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Abstract—Coverage of a partially known workspace for infor-
mation gathering is the core problem for several applications,
such as search and rescue, precision agriculture and monitoring
of critical infrastructures. We propose a planning framework
for the coverage of a partially known environment employing
multiple robots. To cope with the limitation of having incomplete
information, our planner adopts a receding horizon planning
strategy where the safe trajectories of the robots are generated
optimally for a short duration based on the currently available
information about the workspace. Moreover, as multi-robot mo-
tion planning for coverage is a computationally complex problem,
our framework clusters the robots into small groups to increase
the planning efficiency dynamically. In each time horizon, the
robots follow the motion plans provided by the planner, gather
information about the workspace while executing their plan and
update the global knowledge base about the workspace. The
planning algorithm manages the activities of the robots in such
a way the energy consumption by the robots and the total time
required for the complete coverage of the workspace get min-
imized. Simulation results show that the proposed hierarchical
framework efficiently ensures the coverage quality of a partially
known workspace, as well as scales up effectively with the number
of robots and the size of the workspace.

Index Terms—Mobile-Robot, Multi-Robot System, Coverage,
Planning, Receding Horizon, Clustering

I. INTRODUCTION

Applications such as search and rescue, precision agricul-
ture, and monitoring of critical infrastructure heavily rely on
the quality and timeliness of the acquired information from an
area of interest (AoI) for successful planning, resource allo-
cation, and utilization. For example, precision agriculture and
monitoring of a nuclear reactor demand micro-management at
various levels to cope with different types of inter and intra-
field variability. The micro-management helps to maximize
the crops yield in case of precision agriculture [14] and can
be useful in generating a map of radiation level of a nuclear
reactor and its surroundings in a timely manner [21]. One
important aspect of the above-mentioned micro-management
is gathering detailed data in a timely fashion for optimizing
resource utilization.

The use of static sensor networks is widespread for efficient
data gathering in different applications. Several algorithms
and systems have been proposed for that purpose in the past
(e.g. [18, 31, 13, 30]). However, deployment and management
of a static sensor network can be challenging due to the

lack of proper knowledge of the workspace where the nodes
have to be deployed and due to the lack of mobility of the
sensor nodes. Recently, mobile robots have been identified
as an excellent medium for carrying out sensing in known
or unknown environments (e.g. [27, 8, 28, 1, 17]). However,
the scalability of the proposed algorithms have been limited
to small number of robots. Recently the revolution in the
creation of several miniature robots (for example, Kilobot [24],
Jasmine [15]) motivates us to consider deploying mobile
robots for sensing and data gathering applications in a large
scale. In this paper, our goal is to demonstrate that the data
gathering for appropriate resource utilization and monitoring
can be efficiently accomplished by a large team of multi-robot
systems.

Data gathering from an AoI using a group of robots requires
the robots to cover the area efficiently. For example, in case
of a disaster response application, the robots have to cover
every location in the workspace to detect if some survivors are
present. Similarly, for the precision agriculture applications,
the robots should visit every part of the field to detect the
crops that can be harvested or the locations in the field affected
by pests. Coverage of an unknown or partially known AoI
with a multi-robot system is a challenging problem. At the
beginning, the robots have limited or no information about
the AoI. Consequently, offline planning is impossible; the
robots require to coordinate effectively among themselves and
perform planning online for substantial coverage.

We propose a planning framework for the coverage of a
partially known AoI or workspace by a set of robots. Our
framework comprises a computational facility called the global
planner and multiple robots equipped with sensing and limited
computational capability. To deal with the unavailability of
the complete information about the workspace, the global
planner adopts a receding horizon planning mechanism in
which the planner partitions the total planning into multiple
short planning-horizons of varying lengths. This strategy is
motivated by the similar techniques that have been successful
in other domains, for example, model predictive control [4]
and receding horizon reactive motion planning [33]. At
the beginning of each planning horizon, the global planner
generates a global view of the workspace based on the local
views of the robots. Next, the global planner divides the robots



into clusters based on their proximity and estimates the length
of the current horizon. The robots are clustered in such a way
that in the current horizon there is no possibility that the robots
in one cluster will collide with the robots in another cluster.
Moreover, partitioning the robots into smaller clusters helps
in scaling up the multi-robot motion planning. The global
planner generates a suitable and safe motion plan for the
robots in each cluster. Being inspired by the recent success
of SMT solvers in solving task and motion planning problems
for robotic systems [12, 22, 25, 32, 26, 6, 9], we formulate
the coverage planning problem for each cluster in each horizon
as an SMT solving problem [2] and use an off-the-self SMT
solver Z3 [20] to generate the trajectories for the robots.

The global planner communicates the plans to the robots,
and the robots execute their respective plans. While executing
the plans provided by the global planner, a robot performs
sensing in the locations it visits. The robots also gather
information about the workspace by detecting the locations of
the obstacles in the surrounding regions, and communicates
its updated local view to the global planner at the end of each
horizon.

The reason for introducing a centralized global planner in-
stead of designing a distributed protocol for robots is twofold.
First, the end users can easily interact with the robots through
the global planner, and can specify their requirements in an
online manner. Second, the global planner can help the robots
to use the concepts of Cloud Robotics [10, 19], and apply
resource demanding methodologies, such as VSLAM [3, 7]
and SMT solver [26], during various phases of a planning
process. Moreover, the global planner can also facilitate the
resource sharing, coordination, and usage of low-level robots
effectively.

We have implemented our coverage planning framework
using C++. Our software uses SMT solver Z3 [20] for solv-
ing the planning problems for the clusters in each horizon.
Moreover, to utilize the availability of several processing cores
in the computing systems, we use OpenMP framework [5]
and solve the planning problems for the clusters in a horizon
concurrently as much as possible. Our experimental results
show that we can achieve complete coverage of a 128m×128m
workspace by 64 robots in less than 30min, demonstrating that
our framework can be an efficient tool for utilizing large-scale
multi-robot systems for sensing and data gathering operations
for various applications.

In summary, we make the following contributions in this
paper.
• We provide an SMT-based framework for multi-robot

coverage of a partially known environment. The frame-
work employs a receding horizon planning strategy to
deal with partial observability of a workspace.

• We propose a clustering based approach and several
heuristics to reduce the planning overhead and scale up
the multi-robot coverage planning with respect to number
of robots and size of the workspace.

• We provide a C++ implementation of our coverage
planning framework and demonstrate the efficacy of our

proposed framework through extensive simulation.

II. PROBLEM

A. Terminology and Definitions

In this section, we formalize the definitions needed for the
rest of the paper.

1) Workspace representation: We assume that a set of
robots, denoted by R = {r1, . . . , r|R|}, is operating in the AoI
or workspace for coverage. The workspace for an application
is represented as a 2-D rectangular occupancy grid map. The
grid decomposes the workspace into square-shaped cells. If
a workspace contains xL and yB (xL, yB ∈ N) cells along
the x and y dimension, respectively, the size of the workspace
is represented as [xL × yB]. Each cell is assigned a unique
identifier which represents the location of that cell in the
workspace. The identifier of the block with co-ordinate (i,j),
i ∈ {0, . . . xL} and j ∈ {0, . . . xL}, is denoted by wij . The
set of all locations in the workspace is denoted by the set W .

