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Abstract— This paper presents a methodology for synthesiz-
ing a motion plan for a mobile robot to ensure that the robot
never gets depleted with battery charge while carrying out its
mission successfully. The specification of the robot is provided
in the form of an LTL (Linear Temporal Logic) formula. A
trajectory satisfying an LTL formula may contain a loop whose
repetitive execution causes the depletion of battery charge in the
robot. The motion plan generated by our methodology ensures
that the robot visits the charging station periodically in such
a way that it never gets depleted with battery charge while
carrying out its mission optimally. Given a set of potential
charging station locations and an LTL specification, our al-
gorithm also finds the best location for the charging station
along with the optimal trajectory for the robot. We encode
the motion planning problem as an SMT (Satisfiability Modulo
Theory) solving problem and use the off-the-shelf SMT solver
Z3 to solve the constraints to find the location of the charging
station and generate an optimal trajectory for the robot. We
apply our methodology to synthesize energy-aware trajectories
for robots with different dynamics in various workspaces and
for various LTL specifications.

I. INTRODUCTION

Traditionally, the objective of motion planning has been
to move a robot from point A to point B while avoiding
obstacles. Recently, there has been an increased interest in
solving planning problems where complex specifications are
captured using temporal logic [1], [2], [3], [4], [5], [6],
[7]. Using temporal logic, one can specify requirements that
involve temporal relationships between different operations
performed by the robots. Such requirements arise in many
robotic applications, including persistent surveillance [6], as-
sembly planning [8], evacuation [9], search and rescue [10],
localization [11], object transportation [12], and formation
control [13]. In these applications, it is common that a robot
has to perform a task repeatedly by following a preassigned
trajectory. A major outstanding problem in performing a
series of tasks perpetually is how to schedule the charging
of the battery of the robot in an optimal way so that it never
gets depleted with energy and becomes non-functional.

To ensure persistent power supply to the mobile robots,
several approaches have been proposed in the past. Docking
based autonomous recharging has been studied widely in
the recent past (e.g. [14], [15], [16], [17], [18], [19], [20]).
In another approach, a flexible tether connects the robot
to a continuous power supply, thus the tethered robot’s
mission duration extends indefinitely without being reliant
on the limited battery charge (e.g. [21], [22], [23], [24]). The
problem of motion planning for the robots that can exploit
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natural power resources has been addressed by several au-
thors (e.g. [25], [26], [15]). Lahijanian et al. [27] proposed a
framework for exploring the resource-performance trade-off,
which provides a mechanism to conserve energy at the cost
of reduced but acceptable level of performance. In a recent
work, we proposed a methodology to place a set of charging
stations optimally in a workspace to support uninterrupted
operation of a mobile robot [28]. However, none of the
previous work has addressed the problem of charging station
placement and motion planning for satisfying a temporal
logic property perpetually while ensuring the continuous
availability of energy.

In this paper, our objective is to generate a trajectory for
a robot automatically from a given LTL specification that
along with the functional requirement also takes into account
the energy requirement of the robot. Our approach is based
on the composition of motion primitives, that respects the
constraints imposed by the temporal logic specification. The
motion primitives are utilized to build a system of constraints
where the decision variables encode the choice of motion
primitives used at any discrete-time point on the trajectory.
The system of constraints involve a Boolean combination of
linear constraints, which can be solved using an off-the-shelf
SMT (Satisfiability Modulo Theories) solver [29]. Our choice
of the SMT-based approach has been driven by the recent
success of SMT solvers to solve several task and motion
planning problems (e.g. [30], [31], [32], [7], [33], [34], [35]).

The trajectories satisfying an LTL formula might be of
infinite length, capturing the repetition of tasks. In the SMT
constraints, we include constraints to ensure that the robots
never get depleted with battery power. However, a naive
encoding of the energy constraints leads to conservative
trajectories that force the robot to visit the charging station
more frequently than required. We provide an algorithm to
find a trajectory that ensures the optimal number of visits
to the charging station as well as optimal length of the
trajectory under the assumption that the robot gets recharged
fully while it visits the charging station.

We apply our technique to synthesize trajectories for a
pickup-drop application. In such an application, a robot is
required to (repeatedly) pick up objects from different gather-
ing locations and drop the gathered objects at a drop location.
We carry out experiments with robots with three different
dynamics: Turtlebot, Dubin’s Vehicle and Quadcopter. Our
experimental results show that our technique can efficiently
find the trajectory for the robot with minimal number of visits
to the charging station while performing its designated task.

