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Abstract— In many multi-robot applications, mobile worker
robots are often engaged in performing some tasks repetitively
by following pre-computed trajectories. As these robots are
battery-powered, they need to get recharged at regular inter-
vals. We envision that, in the future, a few mobile recharger
robots will be employed to supply charge to the energy-deficient
worker robots recurrently to keep the overall efficiency of
the system optimized. In this setup, we need to find the time
instants and locations for the meeting of the worker robots and
recharger robots optimally. We present a Satisfiability Modulo
Theory (SMT)-based approach that captures the activities of
the robots in the form of constraints in a sufficiently long finite-
length time window (hypercycle) whose repetitions provide their
perpetual behavior. Our SMT encoding ensures that for a
chosen length of the hypercycle, the total waiting time of the
worker robots due to charge constraints is minimized under
certain condition, and close to optimal when the condition
does not hold. Moreover, the recharger robots follow the
most energy-efficient trajectories. We show the efficacy of our
approach by comparing it with another variant of the SMT-
based method which is not scalable but provides an optimal
solution globally, and with a greedy algorithm.

I. INTRODUCTION

Mobile robots are generally battery-powered. They need to
recharge their batteries periodically to ensure long-term op-
eration. For example, consider a multi-robot system that has
been entrusted with the surveillance responsibility of a large
area [1], [2]. Each robot has a predefined trajectory that it
follows to carry out the surveillance operation. As the robots
are battery-powered and are supposed to be operational all
the time, there needs to be some mechanism to recharge the
batteries of the robots whenever required. Such a situation
also arises when multiple robots are employed for delivering
some objects following their pre-planned trajectories in an
assembly line [3].

Motivated by the applications mentioned above, we en-
vision a multi-robot service system where a set of worker
robots (workers) follow their respective pre-defined non-
intersecting working loops repetitively to carry out their
routine work, and a few mobile recharger robots (or recharg-
ers) periodically meet the worker robots to recharge their
batteries. The feasibility of such an approach is supported by
several mobile charging solutions that have recently appeared
in the market [4], [5].

In our proposed system, when a worker goes out of
charge, it may have to wait before meeting a recharger as
the recharger may take some time to travel to the worker’s
location. It may even be busy recharging another worker at
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that time. On the other hand, if the recharger is idle for some
time, it may prefer to move to the location of some upcoming
recharging ahead of time. However, as there are multiple
workers, it is challenging to decide towards which worker
robot the recharger should move. This decision depends on
many factors, such as the distance of the workers from
the recharger, lengths of the working loops, the maximum
possible charge available to the workers, etc. Thus, it is
imperative that we automatically synthesize the trajectories
of the rechargers in a way that the overall waiting time of
all the workers gets minimized, and the rechargers move
in the workspace following the most time/energy-efficient
trajectories. We do not consider recharging of the rechargers
and assume their recharge requirement to be significantly less
frequent than that of the worker robots.

To address the above-mentioned problem, we present a
Satisfiability Modulo Theory (SMT) [6] based methodology
to decide the initial locations of the rechargers and synthesize
their action plans statically, given the working loops of the
workers. In our approach, we capture the infinite trajectory
representing the perpetual behavior of the robots as a finite
hypercycle whose successive repetitions create the infinite
behavior of the workers and the rechargers. In such a
hypercycle, several working loops of the workers can be
embedded. To be able to repeat a hypercycle, we need to
ensure that the initial states of all the robots match with
their states at the end of the hypercycle. It is also important
to decide the initial locations of the rechargers as they have
a high impact on the overall efficiency of the system. The
objective of the synthesis is to minimize the total wait time
of all the workers as well as the cost of the movement of
the rechargers.

We first attempt to synthesize the trajectories of the
rechargers and the recharge schedule of the workers by re-
ducing the problem into a monolithic SMT solving problem.
However, though this monolithic approach guarantees the
optimality of the workers’ wait time for a chosen length
of the hypercycle, the approach does not scale up well,
either with the number of robots or with the length of the
hypercycle. To address this scalability issue, we design an
SMT-based two-phase algorithm to solve the problem. This
two-phase algorithm enables us to solve the problems at
a larger scale both in terms of the number of robots and
the length of the hypercycle. We prove that under a certain
condition, our two-phase algorithm ensures the optimal wait
time of the workers for a chosen length of the hypercycle.

We carry out experiments with up to eight workers and
three rechargers. The trajectories have been synthesized
within an acceptable time budget (3 hours). We measure the
efficiency of the workers as the proportion of the hypercycle
duration during which they are active — not waiting stand-
by to get served by a recharger. In most cases, the optimal



SMT-based one-shot algorithm faces a timeout, but our two-
shot algorithm finds the solution successfully. Moreover, for
the instances that the one-shot algorithm can solve, our two-
shot algorithm produces the plan with efficiency close to that
produced by the one-shot algorithm. We also compare our
SMT-based algorithm with a greedy algorithm. Our SMT-
based algorithm achieves ≈ 13 − 44% better efficiency
compared to the greedy algorithm.

