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ABSTRACT
Self-triggered controllers have the potential to improve the state-

of-the-art of Cyber-Physical Systems (CPSs) by enhancing the per-

formance of the underlying closed-loop control systems. However,

a major concern in deploying a self-triggered controller in a safety-

critical CPS is that the stabilizing self-triggered controller may not

always guarantee the satisfaction of the safety constraints. We pro-

pose a self-triggered control scheme that deals with the safe sched-

uling of control tasks for uncertain continuous-time linear systems.

We derive a computationally efficient scheduling function that com-

putes an upper bound on the next sampling period as a function of

the current state in the presence of additive disturbance. To reduce

the computational complexity of online reachability analysis and

increase accuracy, we compute a large sequence of reachable sets

offline and use these precomputed sets to derive a low-complexity

online scheduling function that computes sufficiently large bounds

in real time. We evaluate our algorithm on three high-dimensional

benchmark control systems, where two of the examples have a

twelve-dimensional joint state plus feedback input. Experimen-

tal results demonstrate that our self-triggered control algorithm

guarantees the safety of the closed-loop control system through

negligible online computation, establishing the feasibility of its

practical implementation.
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1 INTRODUCTION
Feedback controllers are the core components of any safety-critical

Cyber-Physical System (CPS). A feedback controller receives the

state of the plant at some discrete time instants, computes the

control signal based on the state, and transmits the control signal

to the actuator [6]. A significant challenge in designing a feedback

control system is to decide the time instants when the control-signal
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updates should happen to ensure the desired behavior of the system

[9].

Traditionally, the digital implementation of a feedback control

system adopts either a time-triggered or an event-triggered ap-

proach. In the time-triggered approach, a fixed period is decided

for the control computation based on the worst-case requirement

[6, 13]. The main benefit of a time-triggered feedback control loop is

its easy implementation using a timer. Moreover, a well-developed

theory of discrete-time systems can be used for the implementation.

The downside of the time-triggered implementation is the possi-

ble over-computation of feedback input than what is necessary.

This is because the control computation and the associated sensor-

to-controller and controller-to-actuator communications happen

periodically. Thus, even if the system can remain in a safe state

with stable dynamics without feedback updates for a long time,

the feedback controller still performs unnecessary computations.

This can result in under-allocation of computation time for other

computation tasks, or else waste significant computation and com-

munication resources, thus leading to performance degradation.

To deal with the over-provisioning of the time-triggered imple-

mentation, event-triggered implementation was introduced as a

mechanism to perform the control computation only when nec-

essary [17, 29, 36]. In this scheme, the state of the plant is moni-

tored continuously, and a triggering condition is evaluated with

each monitored state. Once the state satisfies the triggering con-

dition, the state of the plant is communicated to the controller,

and the control computation is activated. Unlike the time-triggered

implementation, the event-triggered implementation reduces the

computation and communication load significantly without any

adverse effect on the control performance. However, the drawback

of this implementation is that it requires monitoring the system

state continuously, which requires additional hardware and also

may not be a viable solution for energy-constrained CPSs.

The limitations in time-triggered and event-triggered implemen-

tation of control systems motivated the control researchers to find

an alternative avenue, which led to the invention of self-triggered

control [4, 5, 30]. In self-triggered control, apart from updating the

control signal at the current time, the controller also computes the

future time point when the feedback needs to be updated. Typi-

cally between two control computations, the actuation signal is

held equal to the previously computed control signal (constant hold

implementation), and the plant evolves in open-loop without ob-

serving its state. But the design of a self-triggered control scheme

ensuring desired behavior of the closed-loop system is significantly

challenging.

Most works on self-triggered control have aimed to ensure the

stability of the closed-loop system [5, 19, 20, 25, 31, 32]. However, for
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Table 1: Basic notation

Notation Type Meaning Example

R, Z, C Set of Reals, Integers, Complex numbers

Θ≤𝑟 ,Θ≥𝑟 ,Θ<𝑟 ,Θ>𝑟 Θ ⊆ R, 𝑟 ∈ R Θ⊲⊳𝑟 = {𝑎 ∈ Θ | 𝑎 ⊲⊳ 𝑟 } if ⊲⊳∈ {≥, ≤,>,<} Z>0 is positive integers

Δ𝑛,Δ𝑛×𝑚 Δ ⊆ C, 𝑛,𝑚 ∈ Z The set of 𝑛-dimensional vectors and the set of 𝑛 ×𝑚
matrices containing elements from Δ, respectively

[𝑎,𝑏 ], (𝑎,𝑏 ) ,
(𝑎,𝑏 ], [𝑎,𝑏 )

𝑎 ∈ R⋃ {∞}
𝑏 ∈ R⋃ {∞}

[𝑎,𝑏 ] = {𝑐 ∈ R | 𝑎 ≤ 𝑐 ≤ 𝑏}
(𝑎,𝑏 ) = {𝑐 ∈ R | 𝑎 < 𝑐 < 𝑏}
[𝑎,𝑏 ) = {𝑐 ∈ R | 𝑎 ≤ 𝑐 < 𝑏}
(𝑎,𝑏 ] = {𝑐 ∈ R | 𝑎 < 𝑐 ≤ 𝑏}

𝑥 ≤ 𝑦 𝑥 ∈ R𝑛 , 𝑦 ∈ R𝑛 , 𝑛 ∈ Z>0 𝑥𝑖 ≤ 𝑦𝑖 ∀𝑖 ∈ {1, . . . , 𝑛}

[𝑟, 𝑠 ] 𝑟 ∈ R𝑛 , 𝑠 ∈ R𝑛 , 𝑛 ∈ Z>0 Hyper-rectangle

{
𝑥 ∈ R𝑛

��𝑟 ≤ 𝑥 ≤ 𝑠}
[𝑎]𝑛×𝑚 𝑎 ∈ C, 𝑛 ∈ Z>0,𝑚 ∈ Z>0 𝑛 ×𝑚 matrix whose all elements are equal to 𝑎

⌈𝑎⌉ 𝑎 ∈ R min {𝑖 ∈ Z | 𝑖 ≥ 𝑎} ⌈1.5⌉ = 2, ⌈−1.5⌉ = −1

rows (𝑋 ) , cols (𝑋 ) 𝑋 ∈ C𝑛×𝑚 , 𝑛,𝑚 ∈ Z rows (𝑋 ) = 𝑛, cols (𝑋 ) =𝑚

|𝑣 | , |𝑋 | 𝑣 ∈ C𝑛 , 𝑋 ∈ C𝑛×𝑚 , 𝑛,𝑚 ∈ Z |𝑣 |𝑖 = |𝑣𝑖 | , |𝑋 |𝑖 𝑗 =
��𝑋𝑖 𝑗

�� ∀𝑖 ∈ {1, . . . , 𝑛} , ∀ 𝑗 ∈
{1, . . . ,𝑚}

���� [1 + 𝜄−2 ] ���� =

[√
2

2

]
,���� [1 + 𝜄 −2 + 𝜄

−3.2
√
3 − 𝜄

] ���� = [√
2

√
5

3.2 2

]
∥𝑣 ∥∞ 𝑣 ∈ C𝑛 , 𝑛 ∈ Z≥0 max

{
|𝑣𝑖 |

�� 𝑖 ∈ {1, . . . , 𝑛}}
Diag (𝑣) 𝑣 ∈ C𝑛 , 𝑛 ∈ Z≥0 Diagonal matrix containing 𝑣 along the diagonal

𝑋Ψ, 𝑎Ψ
𝑋 ∈ C𝑚×𝑛 , 𝑎 ∈ C, Ψ ⊆ C𝑛 ,
𝑛,𝑚 ∈ Z≥0

{𝑋𝑧 | 𝑧 ∈ Ψ} and {𝑎𝑧 | 𝑧 ∈ Ψ}, respectively.

Γ ⊕ Ψ (Minkowski sum) Γ ⊆ C𝑛 , Ψ ⊆ C𝑛 , 𝑛 ∈ Z≥0 {𝑦 + 𝑧 | 𝑦 ∈ Γ, 𝑧 ∈ Ψ}

Trj (Ψ) Ψ ⊆ C𝑛 , 𝑛 ∈ Z≥0
{
v : [0,∞) → Ψ

�� v is piecewise continuous

}
ℜ𝔢 (𝜁 ) , ℜ𝔢 (Ψ)
(Real projection)

𝜁 ∈ C𝑛 , Ψ ⊆ C𝑛 , 𝑛 ∈ Z≥0
If 𝜁 = 𝑎 + 𝜄𝑏, ℜ𝔢 (𝜁 ) = 𝑎
ℜ𝔢 (Ψ) = {ℜ𝔢 (𝜁 ) | 𝜁 ∈ Ψ}

Arithmetic operation Addition, Subtraction, Division, Multiplication

a safety-critical CPS, an additional requirement is that the system

does not violate safety constraints on the state during its opera-

tion. Though safety issues related to periodically sampled control

systems and systems with continuous (without jump) feedback tra-

jectories have been addressed widely in the literature [11, 26, 27, 33],

the same for self-triggered control systems have received limited

attention.

In this paper, we tackle the problem of safe scheduling self-

triggered linear systems under unknown but bounded additive

disturbance input. The bounded disturbance can over-approximate

modeling errors, like linearization errors or environmental effects.

We derive a scheduling function that computes an upper bound on

the next sampling period as a function of the current state in the

presence of additive disturbance. The scheduling function has to

be evaluated fast in real-time so that the system performance is

not degraded; we hence derive a very low complexity scheduling

function.

While aiming at deriving a low-complexity scheduling function,

we do not want the scheduling bound to be overly conservative.

To find a safe upper bound on the sampling period in the presence

of an additive disturbance, in principle, some reachability analy-

sis techniques with high approximation accuracy [15, 23] can be

used, as in [22], to maximize the scheduled bound. However, such

accurate reachability analysis tends to have high computational

complexity, which may be unsuitable for real-time computations,

especially on low-powered processors. So, in this paper, we propose

a new self-triggered approach, which tries to improve both the

speed of online reachability analysis and its accuracy for maximiz-

ing the safe upper bound on trigger time. We accomplish this by

first precomputing a large sequence of reachable sets offline, which

are encoded by scalar values. Then we use the precomputed scalar-

ized reachable sets to derive a low-complexity online scheduling

function that determines large bounds in real time. In this regard,

we state a new set-theoretic condition (Lemma 3.3) that enables

the derivation of such a scheduling function. We also show that

the storage complexity of the scalarized reachable sets is very low,

since we use a scalarized representation.