II. PROBLEM

A. Preliminaries
Workspace: In this work, we assume that the robot

operates in a 2-D workspace that we represent as a 2-D
occupancy grid map. The grid decomposes the workspace



into square shaped blocks that are assigned unique identifiers
to represent their locations in the workspace. We denote
the set of locations in the workspace by W and the set of
locations covered by obstacles by O. The set of obstacle-
free locations in the workspace is denoted by F , where
F = W \ O. We consider a subset of the obstacle-free
locations in the workspace, S ⊆ F , as the potential charging
station locations. We find the exact location of the charging
station in S.

Robot State: The state of a robot σ consists of (a) its
position in the workspace, σ.x, which determines a unique
block in the occupancy grid, (b) its velocity configuration,
σ.v, which represents current magnitude and direction of the
velocity of the robot, and (c) the battery energy available to
the robot, denoted by σ.e. We denote the set of all velocity
configurations by V and assume that it contains a value v0
denoting that the robot is stationary.

Motion Primitives: We capture the motion of a robot using
a set of of motion primitives Γ. We assume that the robot
moves in an occupancy grid in discrete steps of τ time units.
A motion primitive is a short controllable action that the
robot can perform in any time step. A robot can move from
its current location to a destination location by executing a
sequence of motion primitives.

With each motion primitive γ ∈ Γ, we associate a
pre-condition pre(γ), which is a formula over the states
specifying under which conditions a motion primitive can
be executed. We write post(σ, γ) for the state the robot
attains after executing the motion primitive γ. We use
intermediate(σ, γ) to denote the set of grid blocks through
which the robot may traverse when γ is applied at state
σ, including the beginning and end blocks. Each motion
primitive γ is associated with an energy cost as denoted by
cost(γ), which represents the amount of energy spent by the
robot while executing the motion primitive.

Recharge Primitive: The robot is equipped with a recharge
primitive, denoted by ν, that the robot can use to recharge
its battery to the maximum possible energy level emax.
Like a motion primitive, ν is associated with a precondition
pre(ν) and a postcondition post(σ, ν). A state σ satisfies
the precondition pre(ν) if σ.x ∈ S ∧ σ.v = v0. We write
post(σ, ν) to denote the state σ′ such that σ′.x = σ.x ∧
σ′.v = v0 ∧ σ′.e = emax. Moreover, intermediate(σ, γ)
= {σ.x}.

Execution Plan and Trajectory: The runtime behavior of
the robot is described by a discrete-time transition system T .
Let σ1 and σ2 be two states of the robot. For a motion prim-
itive or recharge primitive ρ, σ1

ρ−→ σ2 is a valid transition iff
σ1 |= pre(ρ), σ2 = post(σ1, ρ), and intermediate(σ1, ρ) ∩
O = ∅.

An execution plan for a robot is defined as a sequence of
motion primitives and recharge primitives to be applied to
the robot to move it in a way that it satisfies a user given
specification and never gets depleted with battery energy. An
execution plan is denoted by a (potentially infinite) sequence
of primitives ρ = (ρ1ρ2 . . .), where ρi ∈ Γ ∪ {ν} for all
i ∈ {1, 2, . . .}.

Given the current location of the robot l0 and an execution
plan ρ = (ρ1ρ2ρ3 . . .), the trajectory of the robot is given
by η = (σ0σ1σ2 . . .) such that for all i ∈ {1, 2, 3, . . .},

σi−1
ρi−→ σi. If any transition is invalid then the execution

plan does not lead to a valid trajectory. In the rest of the
paper, we use the word “step” to denote a transition governed
by a motion primitive.

We represent by η ◦ η′ the trajectory obtained by con-
catenating a finite trajectory η and another (finite or infinite)
trajectory η′. For a finite trajectory η, the infinite trajectory
obtained by repeating η is represented by ηω , and the finite
trajectory obtained by repeating η for k ∈ N times is
represented by ηk .