Some parts of the workspace can be occupied by static
obstacles. If a grid cell is partially occupied by an obstacle,
we mark the entire grid cell to be covered by obstacle. The
set of locations covered by obstacles is denoted by Ω. The
set of free locations in the workspace is denoted by F , where
F =W \ Ω.

2) Motion model of the robot: To define the motion model
of the robot, we first define the state of the robot. We assume
that the robot has a finite set of velocity configurations, denoted
by V. A velocity configuration represents a velocity with a
constant magnitude and a direction.

Definition 1 (State of a robot). The state of a robot φ is a pair
〈l, v〉, where l ∈ W denotes its position in the 2-D workspace,
and v ∈ V is the velocity configuration of the robot.

Motion primitives: The dynamic model of a robot is captured
using a set of motion primitives. Motion primitives are a set
of short closed-loop trajectories of a robot under the action of
a set of precomputed control laws [16]. The set of motion
primitives form the basis of the motion for a robot. For
example, in the most simple case a ground robot may have
five motion primitives: {H,L,R,U,D}, where the primitive H
keeps the robot in the same grid block and the primitives L,
R, U and D move the robot to the adjacent left, right, upper,
and lower grid block, respectively. The special primitive H is
called the rest primitive. A desired trajectory for a robot can
be generated by concatenating a sequence of motion primitives
appropriately.

The set of motion primitives for robot r ∈ R is denoted
by Γr. Each motion primitive γ ∈ Γr is associated with
a pre-condition pre(γ), which is a formula over the states
specifying under which conditions a motion can be executed.
For a robot in state φ and with a motion primitive γ, we
denote by post(φ, γ) the state φ′ where the robot moves
when the motion primitive γ is applied to the robot in state
φ. We use intermediate(φ, γ) to denote the set of grid
locations through which the robot may traverse after applying
γ in state φ (including φ.l and φ′.l where, φ′ = post(φ, γ)).



For a motion primitive γ, we denote by cost(γ) the cost
(e.g., energy expenditure) to execute the motion primitive.

We assume that for all robots in the system, each motion
primitive requires δ unit time for execution. This assumption
may not hold for heterogeneous systems and extending our
approach for such systems is left as a future work.

3) Trajectory and motion plan: We now define the trajec-
tory and motion plan for a multi-robot system. We start with
defining the state of the multi-robot system.

Definition 2 (State of a Multi-Robot System). The state of a
multi-robot system with the set of robots given in R is denoted
by Φ = [φ1, . . . , φ|R|], where φi denotes the state of robot
ri ∈ R.

We define the runtime behavior of a multi-robot system
using a discrete-time transition system T . We define a state
transition as follows.

Definition 3 (Transition). Let Φ1 = [φ11, . . . , φ1|R|] and Φ2 =
[φ21, . . . , φ2|R|] be two states of the multi-robot system, and
γ = [γ1, . . . , γ|R|], where γi ∈ Γri , be a vector that contains
as elements the primitives applied to individual robots in state
Φ1 to move them to state Φ2. The transition from Φ1 to Φ2 is
governed by the following rule:

Φ1
γ−→ Φ2

iff
• ∀ri ∈ R: Φ1i |= pre(γi) and Φ2i = post(Φ1i, γi).
• The trajectory of ri ∈ R between the states Φ1 and Φ2

does not pass through a block occupied by an obstacle,
that is
∀ri ∈ R : intermediate(Φ1i, γi) ∩ Ω = ∅.

• The robots do not collide with each other while doing an
(atomic) move from state Φ1 to state Φ2, that is
∀ri ∈ R,∀rj ∈ R \ ri :
intermediate(Φ1i, γi) ∩ intermediate(Φ1j , γj) = ∅.

Note that the complexity of collision avoidance grows
quadratically with the number of robots.

Definition 4 (Trajectory and Motion Plan). A trajectory of
length L for a multi-robot system R is defined as a sequence
of multi-robot states Φ = (Φ(0),Φ(1), . . . ,Φ(L)) such that
the states are related by the transitions in the following way:

Φ(0)
γ(1)−−−→ Φ(1)

γ(2)−−−→ Φ(2) . . .Φ(L− 1)
γ(L)−−−→ Φ(L).

A motion plan for the trajectory Φ is defined as a sequence of
vectors of motion primitives (γ(1)γ(2) . . . γ(L)) to be applied
to the robots in R to generate the trajectory. The trajectory of
a robot r is given by Φr = (Φr(0),Φr(1), . . . ,Φr(L)) and the
corresponding motion plan as γr = (γr(1)γr(2) . . . γr(L)).

Definition 5 (Length of a Trajectory). The length of a trajec-
tory Φ, denoted as Length(Φ), of a multi-robot system is the
number of transitions in the trajectory. If the trajectory is Φ
= (Φ(0),Φ(1), . . . ,Φ(L)), Length(Φ) = L.

The total duration to move all robots from their initial state
to final state is given by L× δ.

Definition 6 (Cost of a Trajectory). The cost of a trajectory
of a multi-robot system is equal to the cumulative cost of all
the primitives used in the trajectory. For a trajectory Φ:

Φ(0)
γ(1)−−−→ Φ(1)

γ(2)−−−→ Φ(2) . . .Φ(L− 1)
γ(L)−−−→ Φ(L),

where γ(i) = [γr1(i), . . . , γr|R|(i)], γrj (i) ∈ Γrj , the cost of
the trajectory Φ, denoted by cost(Φ), is given by

cost(Φ) =

L∑
i=1

|R|∑
j=1

cost(γrj (i)) (1)

Definition 7 (Cost-optimal Trajectory). A multi-robot trajec-
tory Φ is cost optimal if there does not exist another trajectory
Φ′ that can be synthesized using the motion primitives in Γ
such that cost(Φ′) < cost(Φ).

B. Robot Equipment

We assume that each robot is equipped with two sensors:
a scalar sensor for an application specific sensing and a
range finder to identify the obstacles. For example, the robot
may use the scalar sensor to measure some quantity like
temperature, wireless signal strength, radiation strength etc.
The scalar sensor may be used to take picture of a cell in the
workspace to identify some object. In this work, we assume
that the robot is required to visit a cell to cover it. However,
in many applications, the robot would require to visit only a
subset of cells to achieve full coverage in terms of information
gathering.

The robot is also equipped with a range finder that helps
the robot to detect nearby obstacles. Depending on how many
range sensor the robot carries and the way they are placed
on the robot, the robot is able to detect some obstacles
surrounding it. If a robot detects a workspace cell to be
partially covered by an obstacle, the robot can mark the cell
to be covered by obstacle. However, if the robot can observe
a cell partially, and find the cell to be partially free, the robot
cannot decide whether the cell is obstacle-free or occupied by
obstacle.