In summary, we make the following contributions.
• We introduce the mobile recharger path planning prob-

lem for a multi-robot system engaged in perpetual ac-
tivities. Our problem involves both recharge scheduling
and path planning of the rechargers to maximize the
efficiency of the workers.

• We propose an SMT-based solution for the above-
mentioned path planning and recharge scheduling prob-
lem. Our solution is scalable and produces close to the
optimal solution. It also outperforms a carefully crafted
greedy algorithm, establishing the efficacy of the SMT-
based approach.

• We implement our algorithm using the Z3 SMT solver
and test the efficiency of the algorithm on various
instances of the problem with up to 8 workers and 3
rechargers.

II. PROBLEM

A. Preliminaries
1) Workspace (WS): In this work, we assume that the

robots operate in a 2-D workspace represented as a 2-D
occupancy grid map. The grid decomposes the workspace
into square-shaped blocks that are assigned unique identifiers
to represent their locations in the workspace. We denote
the set of locations in the workspace by WS and locations
covered by obstacles by O. The set of obstacle-free locations
in the workspace is WS \O.

2) Robot State (σ): The state σ of a robot consists of
(a) σ.p, its position in the workspace, which determines a
unique block in the occupancy grid, (b) σ.v, its velocity
configuration, which represents the current magnitude and
direction of the velocity of the robot. We denote the set of
all velocity configurations by V and assume that it contains
a value v0 denoting that the robot is stationary, and (c) σ.e,
the battery energy available to the robot.

3) Motion Primitive (γ): We capture the motion of a robot
using a set of motion primitives Γ. We assume that the robot
moves in an occupancy grid in discrete steps of τ time units.
A motion primitive is a short controllable action that the
robot can perform in any time step. A robot can move from
its current location to a destination location by executing a
sequence of motion primitives.

With each motion primitive γ ∈ Γ, we associate a
pre-condition pre(γ), which is a formula over the states
specifying under which conditions a motion primitive can
be executed. We write post(σ, γ) for the state the robot
attains after executing the motion primitive γ at state σ.
A motion primitive γ causes a displacement of the robot
with respect to its current location where the primitive is
applied. This displacement is denoted by disp(γ). Also, each
motion primitive γ is associated with an energy cost as
denoted by cost(γ), which represents the amount of energy
spent by the robot while executing the motion primitive.

Thus, if σ′ = post(σ, γ), then σ′.p = σ.p + disp(γ) and
σ′.e = σ.e− cost(γ). We use intermediate(σ, γ) to denote
the set of grid blocks through which the robot may traverse
when γ is applied at state σ, including the start and end grid
blocks.

4) Worker (wi) and Recharger (rj) robot: We consider
n workers W = {w1, . . . , wn} engaged in some repetitive
tasks in the workspace. A set of mobile rechargers R =
{r1, . . . , rm}, ideally m < n, are employed for recharging
the workers as and when needed and keep the system running
uninterruptedly.

The workers move following some predefined trajectories
and carry on performing their designated tasks repetitively.
We assume that the trajectories of the workers do not
intersect with each other. That is why we do not need to
deal with their collision avoidance. The Working loop for
worker wi ∈W to perform its designated tasks is denoted
by Li = 〈l1i , . . . , l

|Li|−1
i , l

|Li|
i 〉, where the last location on

Li is same as its first location. Each location lki in Li is
associated with a motion primitive γki ∈ Γi that enables the
worker to move to its next location lk+1

i . A state σi satisfies
the precondition pre(γki ) if σi.p = lki ∧ σi.v = v0. We write
post(σi, γ

k
i ) to denote the state σ′i such that

σ′i.p =

{
lk+1
i if σi.p ∈ {l1i , . . . l

|Li|−1
i }

l1i if σi.p = l
|Li|
i

∧ σ′i.v = v0 ∧ σ′i.e = σi.e− cost(γki ).
A worker can continue its operation uninterruptedly only if
it can get its battery recharged at a regular interval. Worker
wi may stop at any location in Li for getting recharged. We
assume that a worker wi can recharge its battery only if a
recharger ri is positioned somewhere in the neighborhood
of wi. If the worker is at location p, its neighborhood
is defined as any obstacle-free location which is one unit
distance (in any direction) away from p, i.e., N (p) = {p′ |
p′ ∈ WS \O ∧ |p′.x− p.x| ≤ 1 ∧ |p′.y − p.y| ≤ 1}.

5) Wait Primitive (µ): A robot is equipped with a special
primitive, called the wait primitive µ, that enables it to wait
in a location for τ time units, without causing energy loss.
called the wait primitive, and is denoted by µ. A state σ
satisfies the precondition pre(µ) if σ.v = v0. We write
post(σ, µ) to denote the state σ′ such that σ′.p = σ.p
∧ σ′.v = v0 ∧ σ′.e = σ.e (cost(µ) = 0). Moreover,
intermediate(σ, µ) = {σ.p}.