Although previous approaches on self-triggered controller syn-

thesis precompute offline the invariant set (or invariant functions)

[10, 14, 16, 22, 34], the reachable sets in between sampling times that

are also required for online scheduling are not computed offline. A

significant difference in our approach is that apart from the invari-

ant set, we also precompute offline the reachable sets in between

sampling times that are also required for safe online scheduling.
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This improves both the speed and accuracy of online reachability

analysis involved in self-triggered scheduling. In our experiments,

we demonstrate a significant speedup in the computation of the

safe sampling period upper bound by our approach, compared to

using a highly accurate reachability analysis technique like [15].

The contributions of this paper are summarized below.

(1) We introduce a new approach of first precomputing offline

a scalarized overapproximation of sets that are reachable

between sampling periods and are required for scheduling,

in addition to the invariant set. These sets are represented by

scalars, thus the storage complexity is very low. Then we de-

rive a less conservative and low time and storage complexity

scheduling function for the self-triggered control.

(2) At a theoretical level, we derive a new set-theoretic con-

dition (Lemma 3.3) for linear systems that can be used to

derive a low complexity safe scheduling function based on

precomputing reachable sets in between sampling times.

(3) We perform experiments on three higher-dimensional bench-

mark control systems from literature, including two exam-

ples with 12 dimensional state plus feedback input, to demon-

strate the applicability and scalability of our algorithm.

Notation. The basic mathematical notation used in this paper is

given in Table 1

2 SELF-TRIGGERED LINEAR CONTROL
SYSTEM

In a self-triggered control system, a processor computes the feed-

back input as well as the next sampling time instant. In this paper,

we consider the problem of computing in real time an upper bound

on the next sampling time period at each sampling time instant, such

that the system state lies within a safe set by respecting the thresh-

old upper bound on sampling time. Note that the self-triggered

controller can however update the feedback input much before

the scheduled upper bound depending on additional requirements

of the system. Since this computation happens in real time, the

computation complexity of evaluating the threshold time should

be very low. We tackle this problem for linear control systems with

possible additive disturbance inputs bounded inside a box. So, we

define a self-triggered linear control system as specified by a tuple

L = (𝐴, 𝐵,𝐶, 𝐾, 𝛿, 𝜖)
where 𝐴 ∈ R𝑛×𝑛 is called state action matrix, 𝐵 ∈ R𝑛×𝑚 is called

input action matrix, 𝐶 ∈ R𝑛×𝑘 is called disturbance action matrix,
𝐾 ∈ R𝑚×𝑛 is called feedback matrix, 𝛿 : R𝑛 ×R𝑚 → [𝜖,∞) is called
sampling time threshold function and 𝜖 > 0 is the minimum possi-

ble sampling time. A state trajectory of the system is a continuous

function x : [0,∞) → R𝑛 such that there exist piecewise contin-

uous functions u ∈ Trj (R𝑚) and v ∈ Trj
(
[−1, 1]𝑘

)
(see Table

1), called input trajectory and disturbance trajectory, respectively,
and a sequence of sampling times (𝑡𝑖 )∞𝑖=0 satisfying the following
equations for all 𝑖 ∈ Z≥0 and 𝑡 ∈ (𝑡𝑖 , 𝑡𝑖+1).

𝑡𝑖 ∈ R≥0, 𝜖 ≤ 𝑡𝑖+1 − 𝑡𝑖 ≤ 𝛿 (x (𝑡𝑖 ) , u (𝑡𝑖 )) (1a)

¤x (𝑡) = 𝐴x (𝑡) + 𝐵u (𝑡) +𝐶v (𝑡) , v(𝑡) ∈ [−1, 1]𝑘 (1b)

¤u (𝑡) = 0, u (𝑡𝑖 ) = 𝐾x (𝑡𝑖 ) , (1c)

Note that in (1c), there is a discontinuous change in the feedback

input trajectory u at time 𝑡𝑖 . So, the above system is a hybrid dy-

namical system, and more specifically, a linear impulsive system

[3]. We call the joint,

[
x
u

]
, as the joint trajectory of the system. We

extend the notation for piecewise continuous functions in Table 1

to denote the set of all possible joint trajectories of L as Trj (L).
Then the reachable set of the system at time 𝑡 originating from a

set 𝐼 ⊆ R𝑛 × R𝑚 is

R (L, 𝐼 , 𝑡) =
{[

x(𝑡)
u (𝑡)

]
|

[
x
u

]
∈ Trj (L) ,

[
x (0)
u (0)

]
∈ 𝐼

}
.

The problem of safe scheduling of a self-triggered controller in real

time is defined as follows.

Problem 2.1 (Finding safe sampling time threshold func-

tion). We are given matrices 𝐴 ∈ R𝑛×𝑛 , 𝐵 ∈ R𝑛×𝑚 , 𝐶 ∈ R𝑛×𝑘 ,
𝐾 ∈ R𝑚×𝑛 ,𝑇 ∈ R𝑝×(𝑛+𝑚) , an initial set 𝐼 ⊆ R𝑛+𝑚 which is a hyper-
rectangle, a positive real 𝜖 > 0 and a positive integer 𝑁 ∈ Z>0. Let us
denote 𝑆 =

{
𝑧 ∈ R𝑛+𝑚 | ∥𝑇𝑧∥∞ ≤ 1

}
, called safe set, which is a lin-

early constrained set. We want to find a function 𝛿 : R𝑛+𝑚 → [𝜖,∞)
that aims to increase the value of 𝛿 (𝑧) for any 𝑧 ∈ R𝑛+𝑚 such that
the following are true.

(1) Let L = (𝐴, 𝐵,𝐶, 𝐾, 𝛿, 𝜖). Then ∀𝑡 ∈ [0,∞) R (L, 𝐼 , 𝑡) ⊆ 𝑆 .
(2) The number of arithmetic operations involved in computing

𝛿 (𝑧) for any 𝑧 ∈ R𝑛+𝑚 is less than 𝑁 .

The first condition above means that the state of the system

should remain within a given linearly constrained safe set 𝑆 at

all times. The second condition means that the schedule for the

next feedback update should be computed sufficiently fast in online

execution. Here, the speed is measured in terms of the number

of arithmetic operations, assuming that the arithmetic operations

contribute majorly to the time complexity of evaluating 𝛿 (𝑧). This
real-time complexity bound can ensure that very little time is spent

in finding a schedule for the next feedback update so that more

time can be allocated to other incumbent tasks.

Example 2.1 (Depth control of underwater vehicle). This example

is adapted from [28]. The depth of an underwater vehicle is con-

trolled by a feedback input. The state of the underwater vehicle at

any time is represented by a vector x (𝑡) =
[
𝜃 (𝑡) ,𝑤 (𝑡) , 𝑞 (𝑡) , 𝑦 (𝑡)

]
,

where 𝜃 (𝑡) is the pitch angle of the vehicle,𝑤 (𝑡) is the heave veloc-
ity of the vehicle, 𝑞 (𝑡) is the rate of change of pitch angle, and 𝑦 (𝑡)
is the depth of the vehicle. The matrices of the system specified as

L = (𝐴, 𝐵,𝐶, 𝐾, 𝜖) are given below. All units are S.I.

𝐴 =


0 0 1 0

0.0175 −1.273 −3.559 0

−0.052 1.273 −2.661 0

−5 1 0 0

 , 𝐵 =


0

0.085

21.79

0

 ,
𝐶 = 0.02𝐵, 𝐾 =

[
−0.7214 0.0445 −0.1873 0.2292

]
The dimension of combined state and feedback input is 4 + 1 = 5.

The minimum sampling time period is 𝜖 = 0.001 seconds. The

initial set is the origin. The safe set is 𝑆 =
{
𝑧 ∈ R5 | 0.5 |𝑧4 | ≤ 1

}
,

i.e., the deviation in the depth of the vehicle from a reference depth

should be less than 2m. We want to find a scheduling function

𝛿 : R5 → [𝜖,∞) such that ∀𝑡 ∈ [0,∞), R (L, 0, 𝑡) ⊆ 𝑆 . Also, for any
𝑧 ∈ R5, the number of arithmetic operations involved in evaluating
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𝛿 (𝑧) should be less than a user-defined limit 𝑁 = 666. Here, 𝑁 can

be chosen based on the time constraint on evaluating 𝛿 online and

the relation between the worst-case execution time for 𝛿 and the

upper bound on the arithmetic complexity of 𝛿 . For instance, let us

consider that the time constraint on evaluating 𝛿 is 10−3 seconds.
We have a very low-power embedded processor where the worst-

case execution time of each arithmetic operation is 1.49 ∗ 10−6
seconds. Then if the number of arithmetic operations in evaluation

𝛿 is less than 𝑁 = 666, we get that the time of evaluating 𝛿 is

less than 666 ∗ 1.49 ∗ 10−6 + 𝑒 < 10
−3

seconds, when a negligible

time 𝑒 < 10
−6

is spent on other operations apart from arithmetic

operations.

3 A NEW SET-BASED CONDITION FOR SAFE
SCHEDULING

In this section, we derive a low complexity safe scheduling function

solving Problem 2.1 based on the existence of a convex set and

other mathematical quantities that express the effect of the system

dynamics on the convex set between two consecutive updates. The

condition is quite general in the sense that it does not assume a fixed

set representation (such as zonotopes, polytopes and ellipsoids) for

the convex set and can in principle be solved using any convex set

representation. Such a set and the related mathematical quantities

can be computed offline, and their computation does not contribute

to the real-time computational complexity of evaluating 𝛿 . The

derivation is as follows.

Let us consider a system L = (𝐴, 𝐵,𝐶, 𝐾, 𝛿, 𝜖) for which we define
the following mathematical quantities.

