_optimal_assignments(∆)
3 Φ← get_optimal_paths(L∆,Γ)
4 Σ′ ← GAMRCPP_CFP(R,Γ,Φ) // Algo. 3

5 λ← compute_horizon_length(Σ′)
6 Σ← get_equal_length_paths(Σ′, λ)
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Fig. 1: Cost optimal assignments of the goals to the robots

of states that are associated with goals, i.e., ∀u′ ∈ Vgoals,
L(u′) ∈ Wg . Now, for each ri, we compute the optimal
costs of reaching every u′ ∈ Vgoals from the start state
si0 using the A* algorithm [39], [40]. We capture the costs
in a matrix ∆ ∈ RR×G, where ∆[i][j] stores the optimal
cost for robot ri to reach the j (∈ [G])-th goal, denoted by
γj ∈ Wg . In addition, while computing ∆[i][j], we store the
corresponding predecessor information of states into a list
L∆, which is later queried during the generation of optimal
paths. Note that L∆ takes O(|E| ·G ·R) of space.

2) Optimal assignments (Γ): Each robot now needs to
be assigned a distinct goal such that the total path cost of
all the robots is optimal. To achieve this, first we construct
a weighted bipartite graph GΓ = ([R], [G],∆), whose edge
weights are the optimal path costs. Then, we run the Hun-
garian algorithm [41], [42] on GΓ to solve this combinatorial
optimization problem. It produces a goal assignment given
by Γ: [R] → [G] ∪ {NULL}. Note that a robot ri may not
be assigned any goal in a horizon. In that case, its assigned
goal id, denoted by Γ[i], contains NULL, and it is called an
inactive robot.

Example 2: An example of goal assignment is shown in
Figure 1. In this example and all subsequent examples, we
consider Turtlebots and the cost to be the number of moves,
including turns.

3) Optimal paths (Φ): For each active ri, its optimal cost
path φi gets generated from L∆. Such a φi originates from si0
and passes through Wg ∪Wc, before ending at the assigned
goal γΓ[i]. The path φj of an inactive robot rj , however,
contains sj0 only. The paths are collectively captured in Φ =
{φi | i ∈ [R]}, where φi can be mathematically characterized
as follows:

φi =

{
si0, if Γ[i] = NULL

si0s
i
1 · · · si|φi| s.t. L(si|φi|) = γΓ[i], otherwise.

(III.1)

where |φi| denotes the length of φi.
4) Collision Free Paths (Σ′): All the paths of Φ may

not be feasible for the robots to traverse due to inter-robot
collisions at cells or cell borders. In that case, the paths
need some adjustments to make them collision-free. So, we
invoke GAMRCPP_CFP (Algorithm 3), which returns the set



Algorithm 3: GAMRCPP_CFP (R,Γ,Φ)
Result: Collision free paths of the robots (Σ′)

1 while true do
2 ⟨Γ,Ω⟩ ← get_feasible_paths(R,Γ,Φ) // Algo.4

3 Θr ← compute_relative_precedences(Ω)
4 Θa ← compute_absolute_precedence(Θr)
5 if Θa is valid then
6 break
7 else
8 Γ← break_precedence_cycles(Γ,Θr)
9 Φ← adjust_paths(Γ,Ω)

10 Υ← compute_start_time_offsets(Ω,Θa)
11 Σ′ ← get_collision_free_paths(Ω,Υ)

of collision-free paths (Σ′ = {σ′i | i ∈ [R]}). We defer the
description of GAMRCPP_CFP to the following Section III-B.

5) Computing the horizon length (λ): The paths of Σ′

could be of different lengths. So, we determine the length
of the horizon as the minimum length of paths of the active
robots, i.e., λ = mini∈[R] {|σ′i| > 0}. Had we chosen max
instead of min, it could have made most of the active robots
idle once they reach their respective goals.

6) Equal Length Paths (Σ): First, we initialize Σ =
{σi | i ∈ [R]} to Σ′. Notice that |σ′i| < λ for an inactive
ri. So, we insert its si0 at the end of σi for λ− |σ′i| times.
Similarly, for an active rj whose |σ′j | > λ, we trim σj from
the end for |σ′j | − λ times. Thus, we make collision-free
paths of equal length λ.