The robots are equipped with a communication module
to communicate their sensed values to a central server. We
assume that the robots are equipped with localization sensors
that enable them to follow a given trajectory precisely.

C. Problem Statement

The input coverage planning problem for multi-robot system
can be expressed by a tuple Pcov = 〈W,Ω0, R, I,Γ〉, where
Ω0 ⊆ Ω is the set of initially know obstacle-covered cells,
I : R→W \Ω0 represents the initial locations of the robots,
and Γ = [Γr1 , . . . ,Γr|R| ] denotes the the motion primitives
available to the robots. Given a coverage planning problem
Pcov , our overall objective is to generate safe (obstacle-free
and collision-free) trajectories Φ for the robots in R so that
the robots can meet the following objectives:



• Minimize the total exploration time, i.e.,

Minimize Length(Φ). (2)

• Minimize the total cost of the trajectories, i.e.,

Minimize cost(Φ). (3)

• Satisfy the coverage constraint. In this work, we assume
that the robots have to visit all obstacle-free cell in the
workspace for the full coverage. Thus, the robots have to
satisfy the following constraint:

∀w ∈ F . ∃r ∈ R.
∨

i∈{0,1,...,Length(Φ)}

Φr(i).l = w (4)

III. A RECEDING HORIZON FRAMEWORK FOR
MULTI-ROBOT COVERAGE PLANNING (RHOCOP)

In this section, we present our coverage planning framework
for a multi-robot system, named RHOCOP, which enables
the robots to explore a partially known workspace efficiently.
As the workspace is partially observable, meaning that the
locations of the obstacles are not known a priori, an offline
optimal planning for the robots is not feasible. Our framework
relies on a central server that communicates with the robots to
gather their local knowledge about the workspace and builds a
partial global view about the workspace at a regular interval.
Based on this partial global view of the workspace, the central
server invokes a planner to generate a task plan (which cells
in the workspace a robot should visit) and motion plans (what
paths the robots should follow to visit those cells) for the
robots. More concretely, the central server is called the global
planner (GP). Figure 1(a) illustrates the overall architecture of
the system.

(a) An Architecture of Receding Hori-
zon Multi Robot Planning Framework

(b) Interaction between Global
Planner and a robot within a plan-
ning horizon τ

Fig. 1: Schematic Representation of Hierarchical Planning
Framework

More concretely, at the beginning of the τ th horizon, the GP
builds a global view of W by collecting information from the
robots, makes a feasible plan of length L(τ) for each robot, and
communicates the plans to the robots. The robots now execute
the plans and gather information about the workspace by their
scalar sensor and the obstacle detecting sensor while following
the trajectories governed by the motion plans provided by the
GP. At the end of the τ th horizon, the robots communicate
their states and corresponding views of W to the GP. After
receiving the responses from the robots, the GP updates its

view ofW , and generates a plan for the next (τ+1)th horizon
based on the updated information. A schematic representation
of the interaction between the GP and a robot is illustrated in
Figure 1(b).

A. Information Gathering by a Robot

At the beginning of the τ th horizon, a robot r receives
a motion plan γ

(τ)
r , by executing which the robot follows

a trajectory Φ
(τ)
r of length L(τ) = Length(Φ

(τ)
r ). While

executing the trajectory Φ
(τ)
r , the robot uses its scalar sensor

in each cell w ∈ F on its trajectory for gathering required
data. Moreover, the robot uses its obstacle detection sensor
in each cell on its trajectory to detect any surrounding cell
to be occupied by obstacle. In the horizon, the robot assigns
to each cell w ∈ W a probability Prw(OBS) that indicates
the probability of the cell w to be occupied by an obstacle.
If the probability Prw(OBS) < ηmin (Prw(OBS) > ηmax),
the robot decides the cell to be obstacle-free (occupied by
an obstacle), where 0 ≤ ηmin < ηmax ≤ 1, and ηmin and
ηmax are two threshold for deciding a cell to be obstacle-free
or occupied by an obstacle. If ηmin ≤ Prw(OBS) ≤ ηmax,
then the robot r does not have a definite information of the
cell w in that horizon. Thus the robot declare the cell w to be
unexplored.

The status of each cell w ∈ W as in the view of robot r in
the horizon τ is given below.

Status(τ)
r (w) = covered if

∨
i∈{0,1,...,Lτ}

Φ(τ)
r (i).l = w

= visible if Status(τ)
r (w) 6= covered ∧

(Prw(OBS) < ηmin ∨ Prw(OBS) > ηmax)

= unexplored if Status(τ)
r (w) 6= covered ∧

ηmin ≤ Prw(OBS) ≤ ηmax
(5)

The local view of r, represented as W(τ)
r , is expressed as

follows:

W(τ)
r = 〈C(τ)

r , V (τ)
r , U (τ)

r 〉 (6)

C(τ)
r = {w ∈ W | Status(τ)

r (w) = covered}
V (τ)
r = {w ∈ W | Status(τ)

r (w) = visible}
U(τ)
r = {w ∈ W | Status(τ)

r (w) = unexplored},

where C(τ)
r , V (τ)

r , and U
(τ)
r represent the covered, the visible,

and the unexplored cells from the perspective of robot r in
horizon τ , respectively. Figure 2(a) and 2(b) depict an example
of local views of robot r1 and r2, respectively.

B. Aggregation of Local Views

The GP, at beginning of any planning horizon τ , collects
the local views of the robots created in time horizon τ − 1,
and combines all the collected local views to build a global



(a) Local view of
Robot r1

(b) Local view of
Robot r2

(c) Aggregated
Global view

Fig. 2: An example of multiple local views and the global
view, built from the local views

view of the workspace. The global view, W(τ)
G , at beginning

of any planning horizon τ can be expressed as follows:

W(τ)
G = 〈C(τ)

G , V
(τ)
G , U

(τ)
G 〉

C
(τ)
G = C

(τ−1)
G ∪ ( ∪

r∈R
C(τ−1)
r )

V
(τ)
G = (V

(τ−1)
G ∪ ( ∪

r∈R
V (τ−1)
r )) \ C(τ)

G

U
(τ)
G =W \ {C(τ)

G ∪ V (τ)
G }, (7)

where C
(τ)
G , V (τ)

G , and U
(τ)
G represent the covered, visible,

and unexplored cells of global view, respectively. Figure 2(a)
and Figure 2(b) illustrate examples of local views whereas
the global view, made from those local views, is depicted by
Figure 2(c). In the next section, we describe how GP utilizes
the global view to generate trajectories for the robots for the
horizon τ .

C. Full Trajectory of the Robots

The complete trajectory of a robot is given as the
concatenation of the trajectories in all the horizons.
The trajectory of the robot r ∈ R is given by
(Φ(0)
r (Φ(0)

r (L(0)))∗Φ
(1)
r (Φ(1)

r (L(1)))∗. . .Φ
(K)
r (Φ(K)

r (L(K)))∗),
where K is the total number of horizons required for complete
coverage of the workspace. We denote by (Φ(τ)

r (L(τ)))∗

the finite time waiting by a robot at the end of horizon τ ,
when the GP aggregates the local views obtained from the
robots and generates plans for the next horizon. We denote
by Φr = Φ

(0)
r Φ

(1)
r . . .Φ

(K)
r the active trajectory of robot r.