𝐴𝑐 =

[
𝐴 𝐵

0 0

]
, 𝐴𝑟 =

[
I𝑛 0

𝐾 0

]
(2a)

Υ(𝑡) =
⋃

v∈Trj( [−1,1]𝑘 )

∫ 𝑡

0

exp (𝐴𝑐 (𝑡 − 𝜏))
[
𝐶

0

]
v(𝜏)𝑑𝜏 (2b)

We can get closed-form expressions for the joint state of the system

reached within the next sampling time period as a function of the

previous state for a given disturbance input trajectory. We can

also derive approximations of the reachable set expressed as a

function of Υ(𝑡) when the disturbance input trajectory is unknown

but bounded as specified in (1b). These relations are given in the

following lemma.

Lemma 3.1. Let z be a joint trajectory of L where (𝑡𝑖 )∞𝑖=0 is the se-
quence of sampling times and v : [0,∞) → [−1, 1]𝑘 is the associated
disturbance trajectory. Then ∀𝑖 ∈ Z≥0, ∀𝑡 ∈ (𝑡𝑖 , 𝑡𝑖+1), we get,

z (𝑡) = exp (𝐴𝑐 (𝑡 − 𝑡𝑖 )) z (𝑡𝑖 ) +
∫ 𝑡−𝑡𝑖

0

exp (𝐴𝑐 (𝑡 − 𝑡𝑖 − 𝜏))
[
𝐶

0

]
v(𝜏)𝑑𝜏

∈ exp (𝐴𝑐 (𝑡 − 𝑡𝑖 )) z (𝑡𝑖 ) ⊕ Υ (𝑡 − 𝑡𝑖+1) . (3a)

z (𝑡𝑖+1) = 𝐴𝑟 exp (𝐴𝑐 (𝑡𝑖+1 − 𝑡𝑖 )) z (𝑡𝑖 ) +

𝐴𝑟

∫ 𝑡𝑖+1−𝑡𝑖

0

exp (𝐴𝑐 (𝑡𝑖+1 − 𝑡𝑖 − 𝜏))
[
𝐶

0

]
v(𝜏)𝑑𝜏

∈ 𝐴𝑟 exp (𝐴𝑐 (𝑡𝑖+1 − 𝑡𝑖 )) z (𝑡𝑖 ) ⊕ 𝐴𝑟Υ (𝑡𝑖+1 − 𝑡𝑖 ) . (3b)

Proof. The proof is given in the Appendix (Lemma A.1). □

The following lemma allows us to represent reachable sets as

uniformly scaled convex sets containing the origin. This result

will be used later to derive a low-complexity scheduling function

ensuring safety.

Lemma 3.2. Let Γ be a convex set such that 0 ∈ Γ and there exists
a function 𝜒min : R𝑛+𝑚 → R such that ∀𝑧 ∈ R𝑛+𝑚 𝜒min (𝑧) =
min (𝑎 ∈ R≥0 | 𝑧 ⊆ 𝑎Γ). Let us consider that there exist finite real
valued sequences

(
𝛽 𝑗

)𝑀
𝑗=0 and

(
𝜂 𝑗

)𝑀
𝑗=0 satisfying ∀𝑗 ∈ {1, . . . , 𝑀},

𝛽0 = 1, 𝜂0 = 0, 𝛽 𝑗+1 ≥ 𝛽 𝑗 , 𝜂 𝑗+1 ≥ 𝜂 𝑗 (4a)⋃
𝜏∈[0, 𝑗𝜖 ]

exp (𝐴𝑐𝜏) Γ ⊆ 𝛽 𝑗 Γ,
⋃

𝜏∈[0, 𝑗𝜖 ]
Υ (𝜏) ⊆ 𝜂 𝑗 Γ (4b)

Let us consider a joint trajectory z ∈ Trj (L) for which (𝑡0)∞𝑖=1 is
the set of feedback sampling times. Then the following are true ∀𝑖 ∈
Z≥1, 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1).

z (𝑡𝑖+1) ∈ (5a)

𝐴𝑟 exp (𝐴𝑐𝜖)
(
𝛽⌈ 𝑡𝑖+1−𝑡𝑖 −𝜖

𝜖

⌉𝜒min (z (𝑡𝑖 )) + 𝜂⌈ 𝑡𝑖+1−𝑡𝑖 −𝜖
𝜖

⌉) Γ ⊕ 𝐴𝑟Υ (𝜖) .
z (𝑡) ∈

(
𝛽⌈ 𝑡−𝑡𝑖

𝜖

⌉𝜒min (z (𝑡𝑖 )) + 𝜂⌈ 𝑡−𝑡𝑖
𝜖

⌉) Γ. (5b)

The following lemma is a main result that gives a sufficient

condition on the scheduling function 𝛿 that solves Problem 2.1.

Lemma 3.3. Let us consider a set 𝑆 ⊆ R𝑛+𝑚 , called safe set and
another set 𝐼 ⊆ R𝑛+𝑚 , called initial set. Let us consider that there exist
a convex set Γ ⊆ R𝑛 , called sampling time invariant, a function 𝜒 :

R𝑛+𝑚 → R, called inclusion scaling function, and finite increasing
sequences of positive real numbers

(
𝛽 𝑗

)𝑀
𝑗=0 and

(
𝜂 𝑗

)𝑀
𝑗=0 such that

(4a,4b) and the following are true.

0 ∈ Γ, ∀𝑧 ∈ R𝑛+𝑚 𝑧 ⊆ 𝜒 (𝑧) Γ, (6a)

𝐴𝑟 exp (𝐴𝑐𝜖) Γ ⊕ 𝐴𝑟Υ(𝜖) ⊆ Γ, (6b)

𝐼 ⊆ Γ, (𝛽1 + 𝜂1) Γ ⊆ 𝑆 (6c)

Let us consider that the number of arithmetic operations involved in
evaluating 𝜒 (𝑧) for all 𝑧 ∈ R𝑛+𝑚 is less than 𝑁𝜒 . Let us define a
scheduling function 𝛿 : R𝑛+𝑚 → R≥0:

Inds (𝑧) =
{
𝑗 ∈ {1, . . . , 𝑀} | 𝜒 (𝑧)𝛽 𝑗 + 𝜂 𝑗 ≤ 1

}
, (6d)

if Inds (𝑧) ≠ ∅, then 𝛿 (𝑧) = max Inds (𝑧) 𝜖 (6e)

otherwise 𝛿 (𝑧) = 𝜖 (6f)

Then the following are true.

⟨1⟩ R (L, 𝐼 , [0,∞)) ⊆ 𝑆 .
⟨2⟩ The number of arithmetic operations for computing the value of

𝛿 (𝑧) for all 𝑧 ∈ R𝑛+𝑚 is not greater than𝑁𝜒+2
(
log

2
(𝑀) + 1

)
.

Proof. The proof is given in the Appendix (Lemma A.3). □
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4 OFFLINE COMPUTATIONS
We can improve the accuracy of online reachability analysis by

precomputing a large sequence of reachable sets and using this

sequence to approximate reachable sets online. Then the key idea

in reducing the complexity of online scheduling while utilizing pre-

computed reachable sets is that we represent the reachable set as

scalar multiples of a common convex set and use binary search on

scalar variables to perform scheduling. This was shown in Lemma

3.3. In this regard, in this section, we describe the procedure to

compute offline the convex set Γ and scalar sequences

(
𝛽 𝑗

)𝑀
𝑗=0 and(

𝜂 𝑗
)𝑀
𝑗=1 satisfying Equations (6b,6c, 4a, 4b) which are preconditions

in Lemma 3.3. The time of these offline computations does not add

to the online computation time for the evaluation of the scheduling

function 𝛿 . To solve for Γ, we need to parameterize the encoding of

the set Γ and solve for the parameters that satisfy (6b,6c, 4a, 4b). In

this paper, we choose the real projection of the complex zonotope

[2] for encoding Γ because the class of complex zonotopes is guar-

anteed to contain solutions sets to fixed point equations like (6b)

for stable systems with full rank eigenstructure (see Theorem 7 [2]).

Also, they are closed under linear transformations and Minkowski

sums, which benefits in improving the accuracy of approximating

reachable sets of linear systems under additive disturbance.

A complex zonotope is an encoding of a set of complex-valued

points where each point is a linear combination of complex-valued

vectors such that the combining coefficients are complex-valued and

bounded. The real projection of a complex zonotope can represent

some non-polytopic sets in addition to usual polytopic zonotopes,

and hence are more expressive than usual (real-valued) zonotopes.

Definition 4.1 ([2]). Let 𝐺 ∈ Crows (𝐺 )×cols (𝐺 ) be a complex ma-

trix, called generator matrix, 𝑐 ∈ Rrows (𝐺 ) be a real vector, called
center and 𝑠 ∈ Rcols (𝐺 )≥0 be a non-negative vector, called scale vec-

tor. The tuple (𝐺, 𝑐, 𝑠) is a complex zonotope that represents the

following set of points.

Z (𝐺, 𝑐, 𝑠) =
{
𝐺𝜁 + 𝑐 | 𝜁 ∈ Ccols (𝐺 ) , |𝜁 | ≤ 𝑠

}
(7)

We shall revisit a relation between complex zonotopes, which

can be used as a sufficient condition for checking the inclusion

between complex zonotopes. This relation and other properties will

be used later in this paper to solve for Γ,
(
𝛽 𝑗

)𝑀
𝑗=0,

(
𝜂 𝑗

)𝑀
𝑗=1 in (6b, 6c,

4a,4b).

Definition 4.2 ([1]). Let us consider two complex zonotope sets

Z (𝐺, 𝑐, 𝑠) ⊆ C𝑛+𝑚 andZ (𝐻, 𝑒, 𝑟 ) ⊆ C𝑛+𝑚 . Let us define a relation

“⊑” between the two complex zonotope encodings as (𝐻, 𝑒, 𝑟 ) ⊑
(𝐺, 𝑐, 𝑠) if the following is true.