B. Inter-robot Collision Avoidance
Prioritized planning (e.g., [43], [44], [45], [46]), which

first assigns priorities to the mobile robots and then plans
their collision-free paths one by one in the order, has been
widely used for collision avoidance. In [46], a cost-optimal
goal assignment method precedes the prioritized planning,
where the cost metric did not consider turns because it
deals with only aerial robots having symmetrical motion
in any direction. But, [13] has recently shown that the
number of turns taken by ground robots influences the
mission time significantly. We take a similar approach of
[46] in GAMRCPP_CFP, but with the difference that our ∆
can also consider turns depending on the type of robots
used. As a result, two types of infeasible paths may appear
that prioritized planning fails to handle. We first identify
those infeasible paths and then adjust them (line 2) so
that prioritized planning can handle them. Subsequently,
priorities are dynamically computed (lines 3-4) based on their
movement constraints. Finally, time-parameterized collision-
free paths are computed (lines 10-11). Note that cycles in
priority need to be broken (lines 8-9) if they appear.

1) Removal of infeasible paths (Ω): There are two types
of infeasible paths in Φ - crossover paths and nested paths,
which are defined later by using the following function:

in_path(s, p) =
{
1, ∃k ∈ [|p|]0 s.t. L(s) = L(p[k])
0, otherwise. (III.2)

The function in_path takes a robot state s and a path p as
inputs, and outputs 1 only if p passes through the location
corresponding to s. Here, p[k] denotes the k-th state in p.
Now,

• A pair of distinct paths (φi, φj) is called a crossover
path pair iff either of the following two conditions hold:
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Cond. i: Inactive ri sits on the path φj of active rj , i.e.,
in_path(si0, φ

j).
Cond. ii: The start locations of the active robots ri and
rj are on each other’s path φj and φi, respectively, i.e.,
in_path(si0, φ

j) ∧ in_path(sj0, φ
i).

• A path φj of active rj is said to be nested in another
path φi of active ri iff the following condition holds:
Cond. iii: Both the start and the goal locations of rj

are on φi, i.e., in_path(sj0, φ
i) ∧ in_path(sj|φj |, φ

i).

Example 3: Four simple examples of infeasible paths in-
volving two robots ri and rj are shown in Figure 2.

We design Algorithm 4 to make some infeasible paths
of Φ feasible by adjusting them locally through goal reas-
signments. It is a two-step procedure, where the first step
(lines 5-22) detects infeasible paths of the active robots and
subsequently marks corresponding robots as killed in Fkilled,
and the last step (lines 23-48) revives some of the inactive
robots and the killed robots in Frevived so that some goals of
the killed robots can be visited. While lines 8-12 kill active
robot pairs that form either crossover paths or nested paths,
lines 13-17 kill active robots that form crossover paths with
either an inactive robot or a killed robot. Note that any active
robot index i can be inserted into Ξ at most once as Fkilled[i]
gets set as soon as ri is killed for the first time (lines 19-22).

In the revival step, inactive robots and killed robots are not
assigned any goal initially (lines 28-30), whereas the paths of
the active robots, which did not get killed, remain unaltered
(lines 31-33). Now, for each killed robot i, its Li (line 36)
contains indices of inactive robots and killed robots, which
are on its path φi, and are yet to get revived. In case Li turns
out to be empty, we do not assign the goal of ri to any other
robot. Otherwise, we choose the robot having index j ∈ Li

such that rj is the nearest to the goal of ri (line 38), thus
eliminating the chance of further forming any crossover path
with inactive/killed robots. Then, if j ̸= i, the potential path
ω of rj is generated from φi, otherwise φi is used (lines
39-42). Now, ω needs to be checked to see whether it forms
any infeasible path with the paths of the revived robots. If it
does not, then rj is set to visit the goal of ri by following its
feasible path ωj , thereby reviving rj (lines 43-46). Finally,
Γ gets updated, and Ω = {ωi | i ∈ [R]} is returned (lines
47-48).

Example 4: We show an example in Figure 3, where not
all optimal paths of Φ, computed as per Γ, are feasible. In
fact, the Hungarian algorithm can find such Γ because it only
acts on ∆ without knowing underlying paths. So, we use



Algorithm 4: Remove infeasible paths
1 Function get_feasible_paths(R,Γ,Φ)
2 Fkilled ← kill_robots(R,Γ,Φ)
3 Ω← revive_robots(R,Γ,Φ,Fkilled)
4 return Ω

5 Function kill_robots(R,Γ,Φ)
6 Ξ← {i | Γ[i] = NULL} // Temp. set
7 Fkilled[i] = 0, ∀i ∈ [R] // Flag array
8 for i← 1 to R do
9 for j ← 1 to R do