B. Specification Language – Linear Temporal Logic (LTL)

We express the specification of a robot using Linear
Temporal Logic [36], denoted by LTL. Let AP denote the
set of atomic propositions. An atomic proposition captures
the truth value of a condition defined based on the state of
the robot. For example, we can define a proposition pl which
will be true if the robot is in a location l ∈ F , i.e., σ.x = l.
From the atomic propositions in AP , any LTL formula can
be formulated according to the following grammar:

ξ ::= true | p | ¬ξ | ξ1 ∧ ξ2 | © ξ | ξ1 U ξ2

The basic ingredients of an LTL formulae are the atomic
propositions, the Boolean connectors like conjunction ∧, and
negation ¬ and two temporal operators © (next) and U
(until). The semantics of an LTL formula is defined over
an infinite trajectory σ. The trajectory σ satisfies a formula
ξ, if the first state of σ satisfies ξ. For an LTL formula ξ,
©ξ is true in a state if ξ holds at the next step. The Until
operator U has two operands. The formula ξ1 U ξ2 denotes
that ξ1 must remain true until ξ2 becomes true at some
point in future. The other LTL operators that can be derived
from the above formulas are Always � and Eventually 3.
The formula �ξ ::= ¬3¬ξ, which denotes that the formula
ξ has to hold for all the time points in the future. The formula
3ξ ::= true U ξ denotes that the formula ξ will become
true at some point in the future.

LTL Specification with Energy Constraint: The robot has
to satisfy additional safety constraint that its charge σ.e is
always greater than 0. Let us denote the condition as the
proposition energy. A trajectory satisfying this constraint is
called an energy-safe trajectory. For any user given functional
specification ξ, the robot should also satisfy the LTL property
2energy. Thus, the combined LTL formula from which we
aim to generate an execution plan for the robot is given by
(ξ ∧2energy).

Representation of an infinite trajectory: An infinite tra-
jectory that satisfies an LTL formula can be given a fi-
nite representation having a prefix and a suffix that can
loop to generate a valid infinite trajectory [37]. Let κ =
(σ0σ1σ2 . . .) be a valid trajectory of the system for the
formula ξ. The trajectory κ can be represented as: κ =
(σ0σ1 . . . σk)(σk+1 . . . σL+1)ω where 0 < k ≤ L and
σL+1 = σk. Such a representation of a trajectory is called
an (L, k)-loop. The trajectory (σk+1 . . . σL+1)ω denotes an
infinite trajectory that can be obtained by executing the finite
sequence (σk+1 . . . σL+1) repetitively.

Optimal Trajectory: A trajectory κ for an LTL formula ξ is
optimal if there does not exist another trajectory κ′ satisfying
ξ that can be synthesized using the motion primitives in



Γ such that length(κ′) < length(κ), where length(κ)
denotes the number of motion primitives used in realizing κ.

C. Problem Definition

In this section, we define our problem formally.
Definition 2.1 (Input Problem Instance): An Input prob-

lem instance can be given as a 6 tuple P = 〈W,O, S,Γ, I, ξ〉,
where I denotes the initial state of the robot where the robot
starts its operation with full battery power and ξ denotes the
LTL specification the robot has to satisfy.

Formally, the problem can be captured as follows:
Problem 2.2: Given an input problem instance P =

〈W,O, S,Γ, I, ξ〉, determine the location of the charging
station lc ∈ S and generate an optimal trajectory that satisfies
the LTL formula ξ together with the constraint representing
energy safety.

The generated trajectory should enable the robot to abort
its mission and reach the charging station to recharge its
battery whenever necessary, and resume its mission again
after the recharge is done.

III. ALGORITHMS

In this section, we present our charging station placement
and trajectory synthesis algorithm.

A. Energy-Safe Trajectory Generation

First, we present an algorithm that without ensuring op-
timality synthesizes a trajectory satisfying the given LTL
specification and energy-safety. Our approach is based on
reducing the problem to an SMT solving problem. Here we
describe the system of constraints that models the planning
problem introduced in Section II.

Given an input problem instance P = 〈W,O, S,Γ, I, ξ〉
and a positive constant L, our objective is to generate an
SMT formula that represents any valid trajectory of the robot
in the form of an (L, k)-loop. The decision variables for the
SMT formula are the motion primitives or recharge primitive
to be used at each state and the variable representing the
location where the loop starts (k). Below we present the
encoding of the trajectory synthesis problem. The encoding
is linear in L, and consists of three sets of constraints:

1) System Constraints: At each time instant
t ∈ {0, . . . , L+ 1}, the state of the robot is denoted
by σt, and the primitive applied to the robot is denoted by
ρt+1. The system constraints are captured by the following
formula: |[SY S]| = I(σ0) ∧

∧L
t=0 T (σt, ρ(t+1), σ(t+1)). The

transition relation T (σt, ρ(t+1), σ(t+1)) is implemented as
the following constraint: ρ(t+1) ∈ Γ∪{ν} ∧ σt |= pre(ρt+1)
∧ σt+1 = post(σt, ρt+1) ∧ intermediate(σt, ρt+1) /∈ O.