∃𝑋 ∈ Ccols (𝐺 )×cols (𝐻 ) , ∃𝑦 ∈ Ccols (𝐺 ) :
𝐺𝑋 = 𝐻 Diag (𝑟 ) , 𝐺𝑦 = 𝑟 − 𝑐

∀𝑗 ∈ {1, . . . , cols (𝐺)} |𝑦𝑖 | +
cols (𝐻 )∑︁
𝑗=1

��𝑋𝑖 𝑗 �� ≤ 𝑠𝑖 (8a)

Then the following implication holds between any two complex

zonotopes (𝐺, 𝑐, 𝑠) and (𝐻, 𝑒, 𝑟 ).
(𝐻, 𝑒, 𝑠) ⊑ (𝐺, 𝑐, 𝑠) =⇒ Z (𝐻, 𝑒, 𝑠) ⊆ Z (𝐺, 𝑐, 𝑠) (9)

Algorithm 1 Offline computation of a set Γ and sequences

(
𝛽 𝑗

)𝑀
𝑗=0

and

(
𝜂 𝑗

)𝑀
𝑗=0 satisfying (6b,6c, 4a, 4b)

Choose 𝑙 ∈ Z≥0 and𝑀 ∈ Z≥0.
% order of complex zonotope and length of reachability sequence

1: 𝐺 ← I𝑛+𝑚 .

2: for 𝑖 in 2 : 𝑙 do
3: 𝐺 ←

[
𝐺 Eigenvectors (𝐴𝑟 exp (𝐴𝑐𝑖𝜖))

]
4: end for
5: 𝑠 ← arg𝑠 max [1]

1×𝑙 |𝐺 | 𝑠 (𝐺 is constant):

(12a-12c) are satisfied % convex optimization

6: 𝜌 ← min 𝜌′ ∈ [0,∞) : (I𝑛+𝑚, 0, |𝐴𝑐𝐺 | 𝑠𝜖) ⊑ (𝜌′𝐺, 0, 𝑠)
7: 𝛽0 ← 𝜌 +min 𝛽 ∈ [1,∞) : (exp (𝐴𝑐 𝑗𝜖)𝐺, 0, 𝑠) ⊑ (𝛽𝐺, 0, 𝑠)
8: 𝜂0 ← min𝜂 ∈ [0,∞) :

(
𝐽 (0) , 0, [1]𝑞×1

)
⊑ (𝜂𝐺, 0, 𝑠)

9: for 𝑗 = 1 : 𝑀 do
10: 𝛽 𝑗 ← max

{
𝛽 𝑗−1, 𝜌 +min 𝛽 ∈ [0,∞) : (15𝑒)

}
(15e): (exp (𝐴𝑐 𝑗𝜖)𝐺, 0, 𝑠) ⊑ (𝛽𝐺, 0, 𝑠)

11: 𝜂 𝑗 ← max

{
𝜂 𝑗−1,min𝜂 ∈ [0,∞) : (15𝑔)

}
(15g):

(
𝐽 ( 𝑗), 0, [1]𝑞×1

)
⊑ (𝜂𝐺, 0, 𝑠)

12: end for
13: return Γ = ℜ𝔢 (Z (𝐺, 0, 𝑠)),

(
𝛽 𝑗

)𝑀
𝑗=0,

(
𝜂 𝑗

)𝑀
𝑗=0.

The linear transformation of a complex zonotope by a matrix 𝑃

followed by Minkowski sum with another complex zonotope is a

complex zonotope, computed as follows:

𝑃 Z (𝐺, 𝑐, 𝑠) ⊕ Z (𝐻, 𝑒, 𝑟 ) = Z
( [
𝑃𝐺 𝐻

]
, 𝑃𝑐 + 𝑒,

[
𝑠

𝑟

] )
. (10)

The interested reader may go through [1] for the proofs of the

above properties of complex zonotopes. Now we describe the of-

fline computations to find a complex zonotopic set centered at the

origin Γ = Z (𝐺, 0, 𝑠) and sequences
(
𝛽 𝑗

)𝑀
𝑗=0 and

(
𝜂 𝑗

)𝑀
𝑗=1 satisfying

Equations (6b,6c, 4a, 4b), the preconditions in Lemma 3.3.

In a time interval [ 𝑗𝜖, ( 𝑗 + 1)𝜖] where 𝑗 ∈ {0, . . . , 𝑀}, the contri-
bution of the disturbance set to the reachable set approximation

in that time interval is

⋃
𝑡 ∈[ 𝑗𝜖,( 𝑗+1)𝜖 ] Υ(𝑡) according to (3a). For a

small value of 𝜖 , this set can be approximated by a zonotope with

very good accuracy using the algorithm of Girard [15]. We subsume

this algorithm in this paper, and denote the resulting zonotopic over-

approximation as Z
(
𝐽 ( 𝑗), 0, [1]𝑞×1

)
where 𝐽 ( 𝑗) is the generator

matrix of the zonotope over-approximation of

⋃
𝑡 ∈[ 𝑗𝜖,( 𝑗+1)𝜖 ] Υ(𝑡)

for any 𝑗 ∈ Z≥0, 0 is the center of the zonotope over-approximation,

and 𝑞 is the number of columns in the generator matrices, i.e.,⋃
𝑡 ∈[ 𝑗𝜖,( 𝑗+1)𝜖 ]

Υ(𝑡) ⊆ Z
(
𝐽 ( 𝑗), 0, [1]𝑞×1

)
(11)

The following lemma is to be used to compute a set Γ satisfying

(6b,6c).

Lemma 4.3. Let𝐺 ∈ C(𝑛+𝑚)×𝑙 be a complexmatrix,𝑇 ∈ R𝑝×(𝑛+𝑚)
be a real matrix, 𝑆 =

{
𝑧 ∈ R𝑛+𝑚 | ∥𝑇𝑧∥∞ ≤ 1

}
be a linearly con-

strained set and 𝐼 = [−𝑟, 𝑟 ] for some 𝑟 ∈ R𝑛 be a hyper-rectangle. Let
𝑠 ∈ R≥0 be a solution vector to the following convex constraints.
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|𝑇𝐺 | 𝑠 + |𝑇𝐴𝑐𝐺 | 𝑠𝜖 ≤
[
1

]
𝑝×1 (12a)

Z
( [
𝐴𝑟 exp (𝐴𝑐𝜖)𝐺 𝐴𝑟 𝐽 (0)

]
, 0,

[
𝑠

[1]𝑞×1

] )
⊑ Z (𝐺, 0, 𝑠) (12b)

Z (I𝑛+𝑚, 0, 𝑟 ) ⊑ Z (𝐺, 0, 𝑠) (12c)

Then Γ = ℜ𝔢 (Z (𝐺, 0, 𝑠)) satisfies Equations (6b, 6c).

Proof. By the formula about linear transformation andMinkowski

sum of a complex zonotope in (10) (see also Lemmas 2.2.1 and 2.2.3

of [1]) and (11), we get that the L.H.S. of (6b) is equal to the real

projection of L.H.S of (12b). Next by the sufficient condition for

inclusion between complex zonotopes given in (9) (see also Lemma

2.3.6 of [1]), we get (6b) and also that 𝐼 ⊆ Γ. Next, by Lagrange’s

form of Taylor remainder (see Section 5.2 of [7]), we get that for

any 𝜏 ∈ [0, 𝜖] and 𝑧 ∈ R𝑛+𝑚 , by Taylor expansion w.r.t 𝜏 ,

𝑇 exp (𝐴𝑐𝜏) 𝑧 ⊆ 𝑇𝑧 ⊕ [− |𝑇𝐴𝑐𝑧 | 𝜖, |𝑇𝐴𝑐𝑧 | 𝜖] (13)

So, for any 𝑧 = ℜ𝔢 (𝐺𝜁 ) ∈ Γ = ℜ𝔢 (Z (𝐺, 0, 𝑠)) : |𝜁 | ≤ 𝑠 ,

we get 𝑇 exp (𝐴𝑐𝜏) 𝑧 ≤ 𝑇𝑧 + |𝑇𝐴𝑐𝑧 | 𝜖 ≤ ℜ𝔢 (𝑇𝐺𝜁 ) + |𝑇𝐴𝑐𝐺𝜁 | 𝜖 ≤
|𝑇𝐺 | 𝑠 + |𝑇𝐴𝑐𝐺 | 𝑠𝜖 ≤

[
1

]
𝑝×1. This proves (6c). □

Solving for set Γ optimally satisfying Equations (6b, 6c): We first fix

the generator matrix 𝐺 of the complex zonotope. For this, we first

choose the eigenvectors of 𝐴𝑟 exp (𝐴𝑐𝑖𝜖) for a few different values

of 𝑗 ∈ Z≥0 to be among the columns of 𝐺 , including 𝑗 = 0. This is

because according to Theorem 7 of [2], the existence of 𝑠 satisfying

the conditions (6b,6c) are guaranteed under certain stability and

rank conditions, when𝐺 contains the eigenvectors of 𝐴𝑟 exp (𝐴𝑐𝜖)
among its columns. Then we can augment any number of addi-

tional generators to𝐺 because the scale factors can be adjusted to

regulate the effect of each generator on the satisfaction of the above

constraints. We therefore augment the identity matrix to generators

of𝐺 . Now for the fixed𝐺 , the constraints above are convex in 𝑠 and

other auxiliary variables involved in the relations. So, we can use

convex optimization to solve the constraints for the fixed 𝐺 . While

solving the convex constraints, we want to maximize the size of Γ,
so that we can find a large bound on the sampling time period. So,

we perform the following convex optimization to find a large-sized

real projection of complex zonotope Γ = ℜ𝔢 (Z (𝐺, 0, 𝑠)) satisfying
(6b, 6c). The sum of projections of the complex zonotope along the

different axes is given by [1]
1×𝑙 |𝐺 | 𝑠 based on Lemma 12 of [2]. So,

we maximize this sum to increase the size of the complex zonotope.

𝑚𝑎𝑥 [1]
1×𝑙 |𝐺 | 𝑠 : (12a-12c) are satisfied. (14)

Next, we shall compute the non-decreasing sequences

(
𝛽 𝑗

)𝑀
𝑗=0 and(

𝜂 𝑗
)𝑀
𝑗=1 satisfying (6b,6c, 4a, 4b) inductively using convex optimiza-

tions according to the following lemma.

Lemma 4.4. Let us consider a set Γ = ℜ𝔢 (Z (𝐺, 0, 𝑠)). Let us con-
sider a positive real 𝜌 ∈ R≥0 and finite sequences

(
𝛽 𝑗

)𝑀
𝑗=0 and

(
𝜂 𝑗

)𝑀
𝑗=0

defined inductively as optimal solutions to the convex optimization
problems (15a-15f) below.