10 if i ̸= j ∧ Γ[i] ̸= NULL ∧ Γ[j] ̸=
NULL ∧ (Cond. ii ∥ Cond. iii) then

11 insert_item(i,Ξ,Fkilled)
12 insert_item(j,Ξ,Fkilled)
13 while Ξ ̸= ∅ do
14 i← extract_item(Ξ) // Ξ← Ξ \ {i}
15 for j ← 1 to R do
16 if i ̸= j ∧ Γ[j] ̸= NULL ∧ Cond. i then
17 insert_item(j,Ξ,Fkilled)
18 return Fkilled

19 Function insert_item(i,Ξ,Fkilled)
20 if Fkilled[i] = 0 then
21 Fkilled[i]← 1 // Kills ri

22 Ξ← Ξ ∪ {i}
23 Function revive_robots(R,Γ,Φ,Fkilled)
24 Γnew // New goal assignment array
25 Ω← ∅ // The set of feasible paths
26 Frevived[i] = 0, ∀i ∈ [R] // Flag array
27 for i← 1 to R do
28 if (Γ[i] = NULL) ∥ (Fkilled[i] = 1) then
29 Γnew[i]← NULL // Initialized
30 ωi ← si0 // ωi ∈ Ω
31 else
32 Γnew[i]← Γ[i] // Unaltered
33 ωi ← φi

34 for i← 1 to R do
35 if Fkilled[i] = 1 then
36 Li ← {j | (Γ[j] = NULL ∥ Fkilled[j] = 1)

∧ in_path(sj0, φ
i) ∧ Frevived[j] = 0}

37 if Li ̸= ∅ then
38 j ← argmax

l ∈ Li

k ∈ [|φi|]0 | L(sl0) = L(sik)

39 if j = i then
40 ω ← φi // Potential path
41 else
42 ω ← generate_path(sj0, φ

i)
43 if test_path(j, ω,Γnew,Ω) then
44 Frevived[j]← 1 // Revived
45 Γnew[j]← Γ[i] // New goal
46 ωj ← ω // New path

47 Γ← Γnew // Itemwise copy
48 return Ω

Algorithm 4 to get feasible paths. Notice that the number
of revived robots is less than the number of killed robots.
Although this is a weakness of Algorithm 4, we formally
prove in Theorem 4.2 that it ensures the revival of at least one
inactive or killed robot. Moreover, we evaluate its strength in
terms of the percentage of robots that get revived w.r.t. the
number of killed robots, and goals of the killed robots that
the revived robots visit (Figure 5). At first glance, it may look
like an ordering among the start locations can help Algorithm
4 to get rid of the weakness, but Figure 2a (right) suggests
that the ordering may not be always possible. Also notice
that one extra turn got introduced while generating ω4 from
φ2. An alternative to Algorithm 4 is to keep finding the next

r1

r2
r3

r4 r1

r2
r3

r4

 DCG
 to

 DAG

Fig. 4: Removal of cyclic precedence

cost optimal assignment Γ, until it guarantees no infeasible
path, as done in [47]. But, this is computationally expensive.

2) Relative precedence (Θr): Based on Ω, Θr ∈ BR×R is
populated, that captures relative precedence for every pair of
distinct robots ri and rj having paths ωi and ωj , respectively,
using the following equation:

Θr[i][j] =

{
1, if in_path(si0, ω

j) ∥ in_path(sj|ωj |, ω
i)

0, otherwise. (III.3)

The if clause states that if the start location of ri is on ωj ,
then ri must depart from its start location before rj reaches
there. Similarly, if the goal location of rj is on ωi, then ri

must pass rj’s goal location before rj arrives there. Likewise,
Θr[j][i] is computed. Essentially, distinct robots of each pair
are assigned relative priorities to avert mutual collisions.

Example 5: For the example in Figure 1, relative prece-
dences are found to be Θr[j][i] = 1 and Θr[i][k] = 1.

3) Absolute precedence (Θa): From the directed graph
GΘ = ([R],Θr), we now find Θa ∈ [R]R×1 among the
robots using the topological sort. As the presence of cyclic
precedence leads to invalid Θa, such cycles need to be
broken by inactivating suitable robots before proceeding
further. In such cases, we would like to remove a minimum
feedback arc set (MFAS) [48] from GΘ. However, this is an
NP-hard problem. So, we employ a simple algorithm [49]
to generate two acyclic subgraphs of GΘ. We choose the
subgraph with more edges for the next iteration, i.e., the
subgraph having more active robots. As inactivating an active
robot may introduce a crossover path pair, the resultant paths
Φ are re-examined in a while loop (lines 1-10) for the
existence of infeasible paths.