6) Recharge Primitive (ν): The workers are equipped
with a recharge primitive (ν). A worker robot ri can apply
ν primitive to recharge its battery to the maximum possible
energy emaxi. Like a motion primitive, ν is also associated
with a precondition pre(ν) and a postcondition post(σ, ν).
The precondition and postcondition depend on the specific
recharge strategy. In this work, we consider the most flexible
recharge strategy where a worker robot is allowed to get
recharged whenever its battery charge is not full, and it
can be recharged by any recharge amount not necessarily
up to its full capacity. For this recharge strategy, a state σ
satisfies the precondition pre(ν) if σ.e < emaxi ∧ σ.v =
v0 ∧ recharger, where recharger is a proposition which
becomes true when the worker robot wi has access to a
recharger. The postcondition post(σ, ν) denotes the state σ′
such that σ′.p = σ.p ∧ σ′.v = v0 ∧ σ′.e = σ.e + δ ∧



0 < δ ≤ δmax ∧ σ′.e ≤ emaxi, δ ∈ R+, where δmax is
the maximum recharge amount per τ time units. Moreover,
intermediate(σ, ν) = {σ.p}.

7) Action Plan (ρ) and Trajectory (σ): We capture the
run-time behavior for a robot by a discrete-time transition
system. Let σ1 and σ2 be two states of the robot. For a
primitive ρ ∈ Γ ∪ {µ, ν}, σ1

ρ−→ σ2 is a valid transition iff
σ1 |= pre(ρ), σ2 |= post(σ1, ρ), and intermediate(σ1, ρ) ∩
O = ∅.

The action plan for a robot is defined as a sequence of
primitives to be applied to the robot to move it in a way that
its objective is achieved while satisfying various constraints.
An action plan is denoted by a (potentially infinite) sequence
of primitives ρ = (ρ1ρ2 . . .), where ρi ∈ Γ ∪ {µ, ν} for all
i ∈ {1, 2, . . .}. The rechargers do not have any recharge
primitive ν.

Given the current state σ0 of some robot and an action
plan ρ = (ρ1ρ2ρ3 . . .), the trajectory of the robot is given
by σ = (σ0σ1σ2 . . .) such that for all i ∈ {1, 2, 3, . . .},
σi−1

ρi−→ σi.
8) Hypercycle (T ): We synthesize the recharge schedules

for the workers and the trajectories for the rechargers in
a hypercycle, which is a time window of T units. We
abuse the notation slightly and denote both the hypercycle
and its length by T . Successive repetitions of T essentially
creates a long (potentially infinite) execution of the system.
Hypercycle T is a parameter in our algorithm. As will be
clear later, the efficiency of the worker robots increases with
the value of T , but the computation time of our algorithm
also increases with T .

To be able to repeat any number of hypercycles, the states
(location and charge level) of the robots at the beginning
of a hypercycle should match with that at the end of the
hypercycle. During the time window T , the trajectory of
worker robot ri is denoted by Si = 〈σ1

i , . . . , σ
T
i 〉 and the

trajectory of recharger ri is Ŝi = 〈σ̂i, . . . , σ̂Ti 〉, where
∀wi ∈ W : σTi = σ1

i , and ∀ri ∈ R : σ̂Ti = σ̂1
i .

The worker robots start their operation with full charge,
i.e., σ1

i .e = emaxi. Once the worker robots are at their
final locations, they need to be recharged to full charge to
accomplish the state matching, i.e., σTi .e = emaxi.

During T , every worker robot wi completes several rounds
of its working loop Li. Worker robot wi’s trajectory Si is
composed of multiple concatenations of working loop Li
of worker wi. Also, due to recharging and idle waiting,
some of the trajectory points in Li may be repeated, as the
robot does not change its position during those events. We
represent the jth extended working loop as Lji , where zero
or multiple repetitions of trajectory points may occur. Thus,
Si is composed of multiple (say g) concatenations of Lji s :

Si ≡ 〈σ1
i .p, . . . , σ

T
i .p〉 ≡ L1

i ◦ L2
i ◦ . . . ◦ L

g
i︸ ︷︷ ︸

g times

where ◦ is the concatenation operator. Also, σ1
i .p = σTi .p =

l1i .
Also, recharger rj’s trajectory Ŝj is synthesized by our

algorithm as described later.
The finite length trajectories during T for all the workers

and rechargers are captured as

S = 〈S1, S2, . . . , S|W |, Ŝ1, Ŝ2, . . . , Ŝ|R|〉.

B. Problem Definition
In this section, we define the problem formally.

The inputs to the problem are the working loops
Li = 〈l1i , . . . , l

|Li|−1
i , l

|Li|
i 〉 with corresponding sequence of

motion primitives 〈γ1i , . . . , γ
|Li|−1
i , γ

|Li|
i 〉 and maximum en-

ergy emaxi for each worker wi, the set of motion primitives
Γi and Γ̂i for each worker wi and each recharger ri, the
maximum recharge amount δmax, and a set of potential
initial locations P ⊆ WS \O for the rechargers.