The active trajectory of the multi-robot system is denoted by
Φ = Φ(0)Φ(1) . . .Φ(K), where Φ(i) = [Φ(

r1i), . . . Φ
(
r|R|i)].

We assume that the cost incurred by the robots is negligible
during their wait. Thus, the goal of the global planner is to
minimize length(Φ) and cost(Φ).

IV. GLOBAL PLANNER

To solve the coverage planning problem for a large number
of robots efficiently in a horizon, the global planner adopts
a divide-and-conquer approach. As will be evident from our
experimental results, the planning time grows exponentially
with the number of robots. To manage the planning complex-
ity, the GP divides the robots into several clusters and solve the
coverage planning problems for each cluster independently.

A. Clustering of Robots

The outcomes of the clustering procedure are a set of
clusters of robots C(τ) = {C(τ)

1 , . . . , C(τ)
n } and the length of

the trajectories for the robots in the horizon L(τ). Note that
the number of clusters n is different in different horizon.

1) Clustering algorithm: The clustering process works as
follows: The locations of the robots are considered as the
vertices of a graph, and Euclidean distance between any two
vertices is estimated as the weight of the edge between the two
vertices. Next, the global planner deletes all the edges which
are greater than 2 × Lmin + 1, where Lmin represents the
minimum length of any planning horizon. By deleting some
of the edges of the graph, the global planner partitions the
graph into multiple connected but smaller components, and
each of those parts is considered as a cluster. Note that the
inter-cluster distances are greater than or equal to 2×Lmin+1,
where the inter-cluster distance is defined as the minimum
distance between any two nodes in two different clusters.

2) Estimating the length of the next horizon: In each
planning horizon, the GP decides for a horizon length L(τ) for
all the robots in all the clusters. As the planning complexity
increases with the number of robots, the GP decides the value
of L(τ) based on the largest cluster (the cluster having the
maximum number of robots) so that the planning time for the
largest cluster can be minimized. At the very beginning, i.e.,
for the planning horizon τ = 0, the length of the horizon
boundary is initialized to L(0) = Lmin. For the successive
intervals, the GP first computes the sizes of the clusters, and
then calculates the horizon length based on some simple rule
as the one bellow:

L(τ) = Lmin if % ≤ |C(τ)
k |max

= Lmin + %− |C(τ)
k |max if |C(τ)

k |max < %

Here, |C(τ)
k |max represents the size of the largest cluster in

horizon τ , and % is a user defined threshold value.
3) Bounding Box: Inter-Cluster Collision Avoidance: The

GP encloses each of the clusters by a bounding box. The
bounding boxes partition the workspace into non-overlapping
regions. Thus, the bounding boxes help the GP to plan for
any cluster independently of others, and to avoid inter-cluster
collisions. The formulation of bounding boxes is a two-
step process. At first, the GP encloses any operational robot
rj ∈ C(τ)

k by a bounding box of area (2Lmin+1)×(2Lmin+1)
by keeping the robot at the center of the box. Next, the GP
computes the smallest bounding box enclosing the individual
bounding boxes of the member robots of cluster C(τ)

k . The
smallest bounding box becomes the bounding box for the
cluster C(τ)

k . Figure 3 illustrates an example of bounding-
boxes. For clarity, the boundaries of individual bounding-boxes
and the merged boxes are drawn separately.

4) Selecting Active Robots in a Cluster: After clustering
of the robots in any planning horizon τ , the GP classifies the
robots of a cluster C(τ)

k as Active or Dormant robots. The
reason of making some robots dormant is that there could



Fig. 3: Bounding-boxes for inter-cluster collision avoidance

be many robots in a compact cluster, and not all robots are
required for covering the region surrounded by the bounding
box of the cluster in that horizon. The GP counts the number
of visible cells within the bounding-box which encloses the
cluster C(τ)

k , estimates heuristically the number of robots N (τ)
k

required to visit those cells, and selects from the members
of C

(τ)
k only those N

(τ)
k robots which have more visible

neighbour cells than the others. For example, if the number of
visible cells in the cluster is ν, then N (τ)

k can be estimated as
d ρ×ν
L(τ) e, where ρ ≥ 1 is a parameter to be chosen appropriately.

The GP selects N (τ)
k robots from the robots in C(τ)

k in the set
Active

(τ)
k and the rest of the robots in the set Dormant(τ)

k .
The GP generates motion plans for the Active

(τ)
k robots

only. The Dormant(τ)
k robots do not change their locations

throughout the planning horizon τ , and thus are considered to
be static obstacles.

B. Coverage Planning

In each planning horizon τ , the GP formulates an optimal
and safe coverage planning problem for the robots in each
cluster C(τ)

k ∈ C(τ) based on Wτ
G, the available informa-

tion about the workspace at the beginning of the current
horizon τ . To solve the coverage planning problem for a
cluster of robots C

(τ)
k and horizon length L(τ) in the τ -

th horizon, the global planner needs to synthesize a trajec-
tory (Φ(τ)(0) Φ(τ)(1) . . . Φ(τ)(L(τ))) and the corresponding
motion plan (γ(τ)(1) γ(τ)(2) . . . γ(τ)(L(τ))), where ∀t ∈
{0 . . . Lτ}, Φ(τ)(t) is the vector containing the states of the
robots in C

(τ)
k , and ∀t ∈ {1 . . . L(τ)}, γ(τ)(t) is the vector

containing the motion primitives to be applied to the robots
in C

(τ)
k in state Φ(τ)(t − 1). At time step t, the state of a

robot r ∈ C(τ)
k is denoted by Φ

(τ)
r (t) and the motion primitive

applied to the robot is denoted by γ(τ)
r (t+ 1).

1) Utility Estimation: The primary objective of GP within
horizon τ is to maximize the acquired utility by the robots in
τ and to minimize the cost of the trajectories of those robots.
The overall objective of GP in τ can be expressed as follows:

Maximize
∑
r∈R

L(τ)∑
t=1

U (τ)
r (t)−

∑
r∈R

L(τ)∑
t=1

cost(γ(τ)
r (t)), (8)

where,
∑
r∈R

∑L(τ)

t=1 U
(τ)
r (t) represents the total utility ac-

quired by the robots during that planning horizon τ . On the
other hand,

∑
r∈R

∑L(τ)

t=1 cost(γ
(τ)
r (t)) is the total cost due

to transitions of the robots during τ th horizon. The symbol
U

(τ)
r (t) that represents the utility acquired by robot r at time

instant t is equal to the utility of the cell w in the planning
horizon τ , where, w = Φ

(τ)
r (t).l.