2) LTL Constraints: We generate the constraints |[LTL]|
capturing the requirements imposed by the LTL formula
using the eventuality encoding as described in [37]. In the
LTL constraints, we introduce L+1 fresh variables l0, . . . , lL
which are used as loop selector variables. At most one of
these variables lk can be true and indicates that the loop
starts at the k-th step of the trajectory.

3) Energy Constraints.: The energy available to the robot
decreases with the execution of each motion primitive. Ob-
viously, the robot has to recharge its battery for its continued
operation. The following constraint ensures this:

∀k ∈ {0, . . . , L} : lk ⇒ (σL+1.e ≥ σk.e) (III.1)

The above constraint, denoted by |[ENERGY]|, ensures that
the battery energy available to the robot at the end of the
execution of the loop (at state σL+1) is greater than or equal
to the battery energy available to the robot at the beginning
of the execution of the loop (at state σk). This is possible
only if the robot visits the charging station while executing
the loop part of the trajectory and recharges its battery using
the recharge primitive.

4) Full Encoding: The full encoding of the problem is
denoted by |[P, L]|, and is given by the conjunction of the
above-mentioned constraints.

|[P, L]| ⇔ |[SY S]| ∧ |[LTL]| ∧ |[ENERGY ]| (III.2)

To solve the problem posed in Section II, we start with
L = 2, and solve the conjunction of the set of constraints
captured in |[P, L]|. If there exists a solution for the set of
constraints, the trajectories for the robots can be extracted
from the solution. If no solution exists, we attempt to solve
the constraints for a larger value of L.

It is guaranteed that the loop part of a trajectory syn-
thesized by the above methodology will traverse through
a location lc ∈ S where the recharge primitive ν will be
applied to the robot to charge its battery fully. Thus, the
charging station can be placed at lc.

The above algorithm works under the implicit assumption
that the robot can traverse the loop part of the trajectory at
least once with full battery charge.

B. Recharge-Optimal Trajectory Generation
The algorithm described in Section III-A synthesizes a

trajectory that satisfies the functional requirement for the
robot and ensures that the robot never gets depleted with
battery charge. However, the generated trajectory is conserva-
tive —the robot may visit the charging station unnecessarily,
i.e. even if it may be able to continue traversing multiple
loops without visiting the charging station, it may still visit
the charging station. To alleviate this problem, we devise
Algorithm III.1 that generates a trajectory for the robot that
makes minimal number of visits to the charging station.
The algorithm involves two main steps for synthesizing the
trajectory: in the first step, the trajectory η is synthesized
without considering the energy constraints, and in the sec-
ond step, the trajectory ηe is synthesized incorporating the
energy constraints in the SMT problem and considering the
loop starting point in η as the initial location. These two
trajectories are then combined appropriately to generate the
final trajectory that ensures the satisfaction of the given LTL
formula, and the minimum number of visits to the charging
station without ever getting depleted with battery power.

Let us illustrate Algorithm III.1 using an exam-
ple. Suppose that the robot has to satisfy a func-
tional specification 2(♦(pick ∧ ♦drop)), which requires
the robot to pick an object from a location, drop
the object in another location, and perform these two
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Fig. 1. Trajectories for two specifications: p, p1 and p2 denote pickup
locations, d denotes drop location and en denotes the energy proposition.