Example 6: For the example in Figure 1, the absolute
precedence is found to be j, i, k.

Example 7: In Figure 4, we provide an example of cyclic
precedences involving 4 robots, where Θr[1][4] = Θr[4][3] =
Θr[3][2] = Θr[2][1] = 1 forms a cycle. Notice that r4, which
was earlier active, has become inactive, creating a crossover
path.

4) Start-time offsets (Υ): As Θa is valid at this stage,
the penultimate step is to incrementally calculate Υ ∈ NR×1

0
for the robots starting from the highest priority robot to the
lowest one. The start-time offset of ri, denoted by Υ[i],
determines how long the corresponding robot needs to halt
at its start location to avert collisions with the robots having
higher priorities.

Example 8: For the example in Figure 1, Υ[j] = Υ[i] = 0
as both rj and ri can start moving simultaneously at the
0-th time step without colliding with each other. However,
Υ[k] = 2 as any value less than that would put rk in ωi,
thereby causing an inter-robot collision.

5) Collision free paths (Σ′): First, the resultant Σ′ =
{σ′i|i ∈ [R]} is initialized to Ω. Then, for each ri, its start
state, i.e. si0, is inserted at the beginning of σ′i for Υ[i] times.
So, the length of σ′i becomes Υ[i] + |ωi|.



Example 9: For the example in Figure 1, |ωi|, |ωj |, |ωk|
are 3, 1, 1, respectively, but |σ′i|, |σ′j |, |σ′k| are 3, 1, 3, re-
spectively. Also, active rj’s path σ′j has the minimum length.

IV. THEORETICAL ANALYSIS

In this section, first, we formally prove that Algorithm 4
is correct. Then, we formally prove that GAMRCPP ensures
complete coverage of W assuming (i) Wfree is strongly
connected and (ii) the robots are failure-free. Finally, we
analyze its time complexity.

A. Correctness of Algorithm 4
Lemma 4.1: The potential path ω of any rj does not form

any infeasible path with the active robots that are not killed.
Proof: Let us assume rk be an active robot that is not

killed, i.e., k ∈ {p | Γ[p] ̸= NULL ∧ Fkilled[p] = 0}.
First, if ω forms a crossover path pair with ωk,
⇒ in_path(sj0, ω

k) ∧ in_path(sk0 , ω) (by Cond. ii)
⇒ in_path(sj0, φ

k) ∧ in_path(sk0 , ω) (by line 33)
⇒ k ∈ {p | Γ[p] ̸= NULL∧Fkilled[p] = 1} (by lines 16-17)
- contradiction.
Next, if ω is nested in ωk,
⇒ in_path(sj0, ω

k) ∧ in_path(sj|ω|, ω
k) (by Cond. iii)

⇒ in_path(sj0, φ
k) ∧ in_path(sj|ω|, φ

k) (by line 33)
⇒ k ∈ {p | Γ[p] ̸= NULL∧Fkilled[p] = 1} (by lines 16-17)
- contradiction.
Finally, if ωk is nested in ω,
⇒ in_path(sk0 , ω) ∧ in_path(sk|ωk|, ω) (by Cond. iii)
⇒ in_path(sk0 , ω) ∧ in_path(sk|φk|, ω) (by line 33)
⇒ in_path(sk0 , φ

i) ∧ in_path(sk|φk|, φ
i) (by line 42)

⇒ k ∈ {p | Γ[p] ̸= NULL∧Fkilled[p] = 1} (by lines 10-12)
- contradiction.

Theorem 4.2: At least one inactive/killed robot gets re-
vived if at least one active robot gets killed.

Proof: No active robot gets killed means Φ is feasible.
Otherwise, for the first killed robot ri (line 35), Li ̸= ∅, and
j ̸= i because of lines 10-12 and 16-17. Moreover, there is
no revived robot. So, the check (line 43) succeeds trivially
(Lemma 4.1), and therefore rj gets revived.

B. Proof of Complete Coverage
Lemma 4.3: GAMRCPP_Horizon ensures that at least one

goal gets visited in each horizon.
Proof: In each horizon, after Γ gets initialized (line 2

in GAMRCPP_Horizon), it may get updated in GAMRCPP_CFP
while computing Ω (line 2) or breaking precedence cycles
in GΘ (line 8) to settle collisions. Theorem 4.2 guarantees
that there is at least one active robot after computing Ω.
Moreover, the technique [48], [49] used to break precedence
cycles in GΘ ensures that at least half as many edges as opti-
mum are preserved. Here, each preserved edge corresponds to
an active robot. So, GAMRCPP_CFP keeps at least one robot
active. Further, computed horizon length λ ensures that at
least one active robot visits its goal.