The utility of the cell w in the planning horizon τ , denoted
by Uτw, can be measured as follows:

Uτw = −M if w ∈ UτG ∨ Prw(OBS) ≥ ηmax (9a)
= 0 if w ∈ CτG, (9b)
= uw if w ∈ V τG , (9c)

where M is a large positive number. It can be noted from Eq.
(9a) that a large negative utility is assigned to a cell w if it
is either unexplored or obstacle-occupied. In Eq. (9b), the GP
assigns zero utility to the covered cells. The GP estimates the
utility uw of a visible cell w on the basis of its neighbourhood
information and uw is estimated as follow:

uw = wU × u(U)
w + wV × u(V )

w + wC × u(C)
w , (10)

where u(U)
w , u(V )

w , and u
(C)
w are the count of the number of

undiscovered, visible, and covered neighbours of w respec-
tively, and wU , wV , wC represent the corresponding weights.
If the GP assigns larger values to the weights u(U)

w and u(V )
w ,

the robots explore the workspace more. On the other hand, the
robots focus to cover more visible cells near to their current
locations if the wieght u(C)

w is assigned a larger value.
2) Constraints: To solve the coverage planning problem for

a cluster of robots, the GP formulates an optimization problem
with the objective function given in (8) subject to the following
constraints:
Initial location of the trajectory. At the initial state Φ

(τ)
r (0)

of the trajectory, a robot r will be in the location reached in
the final state Φ

(τ−1)
r (L(τ−1)) of the previous horizon . If the

current horizon is the first horizon, then the robot will be in
its initial location I(r) in the initial state of the trajectory.

∀r ∈ C(τ)
k .Φ

(τ)
r (0).l = (τ == 0)? I(r) : Φ

(τ−1)
r (L(τ−1)).l

(11)
Ensuring conformance between states and motion primitives:
For each robot r ∈ C(τ)

k , at each time instant t, the state Φ
(τ)
r (t)

should satisfy the precondition of the motion primitive applied
to the robot at time instant t. Moreover, the state Φ

(τ)
r (t)

should satisfy the postcondition of the motion primitive ap-
plied to the robot at time instant t− 1.

∀r ∈ C(τ)
k . ∀t ∈ {0, . . . , L(τ) − 1}.Φ(τ)

r (t) |= pre(γ
(τ)
r (t+ 1))

∀r ∈ C(τ)
k . ∀t ∈ {1, . . . , L(τ)}.Φ(τ)

r (t) = post(Φ
(τ)
r (t− 1), γ

(τ)
r (t))
(12)

Collision avoidance: The following set of constraints ensures
that the robots do not collide with each other.
∀t ∈ {0, . . . , L(τ) − 1}.∀ri ∈ C(τ)

k .∀rj ∈ C(τ)
k \ ri.

intermediate(Φ
(τ)
ri (t), γ

(τ)
ri ) ∩ intermediate(Φ

(τ)
rj (t), γ

(τ)
rj ) = ∅.

(13)
The solution of the optimization problem provides the

motion plans for the robots for the τ -th horizon. Note that
we do not have explicit constraints for ensuring obstacle
avoidance. As we maximize the objective function and the
utility for visiting a location covered by obstacle is a large
negative number, the optimal trajectory is obstacle-free.



C. Optimization on Global Planner

1) Dropping Robots for Enhancing Planning Efficiency:
When the robots are near completion of the coverage of the
workspace, fewer cells remain to be covered, and involving
all the robots is not efficient any more. To deal with such
situations, the GP may drop some of the robots in τ th horizon
if the planning efficiency in the (τ −1)th horizon, denoted by
κ(τ−1), is below a threshold value. The set of dropped robots is
denoted by R̄. The GP measures the planning efficiency of τ th

horizon, κ(τ) as the ratio of the number of cells covered in the
horizon and the number of operational robots. Mathematically,

κ(τ) =
|C(τ)
G \ C(τ−1)

G |
|R \ R̄|

. (14)

If the planning efficiency of (τ − 1)th horizon κ(τ−1) is
below a threshold value, then GP randomly drops some of
the dormant robots in the current horizon, and includes those
robots in R̄. The set R̄ grows with time. In any horizon, only
the robots in R \ R̄ participates in the coverage planning.
The robots in R̄ are considered as static obstacles in the
workspace. As our experimental results demonstrate, dropping
robots helps in improving the value of the objective function
in (3) significantly.

2) Potential Field based Utility Modification: The GP al-
ways strives to maximize its objective, defined by Eq. (8).
Consequently, at the beginning of τ th horizon, an isolated
visible cell may emerge or a robot rk may be surrounded
only by covered cells. We term a robot as surrounded robot
if it is surrounded by covered cells only. On the other hand,
by isolated cell, we mean a visible cell with all immediate
neighbours already covered. It is observed that the presence of
isolated cells increases the coverage overhead in terms of cov-
erage time and total trajectory length. In case of surrounded-
robots, formulating a suitable path is difficult, as the GP plans
with receding horizons with local knowledge. It is difficult for
the GP to decide in which direction it should steer the robot
so that it can reach a visible cell quickly.

We introduce a potential field based method [11] to diminish
the imperfection of the local objective maximization by the
global planner. The GP generates a potential field to attract
any robot to an isolated cell or to direct a surrounded-robot
towards a visible cell/region. To deal with an isolated cell, the
GP generates a circular potential field of radius L(τ) centering
the cell, and updates the utility of a covered cell within that
potential field. On the other hand, to synthesize a trajectory
for a surrounded robot rk, the GP first generates an obstacle-
free trajectory from the current location of the robot to its
nearest reachable visible cell. Next, the GP, considering the
location of rk as starting location, updates the utilities of the
first L(τ) covered cells. Figure 4 depicts an example of utility
modification of the covered cells near an isolated cell and a
surrounded-robot based on potential field, where L(τ) = 2.
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Fig. 4: Utility Modification Based on Potential Field

V. EVALUATIONS

We have evaluated the performance of RHOCOP through
extensive simulation along with Robot Operating System
(ROS) [23]. The Global Planner generates the motion plans
for the robots by using SMT solver Z3 [20]. Further, we
employ OpenMP framework [5] to generate motion plans
for the clusters concurrently. All the experiments have been
performed in a 64-bit Ubuntu 14.04 LTS machine with Intel(R)
CoreTM i7-4770 CPU @ 3.40GHz × 8 processor and 16 GB
RAM. The values of the parameters used in our experiments
are provided in Table VII in Appendix A.