𝜌 = min 𝜌′ ∈ [0,∞) : (I𝑛+𝑚, 0, |𝐴𝑐𝐺 | 𝑠𝜖) ⊑
(
𝜌′𝐺, 0, 𝑠

)
(15a)

𝛽0 = 𝜌 +min 𝛽 ∈ [1,∞) : (exp (𝐴𝑐 𝑗𝜖)𝐺, 0, 𝑠) ⊑ (𝛽𝐺, 0, 𝑠) (15b)

𝜂0 = min𝜂 ∈ [0,∞) :
(
𝐽 (0) , 0, [1]𝑞×1

)
⊑ (𝜂𝐺, 0, 𝑠) (15c)

∀𝑗 ∈ Z≥1 𝛽 𝑗 = max

{
𝛽 𝑗−1, 𝜌 +min 𝛽 ∈ [0,∞) : (15𝑒)

}
, (15d)

(exp (𝐴𝑐 𝑗𝜖)𝐺, 0, 𝑠) ⊑ (𝛽𝐺, 0, 𝑠) (15e)

∀𝑗 ∈ Z≥1 𝜂 𝑗 = max

{
𝜂 𝑗−1,min𝜂 ∈ [0,∞) : (15𝑔)

}
(15f)(

𝐽 ( 𝑗), 0, [1]𝑞×1
)
⊑ (𝜂𝐺, 0, 𝑠) (15g)

Then the finite sequences
(
𝛽 𝑗

)𝑀
𝑗=0 and

(
𝜂 𝑗

)𝑀
𝑗=0 satisfy (4a,4b).

Proof. By (15b,15c,15d,15f), we have ∀𝑗 ∈ Z≥0, 𝛽 𝑗+1 ≥ 𝛽 𝑗 and
𝜂 𝑗+1 ≥ 𝜂 𝑗 , which proves (4a).

Next, let us consider a 𝑡 ∈ [ 𝑗𝜖, ( 𝑗 + 1)𝜖] for some 𝑗 ∈ Z≥0. By
Taylor remainder theorem, for any 𝑧 ∈ R𝑛+𝑚 , we can write

exp (𝐴𝑐𝑡) 𝑧 ⊆ exp (𝐴𝑐 𝑗𝜖) ⊕ [− |𝐴𝑐𝑧 | 𝜖, |𝐴𝑐𝑧 | 𝜖] (16a)

= exp (𝐴𝑐 𝑗𝜖) Z (𝐺, 0, 𝑠) ⊕ Z (I𝑛+𝑚, 0, |𝐴𝑐𝐺 | 𝑠𝜖) (16b)

= Z (exp (𝐴𝑐 𝑗𝜖) , 0, 𝑠) ⊕ Z (I𝑛+𝑚, 0, |𝐴𝑐𝐺 | 𝑠𝜖) % by (10) (16c)

By (15a), we get that

Z (I𝑛+𝑚, 0, |𝐴𝑐𝐺 | 𝑠𝜖) ⊆ 𝜌Z (𝐺, 0, 𝑠) (16d)

So, by (10,15b,15d,16d), and thatZ (𝐺, 0, 𝑠) is a convex set contain-
ing 0, we get that ∀𝑗 ∈ Z≥0,

Z (I𝑛+𝑚, 0, |𝐴𝑐𝐺 | 𝑠𝜖) ⊕ exp (𝐴𝑐 𝑗𝜖) Z (𝐺, 0, 𝑠) ⊆ 𝛽 𝑗 Z (𝐺, 0, 𝑠)
% By (16c)

=⇒ ∀𝑡 ∈ [ 𝑗𝜖, ( 𝑗 + 1)𝜖] exp (𝐴𝑐𝑡) Γ ⊆ 𝛽 𝑗 Γ (16e)

The above proves that (4b) is satisfied. Next by (15c,15f), we get

that ∀𝑗 ∈ Z≥0, ∀𝑡 ∈ [ 𝑗𝜖, ( 𝑗 +1)𝜖], Υ (𝑡) ⊆ ℜ𝔢 (Z (𝐺, 0, 𝑠) = Γ). This
proves (4b). □

5 DERIVING ONLINE SCHEDULING
FUNCTION

After computing the complex zonotopic projection set Γ according

to Equation (14) and Lemma 4.4, we have to first derive the inclusion

scaling function 𝜒 given in Lemma 3.3. The function checks the

amount of scaling required to include a given point inside the

set Γ. This function will be evaluated online, thus we want the

computational complexity of evaluating 𝜒 to be very small. Such

a function is given in the following lemma, and the complexity of

evaluating the function is also given.

Lemma 5.1. LetZ (𝐺, 0, 𝑠) ⊆ C𝑛+𝑚 be a complex zonotope such
that (𝐺 Diag (𝑠)) has rank𝑛+𝑚 and (𝐺 Diag (𝑠))† denote the Moore-
Penrose pseudo-inverse of (𝐺 Diag (𝑠)). Let us define a function,

𝜒 : R𝑛+𝑚 → R≥0, ∀𝑧 ∈ R𝑛+𝑚, 𝜒 (𝑧) =
(𝐺 Diag (𝑠))† 𝑧


∞
. (17)

Then 𝑧 ⊆ 𝜒 (𝑧) Z (𝐺, 0, 𝑠).
Since 𝐺, 𝑠 are precomputed offline, so the matrix (𝐺 Diag (𝑠))†

can be precomputed offline before evaluating 𝛿 (𝑧) online. Then the
number of arithmetic operations required for computing 𝜒 (𝑧) for any
𝑧 ∈ R𝑛+𝑚 is not greater than (8(𝑛 +𝑚) + 3) cols (𝐺).
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Proof. Let us consider 𝑧 ⊆ R𝑛+𝑚 and 𝜁 =
Diag(𝑠 ) (𝐺 Diag(𝑠 ) )†𝑧

𝜒 (𝑧 ) .

As 𝜒 (𝑧) =
(𝐺 Diag (𝑠))† 𝑧


∞
, we get |𝜁 | =

���Diag(𝑠 ) (𝐺 Diag(𝑠 ) )†
���𝑧

𝜒 (𝑧 )

≤ |𝑠 |

(𝐺 Diag (𝑠))† 𝑧

∞

𝜒 (𝑧) = |𝑠 | 𝜒 (𝑧)
𝜒 (𝑧) = |𝑠 | (18a)

Then we can write

𝑧 = (𝐺 Diag (𝑠)) (𝐺 Diag (𝑠))† 𝑧 = 𝐺𝜒 (𝑧) 𝜁 (18b)

⊆ 𝜒 (𝑧) Z (𝑍, 0, 𝑠) % (as |𝜁 | ≤ 𝑠 by (18a)) (18c)

Next, the upper bound on the arithmetic complexity of computing

𝜒 (𝑧) is an upper bound on the arithmetic complexity of comput-

ing the complex-valued matrix multiplication plus the complexity

of computing the infinity norm in (17). The number of complex

number multiplications involved in the complex-valued matrix

multiplication is less than (𝑛 +𝑚) cols (𝐺). So, the number of real-

valued multiplications is less than 4 times the former, which is

4(𝑛 +𝑚) cols (𝐺). During a single complex-valued scalar multipli-

cation, there are 2 real-valued additions involved. So, the number

of real-valued additions resulting from complex-valued multipli-

cations is 2(𝑛 +𝑚) cols (𝐺). Also, during complex-valued matrix

multiplication, there are less than (𝑛 +𝑚) cols (𝐺) complex-valued

additions, which amounts to another 2(𝑛 +𝑚) cols (𝐺) real-valued
additions. So, the total number of arithmetic operations result-

ing from the complex-valued matrix multiplication is less than

(4 + 2 + 2) (𝑛 +𝑚) cols (𝐺) = 8(𝑛 +𝑚) cols (𝐺). Next, we have to
compute the maximum of the absolute values of the complex vector

after the matrix multiplication. For each absolute value calcula-

tion, there will be two real-valued multiplications and one addi-

tion. So, the total number of arithmetic operations is bounded by

(8(𝑛 +𝑚)) cols (𝐺) + (2 + 1) cols (𝐺) = (8(𝑛 +𝑚) + 3) cols (𝐺). □

Now we derive an online scheduling function 𝛿 that solves Prob-

lem 2.1. The derivation makes use of the function 𝜒 derived in

Lemma 5.1 and the sequences (𝛽𝑖 )𝑀𝑖=0 , (𝜂𝑖 )
𝑀
𝑖=0 computed according

to Lemma 4.4. This is given in the following theorem.

Theorem 5.2. Let us consider an integer 𝑁 > 0. Let us choose
hyperparameters 𝑙 ∈ Z≥1 (order of complex zonotope) and𝑀 (length
of reachability sequences) in Algorithm 1 such that

(8(𝑛 +𝑚) + 3) 𝑙 (𝑛 +𝑚) + 2
(
log

2
(𝑀) + 1

)
≤ 𝑁 (19)

Let us consider the complex zonotope tuple (𝐺, 0, 𝑠) and the sequences
(𝛽𝑖 )𝑀𝑖=0 , (𝜂𝑖 )

𝑀
𝑖=0 computed by Algorithm 1, and the inclusion scaling

function 𝜒 : R𝑛+𝑚 → R≥0 defined in Equation (17). Let us define a
scheduling function 𝛿 : R𝑛+𝑚 → R≥0 according to Equation (6d-6f)
of Lemma 3.3 for the above sequences (𝛽𝑖 )𝑀𝑖=0 , (𝜂𝑖 )

𝑀
𝑖=0. Then we have

R (𝐼 , [0,∞)) ⊆ 𝑆 and the number of arithmetic operations required
for evaluating 𝛿 (𝑧) for any 𝑧 ∈ R𝑛+𝑚 is not greater than 𝑁 .