Algorithm III.1: Synthesis of optimal energy-safe tra-
jectory for a robot

Input: P: Input Problem Instance

Output: traj : Optimal trajectory satisfying the LTL
specification and the energy constraint

1 function synthesizeOptimalEnergySafeTraj(P)
2 begin
3 η := 〈ηpre ◦ ηl〉 ←

find_traj_without_energy_constraints(P)
4 li ← find_loop_initiation_location(η)
5 P ← P(I = li)
6 ηe ← find_traj_with_energy_constraints(P)
7 if (η 6= NULL && ηe 6= NULL) then
8 epre ← energy_consumption_in_prefix(ηpre)
9 el ← energy_consumption_in_loop(ηl)

10 e′l ← energy_consumption_in_loop(ηe)
11 et ←

energy_needed_to_reach_charging_stn(ηe)
12 erem ← e′l − et
13 k1 ← b emax−epre−et

el
c, k2 ← b emax−erem−et

el
c

14 traj ← ηpre ◦ ηk1
l ◦ (ηe ◦ η

k2
l )ω

15 return traj
16 else
17 return NULL
18 end
19 end

tasks repetitively. The algorithm first invokes the function
find_traj_without_energy_constraints to generate a
trajectory η = 〈ηpre ◦ ηl〉 that satisfies the LTL specifi-
cation and ignores the energy constraint. The synthesized
trajectory is an (L, k)-loop where ηpre represents the prefix
and ηl represents the loop. In Figure 1(a), initial location
of the robot is denoted by I , the pickup location by P
and the drop location by D. The location where the loop
starts is denoted by L. Thus, the trajectory synthesized by
find_traj_without_energy_constraints can be rep-
resented as: IL ◦ (LP ◦ PD ◦ DL)ω , where IL is the
trajectory from the location I to the location L. The func-
tion find_traj_without_energy_constraints is imple-
mented using the method presented in Section III-A, while
excluding the energy constraint in (III.1) from the system of
constraints in Equation III.2. Next, we find a trajectory us-
ing find_traj_with_energy_constraints function us-
ing the method presented in Section III-A and considering
the loop point L as the initial location of the robot. In Fig-
ure 1(a), the location C denotes the location of the charging
station that is synthesized by our algorithm. The trajectory
ηe synthesized by find_traj_with_energy_constraints
function can be represented as (LC◦CP ◦PD◦DL)ω . Now,

using the trajectories η and ηe, we generate the trajectory that
visits the charging station for the minimal number of times
in the following way. We compute the energy consumption
in the prefix of the trajectory η (denoted by epre), the energy
consumption in executing the loop for both η and η′ (denoted
by el and e′l respectively), the energy consumption to reach
the charging station from the loop point (denoted by et),
and the energy consumption to complete the loop from the
charging station (denoted by erem). In Figure 1(a), epre, el,
e′l, et and erem are the energy consumption to execute the
trajectory fragment IL, LP ◦PD◦DL, LC◦CP ◦PD◦DL,
LC and CP ◦ PD ◦ DL respectively. In Algorithm III.1,
k1 denotes the number of times the loop LP ◦ PD ◦ DL
will be traversed before visiting the charging station for
the first time, and k2 denotes the number of times the
loop will be traversed between two consecutive visit of the
charging station. Thus, the final trajectory is represented as
ηpre ◦ ηk1l ◦ (ηe ◦ ηk2l )ω .

In the previous example, the loop in the trajectory syn-
thesized without the energy constraint overlaps with the
trajectory synthesized with the energy constraint. However,
for several specifications, these two loops may not overlap.
Nonetheless, Algorithm III.1 generates the correct trajecto-
ries for such specifications too. Let us consider the functional
specification 2(♦((pick1 ∨ pick2) ∧ ♦drop). To satisfy this
specification, it is enough if the robot visits one of the pick-
up locations repetitively. However, it is possible that in the
optimal loop synthesized without the energy constraint, the
robot visits the pickup location satisfying pick1, whereas
it visits the other pickup location in the loop synthesized
with the energy constraints. The trajectories are shown in
Figure 1(b).

The following theorems captures the optimality of the
trajectory produced by Algorithm III.1.

Theorem 3.1: Optimal length of the trajectories with and
without energy constraints: Given an input problem P ,
Algorithm III.1 synthesizes optimal length trajectories with
and without energy constraints.

Proof: In synthesizing ηl with
find_traj_without_energy_constraints function,
we start with a very small value (say 2) for the length of η
for which it is guaranteed that a trajectory does not exist.
In every iteration, we go on incrementing this value by one
and checking its satisfiability of the constraints. Whenever
for the first time the constraints are satisfiable for a value
of the length of η, we synthesize ηl for that specific value.
Thus, ηl is an optimal length trajectory. Similarly, we can
prove that the trajectory with energy constraint, i.e ηe, is
also an optimal length trajectory.