A. Experimental Set up

The experimental set-up can be characterised on the basis of
the various parameters, which are enlisted as follows: (i) Size
and (ii) visibility of the Workspace, (iii) number of robots, and
(iv) planning approaches considered by the Global Planner on
the basis of the number of robots.
Workspace: The workspace can be characterized by its (i) size,
and (ii) visibility. Here, we have evaluated the performance of
RHOCOP with workspace of different sizes, such as (i) 16×
16, (ii) 32×32, (iii) 64×64, and (iv) 128×128. On the other
hand, the visibility of workspace can be classified as (i) full
or (ii) partial. In a fully observable workspace the locations of
the obstacles are known a priori. While evaluating RHOCOP,
we consider the workspace to be partially observable to the
robots and hence to the Global Planner (GP).
Planning approaches: We have classified the planning ap-
proaches, broadly, into two classes: (i) Clustered Planning, and
(ii) Total Planning. The classification is based on the number
of robots, considered by the GP at the time of planning. In
Clustered Planning, the GP plans separately for individual
clusters. However, the GP simultaneously considers all the
robots during Total Planning.
Benchmark schemes: We have considered three benchmark
schemes for comparing the efficiency of our proposed ap-
proach RHOCOP. The first scheme is termed as SOLO, which
consists of only one robot. The second one is termed as
TOTAL planning, in which the GP plans for all the robots
simultaneously. Moreover, the workspace is fully visible to
the robots as well as the GP. The third benchmark is termed
as IDEAL Planning. In IDEAL planning, the GP can fully
observe the workspace. Moreover, the GP clusters the robots,
and uses receding horizon planning to reduce the overhead of



Attributes
Benchmarks Visibility Horizon Planning Type Total Robots

TOTAL Full Fixed Total |R| > 1
SOLO Partial Receding - |R| = 1
IDEAL Full Receding Clustered |R| > 1

RHOCOP Partial Receding Clustered |R| > 1

TABLE I: Characteristics of Planning Schemes

motion planning. Table I illustrates the characteristics of the
benchmark schemes, along with RHOCOP.
Benchmark metrics: The efficiency of the different planning
schemes are compared with the help of the following bench-
mark metrics: (i) number of robots supported by a planning
scheme, (ii) total time taken by the Global Planner to plan, (iii)
average length of the paths traversed by the robots, shortly
average path length, (iv) number of iterations or planning
horizons required to cover the workspace, and (v) total length
of the planning horizons or total horizon length. Total planning
time and total horizon length together signify the overall
planning overhead. However, average path length represents
the overhead of a robot.

B. Robot Model

In our experiments, we have used the specifications of
Turtlebot [29], a widely used robot for academic research.
The robot has two types of primitives - (i) moving forward and
backward, and (ii) rotating a fixed angle while remaining at the
same position. We assume that the robot carries a directional
range finder which is installed in front of the robot. Thus we
consider only the forward motion for the robot.

The robot has four velocity configurations corresponding
to the heading towards east, west, north and south while
remaining stationary. We design the motion primitives in such
a way that the robot can move one cell forward in the current
heading direction by changing its velocity instantaneously
from 0 to 0.5m s−1 at the beginning and from 0.5m s−1 to
0 at the end, or it can rotate by 90◦ either in the left or in
the right direction while being in the same location. Thus we
have three motion primitives for each velocity configuration,
providing us total 12 motion primitives for the robot.

The dimension of each cell in the workspace is 1m× 1m,
thus the execution of the forward motion primitive takes 2s.
The angular velocity of the robot is set in such a way that
each rotation primitive also requires 2s. We assume that the
range finder installed on the robot can detect obstacles within
4m distance from the robot with a field of view of 90◦.

C. Experimental Results

This subsection is partitioned into three parts. At first, we
evaluate the performance of TOTAL planning. In other words,
we identify the drawbacks of considering all the robots simul-
taneously, and fixed horizon length during coverage planning.
Subsequently, we compare RHOCOP with SOLO and IDEAL
planning approaches. Further, we demonstrate how RHOCOP
overcomes the drawbacks of TOTAL planning. At the end, we
illustrate the effects of (i) different weight factors of Eq. (10),

Sl. Total
Robots

Horizon
Length Iteration

Planning
Time
(Sec)

Total
Horizon
Length

Path
Length

1.
2

2 209 31.3 418 418
3. 4 54 31.1 216 216
4. 8 26 1348 208 208
9.

4
2 121 67.12 242 242

11. 4 35 302.7 140 140
12. 8 timeout timeout timeout timeout

13.
8

2 0 0 0 0
14. 3 29 1140 87 87
15. 4 timeout timeout timeout timeout

TABLE II: Summary of experimental result for TOTAL Plan-
ning for a 16× 16 workspace (timeout = 2h)

(ii) dropping of robots during clustering, and (iii) potential
field on the performance of RHOCOP.

1) Evaluation of TOTAL Planning: For the evaluation of the
TOTAL Planning scheme, we consider a 16×16 fully observ-
able workspace. We have varied the number of robots and also
the fixed length of planning horizons in different experiments.
ITable II summarizes the results of Total Planning. It can
be observed from Table II that the planning time increases
exponentially with the number of robots and/or the length of
the planning horizon. In other words, planning time dominates
other factors of coverage planning when number of robots as
well as the horizon length is large. As a consequence, TOTAL
planning approach cannot accomplish efficient coverage a
large workspace with a large number of robots. These results
motivated us to introduce receding horizon coverage-planning,
clustering of robots into small groups in RHOCOP, and also
to consider variable horizon length depending on the size of
the largest cluster in different planning horizons.

2) Performance Evaluation of SOLO, IDEAL, and RHO-
COP: Table III, partially, provides the evaluation results of
the RHOCOP, SOLO, and the IDEAL planning. Here, we
illustrate the general trends, whereas the detailed results are
provided in Table VIII of Appendix B. It can be noted from
Table III that the coverage overhead for SOLO, generally, is
too large. For example, the total exploration time for SOLO
to cover a workspace of size 128×128 is more than 15 hours
((641 + 2 × 27734)s, as each motion primitive takes 2s for
its execution). On the other hand, with the help of 64 robots,
RHOCOP can solve the coverage problem in less than half an
hour ((417 + 2× 678)s = 1773s). In terms of total trajectory
length (which is an indication of total energy consumption
by the robots), the total path length of 64 robots is 32800,
which is less than 20% above the total path length 27734 for
a single robots. This results indicate that RHOCOP is capable
of managing a large group of robots efficiently both in terms
of the two cost functions provided in (2) and (3).

Further, it can be observed that, in case of RHOCOP, the
number of iterations, total horizon length, and path length
decrease uniformly with the increase in the number of robots.
Moreover, the planning time increases minimally with the
number of robots due to the efficient use of multi-core
processor for generating motion-plans for different clusters.



These results demonstrate that RHOCOP can solve multi-
robot coverage planning problem efficiently and is capable
of utilizing the power of employing a large number of robots
effectively.

We include the results for IDEAL planning to show how
well the RHOCOP deals with partial observability. As the
results show, RHOCOP takes not more than 20% iteration and
path length than those of the IDEAL planning in any scenario.
One noticeable fact is that IDEAL planning has taken more
time for motion planning than RHOCOP in most of the cases.
In IDEAL planning, the workspace is fully observable to GP,
and more number of cells are visible within any cluster due to
full observability. Consequently, the GP chooses fewer robots
as dormant in IDEAL planning than that in RHOCOP during
clustering in each horizon. As more robots in a cluster means
more time for planning, IDEAL planning takes more time for
motion planning than RHOCOP.

In Figure 7 of Appendix C, we have illustrated an example
scenario where the GP assists 4 robots to cover a 10 × 10
workspace. Figure 7 depicts the state of the workspace and
locations of the robots in different planning horizons.