Proof. According to Lemmas 4.3 and 4.4, we get that the set

Γ = ℜ𝔢 (Z (𝐺, 0, 𝑠)) and sequences (𝛽𝑖 )𝑀𝑖=0 , (𝜂𝑖 )
𝑀
𝑖=0 satisfy the Equa-

tions (6b, 6c, 4a,4b) of Lemma 3.3. Therefore, by Lemma 3.3, we

have R (𝐼 , [0,∞)) ⊆ 𝑆.
Next, by Lemma 3.3⟨2⟩, we get that the arithmetic complexity

of evaluating 𝛿 is bounded above by 𝑁𝜒 + 2
(
log

2
(𝑀) + 1

)
where

𝑁𝜒 is the arithmetic complexity of evaluating 𝜒 . But by Lemma

5.1, we have 𝑁𝜒 = (8(𝑛 +𝑚) + 3) cols (𝐺), and by Algorithm 1, we

have cols (𝐺) = 𝑙 (𝑛 +𝑚). Thus the complexity of evaluating 𝛿 is

bounded above by (8(𝑛 +𝑚) + 3) 𝑙 (𝑛 +𝑚) + 2
(
log

2
(𝑀) + 1

)
. Then

by (19), this complexity is bounded above by 𝑁 . □

Reducing complexity while improving accuracy. According to the

above theorem, the online computational arithmetic complexity

is bounded by (8(𝑛 +𝑚) + 3) 𝑙 (𝑛 +𝑚) + 2
(
log

2
(𝑀) + 1

)
. This on-

line complexity is negligible compared to an accurate reachability

analysis algorithm like [15]. For example, in a step-by-step reacha-

bility analysis of Girard, we have to perform at least 𝛿 (𝑧) /𝜖 matrix

multiplications of an 𝑛 × 𝑛 matrix with 𝑛 × cols (𝐺) generator ma-

trix 𝐺 , assuming a time step size 𝜖 . The latter requires at least

(𝑛 +𝑚) cols (𝐺) multiplications by school book style matrix multi-

plication. Since 𝛿 (𝑧) /𝜖 is upper bounded by𝑀 , so the worst case

complexity of [15] is at least 𝑀 times the worst case complexity

of our algorithm. So, we can reduce the complexity of the schedul-

ing function by𝑀 times compared to performing online accurate

reachability analysis. But will still improve the accuracy of online

reachability analysis because of precomputing a large sequence of

reachable sets.

6 EVALUATION
We evaluate our procedure on three examples: an underwater

vehicle depth control model having 4-dimensional state and 1-

dimensional feedback input, a quadcopter height control model

having 8-diemsional state and 4-dimensional feedback, and a vehi-

cle platoon having 9-dimensional state and 3-dimensional feedback.

For these examples, we derive a scheduling function based on The-

orem 5.2. Our aim is to show that the scheduling function based on

precomputed reachable set sequences significantly improves the

computation speed of finding a safe upper bound on sampling time

as compared to performing an accurate reachability analysis online.

For this purpose, we first compute the upper bounds on the sam-

pling time period for a large number of randomly sampled points in

the state space using the scheduling function. Next, we verify the

schedules for all sampled points using the highly accurate reachabil-

ity algorithm developed by Girard [15]. For a fair comparison, the

length of time step used in the reachability analysis by [15] is the

same as the length of time step used in computing the reachability

sequences in (4b). The maximum order of the zonotopes resulting

from additive disturbance (see (11)) is also kept the same. Then we

note the ratio of the computation times of both approaches on the

same computing platform, an M1 Macbook Pro laptop with 16GB

RAM. We take the value of 𝑙 and𝑀 in Algorithm 1 to be 3 and 400,

respectively. So, the number of generators of invariant complex

zonotope is 𝑙 (𝑛 +𝑚) = 3(𝑛 +𝑚), where 𝑛 and𝑚 are the state and

input dimensions, respectively. The numbers are given in Table 2.

Impelementation software. The software implementation is

available in the following Github repository:

https://github.com/asarvind/SafeSelfTriggered.jl

6.1 Underwater vehicle depth control
The dynamics of an underwater vehicle with the dimension of

state space 𝑛 = 4 and the dimension of feedback input𝑚 = 1 was

https://github.com/asarvind/SafeSelfTriggered.jl
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(a) Projection on 𝜃, 𝑦 hyperplane (b) Projection on 𝑤, 𝑦 hyperplane (c) Projection on 𝑞, 𝑦 hyperplane

Figure 1: Projection of sampling time invariant complex zonotope and safe set

𝐴 =



0 1.0000 0 0 0 0 0 0 0

0 0 −1.0000 0 0 0 0 0 0

1.6050 4.8680 −3.5754 0 0 0 0 0 0

0 0 0 0 1.0000 0 0 0 0

0 0 1.0000 0 0 −1.0000 0 0 0

0 0 0 1.1936 3.6258 −3.2396 0 0 0

0 0 0 0 0 0 0 1.0000 0

0 0 0 0 0 1.0000 0 0 −1.0000
0.7132 3.5730 −0.0964 0.8472 3.2568 −0.0876 1.2726 3.0720 −3.1356


𝐵 =



0 0 0

0 0 1

1 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0


𝐶 =



0

4.5

0

0

0

0

0

0

0


𝐾 =

[
0 0 0 −0.8198 0.4270 −0.0450 −0.1942 0.3626𝑣 − 0.0946

0.8718 3.8140 −0.0754 0 0 0 −0.5950 0.1294 −0.0796
0 0 0 0 0 0 0 0 0

]
𝑇 =

[−1/35 0 0 0 0 0 0 0 0

0 0 0 −1/35 0 0 0 0 0

0 0 0 0 0 0 −1/40 0 0

]

Figure 2: Matrices of platoon model

(a) Underwater vehicle (b) Quadcopter (c) Platoon model
Figure 3: Plots of 𝛽 sequence w.r.t index

(a) Underwater vehicle (b) Quadcopter (c) Platoon model
Figure 4: Plots of 𝜂 sequence w.r.t index

described earlier in Example 2.1. The projection of the complex

zonotope invariant on different hyperplanes is given in Figure 1.

6.2 Quadcopter
We consider the model of a quadcopter describing the control of

height and orientation, which is adapted from [35]. The state of the

system is an 8-dimensional vector

[
𝑦, ¤𝑦, 𝜙, ¤𝜙, 𝜃, ¤𝜃, 𝜙, ¤𝜓

]
, where 𝑦 is

the deviation of the height of quadcopter from a reference value, 𝜙

is the pitch angle of the quadcopter, 𝜃 is the roll angle of the quad-

copter, and𝜓 is the yaw angle, while ¤𝑒 : 𝑒 ∈ {𝑦, 𝜙, 𝜃,𝜓 }, represents
the rate of change of the respective quantities. A 4-dimensional

feedback input changes the angular velocity of the rotors of the



Safe Self-Triggered Control Based on
Precomputed Reachability Sequences HSCC ’23, May 9–12, 2023, San Antonio, TX, USA

(a) Underwater vehicle (b) Quadcopter (c) Platoon model
Figure 5: Sampling period bound 𝛿 (𝑧) as a function of scale factor 𝜒 (𝑧)

Table 2: Offline computation time and upper bound on arithmetic complexity of evaluating scheduling function (19)

Example Sequence State Input Number of Offline Bound on no. of arithmetic

length𝑀 Dimension 𝑛 Dimension𝑚 generators computation time operations for evaluating 𝛿 (𝑧)
8 Underwater 400 4 1 15 12.58 665

Quadcopter 400 8 4 36 79.41 3584

Platoon 400 9 3 36 119.24 3584

Table 3: Comparison of speed of computing a schedule by our method vs verification of the schedule by [15]

Example Sampling Region No. of Samples Comp. time evaluating scheduling Verification time Speed gain

function on all samples (secs) of all schedules (secs)

Underwater

1.000 Γ 100000 0.240556250 21.739955500 90

0.500 Γ 100000 0.219049833 26.390020125 120

0.250 Γ 100000 0.220316167 26.239419416 119

0.100 Γ 100000 0.211023375 25.963317625 123

Quadcopter

0.100 Γ 100000 0.279739083 24.817588417 88

0.050 Γ 100000 0.288304709 27.913212791 96

0.025 Γ 100000 0.257196333 29.552534042 114

0.010 Γ 100000 0.304468167 30.960938000 101

Platoon

0.100 Γ 100000 0.264170208 24.051463250 91

0.050 Γ 100000 0.236778500 25.753608916 108

0.025 Γ 100000 0.254564208 26.545361000 104

0.010 Γ 100000 0.253303708 27.205094000 107

quadcopter. The feedback input tries to keep the height and quad-

copter state orientation within a safe set where 𝑦 ∈ [−1, 1]𝑚,

𝜙 ∈ [−0.1, 0.1] 𝑟𝑎𝑑 , 𝜃 ∈ [−0.2, 0.2] 𝑟𝑎𝑑 and𝜓 ∈ [−1, 1] 𝑟𝑎𝑑 . So, the
combined state space has 8 + 4 = 12 dimensions. The lower bound

on the sampling period is 𝜖 = 0.01. The matrices of the system

dynamics 𝐴, 𝐵,𝐶, 𝐾 are,

𝐴 ∈ R8×8, 𝐴𝑖 𝑗 =

{
1 (𝑖, 𝑗 ) ∈ { (1, 2), (3, 4), (7, 8) }
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (20a)

𝐵 ∈ R8×4, 𝐵𝑖 𝑗 =
{
1 (𝑖, 𝑗 ) ∈ { (2, 1), (4, 2), (6, 3), (8, 4) }
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (20b)

𝐶 = 0.001𝐵, (20c)

𝐾 ∈ R4×8, 𝐾𝑖 𝑗 =


−0.6325 (𝑖, 𝑗 ) ∈ { (1, 1), (2, 3), (3, 5) }
−1.2903 (𝑖, 𝑗 ) ∈ { (1, 2), (2, 4), (3, 6) }
−1 (𝑖, 𝑗 ) = (4, 7)
−1.7321 (𝑖, 𝑗 ) = (4, 8)

. (20d)

6.3 Networked platoon of vehicles
We consider a model of a networked platoon of vehicles adapted

from [24]. The model describes the dynamics of a platoon of four

vehicles where the inter-vehicle distances, relative speeds, and ac-

celerations of the vehicles constitute a 9-dimensional state of the

system. The system has a 3-dimensional feedback input acceleration

applied on each of the three follower vehicles. The acceleration of

the leading vehicle is uncertain and lies in the interval [−9, 1]𝑚/𝑠2.
However, in this paper, we shift the dynamics to the equilibrium

point to be consistent with the analysis in this paper. Then the

disturbance input lies in the range [−5, 5]𝑚/𝑠2. The matrices corre-

sponding to the system dynamics are given in Figure 2. The safe set

is the set of states where the inter-vehicle distances are greater than

a threshold so that collision is avoided. The corresponding matrix

𝑇 and vector of offsets 𝑑 specifying the half-space representation

of the safe set are given in Figure 2. The lower bound 𝜖 on the

sampling time period is 0.005 second.
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6.4 Results
For all the three models, we successfully find a scale factor 𝑠 that

solves the constrained convex optimization in (14). This ensures

that Γ = ℜ𝔢 (Z (𝐺, 0, 𝑠)) satisfies the conditions (6b,6c) in Lemma

3.3. The inclusion of Γ inside the safe set for the underwater vehicle

example is depicted in Figure 1. Next, we compute the sequences 𝛽

and 𝜂 satisfying the conditions (4a-4b) in Lemma 3.3. The increasing

sequences are plotted with respect to their indices in Figures 3, 4.