Theorem 3.2: Optimal number of visits to charging sta-
tion: Given an input problem P , Algorithm III.1 generates
a trajectory that satisfies the functional LTL specification,
ensures that the robot never gets depleted with charge and
the robot visits the charging station for minimal number of
times.

Proof: The proof of the above theorem follows from
the observation that ηl and ηe are optimal-length trajectories
satisfying the LTL formula without and with the energy
constraint respectively; and the loop ηl is taken for maximum
possible number of times (k1 and k2) before executing ηe.



This proves that the charging station is visited for a minimal
number of times.

IV. EXPERIMENTS

A. Experimental Setup

We have evaluated our planning algorithm through exten-
sive simulation. We have implemented Algorithm III.1 in
C++. The planner generates the execution plan for the robot
using SMT solver Z3 [38]. All the experiments have been
performed in a laptop with i7-6500U CPU @ 2.50GHz and
16 GB RAM.

1) Workspace: Three different types of workspaces have
been used in our experiments —Warehouse, Maze and Arti-
ficial floor which are shown in figures 2(a), 2(b) and 2(c)
respectively. We have used two different dimensions —17×
17 and 27×27 —for the workspaces. The potential locations
for the charging station include the grid cells adjacent to
the outer walls of obstacles or on the inner boundary of the
workspace, with the y-coordinate being in the range of [0,3].
For all the workspaces of size 17×17 and 27×27, the starting
location of the robot is (5, 0) and (9, 0) respectively.

2) Robot Model.: We carry out experiments on three
different kinds of robots. Their details are provided below.
Turtlebot. Turtlebot [39] is a widely used robot for academic
research. The robot has four motion primitives - (i) move
forward, (ii) move backward, (iii) move left, (iv) move
right. The robot has a direction associated with it. If the
robot wants to move towards a different direction, it has
to first rotate appropriately and then move forward. We
have not considered separate motion primitive for rotation.
The primitives move left and move right include a rotation
followed by a forward movement, thus have a larger energy
cost than the move forward or move backward primitives.
Dubin’s Vehicle. A Dubin’s vehicle cannot make any side-
ways or reverse movement, it is capable of making a right
turn (R), a left turn (L) or moving forward (F). We have
considered four different headings (configurations) of the
vehicle viz. N, S, E and W. For each heading, it can apply R,
L or F primitive. Thus, it has a total of 12 motion primitives.
Steering angle φ ∈ [−π/2, π/2] decides the amount of
right or left turn. In practice, |φmax| � π/2. We decide
the steering angle in a way that after executing the motion
primitive, the car is at right angle to its previous configuration
where the primitive was applied.
Quadcopter. For the quadcopter, we use the model of a
NanoQuad quadrotors from KMel Robotics [40]. The mo-
tion primitives for the quadcopter are generated using the
algorithm described in [41]. In 2-D, the velocity profile has
9 configurations consisting of one hover state and constant
velocity in 8 uniform directions. Using the duration of
0.66sec, the algorithm in [41] yields the set of 57 motion
primitives.

3) LTL Specifications.: In our experiments, we consider
a pick-and-drop application for a robot. In this application,
a robot picks objects from a number of pickup locations and
drops those objects in a drop location. Moreover, the robot
performs its tasks repetitively. We consider three different
variants of the problem.
Pickup in a user-given order. The robots should pick up
objects from the pick up locations in a user given order. The

LTL formula for the specification for two pickup locations
is given below: 2(♦(pick1 ∧ ♦(pick2 ∧ ♦drop))).
Pickup in an arbitrary order. The robot is allowed to pick up
objects from the pick up locations in any arbitrary order. The
LTL formula for the specification for two pickup locations is
given as: 2(♦pick1∧♦pick2∧((pick1∨pick2)⇒ ♦drop)).
Selective pickup. The robot should select one of the pickup
locations and drop the picked up object to the drop loca-
tion. The following LTL formula captures this specification:
2((♦pick1 ∨ ♦pick2) ∧ ((pick1 ∨ pick2)⇒ ♦drop)).

