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ABSTRACT
In piecewise linearization based reachable set computation, dif-

ferent linear approximations are computed around smaller pieces

of the reachable set to reduce the linearization error in reacha-

bility analysis. However, this approach suffers from curse of di-

mensionality because the number of pieces required to restrict the

linearization error below a threshold can blow up intractably for

high-dimensional systems. Alternatively, we can fix the maximum

number of divisions of the reachable set and optimize the divi-

sion vector to minimize the linearization error. But the functions

projecting the linearization error along different directions can be

different, which have different optimal solutions for the division

vector. Still, we may need to minimize the linearization error along

multiple directions to achieve good accuracy along any one direc-

tion because the differential equations can be coupled. Therefore,

we develop a new method of piecewise linearization based reach-

able set computation that incorporates different optimized divisions

of reachable set for different projections of linearization error to

improve accuracy. To do so, we use intersection of unions of sets

(IoU) to approximate reachable sets such that different unions in

the intersection are obtained from optimized division along differ-

ent directions and forward propagation. We develop an algorithm

to propagate the reachable set of the IoU in a coupled way, such

that each intersecting union complements the approximation accu-

racy of other unions. We validate the advantage of using multiple

optimal divisions instead of one optimized division. For this, we

compare the performance on high dimensional examples, of the

proposed algorithm with a variant of the algorithm which uses only

one division vector at each time step. We also draw comparison

with state-of-the-art methods and demonstrate that the accuracy

of our algorithm is at par or better for the benchmarks.
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1 INTRODUCTION
Formal verification of systems modeled by ordinary differential

equations typically require approximating the set of trajectories

of the ODE in the presence of uncertainties. Exactly computing

the set of trajectories of nonlinear ODEs can be computationally

intractable, because computing accurate images of nonlinear maps

is at least NP Hard [31]. Alternatively, significant research has been

carried out on computing over-approximations of the reachable

set in terms of data structures, called set representations, which can

be efficiently manipulated to verify the system properties. [1, 13,

24, 26, 29, 33, 36]. But ensuring bounded accuracy can blow up the

computational complexity of any nonlinear reachability analysis

algorithm due to NP-hardness of the problem.

One commonly used method in computing reachable sets of

nonlinear systems is piecewise linearization, [5, 6, 17, 24, 28, 33],

where the nonlinear ODEs are approximated by linear ODEs in

smaller subsets of the reachable set. The advantage of piecewise

linearization is that reachable sets of linear ODEs can be computed

far more efficiently than nonlinear ODEs. However, the number

of pieces required to ensure that the linearization error is below

a threshold increases exponentially in the dimension of ODEs. To

our understanding, no effective solution has yet been proposed to

tackle the curse of dimensionality in piecewise linearization based

reachable set computation.

Alternatively, to avoid blowing up the number of pieces in piece-

wise linearization, we can fix the number of pieces. Then, we need

to optimize the way the reachable set is divided into subsets to

minimize the linearization error. However, the function mapping

the division vector to the volume of projection of linearization er-

ror along a direction is different for different directions, i.e., we

have a multi-objective function for optimization. As such, there

need not be a single best way of dividing the reachable set. For

different projection directions, there can be different optimal ways

of splitting the reachable set, also called Pareto optimal solutions.
But due to dependency between the state variables, the approxi-

mation accuracy along one direction can affect the accuracy along

other directions. Therefore, we require a method that can incorpo-

rate different Pareto-optimal ways of dividing the reachable set in

piecewise linearization to improve accuracy.

In this regard, we propose an efficient linearization method for

reachability analysis that incorporates the different Pareto-optimal

ways of dividing the reachable set in a complementary way to

increase accuracy. At different time steps, we intersect different

unions resulting from dividing the reachable set in multiple optimal

ways and propagate the sets. We propagate the sets in a coupled

way where each union complements the accuracy of other unions in

the intersection. We use zonotopes as constitutent sets of the union
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because zonotopes can efficiently approximate reachable sets of

linear dynamics post linearization. Thus we represent the forward

reachable sets as intersection of union of zonotopes, called IoU

zonotope. However, our intersection of unions approach can also

be emulated with other set representations in place of zonotopes.