At each time step of T , the workers and the rechargers
perform some actions. We have to decide the actions of the
robots at every time step in order to find the optimal solution
to the planning problem. The action plan for worker wi dur-
ing time window T is defined as: ρi = 〈ρ1i , . . . , ρ

T−1
i 〉, where

ρti ∈ Γi ∪ {µ, ν}. Similarly, the action plan for recharger ci
is defined by ρ̂i = 〈ρ̂1i , . . . , ρ̂

T−1
i 〉, where ρ̂ti ∈ Γ̂i∪{µ}. For

the whole system of robots, the consolidated action plan is
defined as ρ = 〈ρ1, ρ2, . . . , ρ|R|, ρ̂1, ρ̂2, . . . , ρ̂|R|〉. We denote
by δti , 0 < δti ≤ δmax, the amount of energy used in the
recharge of worker ri at the t-th time instant if ρti = ν.

We now formulate the problem as an optimization prob-
lem. The decision variables for this optimization problem
are the action plans of the workers and the rechargers,
the recharge amount at every recharge instance, and the
initial location of the rechargers decided from a given set
of potential initial locations P .
• ∀t ∈ {1, . . . , T − 1}.ρt = 〈ρt1, . . . , ρt|W |, ρ̂

t
1, . . . , ρ̂

t
|R|〉,

• ∀t ∈ {1, . . . , T − 1}.∀wi ∈W. δti when ρti = ν,
• ∀rj ∈ R. σ̂1

j .p ∈ P .
The objective of the optimization problem is to minimize

the total waiting time X of the workers, and the travel cost
Y of the recharger, with weights u1 and u2 respectively:

Minimize (u1 · X + u2 · Y)

where

X :=
∑
t∈T−1

∑
wi∈W

[ρti = µ], Y :=
∑
t∈T−1

∑
ri∈R

ρ̂ti.cost,

[ρti = µ] is 1 if ρti = µ and 0 otherwise.
The above optimization problem has to be solved under

several constraints, as introduced in Section III.
To measure the performance of a planning algorithm, we

introduce the following notion of efficiency of a recharge
plan for a multi-robot system.

Definition 1: Efficiency. The efficiency E of a multi-robot
system, under a recharge plan, is defined as the percentage of
time spent by the workers doing their tasks or doing recharge
(excluding wait time to get recharged), during time window
T . Mathematically,

E =
|W | · T −X
|W | · T

× 100

We illustrate the problem with an example which is
available in the full version of the paper [7].

III. ALGORITHM

A. One-Shot Algorithm
We first present a naive approach to solve the planning

problem and use it as the baseline to evaluate our proposed
Two-shot algorithm discussed later. In this approach, we



formulate the problem as a monolithic (one-shot) optimiza-
tion problem with the objective function and the decision
variables described in the problem definition above. Here,
we present the constraints of the optimization problem.
Constraints for the workers: For worker robot wi, we denote
the constraints as:

|[Workeri]| = I(σ1
i ) ∧

T−1∧
t=1

Tr(σti , ρ
t
i, σ

t+1
i ) ∧ F (σTi )

Here, I is the initial location constraint of wi which is
a predefined location on the working loop, and the initial
charge of wi is equal to its full charge capacity.

I(σ1
i ) ≡ σ1

i .p = l1i .p ∧ σ1
i .v = v0 ∧ σ1

i .e = emaxi

The transition constraint Tr of any worker is based on three
types of primitives — motion, wait and recharge; and that
the battery charge at any time point is between zero and
maximum (full) charge.

Tr(σti , ρ
t
i, σ

t+1
i ) ≡ 0 ≤ σti .e ≤ emaxi ∧ ρti ∈ Γi ∪ {µ, ν}

∧ σti |= pre(ρti) ∧ σt+1
i |= post(σti , ρ

t
i)

To connect the trajectory of worker ri with its working loop
Li, we introduce a variable θti , 1 ≤ t ≤ T −1, that maps ri’s
position to an appropriate trajectory point on Li, at tth time
step. To achieve this, we conjunct θ1i = 1 ∧ ρ1i = γ1i with
I(σ1

i ) and the following constraints with Tr(σti , ρ
t
i, σ

t+1
i ) :

ρti ∈ {µ, ν} → θt+1
i = θti

(ρti ∈ Γi ∧ θti < |Li|)→ (ρti = γ
θti
i ∧ θt+1

i = θti + 1)

(ρti ∈ Γi ∧ θti = |Li|)→ (ρti = γ
|Li|
i ∧ θt+1

i = 1)

Note that the sequence of motion primitives corresponding
to the working loop of wi is 〈γ1i , . . . , γ

|Li|−1
i , γ

|Li|
i 〉, and θti

keeps track of the index of the motion primitive that has to
be applied at the current time step t.