Theorem 4.4: GAMRCPP eventually stops, and when it
stops, it ensures complete coverage of W .

Proof: Lemma 4.3 ensures that at least one goal of Wg

gets covered in each horizon, increasing Wc. It results in
exploring some of Wu as Wfree is strongly connected, and
thus, adding new goals (if any) into Wg . Hence, GAMRCPP
eventually stops when Wg = ∅, that entails Wc = Wfree.

Notice that, for a given W whose Wfree consists of
many strongly connected components, GAMRCPP can still

guarantee complete coverage, provided the deployment of
robots ensures at least one robot in each component.

C. Time Complexity
Lemma 4.5: Algorithm 4 takes O(R2) time.

Proof: insert_item (lines 19-22) runs in O(1). In
kill_robots (lines 5-18), initializations of Ξ and Fkilled

take O(R). Subsequently, both the for and the while loops
(lines 8-17) take O(R2) as each robot index can be inserted
into, and therefore extracted from Ξ at most once. Now, in
revive_robots (lines 23-48), initialization of Frevived, and
execution of the following for loop (lines 27-33) take O(R).
In the next for loop (lines 34-46), computing Li (line 36) and
j (line 38) take O(R) as |Li| = O(R). Checking feasibility
of any potential path ω (line 43) takes O(R) too. Therefore,
get_feasible_paths() overall takes O(R2).

Theorem 4.6: GAMRCPP takes O(|W |4) time.
Proof: First, we analyze GAMRCPP_Horizon, which

gets invoked from GAMRCPP in each horizon. Creating G∆

takes O(|V |) under the assumption that |M | is constant,
and running the A* algorithm on this for a robot and goal
pair takes O(|E|). So, computing ∆ and L∆ takes, overall
O(|V | + |E| · G · R). Computing Γ takes O(max(G,R)3)
[41]. Accordingly, generating Φ takes O(|E| · R). In
GAMRCPP_CFP, the body of the while loop takes O(R2) as
follows: computing Ω (Lemma 4.5), Θr,Θa take O(R2),
additionally, breaking precedence cycles and adjusting paths
of inactive robots take O(R2) and O(R), respectively. As
per Lemma 4.3, in a horizon, this while loop iterates at
most R − 1 times inactivating one robot in each iteration.
Therefore, this while loop takes total O(R3). Consequently,
computing Υ and Σ′ take O(R2) and O(R), respectively.
So, GAMRCPP_CFP takes O(R3). Finally, computing λ and
Σ take O(R). So, GAMRCPP_Horizon takes O(|V | + |E| ·
G · R + max(G,R)3 + R3) where |V | = O(|W |) and
|E| = O(|V |) under the assumption that |M | is constant.
Now, as per Theorem 4.4, the while loop of GAMRCPP iterates
at most |Wg| times covering one goal in each horizon where
|Wg| = O(|W |), amounting to total O(|W |(|W | · G · R +
max(G,R)3 + R3)). As both G and R are O(|W |), the
overall time complexity can be written as O(|W |4).

Note that the worst-case time complexity derived here is
a loose bound. As our experimental results will reveal, our
algorithm does scale well for large workspaces and a large
number of robots.

V. EVALUATION

A. Implementation and Experimental Setup
We implement1 our CP and the model of ri in two

ROS [50] packages that run in a computer having Intel®
Core™ i7 − 4770 CPU@3.4GHz and 16GB of RAM. For
experimentation, we consider 6 benchmark workspaces, viz.:
Boston, Paris, Den, Mansion, and Room from [51], and
Hospital from [22]. For coverage, we use Quadcopters for
the first two workspaces, and Turtlebots for the rest. For each
experiment, we incrementally deploy R ∈ {16, 32, 64, 128}
robots and repeat it for 15 times with different initial
deployments to report their mean and standard deviation
in the performance metrics. We take the cost of a path
as the number of moves the corresponding robot performs,
assuming τ = 1s.