B. Results
In Figure 2, we show some sample outputs pictorially in

different workspaces of size (17 × 17), with two pickup
locations and a drop location. The blue solid lines in the
figures indicate a trajectory followed by the robot when it
has enough amount of charge to complete the loop. On the
other hand, if the robot does not have enough battery charge
to complete the blue-coloured loop, it must visit a charging
station. The location of the charging station, indicated by a
green circle, is also synthesized by our algorithm. As loop
starting point is same for both blue and red loops, and now
the robot has enough charge after getting recharged, it can
resume traversing the blue-coloured trajectory (which does
not visit the charging station). Note that the red coloured
trajectory also fulfills the designated task of visiting the
pickup and drop locations as specified by the LTL property.

In fig. 2(a), a Warehouse workspace is shown where two
pickup locations are at Pw1 = (12, 4) and Pw2 = (8, 16)
and the drop location is at Dw = (4, 4) grid positions. A
Quadcopter is asked to perform a task of picking up in a
given order which is “Pick Pw1 before Pw2 , and then visit
Dw” in the workspace. The figure shows that the robot
performs as expected.

Figure 2(b) shows a Maze workspace with a Turtlebot
robot. Two pickup locations are at Pm1 = (2, 5) and Pm2 =
(15, 4), and drop location is at Dm = (9, 14) grid locations.
Here, it is specified that the robot can visit “Pm1 and Pm2
in any order, and then visit Dm”. In this case, the charging
station location is synthesized at (8, 2), which is incident on
the blue-coloured (and red) trajectory.

The above two examples in Figure 2(a) and Figure 2(b)
are as per the illustration shown in Figure 1(a). Now,
with an Artificial floor workspace and a Dubins vehicle,
in Figure 2(c) we show an example of the scenario shown
in Figure 1(b). Two pickup and one drop locations are at
P a1 = (2, 6), P a2 = (15, 5) and Da = (6, 11) respectively.
The specification is “visit any of P a1 or P a2 , and then visit
Da”. Charging station is synthesized at (15, 3). When the
robot has sufficient charge to visit any one of P a1 and
P a2 followed by Da, it chooses to visit P a1 (blue-coloured
trajectory). On the other hand, when the robot lacks battery
power and it has to visit the charging station, it chooses to
visit P a2 .

In Table I, Table II and Table III, we present the compu-
tation time of our algorithm for different workspaces, robots
and specifications. The symbol τ denotes the time to syn-
thesize η (the blue-coloured trajectory), and τe denotes the
additional time required to synthesize ηe (the red-coloured
trajectory). So, essentially it takes τ + τe time generate the



(a) Trajectory : Robot - Quadcopter, Workspace
- Warehouse, Specification - Ordered

(b) Trajectory : Robot - Turtlebot, Workspace
- Maze, Specification - Unordered

(c) Trajectory : Robot - Dubin’s vehicle,
Workspace - Art. floor, Specification - Selective

Fig. 2. The trajectories —blue-colored trajectory: Path not visiting the charging station; red-colored trajectory: Path which visits the charging station.
From the starting location upto the loop point both trajectories are same, so red-colored trajectory has been omitted.

Workspace Specification Robot τ τe λ λe lc

Warehouse

Ordered
Dubins 27s 2s 37 38 (10 2)
Turtle 30s 13s 39 41 (6 3)
Quad 49s 56s 21 26 (11 0)

Unordered
Dubins 25s 3s 37 38 (12 3)
Turtle 28s 16s 39 41 (12 3)
Quad 1m 22s 1m 40s 21 25 (8 0)

Selective
Dubins 9s 8s 27 31 (4 3)
Turtle 10s 6s 31 33 (4 3)
Quad 39s 49s 18 23 (10 0)

Maze

Ordered
Dubins 4m 8s 6s 43 44 (2 2)
Turtle 7m 0s 14s 51 52 (5 2)
Quad 14m 54s 28s 26 27 (15 3)

Unordered
Dubins 5m 32s 18s 43 44 (3 2)
Turtle 8m 8s 14s 51 52 (8 2)
Quad 21m 1s 30s 26 27 (2 2)

Selective
Dubins 3m 22s 46s 23 33 (16 3)
Turtle 2m 27s 8s 25 29 (15 3)
Quad 7m 27s 14s 15 18 (15 3)

Artificial Floor

Ordered
Dubins 1m 6s 4s 37 38 (8 3)
Turtle 4m 15s 8m 45s 43 49 (8 3)

Unordered
Dubins 1m 10s 6s 37 38 (6 3)
Turtle 4m 23s 9m 2s 43 49 (4 3)

