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Abstract
We propose a generic multi-robot planning mechanism that com-
bines an optimal task planner and an optimal path planner to pro-
vide a scalable solution for complex multi-robot planning problems.
The integrated planner, through the interaction of the task planner
and the path planner, produces optimal collision-free trajectories
for the robots. We illustrate our general algorithm on an object pick-
and-drop planning problem where a group of robots is entrusted
with moving objects from one location to another in the workspace.
We solve the task planning problem by reducing it into an SMT
solving problem and employing the highly advanced SMT solver
Z3 to solve it. To generate collision-free movement of the robots,
we extend the state-of-the-art algorithm Conflict Based Search with
Precedence Constraints with several domain-specific constraints.
We evaluate our integrated task and path planner extensively on
various instances of the object pick-and-drop planning problem
and compare its performance with a state-of-the-art multi-robot
classical planner. Experimental results demonstrate that our plan-
ning mechanism can deal with complex planning problems and
outperforms a state-of-the-art classical planner both in terms of
computation time and the quality of the generated plan.

CCS Concepts
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics.

Keywords
Multi-robot systems, task planning, motion planning, SMT Solver

ACM Reference Format:
Aman Aryan∗, Manan Modi∗, Indranil Saha, Rupak Majumdar, and Swarup
Mohalik. 2025. Integrated Task and Path Planning for Collaborative Multi-
Robot Systems. InACM/IEEE 16th International Conference on Cyber-Physical
Systems (with CPS-IoTWeek 2025) (ICCPS ’25), May 6–9, 2025, Irvine, CA, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3716550.3722028

∗ This research was carried out when the author was with IIT Kanpur, India.

doclicense-CC-by-88x31-eps-converted-to.pdf

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICCPS ’25, Irvine, CA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1498-6/2025/05
https://doi.org/10.1145/3716550.3722028

1 Introduction
A major component of the software controlling a robotic system
is a planner that guides the robots to safely move through their
workspace and perform the designated tasks in a proper way. A
planner for an application involving mobile robots need to have
two components: a task planner that decides which tasks should be
performed by which robots and in what order, and a path planner
that provides the collision-free trajectories to be followed by the
robots to reach the designated locations to perform the tasks. The
task planning and the path planning problems cannot be addressed
entirely independently as the assignment of a task to a robot is
directly related to the amount of effort the robot needs to invest in
reaching the task locations.

Consider a multi-robot application where a group of mobile
robots is entrusted with the responsibility of delivering objects
from one location to another in a workspace. The task assignment
to the robots depends on the time required to traverse the distance
between the initial locations of the robots and various task loca-
tions and the distance between the task locations when a robot
has to perform multiple tasks. The traverse time between different
locations depends on the collision-free optimal trajectories of the
robots, which can only be obtained from a multi-robot path planner.

Two different approaches are, in general, employed to solve a
multi-robot planning problem offline for a static environment. In
the first approach, the multi-robot task assignment and the path
planning problems are formulated and solved as a monolithic prob-
lem (e.g., [5, 14, 25]). In the second approach, the task assignment
problem is solved based on a heuristic to measure the trajectory
lengths approximately (e.g., [2, 8, 28]). As the task assignment is
not carried out based on collision-free trajectories, a local collision
avoidance strategy (e.g. [13]) is employed during the execution of
the plan. The shortcoming of the first approach is that it either fails
to provide a multi-robot trajectory with a guarantee on its optimal-
ity [5], or the algorithm that can produce an optimal plan takes a
prohibitively large amount of time to compute the collision-free
trajectories [14, 25]. The second approach can find a plan quickly,
but the generated plans are guaranteed to be neither collision-free
nor optimal.

To bridge this gap, we design a scalable algorithm to generate
optimal collision-free trajectories for multi-robot systems. The pro-
posed algorithm works as follows. It first estimates the lengths
of the independent trajectories between all locations of interest
through which a robot may need to move. Based on the estimated
trajectory lengths, the task planner generates a task assignment

https://doi.org/10.1145/3716550.3722028
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3716550.3722028


ICCPS ’25, May 6–9, 2025, Irvine, CA, USA Aman Aryan et al.

corresponding to optimal trajectories for the robots based on the
estimated length of the trajectories between any two locations. The
outcome of the task assignment is a sequence of locations to be
visited by all the robots. In the second step, we generate collision-
free trajectories for the robots to reach their designated locations
in sequence by means of an optimal multi-robot path planner. If the
cost of the trajectories obtained in this step is more than that of the
trajectories obtained during task assignment, we look for another
same-cost or a suboptimal task assignment for which the cost of the
collision-free trajectories obtained by solving the multi-robot path
planning problem may be better than the collision-free trajectories
obtained in the previous step. In this way, we alternate between the
task planner and the path planner until we find a task assignment
with optimal-cost collision-free trajectories.

We illustrate our general algorithm on an offline multi-agent
pick-and-drop planning problem where a group of robots move
objects from one location to another in a workspace. Our problem
statement is similar to [18] except that we have defined a designated
base location for robots to return after finishing the tasks. We trans-
form the task-planning problem into an SMT-solving problem that
incorporates many application-specific operational constraints and
solve it using the Z3 [7] solver. Additionally, we employ the existing
optimal multi-robot path planning algorithmMLA*-CBS-PC [34] to
accommodate the sequential goal locations for each robot, thereby
serving as the optimal path planner.

We extensively evaluate our algorithm on various instances of
the object pick-and-drop planning problem for warehouse manage-
ment and disaster response applications and compare the perfor-
mance of our planner with the state-of-the-art multi-robot classical
planner ENHSP [1]. Experimental results demonstrate that our
planning mechanism can deal with complex planning problems
and outperforms the state-of-the-art classical planner in terms of
computation time and quality of the generated plan.

In summary, we make the following contributions:

• We provide a general multi-robot planning algorithm that
induces an interaction between the task planner and the path
planner to generate optimal collision-free trajectories for the
robots to complete the mission successfully (Section 3).
• We provide an SMT-based task planner for object pick-and-
drop applications. Our task planner is capable of incorporat-
ing many application-specific operational constraints. Fur-
thermore, we adapt the state-of-the-art graph-based multi-
robot path planner MLA*-CBS-PC [34] to deal with a se-
quence of goal locations for each robot using plans generated
from our task planner (Section 4).
• We demonstrate the overall algorithm for the multi-agent
pickup and delivery application on warehouse maps as
well as randomly generated maps (representing a disaster-
stricken area) and compare it to the state-of-the-art classical
planner ENHSP (Section 5).

2 Problem
In this section, we define our problem formally and illustrate it with
an example.

2.1 Preliminaries
2.1.1 Workspace. The workspace, denoted byW, is represented
as a 2-D rectangular grid. We assume that the robots, as well as
the task objects, occupy one grid block each at any time instance.
Obstacles may occupy some of these grid blocks and thus cannot be
used by the robots, tasks, or movements. Formally, the workspace
is represented by a tuple ⟨𝐿𝑋 , 𝐿𝑌 ,Ω⟩, where 𝐿𝑋 and 𝐿𝑌 denote the
length and the width of the workspace, and Ω denotes the set of
grid blocks that are occupied by obstacles.

2.1.2 Robots. The set of robots is denoted by R. Each robot 𝑟𝑖 ∈ R
is defined as a tuple ⟨𝑠𝑖 , Γ𝑖 ,Λ𝑖 , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑖 ⟩. The symbol 𝑠𝑖 denotes
the start location of robot 𝑟𝑖 . The symbols Γ𝑖 andΛ𝑖 denote the set of
motion primitives and action primitives for robot 𝑟𝑖 , respectively. To
keep the exposition simple, we assume that each robot has five basic
motion primitives: move up, move down, move left, move right,
and stay. However, our methodology seamlessly applies to any
complex set of motion primitives for a robot. The action primitives
for a robot are application-specific. For example, for a pick-and-
drop application, the robot has action primitives for picking up and
dropping off an object. We assume that all of these primitives take
one time step regardless of the robot’s direction. Moreover, the
motion and action primitives are deterministic, i.e., the application
of a primitive to a robot in a state moves the robot to a unique next
state. We denote by 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑖 a set of attributes of robot 𝑟𝑖 that
may be required depending upon the nature of the problem. For
example, in a pick-and-drop example, an attribute for a robot could
be the number of objects or the total amount of weight the robot
can carry at once.

2.1.3 Tasks. The set of tasks associated with a problem is denoted
by T . A task 𝑡𝑖 ∈ T is defined as a tuple ⟨𝐿𝑖 , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑖 ⟩. Here, 𝐿𝑖
is a sequence of locations that need to be visited by a robot in the
same order to complete the task. We denote by 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠𝑖 a set of
attributes of the task that may be required for planning depending
upon the nature of the problem. For example, a task 𝑡𝑖 may be
associated with a deadline 𝑑𝑖 ; in that case, the last location in 𝐿𝑖
must be visited before 𝑑𝑖 .

2.1.4 Plan and Trajectory. We capture the behaviour of a robot in
the workspace as a sequence of states. The state of robot 𝑟𝑖 at time
step 𝑡 is denoted by 𝜎𝑖 (𝑡). Given a state 𝜎 and a motion or action
primitive 𝜈 , the robot’s next state 𝜎′ is given by next(𝜎, 𝜈).

Definition 1 (Plan). The plan for a robot 𝑟𝑖 is the sequence of
motion and action primitives executed by the robot.