3) Impact of Weight Factors: The GP approximates utility,
uw, of a cell wij from its neighborhood information. The
GP may formulate different coverage strategies by assigning
different weights to the various components of uw, which,
from Eq. (10), comprises three components with associated
weight factors. In this work, we consider the range of the
weight factors to be in between 0 and 1, and discretize
the values of the weight factors into three intervals: High,
Medium, and Low. The widths of the intervals are as fol-
lows: 1 ≥ High ≥ 0.75 , 0.75 > Medium ≥ 0.25,
and 0.25 > Low ≥ 0. Next, we illustrate the effects of
different weight factors. For brevity, we have evaluated only 4
strategies among the 33 strategies. The characteristics of those
4 strategies are summarized by Table IV. In HLL or MML, the
GP puts more weight to exploration (try to find more visible
cells), whereas the GP puts more weight to cover neighbouring
cells in LLH or MLM. For evaluation of these strategies, we
consider total 16 robots deployed in a 32 × 32 workspace.
Figure 5 depicts the efficiency of different strategies. It can
be noted that among these four strategies, MML outperforms
the other strategies, though the strategy MLM catches up with
MML strategy at the end. In the experimental evaluation of
RHOCOP in Table III, the GP considers MLM for coverage
strategy. However, estimating appropriate coverage strategy on
the basis of number and locations of the robots, and the state
of the coverage process is a challenging problem.

4) Clustering: Effects of Dropping Robots: The GP suitably
drops robots or reduces the number of operational robots
at later stages of coverage planning to eliminate the non-
performing robots. Table V shows that the reduction of op-
erational robots always enhances planning efficiency. It is
observed that the robots often form large clusters if the GP
does not drop the robots. Consequently, the GP estimates short
horizon length, and short horizons increase the number of total
iterations or horizons. Moreover, not dropping non-performing

0 20 40 60 80 100 120
0

200

400

600

800

1000

Number of Iterations

C
o
v
e
re

d
 C

e
lls

 o
f 
a
 3

2
×
3
2
 W

o
rk

s
p
a
c
e

 

 

HLL

LLH

MML

MLM

Fig. 5: Impacts of Parameters’ Values

robots increases the average path length of the robots. As an
example from Table V, the GP fails to generate motion plans
for 32 robots in a 32 × 32 workspace when it does not drop
robots, as the robots often form a large cluster. So, it can be
concluded that clustering along with dropping robots helps the
GP to scale up coverage planning with the number of robots.

Figure 6 illustrates the change in the number of operational
robots with respect to the number of detected cells in a 32×32
workspace. It can be observed that when the coverage reaches
80% of the workspace, the GP starts to reduce the number of
operational robots to improve the planning efficiency. The ex-
perimental result illustrates that the GP is capable of enhancing
the planning efficiency by dropping robots at different rate in
different scenarios. As an example, the dropping rate of 32
robots is different from 8 or 16 robots.
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5) Effects of Potential Field: The Potential Field (PF) helps
the GP to accomplish the required coverage by pulling robots
towards the isolated visible cells and by pushing a robot,
surrounded by detected cells, to a visible cell. To evaluate the
effectiveness of PF, we consider the GP without PF and with
PF. Total three test cases are evaluated. In the first, eight robots
are used for coverage of a 16× 16 workspace. For others, 16
robots provide coverage of 32× 32 and 64× 64 workspaces.
The test result is summarized in Table VI. It can be observed
from Table VI that PF is essential for successful coverage or
99.8% coverage of workspaces. Though the GP without PF is
successful 80% times to attain required coverage of a 16× 16
workspace, the success of GP without PF for larger workspace,
such as 32×32 and 64×64, is very limited or null. Moreover,



Sl. Benchmark Workspace
Size Total Robots Iteration Planning Time (Sec) Total Horizon Length Path Length

Avg. Std. Avg. Std. Avg. Std. Avg. Std.
1.

16× 16

SOLO 1 98 0.5 7.72 0.25 484 1 484 1
2.

RHOCOP
4 48.83 3.1 13.71 0.34 210.0 17.4 136 2.98

3. 8 30.86 1.86 17.51 0.77 109.4 9.8 61.71 2.90
4. 16 28.63 6.1 20.7 1.47 107.88 28.76 31.65 2.34
5.

32× 32

SOLO 1 356.8 3.67 35.12 0.24 1781 19.17 1781 19.17
6.

IDEAL

4 137.8 8.1 61.1 12.2 582.0 38.2 489.75 26.38
7. 8 113.2 29.2 147.6 41.75 480.2 179.8 257.2 12.90
8. 16 54.0 10.1 176.1 53 206 33.1 129.25 11.6
9. 32 53.5 8.3 115.4 29.3 200.2 40 61 1.40
10.

RHOCOP
4 177.8 34.56 37.9 8.68 718.0 127.4 536 24.18

11. 8 128.9 25.75 64.7 22.3 517.3 60.8 268.7 6.90
12. 16 76.23 12.26 84.6 15.96 282.85 43.4 142.2 4.20
13. 32 44.8 6.7 176.3 7.76 152.4 27.2 60.1 2.4
14.

64× 64

SOLO 1 1358 17.67 141.12 1.64 6785 85 6785 85
15. IDEAL 16 158.8 11.9 158.4 15.1 643.8 60.6 464.3 13.8
16. 32 86 6.4 362.7 29.6 296.8 19.40 224.8 2.1
17. RHOCOP 16 170.7 10.02 124.6 9.3 734.15 44.4 519.2 25.720
18. 32 90.6 3.7 270.3 11.8 302.66 3.4 243 3.16
19.

128× 128

SOLO 1 5548 24.67 641 32.24 27734 169.7 27734 169.7
20. IDEAL 32 257.4 12.2 454.5 27.3 1126 39.1 910.25 16.7
21. 64 188.7 13.73 431.6 16.5 649.2 34.40 476.8 6.20
22. RHOCOP 32 315.5 32.26 432.8 56.96 1358.85 73.4 1009.3 23.90
23. 64 192.4 11.6 417.3 29.76 678.4 39.2 512.5 9.8

TABLE III: Experimental Evaluation of SOLO, IDEAL, and RHOCOP Planning Approaches

wU wV wD
Strategy
Name Type Value Type Value Type Value

HLL High 1 Low 0.1 Low 0.1
LLH Low 0.1 Low 0.1 High 1
MML Medium 0.5 Medium 0.5 Low 0.1
MLM Medium 0.5 Low 0.1 Medium 0.5

TABLE IV: Weight Factors of Different Coverage Planning
Strategies

Sl. Total
Robots

Dropping
Robots Iteration

Planning
Time
(Sec)

Total
Hori-
zon

Length

Path
Length

1. 4 No 175.4 53.6 758.45 581.6
2. Yes 177.8 37.9 818 536
3. 8 No 117.3 68.65 465.6 284.4
4. Yes 128.9 64.7 517.3 268.7
5. 16 No 93 78.4 298.3 151.34
6. Yes 76.23 84.6 282.8 142.2
7. 32 No - - - -
8. Yes 44.8 176.3 152.4 60.1

TABLE V: Effects of Dropping Robots

it can be observed that the PF reduces the planning overhead
by improving the results in all dimensions. In summary, the
use of PF is an essential component for the success of receding
horizon coverage planning.