The final state constraint F captures that worker’s location
and charge level should match at the final and initial time
points of the hypercycle:

F (σTi ) ≡ σTi .p = σ1
i .p ∧ σTi .v = v0 ∧ σTi .e = σ1

i .e

Constraints for the rechargers: The constraints for a
recharger rj in hypercycle T are as follows

|[Rechargerj ]| = Î(σ̂1
j ) ∧

T−1∧
t=1

T̂ r(σ̂tj , ρ̂
t
j , σ̂

t+1
j ) ∧ F̂ (σ̂Tj )

The initial constraint Î sets the initial location of recharger ri
from the set of potential initial locations P , which is found
by the solver:

Î(σ̂1
j ) ≡ σ̂1

j .p ∈ P ∧ σ1
j .v = v0

Transition constraint T̂ r of any recharger rj is based on
two types of primitives — motion and wait; state transition
satisfies the precondition and postconditions described above.
Also, recharger rj’s transition captures obstacle avoidance
and collision avoidance with workers and other rechargers.

T̂ r(σ̂tj , ρ̂
t
j , σ̂

t+1
j ) ≡ ρ̂tj ∈ Γj ∪ {µ} ∧

σ̂tj |= pre(ρ̂tj) ∧ σ̂t+1 |= post(σ̂tj , ρ̂
t
j) ∧

obstacle-and-collision-avoidance(rj , t)

Obstacle and collision avoidance constraints ensure that a
recharger does not occupy the same cell with some obstacle,
or the same cell occupied by some worker or other recharger
at any time step t.

obstacle-and-collision-avoidance(rj , t) ≡
intermediate(σ̂tj , ρ̂

t
j) /∈ O ∧

intermediate(σ̂tj , ρ̂
t
j) ∩

⋃
wj∈W

intermediate(σtj , ρ
t
j) = ∅ ∧

intermediate(σ̂tj , ρ̂
t
j) ∩

⋃
rk∈R\{rj}

intermediate(σ̂tk, ρ̂
t
k) = ∅.

Final state constraint F̂ at time point T matches the
final locations of the rechargers with their respective initial
locations. We do not consider the charge level of rechargers
in this paper. For some recharger rj ,

F̂ (σ̂Tj ) ≡ σ̂Tj .p = σ̂1
j .p ∧ σ̂Tj .v = v0

Constraints for the entire system: The constraints for the
workers and the rechargers collectively make up the con-
straints for the entire system.

|[System]| =

( ∧
wi∈W

|[Workeri]|

)
∧

 ∧
rj∈R

|[Rechargerj ]|


The one-shot algorithm synthesizes the trajectory of the
recharger minimizing the waiting time of the workers. As
we solve the planning problem for a fixed number of
worker robots and a fixed length of the hypercycle, from
Equation (1), we can ensure that the algorithm provides a
plan with the maximal efficiency. This discussion leads to
the following theorem.

Theorem 1: For a given length of hypercycle T , if the one-
shot algorithm is solved with weights u1 = 1 and u2 = 0
in the objective function introduced in Section II-B, then it
produces a plan with maximum efficiency.

Though the one-shot algorithm provides a plan with opti-
mal efficiency, it suffers from a lack of scalability, as shown
in the experimental results.

B. Two-Shot Algorithm
To address the above scalability issue, we design an

algorithm by splitting the problem into two phases.
1) First phase: The duration of the first phase is equal to

the length of the original hypercycle T . In this phase, the
workers traverse the maximum possible number of working
loops, and within T time duration, they return to their
respective initial locations. This phase handles matching of
workers’ start and end locations only; charge level matching
or rechargers’ location matching are not handled in this
phase. During T , a worker may require several intermediate
rechargings, and it returns to its initial location where its
charge is below its initial (full) charge.
Objective: In this phase, we optimize only the total waiting
time of the robots, i.e., minimize X only.



Constraints for worker and recharger robots: Constraints for
the worker and recharger robots are the same as that of the
One-shot algorithm discussed above, with a few exceptions.
For worker wi, the final state constraints F ′ do not capture
charge matching (with the initial state) at the end of T .
Therefore,

F ′(σTi ) ≡ σTi .p = σ1
i .p ∧ σTi .v = v0

And, for recharger rj , we do not need to enforce any
restriction (location matching) on its final state at the end
of T .
Outcomes forwarded to the second phase: The following out-
comes are forwarded to the second phase of our algorithm.

(i) Intermediate recharging instances: This refers to the
time point and location of every recharging occurred during
T . For each recharger rj , we store the set of 〈τ, p〉 (recharg-
ing instance) such that rj recharges some worker wk at time
point τ and location p:

ηj = {〈τ, p〉
∣∣ ρτj = µ ∧ ∃wk ∈W, ρτk = ν ∧ σ̂τj .p ∈ N (στk .p)}.