Definition 2 (Trajectory). For robot 𝑟𝑖 with plan
𝜈𝑖 = (𝜈𝑖 (1), 𝜈𝑖 (2), . . . , 𝜈𝑖 (𝑇𝑖 )), the trajectory is given by
𝜎𝑖 = (𝜎𝑖 (0), 𝜎𝑖 (1), . . . , 𝜎𝑖 (𝑇𝑖 )), where 𝜎𝑖 (0) = 𝑠𝑖 and for all
𝑖 ∈ {1, . . . ,𝑇𝑖 }, 𝜎𝑖 ( 𝑗) = next(𝜎𝑖 ( 𝑗 − 1), 𝜈𝑖 ( 𝑗)). The symbol 𝑇𝑖
denotes the length of the plan 𝜈𝑖 and the trajectory 𝜎𝑖 . The tra-
jectory of the multi-robot system R = {𝑟1, . . . , 𝑟𝑛} is denoted by
Σ = [𝜎1, 𝜎2, . . . , 𝜎𝑛], where 𝜎𝑖 denotes the trajectory of robot 𝑟𝑖 .

2.1.5 Optimality Criteria for a Trajectory. The cost of executing
a trajectory 𝜎𝑖 = (𝜎𝑖 (0), 𝜎𝑖 (1), . . . , 𝜎𝑖 (𝑇𝑖 )) is equal to its length 𝑇𝑖 .
Now, the quality of a multi-robot trajectory Σ is captured by one of
the following two attributes.
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(a) (b)

Figure 1: Examples of workspaces showing warehouse sce-
narios: (a) without Intermediate Location, (b) with an Inter-
mediate Location.

Definition 3 (Makespan). The makespan of the trajectories Σ =

[𝜎1, 𝜎2, . . . , 𝜎𝑛] is given by 𝐶 = max
𝑖

𝑇𝑖 .

Definition 4 (Total cost). The total cost of the trajectories
Σ = [𝜎1, 𝜎2, . . . , 𝜎𝑛] is given by 𝐶 =

∑
𝑖
𝑇𝑖 .

Note that the makespan and total cost are equal for a single robot
system. We will use the terms plan and trajectory interchangeably
to denote the solution from our algorithm.

2.2 Problem Definition
Here, we provide the formal definition of the problem.

Definition 5 (Problem). Given a workspaceW, a set of tasks
T , and a set of robots R, find optimal makespan or optimal total
cost collision-free trajectories Σ for the robots such that all tasks are
completed while also ensuring that the robots return to their initial
positions.

Example. Consider the workspaces shown in Figure 1. They repre-
sent typical warehouse scenarios. Boxes in the images denote the
pickup locations for these objects. The blue grid locations denote
their drop locations. The grey-coloured grid blocks are occupied by
obstacles and must be avoided. In the figure, the robots are shown
in their initial locations. The robots can carry multiple objects at
a time. To pick up an object, a robot needs to be in the grid block
where the object is placed. The same is true for dropping an object.
The problem is to find the task assignment to the robots to decide
which robot should carry which object to its goal location and the
collision-free trajectories for the robots to carry out their tasks
successfully.

In Figure 1a, there are 4 objects that need to be moved to some
specific goal locations. Three robots 𝑟1, 𝑟2, and 𝑟3 have to move the
four objects from their current locations to their goal locations.

In Figure 1b, the yellow block denotes the intermediate drop
block. A robot can drop an object on the yellow block, and the
object can be picked up from there by another robot. Thus, having
an intermediate block allows the robots to collaborate on delivering
a specific object. In the scenario presented in Figure 1b, let us
attempt to find the plan with optimal makespan. The collision-free
plan without the intermediate drop would be 𝑟1 completing task
𝑡2 and returning to its base location in 16 steps and 𝑟2 completing

time 𝑟1 𝑟2

0 (𝑆𝑡𝑎𝑟𝑡 , (0, 0)) (𝑆𝑡𝑎𝑟𝑡 , (7, 3))
1 (𝑀𝑜𝑣𝑒 , (1, 0)) (𝑀𝑜𝑣𝑒 , (7, 2))
2 (𝑀𝑜𝑣𝑒 , (1, 1)) (𝑀𝑜𝑣𝑒 , (7, 1))
3 (𝑀𝑜𝑣𝑒 , (1, 2)) (𝑀𝑜𝑣𝑒 , (6, 1))
4 (𝑀𝑜𝑣𝑒 , (1, 3)) (𝑀𝑜𝑣𝑒 , (5, 1))
5 (𝑀𝑜𝑣𝑒 , (1, 4)) (𝑀𝑜𝑣𝑒 , (4, 1))
6 (𝑀𝑜𝑣𝑒 , (1, 5)) (𝑀𝑜𝑣𝑒 , (3, 1))
7 (𝑀𝑜𝑣𝑒 , (1, 6)) (𝑀𝑜𝑣𝑒 , (2, 1))
8 (𝑃𝑖𝑐𝑘2, (1, 6)) (𝑀𝑜𝑣𝑒 , (1, 1))
9 (𝑀𝑜𝑣𝑒 , (0, 6)) (𝑀𝑜𝑣𝑒 , (0, 1))
10 (𝑀𝑜𝑣𝑒 , (0, 5)) (𝑃𝑖𝑐𝑘1, (0, 1))
11 (𝑀𝑜𝑣𝑒 , (0, 4)) (𝑀𝑜𝑣𝑒 , (1, 1))
12 (𝑀𝑜𝑣𝑒 , (0, 3)) (𝑀𝑜𝑣𝑒 , (2, 1))
13 (𝐷𝑟𝑜𝑝2, (0, 3)) (𝑀𝑜𝑣𝑒 , (3, 1))
14 (𝑀𝑜𝑣𝑒 , (0, 2)) (𝑀𝑜𝑣𝑒 , (4, 1))
15 (𝑀𝑜𝑣𝑒 , (0, 1)) (𝑀𝑜𝑣𝑒 , (5, 1))
16 (𝑅𝑒𝑡𝑢𝑟𝑛, (0, 0)) (𝑀𝑜𝑣𝑒 , (6, 1))
17 (− − −, (0, 0)) (𝑀𝑜𝑣𝑒 , (7, 1))
18 (− − −, (0, 0)) (𝑀𝑜𝑣𝑒 , (7, 2))
19 (− − −, (0, 0)) (𝑀𝑜𝑣𝑒 , (7, 3))
20 (− − −, (0, 0)) (𝑀𝑜𝑣𝑒 , (7, 4))
21 (− − −, (0, 0)) (𝑀𝑜𝑣𝑒 , (7, 5))
22 (− − −, (0, 0)) (𝑀𝑜𝑣𝑒 , (7, 6))
23 (− − −, (0, 0)) (𝐷𝑟𝑜𝑝1, (7, 6))
24 (− − −, (0, 0)) (𝑀𝑜𝑣𝑒 , (7, 5))
25 (− − −, (0, 0)) (𝑀𝑜𝑣𝑒 , (7, 4))
26 (− − −, (0, 0)) (𝑅𝑒𝑡𝑢𝑟𝑛, (7, 3))

Figure 2: Trajectories of the two robots for the problem
shown in Figure 1(b) without the intermediate block.

𝑡1 and returning to its base location in 26 steps. So the makespan
of this plan becomes 26. The collision-free trajectory for the two
robots 𝑟1 and 𝑟2 are shown in Figure 2.

If we allow the robots to use the intermediate block for object
transfer, 𝑟1 can pick up 𝑡1 and drop it to the intermediate block;
then it can continue to pick up and drop 𝑡2 and return to its base
location in 24 steps. However, this reduces the time taken by 𝑟2 to
process 𝑡1. Now, 𝑟2 can pick up 𝑡1 from the intermediate location,
drop it to its drop location, and return to its base station. Execution
of this plan takes 21 steps to complete, thus making the overall
makespan 24. Since we optimize the makespan, the total cost metric
may increase. In this scenario, the total cost increases from 42 to
45. The trajectories for both robots are shown in Figure 3.

Thus, intermediate locations help in finding a better plan for our
optimization criteria, and our goal would be to design a planner
that can efficiently exploit the availability of such opportunities.

3 Integrated Task and Path Planning Algorithm
In this section, we provide an algorithm to solve the problem de-
scribed in Section 2. One could reduce the problem to an Integer-
Linear Programming or an SMT-solving problem and generate a
solution for the task assignment as well as the trajectories for the
robots. However, this monolithic approach rarely scales with the
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time 𝑟1 𝑟2

0 (𝑆𝑡𝑎𝑟𝑡 , (0, 0)) (𝑆𝑡𝑎𝑟𝑡 , (7, 3))
1 (𝑀𝑜𝑣𝑒 , (0, 1)) (𝑀𝑜𝑣𝑒 , (7, 4))
2 (𝑃𝑖𝑐𝑘1, (0, 1)) (𝑀𝑜𝑣𝑒 , (6, 4))
3 (𝑀𝑜𝑣𝑒 , (0, 2)) (𝑀𝑜𝑣𝑒 , (5, 4))
4 (𝑀𝑜𝑣𝑒 , (1, 2)) (𝑀𝑜𝑣𝑒 , (4, 4))
5 (𝑀𝑜𝑣𝑒 , (1, 3)) (𝑀𝑜𝑣𝑒 , (4, 4))
6 (𝑀𝑜𝑣𝑒 , (1, 4)) (𝑀𝑜𝑣𝑒 , (4, 4))
7 (𝑀𝑜𝑣𝑒 , (2, 4)) (𝑀𝑜𝑣𝑒 , (4, 4))
8 (𝑀𝑜𝑣𝑒 , (3, 4)) (𝑀𝑜𝑣𝑒 , (4, 4))
9 (𝑀𝑜𝑣𝑒 , (4, 4)) (𝑀𝑜𝑣𝑒 , (5, 4))
10 (𝐼𝑛𝑡𝑒𝑟𝐷𝑟𝑜𝑝1, (4, 4)) (𝑀𝑜𝑣𝑒 , (5, 4))
11 (𝑀𝑜𝑣𝑒 , (3, 4)) (𝑀𝑜𝑣𝑒 , (4, 4))
12 (𝑀𝑜𝑣𝑒 , (2, 4)) (𝐼𝑛𝑡𝑒𝑟𝑃𝑖𝑐𝑘1, (4, 4))
13 (𝑀𝑜𝑣𝑒 , (1, 4)) (𝑀𝑜𝑣𝑒 , (5, 4))
14 (𝑀𝑜𝑣𝑒 , (1, 5)) (𝑀𝑜𝑣𝑒 , (6, 4))
15 (𝑀𝑜𝑣𝑒 , (1, 6)) (𝑀𝑜𝑣𝑒 , (7, 4))
16 (𝑃𝑖𝑐𝑘2, (1, 6)) (𝑀𝑜𝑣𝑒 , (7, 5))
17 (𝑀𝑜𝑣𝑒 , (0, 6)) (𝑀𝑜𝑣𝑒 , (7, 6))
18 (𝑀𝑜𝑣𝑒 , (0, 5)) (𝐷𝑟𝑜𝑝1, (7, 6))
19 (𝑀𝑜𝑣𝑒 , (0, 4)) (𝑀𝑜𝑣𝑒 , (7, 5))
20 (𝑀𝑜𝑣𝑒 , (0, 3)) (𝑀𝑜𝑣𝑒 , (7, 4))
21 (𝐷𝑟𝑜𝑝2, (0, 3)) (𝑅𝑒𝑡𝑢𝑟𝑛, (7, 3))
22 (𝑀𝑜𝑣𝑒 , (0, 2)) (− − −, (7, 3))
23 (𝑀𝑜𝑣𝑒 , (0, 1)) (− − −, (7, 3))
24 (𝑅𝑒𝑡𝑢𝑟𝑛, (0, 0)) (− − −, (7, 3))