Based on the sequences and the set Γ, we can derive a scheduling

function according to Theorem 5.2. The offline computation time for

finding the set Γ and sequences 𝛽, 𝜂, and upper bound on arithmetic

complexity of computing the scheduling function based on Theorem

19 are given in Table 2. We evaluate the scheduling function for

100000 randomly sampled points in the joint state space of state

and feedback input. Then we plot the scheduling function 𝛿 versus

the inclusion scaling function 𝜒 (𝑧). These plots are given in Figure

5. We then ran the algorithm in [15] to verify the sampling period

bounds for all the 100000 samples and recorded the computation

times on the same computing system. We observed a speed gain

of 80 − 170 times in evaluating online our scheduling function as

compared to the step-by-step reachability analysis method of [15].

This means that our algorithm is efficient in terms of speed for

scheduling a self-triggered controller. The time of evaluating the

scheduling function is also negligible since, for 100000 samples, the

time of evaluation on the M1 Mac processor is less than a fraction

of a second. This is shown in Table 3.

7 RELATEDWORK
The major focus of designing self-triggered control has been to

ensure the stability of the closed-loop system. The initial works

on self-triggered control focused on input-to-state stability for lin-

ear systems [19, 20, 25]. They dealt with linear plant and linear

controller, and derived the self-triggered control law by exploiting

the closed-form expressions of the trajectories of the closed-loop

system. Wang and Lemmon addressed the problem of designing

linear self-triggered control law for linear systems with the goal

of enforcing a desired level of L2 gain on the closed-loop system

[31, 32]. The design of a self-triggered control scheme for nonlinear

systems to ensure input-to-state stability was addressed in [5]. Sev-

eral papers (e.g. [8, 12, 18]) have shown that self-triggered control

can reduce the computation load of model predictive control while

ensuring the guarantee on the asymptotic stability of the closed

loop systems.

Compared to stability, the design of self-triggered control ensur-

ing safety has received limited attention in the literature. The safety

aspect of self-triggered control was first considered in [10], where

the authors presented a self-triggered control scheme for a nonlin-

ear system with the goal of keeping the closed-loop system within

a compact set. Recently, Yang et al. [34] propose a self-triggered

control mechanism based on a combination of the Control Lya-

punov Function and the Control Barrier Function. Their control

mechanism ensures that the trajectory of the closed-loop system

never violates the safety condition captured in a positive invariant

set. In another recent work, Kooi et al. solve the safe self-triggered

control problem for a constrained control system represented as

a control differential inclusions with a continuous-time feedback

law [21]. Their technique relies on the availability of a barrier func-

tion ensuring the forward invariance property with a degree of

robustness against input perturbation. The major limitation of the

above-mentioned works is that they overapproximate the rate of

change of the system to compute the schedule in real time. However,

such an overapproximation can be conservative in the sense that

it can reduce the possible range of the sampling time period. On

the other hand, our paper precomputes the reachable sets without

overapproximating the rate of state change.

The approach in Findeisen [22] proposes to apply a set-based

reachability analysis online for discrete-time systems. The proposed

reachability analysis can be accurate and compute larger bounds

on the sampling period. However, the computation time will sig-

nificantly increase such that real-time constraints may be violated.

In Yulon et al. [14], evaluating a safe scheduling function requires

solving a mixed integer linear program. But the computational com-

plexity of mixed integer programming can be very high compared

to a simple matrix multiplication followed by binary search in our

algorithm (19). In Hashimoto et al. [16], a graph search algorithm

is proposed for scheduling the sampling time so that safety con-

straints are satisfied. But this approach requires discretization of

the state space, which can be intractable in real-time for higher

dimensional systems.

Although previous approaches on self-triggered controller syn-

thesis perform offline computation of invariant sets (or invariant

functions) [10, 14, 16, 22, 34], they do not precompute offline the

sets reachable in between sampling times from a given point, which

are also required for online scheduling. An important difference of

the approach in this paper is that apart from the invariant, addi-

tional sets reachable in between sampling times from a point are

also precomputed offline and represented in a parametrized way

where the parameters depend on the point.

8 CONCLUSION
Wepresented a self-triggered control scheme for uncertain continuous-

time linear systems. Our control mechanism relies on precomputed

reachable sets of the closed-loop system, which ensures negligible

online computation required for deciding the next trigger time with-

out being too conservative. Our experimental results on standard

higher dimensional control benchmarks and the computational

complexity analysis establish the feasibility and scalability of our

proposed method. In our future work, we plan to extend our tech-

nique to nonlinear hybrid systems.
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A APPENDIX
Lemma A.1. Let z be a joint trajectory of L where (𝑡𝑖 )∞𝑖=0 is the se-

quence of sampling times and v : [0,∞) → [−1, 1]𝑘 is the associated
disturbance trajectory. Then ∀𝑖 ∈ Z≥0, ∀𝑡 ∈ (𝑡𝑖 , 𝑡𝑖+1),

z (𝑡) = exp (𝐴𝑐 (𝑡 − 𝑡𝑖 )) z (𝑡𝑖 ) +
∫ 𝑡−𝑡𝑖

0

exp (𝐴𝑐 (𝑡 − 𝑡𝑖 − 𝜏))
[
𝐶

0

]
v(𝜏)𝑑𝜏

∈ exp (𝐴𝑐 (𝑡 − 𝑡𝑖 )) z (𝑡𝑖 ) ⊕ Υ (𝑡 − 𝑡𝑖+1) . (21a)

z (𝑡𝑖+1) = 𝐴𝑟 exp (𝐴𝑐 (𝑡𝑖+1 − 𝑡𝑖 )) z (𝑡𝑖 ) +

𝐴𝑟

∫ 𝑡𝑖+1−𝑡𝑖

0

exp (𝐴𝑐 (𝑡𝑖+1 − 𝑡𝑖 − 𝜏))
[
𝐶

0

]
v(𝜏)𝑑𝜏

∈ 𝐴𝑟 exp (𝐴𝑐 (𝑡𝑖+1 − 𝑡𝑖 )) z (𝑡𝑖 ) ⊕ 𝐴𝑟Υ (𝑡𝑖+1 − 𝑡𝑖+1) . (21b)

Proof. For all times 𝑡 ∈ (𝑡𝑖 , 𝑡𝑖+1), the joint trajectory z evolves
according to the differential equation

¤z (𝑡) = 𝐴𝑐z(𝑡) +
[
𝐶

0

]
v(𝑡). (22)

As the state of the system is a continuous function at all times, while

the feedback input trajectory is a continuous function between any

two sampling times because there is no reset, we get that at any

𝑡 ∈ (𝑡𝑖 , 𝑡𝑖+1), z (𝑡) is the solution to the above differential equation

(22), and this solution is given in (21a). Next, at time 𝑡𝑖+1, the joint
state gets reset as follows: z (𝑡𝑖+1) = 𝐴𝑟 lim𝜏→𝑡𝑖+1 z (𝜏) =

𝐴𝑟 exp (𝐴𝑐 (𝑡𝑖+1 − 𝑡𝑖 )) z (𝑡𝑖 ) +

𝐴𝑟

∫ 𝑡𝑖+1−𝑡𝑖

0

exp (𝐴𝑐 (𝑡𝑖+1 − 𝑡𝑖 − 𝜏))
[
𝐶

0

]
v(𝜏)𝑑𝜏 □

The following lemma allows us to represent reachable sets as

uniformly scaled convex sets containing the origin. This result will

be used latter to prove the main Lemma 3.3 (Lemma A.3).

Lemma A.2. Let Γ be a convex set such that 0 ∈ Γ. Let us consider
that there exists a function 𝜒min : R𝑛+𝑚 → R such that

∀𝑧 ∈ R𝑛+𝑚 𝜒min (𝑧) = min (𝑎 ∈ R≥0 | 𝑧 ⊆ 𝑎Γ) . (23a)

Let us consider that there exist finite real valued sequences
(
𝛽 𝑗

)𝑀
𝑗=0

and
(
𝜂 𝑗

)𝑀
𝑗=0 satisfying ∀𝑗 ∈ {1, . . . , 𝑀},

𝛽0 = 1, 𝜂0 = 0, 𝛽 𝑗+1 ≥ 𝛽 𝑗 , 𝜂 𝑗+1 ≥ 𝜂 𝑗 (23b)⋃
𝜏∈[0, 𝑗𝜖 ]

exp (𝐴𝑐𝜏) Γ ⊆ 𝛽 𝑗 Γ,
⋃

𝜏∈[0, 𝑗𝜖 ]
Υ (𝜏) ⊆ 𝜂 𝑗 Γ (23c)

https://math.libretexts.org/@go/page/115355?pdf
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Let us consider a joint trajectory z ∈ Trj (L) for which (𝑡0)∞𝑖=1 is
the set of feedback sampling times. Then the following are true ∀𝑖 ∈
Z≥1, 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1).

z (𝑡𝑖+1) ∈ (24a)

𝐴𝑟 exp (𝐴𝑐𝜖)
(
𝛽⌈ 𝑡𝑖+1−𝑡𝑖 −𝜖

𝜖

⌉𝜒min (z (𝑡𝑖 )) + 𝜂⌈ 𝑡𝑖+1−𝑡𝑖 −𝜖
𝜖

⌉) Γ ⊕ 𝐴𝑟Υ (𝜖) .
z (𝑡) ∈

(
𝛽⌈ 𝑡−𝑡𝑖

𝜖

⌉𝜒min (z (𝑡𝑖 )) + 𝜂⌈ 𝑡−𝑡𝑖
𝜖

⌉) Γ. (24b)