VI. CONCLUSION

In this paper, we have championed the use of large-scale
multi-robot systems for various applications involving sensing
and data gathering operations. To facilitate the use of multi-
robot systems for such applications, we have proposed a
framework that can provide a scalable solution for multi-robot
coverage of a partially known environment. Simulation results

show that the proposed framework ensures coverage quality
in presence of incomplete information, and is scalable with
respect to the number of robots and the size of the workspace.
Though our framework currently works for 2-D environments,
our system can be seamlessly extended to 3-D environments
and would be useful for various applications involving drones
and UAVs.

In our future work, we would like to address several
challenging issues that can make our system more efficient and
robust. First, in our current work, we have assumed that the
obstacles in the workspace are static. Enhancing our planning
framework to deal with dynamic obstacles in the workspace
would enhance the practical applicability of our system. Sec-
ond, our system currently deal with a homogeneous set of
robots and extending it to deal with heterogeneous robots is
our another future goal. For several applications, deploying a
heterogeneous set of robots may be more useful and efficient.
Finally, our system currently operates in a synchronous man-
ner. All the robots wait when the global planner generates the
plan and the global planner remains dormant when the robots
execute their plan. We would like to develop an asynchronous
version of our system where the global planner will serve the
robots in a demand-driven way with the goal that the robots
and the global planner can be kept busy for most of the time
during the operation of the system.
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APPENDIX A
DESCRIPTION OF PARAMETERS

Parameter Description Symbol Value
Minimum Horizon Length Lmin 2
Threshold for Max. Cluster Size % 4
Parameter for estimating the number of Active robots ρ 1.5
Utility of Obstacle Occupied or Unexplored Cell −M -5
Weight factor associated with unexplored cells wU 0.5
Weight factor associated with visible cells wV 0.1
Weight factor associated with covered cells wC 0.5
Threshold for Planning Efficiency κ(τ) 0.5

TABLE VII: Summary of Parameter values

APPENDIX B
DETAIL EVALUATION OF SOLO, IDEAL AND RHOCOP

Sl. Benchmark Workspace
Size Total Robots Iteration Planning Time (Sec) Total Horizon Length Path Length

Avg. Std. Avg. Std. Avg. Std. Avg. Std.
1.

16× 16

SOLO 1 98 0.5 7.72 0.25 484 1 484 1
2.

IDEAL
4 44 0.24 15.71 0.2 161.0 1.2 131.75 0.38

3. 8 29.0 4.2 14.6 1.75 105.2 9.8 56.2 2.90
4. 16 26.78 3.24 17.9 1.74 103.7 6.56 30.25 2.33
5.

RHOCOP
4 48.83 3.1 13.71 0.34 210.0 17.4 136 2.98

6. 8 30.86 1.86 17.51 0.77 109.4 9.8 61.71 2.90
7. 16 28.63 6.1 20.7 1.47 107.88 28.76 31.65 2.34
8.

32× 32

SOLO 1 356.8 3.67 35.12 0.24 1781 19.17 1781 19.17
9.

IDEAL

4 137.8 8.1 61.1 12.2 582.0 38.2 489.75 26.38
10. 8 113.2 29.2 147.6 41.75 480.2 179.8 257.2 12.90
11. 16 54.0 10.1 176.1 53 206 33.1 129.25 11.6
12. 32 53.5 8.3 115.4 29.3 200.2 40 61 1.40
13.

RHOCOP
4 177.8 34.56 37.9 8.68 718.0 127.4 536 24.18

14. 8 128.9 25.75 64.7 22.3 517.3 60.8 268.7 6.90
15. 16 76.23 12.26 84.6 15.96 282.85 43.4 142.2 4.20
16. 32 44.8 6.7 176.3 7.76 152.4 27.2 60.1 2.4
17.

64× 64

SOLO 1 1358 17.67 141.12 1.64 6785 85 6785 85
18.

IDEAL

4 441 35.1 160.3 12.44 2182.0 238.2 1959.75 126.38
19. 8 314.5 29.8 222.1 16.75 1422.3 84.8 1064.7 17.30
20. 16 158.8 11.9 158.4 15.1 643.8 60.6 464.3 13.8
21. 32 86 6.4 362.7 29.6 296.8 19.40 224.8 2.1
22.

RHOCOP
4 480 21.9 105.4 8.4 2356.80 111.2 2149.3 155.88

23. 8 241.2 25.6 89 10.3 1129 76.8 971.8 15.90
24. 16 170.7 10.02 124.6 9.3 734.15 44.4 519.2 25.720
25. 32 90.6 3.7 270.3 11.8 302.66 3.4 243 3.16
26.

128× 128

SOLO 1 5548 24.67 641 32.24 27734 169.7 27734 169.7
27.

IDEAL

8 814.6 44.2 391.1 21.72 4018 98.4 3702 46.68
28. 16 504.8 47.3 549.36 101.6 2280.7 159.2 1943.2 29.50
29. 32 257.4 12.2 454.5 27.3 1126 39.1 910.25 16.7
30. 64 188.7 13.73 431.6 16.5 649.2 34.40 476.8 6.20
31.

RHOCOP
8 988.7 104.6 314.2 29.6 4682.0 178.4 3968 62.18

32. 16 578.2 30.7 390 56.7 2540.6 145.8 2137.3 50.80
33. 32 315.5 32.26 432.8 56.96 1358.85 73.4 1009.3 23.90
34. 64 192.4 11.6 417.3 29.76 678.4 39.2 512.5 9.8

TABLE VIII: Experimental Evaluation of RHOCOP, SOLO, and IDEAL Planning Approaches



APPENDIX C
COVERAGE PLANNING EXAMPLE
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(b) Planning Horizon 1, L(1): 2, Total
Covered: 15, Active: Robot 1, 2, 3, and
4
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(c) Planning Horizon 2, L(2): 3, Total
Covered: 23, Active: Robot 1, 2, and
3, Dormant: Robot 4
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(e) Planning Horizon 9, L(9): 4, Total
Covered: 74, Active: Robot 1, 2, 3, and
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(f) Planning Horizon 10, L(10): 4, To-
tal Covered: 77, Active: Robot 1, 3,
and 4, Dormant: Robot 2
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(g) Planning Horizon 16, L(16): 5,
Total Covered: 92, Active: Robot 1, 3,
Dormant: Robot 4, Dropped: Robot 2
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(h) Planning Horizon 17, L(17): 5,
Total Covered: 92, Active: Robot 1,
Dormant: Robot 3 and 4, Dropped:
Robot 2
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(i) Planning Horizon 22, Coverage is
completed

Fig. 7: An Example of Coverage Planning of a 10× 10 Workspace by 4 Robots
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