Figure 3: Trajectories of the two robots for the problem
shown in Figure 1(b) with the intermediate block.

number of robots, the number of tasks, and the size of theworkspace.
Instead, we embrace a decoupled approach where the task and
the path planning problems are solved independently. However,
through an interaction between the task and the path planner, we
ensure that the finally generated plans satisfy the task completion
requirement and that the corresponding paths are collision-free
and optimal.

Our proposed methodology is shown in Algorithm 1. We advo-
cate the use of an SMT solver to solve complex task assignment
problems. The procedure task_planner (lines 1-4) takesW, R, T ,
a set A of forbidden task assignments, a lower bound 𝑙_𝑏, and an
upper bound 𝑢_𝑏 as inputs. It produces as output a task assignment
L = [L1,L2, . . . ,L | R | ], with minimum total cost or makespan
within specified bounds. It returns ∅ if there does not exist a feasible
task assignment within the bounds. Here, L𝑖 denotes the sequence
of locations that robot 𝑟𝑖 must visit. In Section 4, we will present
the details of the task planner with an example of a multi-robot
pick-and-drop application.

The following procedure path_planner (lines 5-8) takes the
task assignment L produced by the task_planner procedure and
generates optimal and collision-free trajectories. The procedure also
returns the trajectory’s total cost or makespan depending upon the
optimization criterion. In Section 4.3, we will present the details of
the path planner.

The main procedure integrated_planner (lines 9-29) induces
an interaction between the task planner and the path planner to
find the optimal collision-free trajectories for the robots. There
could be several task assignments with the same cost. Thus, once
a task assignment L is produced by the task planner, we need
to ensure that the task planner does not generate the same task
assignment again. We use the set A for this purpose. We keep on
storing the task assignments with the same cost inA and provide it
as the set of prohibited assignments while invoking the task planner
with the same lower bound of the cost. This set is initialized as an
empty set (line 10). We initialize 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡 (denoting the cost
of the current task assignment) as 0 and 𝑜𝑝𝑡_𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡 (denoting
the minimum cost of the collision-free paths for any assignment) as
∞ (line 11) and repeat the procedure below until 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡 is
less than 𝑜𝑝𝑡_𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡 (lines 12-27). We invoke the task_planner
with the 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡 as lower bound and 𝑜𝑝𝑡_𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡 as upper
bound to get the best task assignment L with cost 𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡 based
on some heuristic cost of movements between important locations
(line 13). If the task planner cannot produce a plan (returns ∅), we
terminate the loop (lines 14-16). Otherwise, for this task assignment
L, we invoke the path_planner, which outputs the collision-free
trajectory with cost 𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡 (line 17). If we find that the new task
assignment L has a higher cost compared to 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡 , then
we update 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡 with 𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡 and reset the exclusion
list A (lines 18-21). Subsequently, we add this task assignment L
to the set A (line 22). We update the 𝑜𝑝𝑡_𝑝𝑙𝑎𝑛 and 𝑜𝑝𝑡_𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡
if the current trajectory has a better cost (lines 23-26).

3.1 Illustrative Example
We illustrate the algorithm on the example introduced in Figure 1a
in Section 2 with makespan as optimization criteria. Here, we use
the A* search algorithm [11] to find a trajectory for a robot between
two locations. In the below task assignments, pickup represents
move and pickup. Similarly, the drop represents move and drop.
Since there is no intermediate location, all pickups are the boxes’
initial locations, and drops are their respective drop locations. The
minimum makespan returned by the task planner is 18, and the
corresponding task assignment is as follows:

𝑟1 : pickup − 1, drop − 1
𝑟2 : pickup − 2, pickup − 3, drop − 3, drop − 2
𝑟3 : pickup − 4, drop − 4

In the above task assignment, 𝑟1 starts from grid location (8, 4),
visits grid location (4, 3) to pick up object-1 and then visits grid
location (7, 6) to drop object-1, and then finally returns to grid
location (8, 4). The distances computed by the A* algorithm for
these movements are 5, 6, and 3, respectively. Also, 𝑟1 spends two
units of time step to pick and drop the object, thus making the
total time steps 16. Similarly, the costs for robots 𝑟2 and 𝑟3 are
18 and 12, respectively. Therefore, the effective makespan of the
plan is 18. This heuristic cost is generated by calculating the costs
individually without considering the robot-robot collisions. Using
the task assignment, we compute a collision-free trajectory using
the path planner. The cost of collision-free trajectories that the
path planner returns is 19, 18, and 17, respectively. So, the overall
makespan becomes 19. Since the estimated task assignment cost is
18 and the collision-free cost is 19, there may be some plans with a
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Algorithm 1 Integrated Planner using Task and Path Planner

1: procedure task_planner (W, R, T , A, 𝑙_𝑏, 𝑢_𝑏)
2: // find optimal task assignments using a heuristic cost for

movements.
3: return ⟨L, 𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡⟩
4: end procedure

5: procedure path_planner (W, R, L)
6: // find the optimal collision-free trajectories for robots fol-

lowing the given task assignments in L.
7: return ⟨𝑝𝑙𝑎𝑛, 𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡⟩
8: end procedure

9: procedure integrated_planner (W, R, T )
10: A ← ∅; 𝑜𝑝𝑡_𝑝𝑙𝑎𝑛 ← ∅
11: 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡 ← 0; 𝑜𝑝𝑡_𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡 ←∞
12: while 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡 < 𝑜𝑝𝑡_𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡 do
13: ⟨L, 𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡⟩ ← task_planner (W, R, T , A,

𝑐𝑢𝑟_𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡 , 𝑜𝑝𝑡_𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡 )
14: if L == ∅ then
15: 𝑏𝑟𝑒𝑎𝑘

16: end if
17: ⟨𝑝𝑙𝑎𝑛, 𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡⟩ ← path_planner (W, R, L)
18: if (𝑐𝑢𝑟_𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡 < 𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡 ) then
19: 𝑐𝑢𝑟_𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡 ← 𝑡𝑎𝑠𝑘_𝑐𝑜𝑠𝑡
20: A ← ∅
21: end if
22: A ← A ∪ {L}
23: if (𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡 < 𝑜𝑝𝑡_𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡 ) then
24: 𝑜𝑝𝑡_𝑝𝑙𝑎𝑛 ← 𝑝𝑙𝑎𝑛

25: 𝑜𝑝𝑡_𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡 ← 𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡
26: end if
27: end while
28: return ⟨𝑜𝑝𝑡_𝑝𝑙𝑎𝑛, 𝑜𝑝𝑡_𝑝𝑙𝑎𝑛_𝑐𝑜𝑠𝑡⟩
29: end procedure

cost of 18, resulting in a makespan less than 19. So, we continue to
find more plans and obtain the next task assignment as follows:

𝑟1 : pickup − 1, drop − 1
𝑟2 : pickup − 2, drop − 2
𝑟3 : pickup − 4, pickup − 3 drop − 3 drop − 4

The makespan of the above task assignment is 18. The path plan-
ner returns a plan with a makespan of 19, the same as the previously
found plan’smakespan.We continue searching for task assignments.
The third assignment that we obtain also has a makespan of 18. It
is as follows:

𝑟1 : pickup − 1, drop − 1
𝑟2 : pickup − 2, pickup − 3, drop − 2, drop − 3
𝑟3 : pickup − 4, drop − 4

The above task assignment differs slightly from the first assign-
ment, in which 𝑟2 drops object-2 before dropping object-3. The
estimated cost returned by the task planner for 𝑟1, 𝑟2, and 𝑟3 is 16,
18, and 12, respectively. Executing the path planner with this task
assignment returns a collision-free trajectory with costs of 18, 18,
and 12, respectively, thus making the makespan 18. So, this collision-
free trajectory becomes the minimum collision-free trajectory, and

the minimum cost is updated to 18. As the collision-free cost is not
greater than the estimated cost, we terminate the algorithm.

3.2 Theoretical Analysis
We formally prove that Algorithm 1 produces the optimal trajecto-
ries satisfying the task requirements.

Theorem 1 (Optimality). There does not exist a task assignment
for which the cost of the collision-free trajectories would be less than
the cost of the trajectories returned by Algorithm 1.

Proof. Let us assume that Algorithm 1 returns collision-free
trajectories for the robots with cost𝐶 for a task assignment L. The
heuristic cost for the assignment is𝐶ℎ . Now, let us assume that there
exists a task assignment L′ for which the cost of the collision-free
trajectories is 𝐶′ where 𝐶′ < 𝐶 , but this task assignment was not
considered by Algorithm 1. The heuristic cost for the assignment
L′ is 𝐶′

ℎ
. As heuristic cost must always be a lower bound for the

cost of the collision-free trajectories, 𝐶ℎ ≤ 𝐶 and 𝐶′
ℎ
≤ 𝐶′. Then

either (I) 𝐶′
ℎ
< 𝐶ℎ or (II) 𝐶ℎ ≤ 𝐶′

ℎ
.