1Source code at https://github.com/iitkcpslab/GAMRCPP
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Fig. 5: Performance of Algorithm 4 for GAMRCPP

We compare GAMRCPP with BoB [35] and GAMRCPPMAX w.r.t.
the mission time (Tm), where GAMRCPPMAX is a variant of
GAMRCPP in which the horizon length λ (line 5 of Algorithm
2) is set to the maximum path length, i.e., λ = maxi∈[R] |σ′i|.
In BoB, the robots move in boustrophedon motion. Whenever
a robot gets surrounded by obstacles and covered cells, it
backtracks to its nearest unvisited region to start another
boustrophedon motion.

In each horizon of GAMRCPP, CP starts generating equal-
length paths once it receives the local views from all the
robots. Subsequently, all the robots start moving simulta-
neously after they receive the generated paths from the
CP. Hence, Tm can be defined, while ignoring the total
communication time, as follows:

Tm = Tc + Tp,

where the total computation time (Tc) and the total path
execution time (Tp) are the sum of times spent on CPP
and on traversing the paths, respectively, across all horizons.
Note that Tp takes Λ × τ seconds as all πis have the
same length Λ, which in our case is the number of moves
each robot makes. We also validate our CP by performing
Gazebo [52] simulations in 5 2D benchmark workspaces
from [51] and 1 3D workspace with 10 quadcopters and
a real experiment in a 2D workspace with 2 four-wheel
ground robots. A video of our experiments is available as
a supplementary material. The video is also available at
https://youtu.be/4TuIOoKlztU.

B. Results and Analysis
1) Performance in Keeping the Robots Active: First, we

measure the strength of Algorithm 4 in terms of the percent-
age of revived robots and the percentage of visited goals w.r.t.
the number of killed robots (Figure 5). Note that each killed
robot was associated with a goal earlier, and each path of the
revived robots may pass through multiple such goals, thereby
may increase the number of visited goals. For example, in
Figure 2b (right), only rj gets revived, but its ωj passes
through both the old goals of the killed robots ri and rj .
Figure 5 indicates the revived robots (≈ 60% of the number
of killed robots) visit ≈ 80% of the goals of the killed robots,
which is beneficial from the energy consumption perspective.

2) Comparison with BoB and GAMRCPPMAX: We present
our main experimental results in Table I. The total computa-
tion time (Tc) increases as R increases since the cost-optimal
assignment of the goals to the robots, and later, collision-free
path generation becomes intensive in each horizon. Unlike
GAMRCPP, the robots choose their next moves independently
in BoB. Although BoB performs better than GAMRCPP in
sparse workspaces like in Boston and Paris city maps, it
scales poorly in dense workspaces as it takes many more

rounds to complete the coverage. On the other hand, in
each horizon of GAMRCPPMAX, all the active robots reach their
goals, which reduces the number of horizons to complete the
coverage, thereby reducing Tc.

The path length (Λ) decreases as R increases since deploy-
ing more robots expedites simultaneous coverage. In BoB, the
collision-free backtracking path of a robot avoids not only
the starting points of other robots but also the backtracking
points of the other backtracking robots. It results in detours,
increasing Λ. Moreover, backtracking points are reserved on
a first-come first-serve basis, which may result in reserving
a backtracking point for a robot that is farther. In contrast,
GAMRCPP assigns goals to the robots in a cost-optimal way
and accordingly generates paths that pass through Wg ∪Wc.
If infeasible paths appear, then only paths are adjusted and
may lose optimality. Thus, GAMRCPP yields better Λ. In each
horizon of GAMRCPPMAX, however, most of the active robots
become idle after reaching their goals, as the next horizon
cannot begin until the active robots with the maximum path
length reach their goals. It increases λ, and so Λ.

Thus, despite larger Tc, GAMRCPP outperforms BoB and
GAMRCPPMAX in terms of Tm because of its gain in Λ. The
results are more prominent in cluttered workspaces with a
large number of robots, establishing that the scalability of
GAMRCPP is far better than that of BoB and GAMRCPPMAX.

VI. CONCLUSION

We have proposed a goal assignment-based online ho-
mogeneous multi-robot coverage planner that guarantees
complete coverage of an unknown workspace. We have
considered two different types of robots to illustrate and
experimentally evaluate our algorithm, establishing our algo-
rithm’s usability for a wide range of robots and applications.
Experimental results further establish the scalability of our
approach w.r.t. the number of robots and the size of the
workspace. Though we have evaluated our algorithm only
for 2D workspaces, we can seamlessly apply our algorithm
to a 3D coverage mission with robots capable of performing
3D navigation. In the future, we would extend our algorithm
to deal with unreliable communication and various faults that
the robots may encounter during their operations, such as
mechanical failure and discharge of the battery.
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