Proof. As 𝑡𝑖+1 − 𝑡𝑖 ≥ 𝜖 as assumed in (1a), we derive the follow-

ing using (21b) to prove (24a).

z (𝑡𝑖+1) ∈ 𝐴𝑟 exp (𝐴𝑐𝜖) z (𝑡𝑖+1 − 𝜖) ⊕ 𝐴𝑟Υ (𝜖)
⊆ 𝐴𝑟 exp (𝐴𝑐𝜖) (exp (𝐴𝑐 (𝑡𝑖+1 − 𝑡𝑖 − 𝜖)) z (𝑡𝑖 ) ⊕ Υ (𝑡𝑖+1 − 𝑡𝑖 − 𝜖))
⊕ 𝐴𝑟Υ (𝜖)
% by (23c) and because Γ is convex set and 0 ∈ Γ

⊆ 𝐴𝑟 exp (𝐴𝑐𝜖)
(
𝛽⌈ 𝑡𝑖+1−𝑡𝑖 −𝜖

𝜖

⌉𝜒min (z (𝑡𝑖 )) + 𝜂⌈ 𝑡𝑖+1−𝑡𝑖 −𝜖
𝜖

⌉) Γ ⊕ 𝐴𝑟Υ (𝜖)
We next derive the following using (21a) to prove (24b).

z (𝑡) ∈ exp (𝐴𝑐 (𝑡 − 𝑡𝑖 )) z (𝑡𝑖 ) Γ ⊕ Υ (𝑡 − 𝑡𝑖 )
% by (23c) and because Γ is convex set containing 0

⊆
(
𝛽⌈ 𝑡−𝑡𝑖

𝜖

⌉𝜒min (z (𝑡𝑖 )) + 𝜂⌈ 𝑡−𝑡𝑖
𝜖

⌉) Γ. □

Lemma A.3. Let us consider a set 𝑆 ⊆ R𝑛+𝑚 , called safe set and
another set 𝐼 ⊆ R𝑛+𝑚 , called initial set. Let us consider that there exist
a convex set Γ ⊆ R𝑛 , called sampling time invariant, a function 𝜒 :

R𝑛+𝑚 → R, called inclusion scaling function, and finite increasing
sequences of positive real numbers

(
𝛽 𝑗

)𝑀
𝑗=0 and

(
𝜂 𝑗

)𝑀
𝑗=0 such that

(23b,23c) and the following are true.

0 ∈ Γ, ∀𝑧 ∈ R𝑛+𝑚 𝑧 ⊆ 𝜒 (𝑧) Γ, (25a)

𝐴𝑟 exp (𝐴𝑐𝜖) Γ ⊕ 𝐴𝑟Υ(𝜖) ⊆ Γ, (25b)

𝐼 ⊆ Γ, (𝛽1 + 𝜂1) Γ ⊆ 𝑆 (25c)

Let us consider that the number of arithmetic operations involved in
evaluating 𝜒 (𝑧) for all 𝑧 ∈ R𝑛+𝑚 is less than 𝑁𝜒 . Let us define a
scheduling function 𝛿 : R𝑛+𝑚 → R≥0:

Inds (𝑧) =
{
𝑗 ∈ {1, . . . , 𝑀} | 𝜒 (𝑧)𝛽 𝑗 + 𝜂 𝑗 ≤ 1

}
, (25d)

if Inds (𝑧) ≠ ∅, then 𝛿 (𝑧) = max Inds (𝑧) 𝜖 (25e)

otherwise 𝛿 (𝑧) = 𝜖 (25f)

Then the following are true.

⟨1⟩ R (L, 𝐼 , [0,∞)) ⊆ 𝑆 .
⟨2⟩ Number of arithmetic operations for computing the value of

𝛿 (𝑧) for all 𝑧 ∈ R𝑛+𝑚 is not greater than𝑁𝜒+2
(
log

2
(𝑀) + 1

)
.

Proof. Proof of ⟨1⟩: We prove this by induction. Let us consider

a joint trajectory z ∈ Trj (L) where (𝑡𝑖 )∞𝑖=0 is the sequence of

feedback sampling times. As we assumed that a function 𝜒 exists

where ∀𝑧 ∈ R𝑛+𝑚 𝑧 ⊆ 𝜒 (𝑧) Γ, so the function 𝜒min exists where

∀𝑧 ∈ R𝑛+𝑚 𝜒min (𝑧) = min (𝑎 ∈ R≥0 | 𝑎𝑧 ⊆ Γ). Moreover, we have

∀𝑧 ∈ R𝑛+𝑚 𝜒min (𝑧) ≤ 𝜒 (𝑧).
Let us consider that for some 𝑖 ∈ Z≥0 we have z (𝑡𝑖 ) ∈ Γ. Then

we shall prove that

(z (𝑡𝑖+1)) ∈ Γ, ∀𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1) z (𝑡) ∈ 𝑆. (26a)

Let us consider two cases, (i) Inds (z (𝑡𝑖 )) ≠ ∅, (ii) Inds (z (𝑡𝑖 )) = ∅.
In the first case, by (25e) and as 𝜒min ≤ 𝜒 , we get
𝛽⌈ 𝑡𝑖+1−𝑡𝑖 −𝜖

𝜖

⌉𝜒min (z (𝑡𝑖 )) + 𝜂⌈ 𝑡𝑖+1−𝑡𝑖 −𝜖
𝜖

⌉
≤ 𝛽⌈ 𝑡𝑖+1−𝑡𝑖 −𝜖

𝜖

⌉𝜒 (z (𝑡𝑖 )) + 𝜂⌈ 𝑡𝑖+1−𝑡𝑖 −𝜖
𝜖

⌉
(26b)

= 𝛽⌈ 𝛿 (𝑧)−𝜖
𝜖

⌉𝜒 (z (𝑡𝑖 )) + 𝜂⌈ 𝛿 (𝑧)−𝜖
𝜖

⌉
(26c)

≤ 𝛽 (max Inds (𝑧 )−1) 𝜒 (z (𝑡𝑖 )) + 𝜂 (max Inds (𝑧 )−1) (26d)

% As 𝛽 and 𝜂 are increasing sequences

≤ 𝛽
max Inds (𝑧 ) 𝜒 (z (𝑡𝑖 )) + 𝜂max Inds (𝑧 ) ≤ 1, % by (25e), (26e)

Similarly we can derive:

𝛽⌈ 𝑡−𝑡𝑖
𝜖

⌉𝜒min (z (𝑡𝑖 )) + 𝜂⌈ 𝑡−𝑡𝑖
𝜖

⌉ ≤ 𝛽⌈ 𝑡−𝑡𝑖
𝜖

⌉𝜒 (z (𝑡𝑖 )) + 𝜂⌈ 𝑡−𝑡𝑖
𝜖

⌉
≤ 1 = 𝛽0 + 𝜂0 ≤ 𝛽1 + 𝜂1 . (26f)

In the second case, we have 𝑡𝑖+1 − 𝑡𝑖 ≤ 𝛿 (𝑧) = 𝜖 . Also, 𝑡𝑖+1 − 𝑡𝑖 ≥
𝜖 because 𝜖 is the minimum sampling time period for the self-

triggered systemL. Therefore, 𝑡𝑖+1−𝑡𝑖 = 𝜖 . Sowe have,
⌈ 𝑡𝑖+1−𝑡𝑖−𝜖

𝜖

⌉
=

0 and

⌈ 𝑡−𝑡𝑖
𝜖

⌉
=

⌈
𝜖
𝜖

⌉
= 1. So, we get

𝛽⌈ 𝑡𝑖+1−𝑡𝑖 −𝜖
𝜖

⌉𝜒min (z (𝑡𝑖 )) + 𝜂⌈ 𝑡𝑖+1−𝑡𝑖 −𝜖
𝜖

⌉ = 𝛽0𝜒min (z (𝑡𝑖 )) + 𝜂0

% as z (𝑡𝑖 ) ∈ Γ, so 𝜒min (z (𝑡𝑖 ) ) ≤ 1

= 1 · 𝜒𝑚𝑖𝑛 (z (𝑡𝑖 )) + 0 = 𝜒𝑚𝑖𝑛 (z (𝑡𝑖 )) ≤ 1, (26g)

𝛽⌈ 𝑡−𝑡𝑖
𝜖

⌉𝜒min (z (𝑡𝑖 )) + 𝜂⌈ 𝑡−𝑡𝑖
𝜖

⌉ (% As 𝑡 − 𝑡𝑖 ≤ 𝑡𝑖+1 − 𝑡𝑖 = 𝜖 ) (26h)

≤ 𝛽1𝜒min + 𝜂1
% as z (𝑡𝑖 ) ∈ Γ, so 𝜒min (z (𝑡𝑖 ) ) ≤ 1

≤ 𝛽1 + 𝜂1 (26i)

Then by (24a, 26e,26g), we get,

z (𝑡𝑖+1) ⊆ 𝐴𝑟 exp (𝐴𝑐𝜖) Γ ⊕ Υ (𝜖) ⊆ Γ. % by (25b) (26j)

Similarly, by (24b, 26f,26i), we get z (𝑡) ⊆ (𝛽1 + 𝜂1)Γ ⊆ 𝑆 (by (25c)).

So, we have proved (26a).

Then by induction we get that if 𝐼 ⊆ Γ, then ⟨1⟩ is true. As 𝐼 ⊆ Γ
by (25c), we get ⟨1⟩.

Proof of ⟨2⟩: The arithmetic operations involved in evaluating

𝛿 (𝑧) consist of computing the value of the function 𝜒 (𝑧) and then

computing the maximum of Inds (𝑧). The number of arithmetic op-

erations involved in computing 𝜒 (𝑧) is given to be upper bounded

by 𝑁𝜒 . On the other hand, we evaluate the maximum value of

Inds (𝑧) using binary search and this complexity in logarithmic in

𝑀 . We thus get the upper bound given in the above lemma for the

arithmetic complexity of evaluating 𝛿 (𝑧). □
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