Case I: In this case,L′ must have been considered by the planner
before L as the task planner returns the task assignment with the
minimum possible heuristic cost.

Case II: As 𝐶′
ℎ
≤ 𝐶′ and 𝐶′ < 𝐶 , therefore 𝐶′

ℎ
< 𝐶 . In this case,

the planner must have considered L′ after generating collision-free
trajectories for L as 𝐶′

ℎ
< 𝐶 and 𝐶ℎ ≤ 𝐶′

ℎ
. Our Integrated Planner

explores all task assignments with heuristic costs less than 𝐶 .
Thus, in both cases, our assumption that Algorithm 1 did not

consider L′ is wrong. Hence, if the heuristic cost considered in the
task planning procedure gives a lower bound on cost and the Path
Planner gives the minimum cost collision-free paths corresponding
to the task assignment, then the integrated planner will always
generate collision-free trajectories for the robots with optimal cost.

□

Note: As the number of task assignments is finite for a well-formed
MAPD instance, the optimality of Algorithm 1 establishes its com-
pleteness as well.

4 Application to Multi-Robot Pick-and-Drop
Problem

In this section, we illustrate our planning mechanism for the object
pick-and-drop application, as shown in Figure 1. As the tasks are
pick-and-drop, 𝐿𝑖 for each task 𝑡𝑖 contains two entries: 𝐿𝑖 (0) denotes
the pickup location and 𝐿𝑖 (1) represents the drop location.

4.1 Task Planning Algorithm
The general SMT-based task planning algorithm is shown in Algo-
rithm 2. The generate_smt_instance function generates the SMT
constraints for the task planner. We use the notion of action-step in
our SMT formulation. In each action step, all robots can perform
an action related to movement, pickup, or drop. In our constraints,
we keep track of the time taken for each action step for each robot.
There is no constraint on how long these actions can take here; we
do not generate the final paths but rather just the task assignment.
The time required for an action that requires a movement from
location x to location x′ is captured by dist(x, x′), as we assume
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Algorithm 2 Task Planner

1: procedure task_planner (W, R, T , A, 𝑙_𝑏, 𝑢_𝑏)
2: S ← generate_smt_instance (W, R, T , A)
3: if S.check() ≠ SAT then
4: return ∅
5: end if
6: while (𝑙_𝑏 ≤ 𝑢_𝑏) do
7: S′ ← S
8: 𝑚𝑖𝑑 ← (𝑙_𝑏 + 𝑢_𝑏)/2
9: S ← S ∧ (𝑐𝑜𝑠𝑡 ≥ 𝑙_𝑏)
10: S ← S ∧ (𝑐𝑜𝑠𝑡 ≤ 𝑚𝑖𝑑)
11: if S.check() = SAT then
12: 𝑢_𝑏 ← S.get(𝑐𝑜𝑠𝑡) − 1
13: else
14: 𝑙_𝑏 ←𝑚𝑖𝑑 + 1
15: end if
16: S ← S′
17: end while
18: L ← S.get(𝑡𝑎𝑠𝑘_𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡)
19: 𝑐𝑜𝑠𝑡 ← S.get(𝑐𝑜𝑠𝑡)
20: return ⟨L, 𝑐𝑜𝑠𝑡⟩
21: end procedure

that a movement from one grid cell to another takes one unit of
time. We compute dist(x, x′) using the A* search algorithm [11],
which is guaranteed to be an under-approximation of the distance
between x and x′ while computing the collision-free trajectories
for the robots. For a task assignment problem, the number of action
steps is denoted by 𝑍 , which is the same for all the robots.

4.2 SMT Encodings Of Constraints
In this section, we describe the constraints in detail to capture two
variants of the pick-and-drop problem.

4.2.1 Completing pick-and-drop tasks. Here, we present the SMT
constraints to capture the basic object pick-and-drop problem as
illustrated in Figure 1. We define 𝐿𝑂𝐶 as a set of all the task’s pickup
and drop locations. Thus, 𝐿𝑂𝐶 =

⋃
𝑡𝑚∈T

{𝐿𝑚 (0), 𝐿𝑚 (1)}.

The following are the variables used to track the state of the
system: 𝑝𝑜𝑠𝑖, 𝑗 denotes the location of robot 𝑟𝑖 after the 𝑗𝑡ℎ action-
step. This location can be one of the locations from the sets 𝐿𝑂𝐶 and
𝑠𝑖 for all 𝑗 ≥ 1. We denote by 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗 the time step at which
robot 𝑟𝑖 is at location 𝑝𝑜𝑠𝑖, 𝑗 in the 𝑗𝑡ℎ action-step. The symbol
𝑎𝑐𝑡𝑖𝑜𝑛𝑖, 𝑗 denotes on which task’s object 𝑟𝑖 will perform an action
in the 𝑗𝑡ℎ action-step. The value of the variable can be either −1
if no action is performed or the task number. The symbol 𝑙𝑜𝑐𝑖, 𝑗
denotes the location of task 𝑡𝑖 in the 𝑗𝑡ℎ action-step. This location
can be either 𝐿𝑖 (0) or 𝐿𝑖 (1), or it can be −1 in case the task object is
being carried by some robot. The symbol 𝑏𝑒𝑖𝑛𝑔_𝑐𝑎𝑟𝑟𝑖𝑒𝑑𝑖, 𝑗 denotes
by which robot the object of task 𝑡𝑖 is being carried in the 𝑗𝑡ℎ action-
step. It is either the identifier of the robot if the task is in transition
or −1 if it is steady.

Initial State. The initial state of the system is captured by the
following constraints.

∀𝑟𝑖 ∈ R, 𝑝𝑜𝑠𝑖,0 = 𝑠𝑖 ∧ 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖,0 = 0 ∧ 𝑎𝑐𝑡𝑖𝑜𝑛𝑖,0 = −1
∀𝑡𝑖 ∈ T , 𝑙𝑜𝑐𝑖,0 = 𝐿𝑖 (0) ∧ 𝑏𝑒𝑖𝑛𝑔_𝑐𝑎𝑟𝑟𝑖𝑒𝑑𝑖,0 = −1. (1)

Picking an object. A robot can go to 𝐿𝑚 (0) only if it picks up
the object of task 𝑡𝑚 from there. If robot 𝑟𝑖 wants to pick up an
object from one of the pickup locations in action step 𝑗 , then the
constraints formulation is as mentioned below.

𝑝𝑖𝑐𝑘 (𝑟𝑖 , 𝑡𝑚, 𝑗) ≡
𝑙𝑜𝑐𝑚,𝑗−1 = 𝐿𝑚 (0) (2a)
∧ 𝑝𝑜𝑠𝑖, 𝑗 = 𝐿𝑚 (0) ∧ 𝑏𝑒𝑖𝑛𝑔_𝑐𝑎𝑟𝑟𝑖𝑒𝑑𝑚,𝑗 = 𝑖 (2b)
∧ 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗 = 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗−1 + dist(𝑝𝑜𝑠𝑖, 𝑗−1, 𝐿𝑚 (0)) + 1

(2c)
∧ 𝑙𝑜𝑐𝑚,𝑗 = −1 ∧ 𝑎𝑐𝑡𝑖𝑜𝑛𝑖, 𝑗 =𝑚. (2d)

Equation 2(a) captures that task 𝑡𝑚 is at location 𝐿𝑚 (0) in the
𝑗 − 1 action-step. Equation 2(b) captures that robot 𝑟𝑖 is at location
𝐿𝑚 (0) in action-step 𝑗 and the object for task 𝑡𝑚 is being carried by
robot 𝑟𝑖 in action-step 𝑗 . Equation 2(c) captures the time taken by
robot 𝑟𝑖 while moving from its location in the previous action-step
𝑝𝑜𝑠𝑖, 𝑗−1 to its location in the current action-step 𝐿𝑚 (0) and one
unit of time for picking up the object associated with the task 𝑡𝑚
by 𝑟𝑖 . Equation 2(d) ensures that 𝑙𝑜𝑐𝑚,𝑗 is set to −1 as the object for
task 𝑡𝑚 is being carried by a robot now and sets 𝑎𝑐𝑡𝑖𝑜𝑛𝑖, 𝑗 as𝑚 to
indicate the pickup of the object 𝑡𝑚 by robot 𝑟𝑖 in action-step 𝑗 .
Dropping an object. A robot can go to one of the drop locations
only if it drops an object there. If 𝑟𝑖 wants to drop an object to one of
the drop locations in action-step 𝑗 , then the constraints formulation
is as below.