(ii) State of the workers: After location matching of the
workers in the first phase, we record the time point (τ ) when
a worker halts finally, and the number of recharge instances
(d) required to recharge it fully. We capture this information
in ζi for worker robot wi :

ζi = 〈τ, d〉 : ∀t : τ ≤ t ≤ T. σti .p = σ1
i .p ∧ d =

⌈
emaxi−στi .e

δmax

⌉
(iii) Initial location of the rechargers: For each recharger

rj , its initial location σ̂1
j .p ∈ P (P is the set of potential

initial locations of the rechargers).
2) Second phase: In this phase, we minimally extend the

length of the original hypercycle (T ) to meet the remaining
matching constraints, viz., charge level matching of workers,
and location matching of rechargers. We denote the duration
of the extended hypercycle by T ′(> T ). For the time
duration (T ′ − T ), we synthesize the action plan of the
rechargers such that they move to the workers to recharge
them up to their initial (full) charge, and then they return
to their respective initial locations. Thus, all the matching
requirements are fulfilled at the end of T ′, after the second
phase.

In this phase, we essentially synthesize trajectories for the
rechargers, from time point 1 till T ′, with some waypoints
already received from the first phase. These waypoints are
the initial and final locations (which are the same) of the
rechargers and the time instants and duration for intermediate
recharging.
Objective: In this phase, we optimize the total cost of the
recharger robots, i.e., the objective is to minimize Y .
Constraints for the workers: Remember that ζi.τ is the time
point when worker wi returns to its initial location during the
first phase. Between time points ζi.τ and T ′ there is a time
instant t when some recharger rj starts recharging worker
wi; and this goes on for duration ζi.d thereafter. As obvious,
recharger rj has to be placed at the neighborhood of wi for
the duration ζi.d :

|[Worker′′i ]| ≡ ∃t, ζi.τ ≤ t ≤ T ′ − ζi.d+ 1 and ∃cj ∈ C
ρ̂tj = µ ∧ ρ̂t+1

j = µ ∧ . . . ∧ ρ̂t+ζ.d−1j = µ ∧
σ̂tj .p =σ̂t+1

j .p = . . . = σ̂t+ζi.d−1j .p ∈ N (ζi.p)

Constraints for the rechargers: The constraints for recharger
rj are:

|[Recharger′′j ]| ≡ Î ′′(σ̂1
j ) ∧

T ′−1∧
t=1

T̂ r′′(σ̂tj , ρ̂
t+1
j , σ̂t+1

j )

∧ F̂ ′′(σ̂Tj ) ∧ ÎR(ηj)

In this phase, T ′(> T ) is the last time point of the
extended hypercycle. Constraint I ′′ sets the initial location
of recharger rj , as received from the first phase, i.e.,
Î ′′(σ̂1

j ) ≡ σ̂1
j .p = l̂1j . Constraint F ′′ matches the last location

of rj with its initial location, i.e., F̂ ′′(σ̂T
′

j ) ≡ σ̂T
′

j = σ̂1
j .

Constraint ÎR handles intermediate recharging (and
associated rules) of workers during the original hypercycle
T based on ηj which is already received from the first phase:
ÎR(ηj) ≡ ∀t ∈ T : 〈t, p〉 ∈ ηj =⇒ σ̂tj .p ∈ N (p) ∧ ρ̂tj = µ.
Thus, at the end of the second phase, our algorithm meets
all three necessary matchings to enable repetitions of the
same extended-hypercycle T ′ for arbitrary number of times.
Optimality of T ′: After the first phase, we run a loop in
which T -value is increased by one in every iteration and is
assigned to T ′. In every iteration, the constraints are checked
for satisfiability. Whenever they are satisfied for the first time,
the algorithm terminates, and we get a plan for the minimal
value of T ′.

For a given T , the two-shot algorithm is not guaranteed
to produce a plan with optimal efficiency. However, the
following theorem establishes the conditional optimality of
the two-shot algorithm.

Theorem 2: For a given original hypercycle length T ,
if for all the worker robots wi ∈ W , the length of the
working loop Li is strictly greater than T ′ − ζi.τ , i.e.,
∀wi ∈W. |Li| > T ′−ζi.τ , then the solution produced by the
two phase algorithm ensures maximal working efficiency.

Proof: In the first phase of the algorithm, we ensure
that any worker robot wi traverses its working loop for the
maximal number of times. The robot wi stops its operation at
time ζi.τ ≤ T . If the length of the working loop Li is strictly
greater than T ′ − ζi.τ for any robot wi, it is not possible to
include any more working loop for any of the robots in the
extended hypercycle of length T ′. This ensures the maximal
working efficiency of the generated plan.

Our algorithm generates the trajectories of the mobile
rechargers based on the assumption that the workers and the
rechargers move in lock steps. In the full version [7], we
discuss how the delay uncertainty in the movement of the
robots can be address while implementing our algorithm for
a real multi-robot system.

C. A Greedy Algorithm
To demonstrate that our SMT-based algorithm is indeed

essential for obtaining a superior solution to the mobile
recharger path planning problem, we design a baseline
greedy algorithm for the sake of comparison. In this algo-
rithm, we ensure that when a recharger becomes available,
it moves towards a location where it will get the opportunity
to recharge an energy-deficient robot at the earliest, i.e., it
moves to the nearest charge-deficient worker.