Selective
Dubins 37s 18s 21 29 (16 2)
Turtle 2m 47s 28s 25 31 (15 3)

TABLE I
EXPERIMENTAL RESULTS FOR DIFFERENT WORKSPACES OF SIZE 17× 17,

DIFFERENT LTL SPECIFICATIONS WITH TWO PICKUP LOCATIONS AND DIFFERENT

ROBOTS

full trajectory satisfying both the LTL specification and the
energy constraint. The symbol λ denotes the length of loop ηl
of η, whereas λe is that of ηe. The length of ηe is greater than
or equal to that of ηl. Therefore, for synthesizing the loop
with energy constraint, we start with L = λ instead of L = 2.
It can be noticed that the value of τe is directly proportional
to the length difference between λe and λ, i.e., λe − λ.
Charging station location synthesized by our algorithm is
denoted by lc.

In Table I, experimental results for different workspaces
of size 17 × 17, different LTL specifications and robots are
shown. We have considered two pickup and one drop location
in these experiments. Results in Table II show the scalability
of our algorithm in terms of workspace size. This table
contains results for Dubins vehicle in different workspaces
of size 27 × 27 and for different LTL specifications with
two pickup and one drop location. Scalability with respect to
number of pickup locations is evident from Table III. Results
are shown for varying number of pickup locations with
different robots in a Warehouse workspace (17×17). It can be
seen that trajectory lengths λ and λe increases monotonically
with increasing number of pickup locations. As a result,
computation time also increases with the increasing number
of pickup locations.

We carry out simulation of the trajectories synthesized
by our algorithm in ROS for a Turtlebot for three different
workspaces and three different LTL specifications. A video
of the simulation is submitted.

Workspace Specification τ τe λ λe lc

Warehouse
Ordered 2m 18s 6s 51 52 (16 3)

Unordered 2m 23s 3s 51 52 (10 3)
Selective 1m 17s 3m 24s 39 51 (8 3)

Maze
Ordered 39m 25s 2m 5s 67 68 (8 0)

Unordered 39m 8s 2m 12s 67 68 (15 0)
Selective 27m 20s 0m 23s 51 52 (8 0)

Artificial Floor
Ordered 9m 35s 8m 22s 57 63 (10 3)

Unordered 5m 7s 5m 38s 55 61 (16 3)
Selective 2m 54s 2m 9s 31 45 (18 3)

TABLE II
EXPERIMENTAL RESULTS FOR DUBINS VEHICLE FOR DIFFERENT

WORKSPACES OF SIZE 27× 27 AND DIFFERENT LTL SPECIFICATIONS

WITH TWO PICKUP LOCATIONS

Robot # Pickup Locs τ τe λ λe lc

Dubins

1 9s 7s 27 31 (4 3)
2 25s 1s 37 38 (10 1)
3 36s 1s 39 40 (7 0)
4 39s 2s 41 42 (12 3)
5 1m 57s 23s 47 49 (12 3)

Turtle

1 9s 5s 31 33 (6 3)
2 34s 17s 39 41 (12 3)
3 51s 15s 43 45 (10 3)
4 1m 49s 35s 49 51 (4 3)
5 5m 12s 1m 17s 59 61 (4 3)

Quad

1 35s 42s 18 23 (5 0)
2 1m 22s 1m 40s 21 25 (8 0)
3 11m 37s 9m 27s 25 29 (6 0)
4 48m 49s 17m 30s 29 33 (6 0)
5 1h 42m 41m 46s 34 38 (8 0)

TABLE III
EXPERIMENTAL RESULTS FOR DIFFERENT ROBOTS WITH VARYING

NUMBER OF PICKUP LOCATIONS IN A WAREHOUSE WORKSPACE WITH

SIZE 17× 17, AND LTL SPECIFICATION "pickup in an arbitrary order"

V. DISCUSSION

We present a methodology for the automatic synthesis of
an execution plan for a robot from any LTL specification in
such a way that the robot never gets depleted with energy
while executing the plan. We have applied our technique to a
set of case studies related to pick and drop use cases and have
successfully synthesized trajectories for robots with various
dynamics in different workspaces. Our future work will focus
on extending our technique to synthesize energy-safe reactive
plans to deal with dynamic obstacles and uncertainly in the
environment and support multi-robot systems.
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