𝑑𝑟𝑜𝑝 (𝑟𝑖 , 𝑡𝑚, 𝑗) ≡
𝑏𝑒𝑖𝑛𝑔_𝑐𝑎𝑟𝑟𝑖𝑒𝑑𝑚,𝑗−1 = 𝑖 (3a)
∧ 𝑝𝑜𝑠𝑖, 𝑗 = 𝐿𝑚 (1) ∧ 𝑏𝑒𝑖𝑛𝑔_𝑐𝑎𝑟𝑟𝑖𝑒𝑑𝑚,𝑗 = −1 (3b)
∧ 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗 = 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗−1 + dist(𝑝𝑜𝑠𝑖, 𝑗−1, 𝐿𝑚 (1)) + 1

(3c)
∧ 𝑙𝑜𝑐𝑚,𝑗 = 𝐿𝑚 (1) ∧ 𝑎𝑐𝑡𝑖𝑜𝑛𝑖, 𝑗 =𝑚. (3d)

Equation 3(a) captures that task 𝑡𝑚 must be carried by robot 𝑟𝑖
in action-step 𝑗 − 1 to be able to drop it in action-step 𝑗 . Equa-
tion 3(b) captures that robot 𝑟𝑖 is at location 𝐿𝑚 (1) in action-step 𝑗

and changes 𝑏𝑒𝑖𝑛𝑔_𝑐𝑎𝑟𝑟𝑖𝑒𝑑𝑚,𝑗 to −1 as the object will be dropped.
Equation 3(c) captures the time taken by robot 𝑟𝑖 while moving
from its location in the previous action-step 𝑝𝑜𝑠𝑖, 𝑗−1 to its location
in the current action-step 𝐿𝑚 (1) and one unit of time to drop the
task 𝑡𝑚 by 𝑟𝑖 . Equation 3(d) set 𝑙𝑜𝑐𝑚,𝑗 to indicate that the object
for task 𝑡𝑚 has been dropped at its final location in action-step 𝑗

and 𝑎𝑐𝑡𝑖𝑜𝑛𝑖, 𝑗 to𝑚 to indicate dropping of the object for task 𝑡𝑚 by
robot 𝑟𝑖 in action-step 𝑗 .
Doing Nothing. A robot can also do nothing for one action step,
which is captured as follows.

𝑠𝑡𝑎𝑦 (𝑟𝑖 , 𝑗) ≡ 𝑝𝑜𝑠𝑖, 𝑗 = 𝑝𝑜𝑠𝑖, 𝑗−1 ∧ 𝑎𝑐𝑡𝑖𝑜𝑛𝑖, 𝑗 = −1
∧ 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗 = 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗−1 . (4)



Integrated Task and Path Planning for
Collaborative Multi-Robot Systems ICCPS ’25, May 6–9, 2025, Irvine, CA, USA

Returning the Base Station. A robot can also return to the base
station from a drop location if it is no longer required to do more
tasks.

𝑟𝑒𝑡𝑢𝑟𝑛(𝑟𝑖 , 𝑗) ≡
𝑝𝑜𝑠𝑖, 𝑗 = 𝑠𝑖 ∧ 𝑎𝑐𝑡𝑖𝑜𝑛𝑖, 𝑗 = −1 ∧ (5a)
𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗 = 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗−1 + dist(𝑝𝑜𝑠𝑖, 𝑗−1, 𝑠𝑖 ) . (5b)

Equation 5(a) captures that the robot 𝑟𝑖 is at base station 𝑠𝑖 at
action-step j. Equation 5(b) captures the time taken by robot 𝑟𝑖
while moving from its location in the previous action-step 𝑝𝑜𝑠𝑖, 𝑗−1
to its base station in the current action-step.
Robots’ All Possible Actions. Combining Equations (2) - (5), for
each robot 𝑟𝑖 for each possible action-step 𝑗 , we get the constraint
below:∧

𝑟𝑖 ∈R

𝑍∧
𝑗=1

(
𝑠𝑡𝑎𝑦 (𝑟𝑖 , 𝑗) ∨

∨
𝑘∈{𝑠𝑖 }∪𝐿𝑂𝐶

(
(𝑝𝑜𝑠𝑖, 𝑗−1 = 𝑘) ∧

𝑟𝑒𝑡𝑢𝑟𝑛(𝑟𝑖 , 𝑗)
∨

𝑡𝑚∈T

(
𝑝𝑖𝑐𝑘 (𝑟𝑖 , 𝑡𝑚, 𝑗) ∨ 𝑑𝑟𝑜𝑝 (𝑟𝑖 , 𝑡𝑚, 𝑗)

) ))
. (6)

Robot and Task-Object Movement Consistency. We add the
constraints to enforce that the task objects move only when being
carried by one of the robots.∧

𝑡𝑚∈T

𝑍∧
𝑗=1

( ∧
𝑟𝑖 ∈R

𝑎𝑐𝑡𝑖𝑜𝑛𝑖, 𝑗 ≠𝑚
)
=⇒ (𝑙𝑜𝑐𝑚,𝑗 = 𝑙𝑜𝑐𝑚,𝑗−1

∧ 𝑏𝑒𝑖𝑛𝑔_𝑐𝑎𝑟𝑟𝑖𝑒𝑑𝑚,𝑗 = 𝑏𝑒𝑖𝑛𝑔_𝑐𝑎𝑟𝑟𝑖𝑒𝑑𝑚,𝑗−1). (7)

Equation 7 ensures that if no robot is performing an action on task
𝑡𝑚 , then 𝑡𝑚 ’s location and being carried status remain the same.
Note that only picking up or dropping is classified as performing
an action. A robot carrying a task’s object does not mean that he is
performing an action on that task.
Task Completion. The following constraint ensures that each task
object is at its goal location in the last action step.∧

𝑡𝑚∈T
(𝑙𝑜𝑐𝑚,𝑍 = 𝐿𝑚 (1)). (8)

The final set of constraints is obtained as the conjunction of
constraints capturing the initial states and those in Equations (1),
(6), (7) and (8).

4.2.2 Enabling collaboration. In this subsection, we present the
additional constraints that enable collaboration among the robots
with the help of intermediate locations, as illustrated in Figure 1b.

A robot can visit one of the intermediate blocks to either pick up
or drop off an object. While picking up from an intermediate block,
a validation of the timing consistency between the drop-off and
pick-up of an object is required. We introduce new SMT variables
named 𝑙𝑜𝑐_𝑡𝑖𝑚𝑒𝑖, 𝑗 to add this ability. 𝑙𝑜𝑐_𝑡𝑖𝑚𝑒𝑖, 𝑗 denotes the time
step at which task 𝑡𝑖 will be available at 𝑙𝑜𝑐𝑖, 𝑗 at the 𝑗𝑡ℎ action-step.
It is −1 if the task object is in transition.

Assume that a robot 𝑟1 dropped the object of task 𝑡𝑙 at location
𝑖1 in action step 𝑗 with 𝑙𝑜𝑐_𝑡𝑖𝑚𝑒𝑙, 𝑗 = 20. Now, suppose another
robot 𝑟2, which has been idle for all the action steps up to step 𝑗 + 1,
goes to pick up this object. So, 𝑝𝑜𝑠2, 𝑗+1 = 𝑖1, but it is possible that
𝑝𝑜𝑠_𝑡𝑖𝑚𝑒2, 𝑗 + dist(𝑝𝑜𝑠2, 𝑗 , 𝑖1) < 20. Thus, even though 𝑟2 will go

to pick up the object at a later action step, it will reach the location
before the task object is available there. Thus, in our constraints,
we need to accommodate this possibility into the computation of
𝑝𝑜𝑠_𝑡𝑖𝑚𝑒 as the action will be completed only when the pickup is
done.

To accommodate the intermediate locations in I in our con-
straints, we update 𝐿𝑂𝐶 as follows:

𝐿𝑂𝐶 =

( ⋃
𝑡𝑚∈T

{𝐿𝑚 (0), 𝐿𝑚 (1)}
)
∪
( ⋃
𝑖𝑛∈I
{𝑖𝑛}

)
.

Picking an object from an intermediate location. Constraints
formulation for 𝑟𝑖 picking up one of the task objects from one of
the intermediate blocks in action step 𝑗 is as below.

𝑝𝑖𝑐𝑘_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 (𝑟𝑖 , 𝑡𝑚, 𝑖𝑛, 𝑗) ≡
𝑙𝑜𝑐𝑚,𝑗−1 = 𝑖𝑛 (9a)
∧ 𝑙𝑜𝑐_𝑡𝑖𝑚𝑒𝑚,𝑗−1 ≤ 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗−1 + dist(𝑝𝑜𝑠𝑖, 𝑗−1, 𝑖𝑛) + 1 (9b)
∧ 𝑝𝑜𝑠𝑖, 𝑗 = 𝑖𝑛 ∧ 𝑏𝑒𝑖𝑛𝑔_𝑐𝑎𝑟𝑟𝑖𝑒𝑑𝑚,𝑗 = 𝑖 (9c)
∧ 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗 = 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗−1 + dist(𝑝𝑜𝑠𝑖, 𝑗−1, 𝑖𝑛) + 1 (9d)
∧ 𝑙𝑜𝑐𝑚,𝑗 = −1 ∧ 𝑙𝑜𝑐_𝑡𝑖𝑚𝑒𝑚,𝑗 = −1 (9e)
∧ 𝑎𝑐𝑡𝑖𝑜𝑛𝑖, 𝑗 =𝑚 (9f)

Equation (9) is similar to Equation (2) except the extra constraint in
Equation 9(b), which ensures that the task object is at the location
before the robot reaches there to pick it up. Moreover, we need to
add constraints to update 𝑙𝑜𝑐_𝑡𝑖𝑚𝑒 in Equation (2), (3) and (7).

Waiting at an intermediate location. Constraints formulation
for 𝑟𝑖 waiting at an intermediate block in action step 𝑗 is shown
below. This is needed to take care of the situation when the robot
reaches the intermediate location before the intended object is
dropped there.

𝑤𝑎𝑖𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 (𝑟𝑖 , 𝑡𝑚, 𝑖𝑛, 𝑗) ≡
𝑙𝑜𝑐𝑚,𝑗−1 = 𝑖𝑛 (10a)
∧ 𝑙𝑜𝑐_𝑡𝑖𝑚𝑒𝑚,𝑗−1 > 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗−1 + dist(𝑝𝑜𝑠𝑖, 𝑗−1, 𝑖𝑛) + 1

(10b)
∧ 𝑝𝑜𝑠𝑖, 𝑗 = 𝑖𝑛 ∧ 𝑏𝑒𝑖𝑛𝑔_𝑐𝑎𝑟𝑟𝑖𝑒𝑑𝑚,𝑗 = 𝑖 (10c)
∧ 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗 = 𝑙𝑜𝑐_𝑡𝑖𝑚𝑒𝑚,𝑗−1 + 2 (10d)
∧ 𝑙𝑜𝑐𝑚,𝑗 = −1 ∧ 𝑙𝑜𝑐_𝑡𝑖𝑚𝑒𝑚,𝑗 = −1 (10e)
∧ 𝑎𝑐𝑡𝑖𝑜𝑛𝑖, 𝑗 =𝑚 (10f)

Equation (10) is similar to Equation (2) except the changes in
Equation 10(b) and Equation 10(d). Equation 10(b) ensures that this
is the case where the robot has reached the location before the task
object. Equation 10(d) sets the 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗 to the time at which the
task object can be picked up by the robot. After a robot drops the
task at 𝑙𝑜𝑐_𝑡𝑖𝑚𝑒𝑚,𝑗−1 time, any other robot will take at least 1 unit
of time to reach that location and 1 more unit to pick up the task
from the intermediate location.