At any time step t, for each worker w ∈ W and for
each recharger r ∈ R, we compute λrw that captures the



(a) (b) (c) (d)

Fig. 1. Workspaces for experiments: (a) Warehouse, (b) Artificial
floor, (c) Random with 20% obstacles, (d) Random with 30%
obstacles. Loops represent working loops of the worker robots. Red
dots represent the way-points of workers’ trajectory. Blue triangles
in (a) show the potential initial locations for the rechargers in the
workspace.

duration after which recharger r can start recharging robot
w. There could be the following two cases: (i) If worker w
is already devoid of charge and has become stationary, then
λrw gives the time required for an available recharger r to
move to the current location of worker w. (ii) If worker robot
w is currently moving (at times t), then λrw represents the
maximum of the following: (a) time required for worker w to
become energy deficient, and (b) time required for recharger
r to reach the final location of robot w. Once we compute
λrw for all r ∈ R and all w ∈ W , we choose the 〈w∗, r∗〉
pair for which λrw is the minimum. We implement the
greedy strategy over a hypercycle like we do in our SMT-
based approach.

IV. EVALUATION

A. Experimental Setup

The workspaces (19× 19 dimension) used for our exper-
iments are shown in Figure 1. We consider all the robots
to follow motion primitives of differential-drive robots like
Turtlebot [8]. If fully recharged, half of the workers go out
of charge in 10 time steps, and the remaining workers go
out of charge in 12 time steps. Note that each step may
correspond to covering a long distance. The value of δmax
(the maximum amount of recharge per time unit) is chosen
as 10 units. The bar plots representing the efficiency are
divided into two parts – the lower part gives the efficiency
due to movement (work), and the upper one represents the
efficiency contribution due to getting recharged (recharge).
If a bar shows a value of x%, it implies that (100− x)% of
the time the worker has spent in waiting idly for meeting a
recharger. For all our experiments, the timeout is set to 3h.

Our experiments were carried out in a system with i7-
6500U CPU @ 2.50GHz and 16 GB RAM. We use Z3 [9]
as the back-end SMT solver. In our SMT encoding of the
one-shot algorithm, we have used the waiting time of the
workers as the primary objective and the trajectory cost of
the recharger as the secondary objective. We submit a video
demonstrating the two-shot algorithm as supplementary ma-
terials.

B. Results

1) One-shot vs Two-shot algorithm: In Figure 2, we
compare the efficiency of the one-shot and the two-shot
algorithms for Warehouse workspace. The one-shot approach
does not have a concept of extended hypercycle (T ′). How-
ever, the comparison needs to be done for the same length
of hypercycles. Therefore, first, we execute the two-shot
algorithm with some original hypercycle (T ) and obtain the

length of the extended hypercycle (T ′). Subsequently, we
use the derived T ′ as the hypercycle length for the one-
shot approach. The experiments are carried out for original
hypercycle length 25, 30, and 35 for up to 6 workers and
2 rechargers, and for original hypercycle length 25 for 6-
8 workers and 3 rechargers. In the figure, the label on the
x-axis 2w; 1r; 25T ; 30T ′ denotes 2 workers, 1 recharger,
the original hypercycle length to be 25, and the extended
hypercycle length to be 30.

For some smaller instances, the one-shot algorithm is able
to produce recharge plans and provides better efficiency
than its two-shot counterpart. Let us examine the reason.
Consider the instance 2w; 1r; 30T ; 35T ′ in Figure 2. For
one of the worker robots, the one-shot algorithm generates
a recharge plan with 4 working loops, whereas the two-shot
algorithm allows only 3 working loops. The reason behind
this observation is that one of the workers completes its
last working loop at time point 28 in case of the one-shot
algorithm. However, in the two-shot approach, the workers
are not allowed to move after the 25-th time point, as
the original hypercycle length is 25. Therefore, one-shot
gives better efficiency for this instance. However, one-shot
algorithm times out (3h) in most of the cases, whereas two-
shot algorithm scales well for larger input instances. The
computation times for the two-shot algorithm in warehouse
workspace for up to 6 workers and 2 rechargers for original
hypercycle length 25, 30, and 35 are shown in Figure 3.

As evident from Figure 2, with fixed |W | and |R|, the
efficiency increases with increasing T . With fixed |W | and
T , the efficiency increases with increasing |R|.

In Figure 4, we compare one-shot and two-shot ap-
proaches for other more complex workspaces – Artificial
floor, Random-20 and Random-30 (workspaces are shown in
Figure 1). A similar trend, as seen in Figure 2 for Warehouse,
can also be seen for other workspaces in Figure 4. One-shot
algorithm times out for most of the input instances.

2) Comparison with the Greedy algorithm: We compare
our SMT-based two-shot algorithm with the greedy algorithm
presented in Section III-C. Comparison results for 2 − 6
workers and 1−2 rechargers with hypercycle length T = 30
and T = 35 are shown in Figure 5. As seen from the figure,
our SMT-based two-shot algorithm achieves an improvement
of 13-44% in efficiency over the greedy algorithm, with
an average %-improvement of 27.5%. In the SMT-based
two-shot algorithm, the possibility of partial recharging and
synthesis of initial locations of rechargers helps us achieve
better efficiency.