Dropping an object at an intermediate location. Constraints
formulation for 𝑟𝑖 dropping one of the task objects it carries to one
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of the 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑏𝑙𝑜𝑐𝑘𝑠 in action step 𝑗 is shown below.

𝑑𝑟𝑜𝑝_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 (𝑟𝑖 , 𝑡𝑚, 𝑖𝑛, 𝑗) ≡
𝑏𝑒𝑖𝑛𝑔_𝑐𝑎𝑟𝑟𝑖𝑒𝑑𝑚,𝑗−1 = 𝑖 (11a)
∧ 𝑝𝑜𝑠𝑖, 𝑗 = 𝑛 ∧ 𝑏𝑒𝑖𝑛𝑔_𝑐𝑎𝑟𝑟𝑖𝑒𝑑𝑚,𝑗 = −1 (11b)
∧ 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗 = 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗−1 + dist(𝑝𝑜𝑠𝑖, 𝑗−1, 𝑖𝑛) + 1 (11c)
∧ 𝑙𝑜𝑐𝑚,𝑗 = 𝑛 ∧ 𝑎𝑐𝑡𝑖𝑜𝑛𝑖, 𝑗 =𝑚 (11d)
∧ 𝑙𝑜𝑐_𝑡𝑖𝑚𝑒𝑚,𝑗 = 𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖, 𝑗 (11e)

Equation (11) is similar to Equation (3) as dropping at the interme-
diate location is similar to dropping at the task’s goal location.
Robots’ all possible actions. Finally, we have to change Equa-
tion (6) to∧

𝑟𝑖 ∈R

𝑍∧
𝑗=1

(
𝑠𝑡𝑎𝑦 (𝑟𝑖 , 𝑗) ∨

∨
𝑘∈{𝑠𝑖 }∪𝐿𝑂𝐶

(
(𝑝𝑜𝑠𝑖, 𝑗−1 = 𝑘) ∧(

𝑟𝑒𝑡𝑢𝑟𝑛(𝑟𝑖 , 𝑗) ∨∨
𝑡𝑚∈T

(
𝑝𝑖𝑐𝑘 (𝑟𝑖 , 𝑡𝑚, 𝑗) ∨ 𝑑𝑟𝑜𝑝 (𝑟𝑖 , 𝑡𝑚, 𝑗) ∨∨

𝑖𝑛∈I
(𝑝𝑖𝑐𝑘_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 (𝑟𝑖 , 𝑡𝑚, 𝑖𝑛, 𝑗) ∨

𝑤𝑎𝑖𝑡_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 (𝑟𝑖 , 𝑡𝑚, 𝑖𝑛, 𝑗) ∨

𝑑𝑟𝑜𝑝_𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 (𝑟𝑖 , 𝑡𝑚, 𝑖𝑛, 𝑗) )
) ))

(12)

The final set of constraints is obtained as the conjunction of con-
straints capturing the initial states and those in Equation (1), (12), (7)
and (8).

4.2.3 Other operational constraints. In our task planning frame-
work, we can easily add other operational constraints. The con-
straints can be mainly of two types based on their association with
time. If the constraint is associated with time, e.g., deadline, we
need to handle the constraint in Task Planner as well as Path Plan-
ner. However, constraints like capacity are not related to time and
can only be handled through Task Planner. We have added two
constraints to demonstrate both types.

Capacity constraints.We can assign specific weights to task ob-
jects and specific weight-carrying capacities to robots. This con-
straint is independent of time, so it needs to be handled in Task
Planner only. Let the variable 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖, 𝑗 denote the weight car-
rying capacity of robot 𝑟𝑖 in action-step 𝑗 and 𝑤𝑒𝑖𝑔ℎ𝑡𝑙 denote a
constant weight of object for task 𝑡𝑙 . Now, we add the following
constraint to all the sets of constraints involving a pickup:

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖, 𝑗−1 ≥ 𝑤𝑒𝑖𝑔ℎ𝑡𝑙 ∧ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖, 𝑗 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖, 𝑗−1 −𝑤𝑒𝑖𝑔ℎ𝑡𝑙 .
(13)

This checks for weight satisfiability before assigning a task to the
robot and updates the weight-carrying capacity of the robot after
picking it up. Similarly, for all the set of constraints involving a
drop operation (Equation (3), (11)), we add:

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖, 𝑗 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖, 𝑗−1 +𝑤𝑒𝑖𝑔ℎ𝑡𝑙 . (14)

This updates the weight-carrying capacity of the robot after drop-
ping.

Deadline constraints. We can also add a specific deadline
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑚 to each task 𝑡𝑚 by adding the following constraint for
each task in Equation (8). This constraint is related to time, so it
needs to be handled in Task Planner as well as Path Planner.

𝑙𝑜𝑐_𝑡𝑖𝑚𝑒𝑚,𝑍 ≤ 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑚 . (15)

4.2.4 Exclusion. We provide a way to add an already found task
assignment A as an exclusion to the SMT planner so that the
task planner finds the best solution excluding the already found
assignments. Let 𝑃𝑂𝑆𝑖, 𝑗 be the position of robot 𝑟𝑖 and action step
𝑗 in the existing solution.∨

𝑟𝑖 ∈R

( ∨
𝑗∈Z
(𝑝𝑜𝑠𝑖, 𝑗 ≠ 𝑃𝑂𝑆𝑖, 𝑗 )

)
(16)

To add the existing solution as an exclusion, we add Equation 16 to
the set of constraints given to the SMT solver.

4.2.5 Objective function. We present the two cost functions related
to the total cost and makespan of the trajectories.

(1) Total Cost: Here, we minimize the total work done by all the
robots.

minimize (
∑︁
𝑟𝑖 ∈R

𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖,𝑍 ).

(2) Makespan: Here, we minimize the time required to complete
the mission.

minimize (max
𝑟𝑖 ∈R

𝑝𝑜𝑠_𝑡𝑖𝑚𝑒𝑖,𝑍 ).

The value of 𝑍 must be set such that it satisfies the condition
𝑍 ≥ 1 + ⌈|T |/|R|⌉ ∗ 2 for the problem to be solvable. In this case,
the workload is balanced among the robots, which means that each
robot is assigned at most ⌈|T |/|R|⌉ tasks. Since a robot has to per-
form two actions per task and one action to return to its base, the
value of 𝑍 must be at least 1 + ⌈|T |/|R|⌉ ∗ 2. On the other hand, if
we search through all possible tasks while ignoring load balanc-
ing among robots, the condition becomes 𝑍 ≥ 1 + |T | ∗ 2, which
implies that in an extreme case, even one robot could complete all
tasks while the other robots remain idle.

The task planner uses a binary search algorithm to optimize the
cost function guided by the SMT constraints. Note that modern
SMT solvers like Z3 [7] provide a mechanism to solve a minimiza-
tion problem directly within the solver. However, our experience
shows that attempting to solve an optimization problem directly
using an SMT solver often fails to succeed within a reasonable
time. In contrast, the binary search-based optimization method can
successfully produce the result within a bound.

4.3 Path Planning
For the path planner, we adopt the CBS-PC algorithm [34] for multi-
agent pathfinding for precedence-constrained goal sequences. CBS-
PC uses Multi-Label A* [9] as its low-level planner. Multi-Label
A* can find optimal paths for a sequence of goal locations. As we
deal with intermediate drops and pickups, the intermediate pickup
must be executed after the intermediate drop for the same task.
This is taken care of by the precedence constraints presented in the
algorithm. We also introduce the following enhancements to the
basic CBS-PC algorithm: (i) makespan optimization criteria along
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Figure 4: Warehouse (left) and Randomly generated (right)
50 × 50map

with the sum of total costs, (ii) inclusion of deadlines support for
goals and checkpoints, and (iii) handling empty goals as the task
planner may not assign tasks to some robots.

5 Evaluation
We evaluate our planning methodology on various instances of
pick-and-drop application scenarios.

5.1 Experimental Setup
For our experiments, we use a desktop computer with an i7-4770
processor with a 3.90GHz frequency and 12GB of memory. We
use Z3 SMT solver [7] to solve task-planning problems. For MA*-
CBS-PC, we adapt the C++ code provided by [34] with appropriate
modifications. The source code of our implementation is available
at https://github.com/iitkcpslab/Opt-ITPP.

In our experiments, we consider two planners: one optimizes the
makespan (opt_makespan), and the other optimizes the total cost
(opt_cost). We compare these planners with a state-of-the-art classi-
cal planner ENHSP-20 [1, 27]. Since our planners deal with numeric
values for capacities and deadlines, we require a classical planner to
support numeric values and provide optimal solutions. We explored
the possibility of modeling our problem as a constrained TSP prob-
lem and utilizing the meta-heuristic algorithm LKH3 [12] to get
a near-optimal solution. However, we did not find any extension
of LKH3 that can deal with all the constraints we consider in our
problem. On the other hand, it was quite straightforward to model
our exact problem in SMT as well as in ENHSP-20.

We use a predefined workspace resembling a warehouse and a
workspace with a randomly generated obstacle map resembling a
disaster-stricken area (shown in Figure 4) to evaluate our algorithm.
For any data point, we take the average of the results for 10 scenarios
where the initial location of the robots and the task locations are
generated randomly. For the evaluation on random workspace, the
obstacle maps are also generated randomly.

In all the experiments, we have set the timeout (TO) as 3600s. In
presenting the results, for all the cases where the planner fails to
solve some problem instance within 3600s, we present the metric
value as the average of the values for the instances the planner could
solve successfully. We also mention the number of timeouts in the
parenthesis to indicate the number of instances facing timeout.

5.2 Results
5.2.1 Comparison for varying workspace size. In this evaluation,
we experiment with 2 robots and 2 tasks with 𝑍 = 5 for varying
workspace sizes ranging from 10×10 to 100×100. Table 1 and Table 2
show the effect of varying map sizes on computation time (time-
outs), makespan, and total cost for our planners and the ENHSP-20
planner for predefined and random workspace respectively. Our
planners are able to solve all the problems in a few seconds. The
ENHSP planner was able to solve 15% of the problems for the small-
est 10 × 10 map and was unable to solve any problem with a larger
map size. The result presents the makespan and the total cost, which
is as per the expectations, showing a linear increase in makespan
and total cost respectively with an increase in map size.

5.2.2 Comparison for varying Robots and Tasks without Collabora-
tion. From the previous evaluation, we observe that the classical
planner cannot solve problems for map size more than 10 × 10. So,
in this experiment, we use maps of size 9× 9. We experiment with 2
and 3 robots and the number of tasks ranged from 2 to 5. Since we
aim for a load-balanced solution, we use a minimum satisfiable 𝑍
as it forces every robot to perform some work. Table 3 and 4 shows
the effect of varying number of robots and tasks on computation
time (# timeouts), makespan, and total cost. The classical planner
cannot solve any problem for more than 3 tasks. Even for 3 tasks,
it can solve only some of the problem instances. On the other hand,
our planners perform significantly better compared to the classical
planner. From the table, we also observe that the opt-makespan
planner is more scalable compared to other planners.

5.2.3 Comparison for varying Robots and Tasks with Collaboration.
We perform these experiments with a setup similar to the previous
one, but we add some intermediate locations in the maps (randomly
for randomly generated maps and predefined for warehouse maps).
We execute the planner with both the optimization criteria for
multiple values of 𝑍 . A value of 𝑍=3 implies no collaboration; with
a higher value of 𝑍 , the opportunity for intermediate pickup and
drop arises. Table 5 and 6 represents the computation times (#
timeouts), makespan, and total cost for various numbers of robots
and tasks, and 𝑍 . For each robot and task, the computation time
increases drastically for each increase in 𝑍 for our planner. Our
planner cannot solve all the problems for 4 robots and 4 tasks with
𝑍 = 9. However, our planners are able to solve more problems faster
than the classical planner. Higher 𝑍 values improve makespan for
makespan optimization and total cost for total cost optimization.

5.2.4 Scalability Analysis. We also evaluate our algorithm for 𝑁
robots and 𝑁 tasks, where 𝑁 ranges from 2 to 20 for a 100 × 100
workspace, to determine the scalability of our algorithm. The value
of 𝑍 is decided to make the problem satisfiable without collabora-
tion. Table 7 presents the computation time (Number of timeouts),
makespan and total cost for varying numbers of robots and tasks.
Our planner can successfully execute up to 19 robots with 19 tasks
without experiencing failures for a timeout of 3600s. We also eval-
uate the time distribution between the task and the path planner.
On average, the task planner consumes more than 98% of the to-
tal computation time. As the task planner explores a large search
space to find the sequence of actions, the combinatorial explosion
of possibilities makes the search exponentially large.

https://github.com/iitkcpslab/Opt-ITPP
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Table 1: Effect of Map Size on Computation Time, Makespan, and Total Cost for Different Planners on Warehouse Workspaces

MapSize ENHSP opt_makespan opt_cost

Time (# TO) Makespan Total Cost Time (# TO) Makespan Total Cost Time (# TO) Makespan Total Cost

10 2711.1±1435.1 (7) 25.33±3.06 41.33±1.15 1.9±0.6 (0) 27.6±2.8 49.4±7.43 4.0±0.8 (0) 30.2±4.37 46.4±4.2
20 TO(10) - - 2.3±0.7 (0) 56.2±7.39 102.0±17.59 4.3±1.3 (0) 60.2±7.15 93.4±12.26
30 TO(10) - - 2.5±0.5 (0) 74.2±14.22 134.6±26.97 5.4±1.4 (0) 76.9±16.31 126.5±24.08
40 TO(10) - - 2.6±0.8 (0) 104.2±15.04 189.7±25.44 6.2±1.6 (0) 116.3±10.63 172.1±30.7
50 TO(10) - - 2.9±1.0 (0) 137.8±17.92 248.2±50.14 4.9±1.2 (0) 153.6±32.36 233.6±40.27
60 TO(10) - - 3.3±0.8 (0) 181.0±16.12 330.5±25.22 6.1±1.2 (0) 197.5±32.78 306.3±48.84
70 TO(10) - - 3.5±1.2 (0) 199.8±38.66 368.0±70.88 5.5±1.4 (0) 219.6±53.15 343.2±68.43
80 TO(10) - - 3.5±1.4 (0) 227.6±38.26 409.2±64.81 7.0±1.2 (0) 245.0±37.4 383.0±69.55
90 TO(10) - - 3.6±1.3 (0) 234.2±30.62 443.6±64.17 6.6±1.5 (0) 253.8±40.1 415.0±63.53
100 TO(10) - - 3.4±1.2 (0) 282.2±39.13 522.5±84.79 7.1±1.0 (0) 311.0±65.67 471.2±61.54

Table 2: Effect of Map Size on Computation Time, Makespan, and Total Cost for Different Planners on RandomWorkspaces

MapSize ENHSP opt_makespan opt_cost

Time (# TO) Makespan Total Cost Time (# TO) Makespan Total Cost Time (# TO) Makespan Total Cost

10 TO(10) - - 1.8±0.9 (0) 32.8±6.12 60.0±9.48 4.3±1.1 (0) 36.0±6.25 56.2±9.35
20 TO(10) - - 2.4±1.2 (0) 64.0±8.42 117.75±20.18 3.6±2.2 (0) 70.25±12.21 109.0±17.3
30 TO(10) - - 2.3±0.7 (0) 87.4±20.18 155.8±41.77 4.5±1.1 (0) 92.4±27.08 149.2±41.42
40 TO(10) - - 2.8±1.2 (0) 128.22±14.91 242.22±29.11 5.1±1.7 (0) 138.78±17.66 218.56±30.1
50 TO(10) - - 2.9±1.0 (0) 150.22±19.01 264.89±51.21 5.2±1.8 (0) 167.11±28.64 248.44±42.15
60 TO(10) - - 2.7±1.3 (0) 182.0±37.08 337.25±61.2 5.8±2.8 (0) 195.0±35.97 307.0±44.5
70 TO(10) - - 3.4±1.1 (0) 194.67±20.12 367.78±36.8 5.9±2.4 (0) 200.0±20.42 352.89±32.51
80 TO(10) - - 3.0±1.3 (0) 234.5±41.07 450.75±71.9 5.3±3.1 (0) 254.25±53.26 406.5±75.32
90 TO(10) - - 3.3±0.9 (0) 234.67±52.13 422.44±108.64 5.9±2.5 (0) 251.11±68.47 381.78±81.09
100 TO(10) - - 3.2±1.1 (0) 271.6±27.19 505.8±74.21 5.9±1.8 (0) 294.8±51.97 475.4±52.61

Table 3: Effect of the Number of Robots and Tasks on Computation Time, Makespan, and Total Cost for Different Planners on
Warehouse Workspaces without Collaboration

R T ENHSP opt_makespan opt_cost

Time (# TO) Makespan Total Cost Time (# TO) Makespan Total Cost Time (# TO) Makespan Total Cost

2 2 30.0±12.0 (0) 21.8±3.91 37.7±5.44 0.0±0.0 (0) 21.1±3.21 37.2±3.94 0.1±0.3 (0) 21.3±3.33 36.7±3.53
2 3 3345.8±4014.5 (5) 25.6±4.56 40.6±4.22 2.4±1.0 (0) 25.2±2.66 46.9±6.62 3.7±1.2 (0) 28.2±5.12 42.8±4.34
2 4 TO(10) - - 2.6±0.8 (0) 26.6±2.67 51.8±4.57 5.0±1.5 (0) 27.4±3.27 48.1±2.85
3 3 3362.9±749.8 (9) 12.0±0.0 28.0±0.0 0.4±0.7 (0) 19.2±3.65 49.9±13.26 0.4±0.5 (0) 19.3±3.71 48.3±11.44
3 4 TO(10) - - 13.9±6.1 (0) 22.8±2.2 64.7±8.56 64.6±14.0 (0) 25.6±3.1 47.6±5.32
3 5 TO(10) - - 24.9±11.8 (0) 24.8±1.4 71.2±7.07 317.2±93.2 (0) 27.7±2.5 61.7±4.4

Table 4: Effect of the Number of Robots and Tasks on Computation Time, Makespan, and Total Cost for Different Planners on
RandomWorkspaces without Collaboration

R T ENHSP opt_makespan opt_cost

Time (# TO) Makespan Totla Cost Time (# TO) Makespan Total Cost Time (# TO) Makespan Total Cost

2 2 562.8±550.0 (0) 21.3±5.29 36.8±10.54 0.1±0.3 (0) 20.4±4.4 36.8±10.12 0.1±0.3 (0) 21.2±5.35 36.2±9.54
2 3 3276.2±1023.9 (9) 24.0±0.0 30.0±0.0 2.1±0.9 (0) 25.2±2.15 45.0±7.79 3.4±0.7 (0) 27.4±4.01 41.8±6.21
2 4 TO(10) - - 3.0±0.7 (0) 27.8±3.33 53.6±6.59 5.0±1.6 (0) 28.0±3.65 51.6±5.95
3 3 TO(10) - - 0.3±0.5 (0) 20.4±4.2 55.6±12.64 0.4±0.5 (0) 20.8±4.64 51.0±8.55
3 4 TO(10) - - 9.7±4.0 (0) 23.6±1.58 63.5±6.24 59.8±20.9 (0) 28.0±2.67 49.6±3.37
3 5 TO(10) - - 20.4±3.9 (0) 25.2±3.16 68.2±10.81 210.1±78.6 (0) 27.8±4.66 62.2±8.92