We illustrate the trajectories generated by the greedy
algorithm and the SMT-based two-shot algorithm for a given
instance in in the full version of the paper [7].

3) Effect of rechargers’ potential initial locations (P ):
Our algorithm synthesizes the initial locations of the recharg-
ers. The number of potential initial locations (P ) of the
rechargers plays a role in determining their starting positions,
and hence the trajectories of the rechargers, and the overall
efficiency (Figure 6). We choose the locations in P symmet-
rically in the Warehouse workspace as shown in Figure 1 for
|P |=16. Similarly, we choose the locations for smaller P ’s
by symmetrically removing locations from the larger P . As
expected, the efficiency increases with the increase in the size
of P up to a certain value and then remains the same. When
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we increase the size of set P , the computation time goes up
because the search space size increases. Computation time
varies in the range of 4min-6min, 6min-10min and 9min-
14min for 4, 5 and 6 worker robots respectively.

4) Effect of δmax: Experimental result showing the effect
of δmax (maximum recharge amount per unit time) on the
efficiency is provided in the full version of the paper [7].

V. RELATED WORK

In this section, we discuss some related research work.
Autonomous charging. For static rechargers, docking-based
autonomous recharging has been studied widely where the
robots operate under fuel constraints [10], [11], [12], [13],
[14], [15], [16], [17], [18]. Planning for recharge instants
and locations is a good strategy to improve the overall
performance. To decide when and where to recharge a robot
with static charging stations, [19], [20] leverage on a market-
based strategy, [21] develops an approximate algorithm,
and [22] schedules battery charge in the less busy period
of the robots.
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Fig. 5. Efficency comparison: SMT-based Two-shot vs Greedy approach,
for different workers-rechargers combinations and hypercycle lengths (T )
in warehouse workspace.
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Energy management of robots employing mobile recharg-
ers has also received attention from the robotics research
community. To service worker robots by static and mobile
rechargers, recharge scheduling strategies are studied [23],
and a market-based strategy is proposed [19]. However, these
works do not consider the path planning aspect of the mobile
rechargers. Litus et al. [24] introduce a method to find an
optimal set of meeting places for a group of worker robots
and a mobile refueling robot based on a given order of robot
meetings. Mathew et al. [25] address a similar problem where
the behaviors of the service robots are given by finite trajecto-
ries, repetition of which help perform some tasks persistently.
Algorithms for path planning of mobile rechargers such that
worker robots from any location in the workspace are able
to reach rechargers within a given remaining charge amount
have been presented in [26]. These papers discuss models
for optimal-length path planning for the rechargers. In this



paper, however, we discuss optimal recharge scheduling in
terms of time and location to maximize the efficiency of
the worker robots, and minimize the path length for the
mobile rechargers. Yu et al. propose a generalized TSP-
based solution to find an optimal trajectory and a recharge
schedule for a UAV under battery constraints in the presence
of static and mobile rechargers [27]. Unlike our method, their
algorithm focuses on the activity of only one worker robot
(the UAV).
SMT-based motion planning. To find optimal routes for the
mobile rechargers to meet the worker robots at different
locations is essentially an NP-hard problem [28]. Our al-
gorithmic solution to synthesize a recharge schedule for the
worker robots and the trajectories for the recharger robots is
based on a reduction of the problem to an SMT (Satisfiability
Modulo Theory) [29] solving problem. SMT solving allows
us to solve NP-hard problems captured in the form of
constraints expressed as decidable first-order logic formulas
from different theories such as linear arithmetic or quantified
Boolean logic. SMT solvers are recently popular in solving
the task and motion planning problems for robots [30],
[31], [32], [33], [34], [35], [36], [37], [38]. SMT solver
has been used recently for deciding optimal locations of the
charging stations [39] and for energy-aware temporal logic
motion planning for a mobile robot [40]. To the best of our
knowledge, we, for the first time, employ an SMT-based
approach to solve the recharge planning problem for multi-
robot systems with mobile rechargers.

VI. CONCLUSION

In this paper, we present an SMT-based algorithm for
solving the recharge scheduling and path planning problem
for mobile rechargers that are responsible for supplying
energy to the mobile robots involved in perpetual tasks.
Though our algorithm is not optimal, it can solve complex
planning problems in reasonable time and provide near-
optimal solutions in terms of the efficiency of the workers.
In the future, we would extend our framework to incorporate
a more realistic battery model and evaluate our algorithm on
a real multi-robot system.

REFERENCES

[1] “Security robots that patrol streets - or guard your home - are on the
way,” https://www.therecord.com/business/2017/11/03/security-robots-
that-patrol-streets-or-guard-your-home-are-on-the-way.html, 2020.

[2] S. Robotics, “security patrol robot,”
https://smprobotics.com/security robot/security-patrol-robot/, 2020.
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