6 Related Work
Several authors have presented algorithmic solutions for finding op-
timal task assignments and the corresponding collision-free paths

for multi-robot applications. Concurrent goal assignment and plan-
ning problem has been addressed by Turpin et al. for obstacle-free
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Table 5: Effect of the Number of Robots and Tasks on Computation Time, Makespan, and Total Cost for Different Planners on
Warehouse Workspaces with Collaboration

R T Z ENHSP opt_makespan opt_cost

Time (# TO) Makespan Total Cost Time (# TO) Makespan Total Cost Time (# TO) Makespan Total Cost

2 2 5 13.3±9.9 (0) 26.2±4.42 27.4±2.84 0.2±0.4 (0) 19.6±3.56 35.1±5.05 0.2±0.4 (0) 19.6±3.56 34.2±4.67
2 2 7 TO(10) - - 1.7±0.7 (0) 19.3±3.33 34.4±5.3 1.9±0.6 (0) 26.2±4.66 27.4±2.99
2 2 9 TO(10) - - 15.7±10.1 (0) 19.3±3.33 34.8±5.07 22.8±7.7 (0) 26.2±4.66 27.4±2.99
3 3 5 TO(10) - - 0.5±0.5 (0) 20.8±3.25 54.3±9.75 0.8±0.4 (0) 21.4±3.35 51.3±6.5
3 3 7 TO(10) - - 11.7±2.9 (0) 20.4±2.84 51.6±7.93 53.1±23.4 (0) 26.6±3.78 40.6±4.43
3 3 9 TO(10) - - 729.2±426.9 (0) 20.4±2.84 51.6±7.93 2458.9±1487.2 (6) 32.0±1.63 32.0±1.63
4 4 5 TO(10) - - 2.4±1.6 (0) 20.0±2.57 68.1±9.88 4.4±1.6 (0) 20.9±2.85 60.1±7.76
4 4 7 TO(10) - - 505.8±1096.5 (1) 19.22±2.39 66.44±11.82 1054.6±239.4 (0) 24.4±2.95 44.8±5.43
4 4 9 TO(10) - - TO(10) - - TO(10) - -

Table 6: Effect of the Number of Robots and Tasks on Computation Time, Makespan, and Total Cost for Different Planners on
RandomWorkspaces with Collaboration

R T Z ENHSP opt_makespan opt_cost

Time (# TO) Makespan Total Cost Time (# TO) Makespan Total Cost Time (# TO) Makespan Total Cost

2 2 5 117.7±113.1 (0) 26.4±5.79 27.0±4.41 0.0±0.0 (0) 20.6±4.3 37.3±9.53 0.2±0.4 (0) 20.8±4.67 36.6±9.13
2 2 7 TO(10) - - 1.7±0.5 (0) 20.6±4.53 36.6±9.62 2.0±0.8 (0) 26.4±6.1 27.0±4.64
2 2 9 TO(10) - - 13.9±5.9 (0) 20.6±4.53 37.3±10.04 17.5±5.0 (0) 26.4±6.1 27.0±4.64
3 3 5 TO(10) - - 0.5±0.5 (0) 22.4±3.56 58.6±9.3 0.5±0.5 (0) 23.2±4.4 53.0±7.81
3 3 7 TO(10) - - 10.4±4.2 (0) 21.7±3.47 57.1±14.3 51.3±24.1 (0) 27.2±4.24 39.8±5.77
3 3 9 TO(10) - - 937.9±686.2 (0) 21.5±3.5 57.7±11.89 2799.5±1347.3 (7) 32.0±5.29 32.0±5.29
4 4 5 TO(10) - - 1.3±0.5 (0) 21.2±2.86 67.5±9.63 2.8±0.6 (0) 21.8±3.16 61.8±7.51
4 4 7 TO(10) - - 78.6±96.6 (0) 20.7±2.67 64.7±11.99 1118.3±549.4 (0) 25.5±3.5 45.6±5.25
4 4 9 TO(10) - - 2498.6±1360.5 (5) 20.8±2.28 62.8±9.65 TO(10) - -

Table 7: Effect of the number of Robots and Tasks on Com-
putation Time and Makespan for Optimizing Makespan

R T Time (# TO) Makespan Total Cost

2 2 0.4±0.5 (0) 225.8±35.31 390.4±46.4
3 3 0.8±0.4 (0) 258.2±20.69 655.3±59.03
4 4 1.6±0.5 (0) 257.2±31.82 817.8±131.36
5 5 4.4±1.0 (0) 250.6±23.42 991.7±87.86
6 6 8.6±2.2 (0) 239.0±32.64 1138.4±173.03
7 7 14.3±4.3 (0) 267.0±39.45 1420.2±158.17
8 8 26.8±10.2 (0) 256.8±32.99 1593.5±173.57
9 9 44.0±16.8 (0) 281.2±43.01 1888.2±231.84
10 10 62.1±20.3 (0) 264.4±32.3 1991.0±246.13
11 11 103.6±42.7 (0) 279.8±51.42 2314.5±280.51
12 12 131.3±23.5 (0) 290.2±32.92 2609.3±229.89
13 13 244.0±67.9 (0) 279.4±32.95 2648.8±282.94
14 14 288.9±79.4 (0) 287.4±30.41 3011.3±259.7
15 15 459.3±101.4 (0) 278.0±43.73 3112.8±374.12
16 16 817.0±351.2 (0) 267.4±47.41 3241.5±405.7
17 17 1044.9±175.7 (0) 270.0±30.08 3397.1±282.86
18 18 1362.9±375.2 (0) 269.8±32.17 3646.4±356.12
19 19 1659.1±429.8 (0) 276.2±28.09 3949.2±373.36
20 20 3053.3±883.4 (7) 309.33±33.25 4384.67±351.15

environments [29] and in the environment cluttered with obsta-
cles [30] without a guarantee of optimality. On the other hand,
the optimal goal assignment and the collision-free path-finding
problem have been addressed in [3, 14, 19]. Recently, Okumura

and Défago [24] have proposed a sub-optimal but fast algorithm
for simultaneous target assignment and path planning efficiently
for a large-scale multi-robot system. Though the goal assignment
is a form of task assignment, it is beyond the scope of these al-
gorithms to deal with complex constraints (e.g., payload capacity,
task deadline) for the robots or the possibility of robot-robot col-
laboration. Though the problem of transferring payloads in packet
transfers [21] and deadline-aware planning [22] in a multi-agent
environment have been studied, the proposed solutions apply to
the very specific problems. Several authors have presented mech-
anisms to solve the integrated task and path planning problem
for multi-robot systems, where the task specifications are given
using linear temporal logic [10, 16, 31]. These methods are either
not scalable [31] or compromise on finding collision-free paths to
achieve scalability [10, 16].

As our task planner is based on SMT solving, we outline the re-
search work that employed various SMT techniques in the context
of robot task and path planning. Nedunuri et al. [23] first propose
an SMT-based solution to solve the integrated task and motion
planning problem for a static environment from a user-given plan
outline. Subsequently, Dantam et al. [6] extend this idea to generate
motion plans for a robot arm in a dynamic environment by getting
feedback from the motion planner and invoking the SMT solver in
the incremental mode. However, these papers do not aim to provide
optimal solutions. Furthermore, they deal with only one robot ma-
nipulator and thus do not deal with the complexities that arise from
collision avoidance for multiple mobile robots. Leofante et al. [17]
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present an SMT-based integrated planning framework where the
high-level task and path planning problem for a fixed horizon is
encoded as a monolithic SMT problem which is solved using an
SMT solver extended with the capability of finding an optimal so-
lution. However, their method does not consider collisions among
robots, and such an integrated planning strategy can tackle only
a few robots and small workspaces. Imeson and Smith [15] intro-
duced a combination of a SAT solver and a TSP solver to solve the
integrated multi-agent goal assignment and path planning problem.
Though their solution provides an optimality guarantee on the total
cost of the independent paths for the robots, these paths are not
guaranteed to be collision free. Saha et al. [26] introduce a scalable
method for solving the collision-free path planning problem for a
given goal assignment for a multi-robot system. They exploit the
SMT solver’s capability to generate an unsatisfiable core to assign
priorities to the robots to avoid any potential deadlock situation.

Several researchers have focused on the multi-robot pickup and
delivery problem. Michal et al. [32] provides a distributed algorithm
to solve a well-formed multi-agent pickup-delivery problem. Ma et
al. [18, 20] provide several algorithms addressing the MAPD prob-
lem across online and offline contexts. These approaches perform
path planning in two stages, resulting in sub-optimal collision-free
trajectories. Our approach employs CBS-PC [34], which efficiently
computes optimal collision-free trajectory. Though we take the
pickup-delivery problem as an application, our SMT-based approach
is more general in dealing with many complex constraints in a task
planning problem. Some approaches based on Large Neighborhood
Search [4, 33] are efficient and scalable. However, these algorithms
do not guarantee optimality or completeness; in contrast, our ap-
proach is complete and optimal.

7 Conclusion
We have presented a generic integrated task and path planning al-
gorithm for multi-robot systems and demonstrated the applicability
of this framework on the pickup delivery problem that is at the core
of any automated warehouse management system. Our planning
framework provides an opportunity to combine the strength of
an optimal task planner and an optimal path planner to design an
optimal planner capable of solving complex multi-robot logistics
planning problems which is beyond the scope of the state-of-the-art
multi-agent classical planners.
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