We develop a parallel algorithm to efficiently over-approximate

forward reachable sets of an IoU zonotope. The algorithm being

parallel, its speed can be boosted by using multiple processors. We

evaluate our algorithm on three high-dimensional real-world ex-

amples. In the experiments, we validate the advantage of using

multiple types of optimized divisions. For this, we compare the

performance of the proposed algorithm with a variant of the algo-

rithm which uses only one division vector at each time step. We

also compare with other state-of-the-art methods and demonstrate

improved accuracy with our approach. In summary, we make the

following contributions in this paper.

1) We introduce a new approach of using intersection of unions

to minimize the linearization error along multiple directions in

reachability analysis.

2) We introduce a new non-convex set representation, which

is the intersection of unions of zonotopes, called IoU zonotope, for
efficient reachability analysis of nonlinear systems based on piece-

wise linearization. We develop a parallel algorithm to propagate

the IoU zonotope set representation in a coupled way, where differ-

ent unions of zonotopes complement each other in increasing the

approximation accuracy.

3) We perform experiments on three high-dimensional real-

world examples to establish the efficiency of our algorithm and

validate its efficacy.

Related work. There are efficient algorithms to accurately approx-

imate reachable sets of linear uncertain ODEs [7, 21–23]. This is

because linear transformations of polytopic sets can be efficiently

approximated for most polytopic representations. In contrast, ap-

proximating reachable sets of nonlinear ODEs requires approximat-

ing nonlinear transformation of reachable sets, which is a much

harder problem [18, 30] whose complexity is at least NP-Hard [31].

Taylor models [13] and polynomial zonotopes [1, 25, 26] have been

developed to approximate the nonlinear transformation of reach-

able sets. But the complexity of Taylor model and polynomial zono-

tope increases when nonlinear transformations are repeatedly ap-

plied. Although there are procedures to control this complexity,

they trade approximation accuracy to reduce representation size.

Another approach used in numerous research works is piecewise

linear approximation of nonlinear systems [5, 6, 17, 24, 28, 33]. In

this case, reachability analysis methods of affine hybrid systems

are used post piecewise linear approximation. This approach faces

curse of dimensionality as discussed before.

For linear systems, decomposition based techniques can be effec-

tively used in high dimensions [8] to reduce computational complex-

ity of reachability algorithms. Unlike this, for nonlinear dynamics,

decomposition based techniques [11, 14] only work well under

loose coupling between small dimensional subsystems. But our

IoU method does not depend on any decomposition. Whereas, it

stores the correlation between variables in terms of the relations in

different zonotopic pieces of the IoU, which can improve accuracy.

Our IoU zonotope is very different from zonotope bundles [4].

While a zonotope bundle is an intersection of zonotopes and there-

fore a convex set, an IoU zonotope is an intersection of unions
of zonotopes, which represents a non-covex set and is geometri-

cally more expressive. Some methods approximate the unbounded

time union of reachable sets [32, 34, 37] instead of the reachable

set at each individual time point. Such approximation can verify

boundedness within a safe set, but not other temporal properties

like reachability within a time interval. Our algorithm computes

approximation at each time stamp in a time horizon which can be

helpful to verify temporal properties.

2 NOTATION
We denote the set of real numbers by R, rationals byQ, and integers
by Z. A box centered at a point 𝑐 ∈ Q𝑛 whose distances along

coordinate axes from the center is a vector 𝑟 ∈ Q𝑛≥0 is denoted as

B (𝑐, 𝑟 ) = {𝑥 ∈ R𝑛 | ∀𝑖 ∈ {1, . . . , 𝑛}, |𝑥𝑖 − 𝑐𝑖 | ≤ 𝑟𝑖 }. The projection
of a box𝑊 = B (𝑐, 𝑟 ) along the 𝑖𝑡ℎ axis is denoted𝑊𝑖 = B (𝑐𝑖 , 𝑟𝑖 ).
The maximum of the box𝑊 = B (𝑐, 𝑟 ) is max (𝑊 ) = 𝑐 + 𝑟 and
minimum is min (𝑊 ) = 𝑐 − 𝑟 . The maximum displacement in the

box𝑊 = B (𝑐, 𝑟 ) from center is offset (𝑊 ) = 𝑟 , which we call offset.
The supremum of two vectors 𝑢 ∈ R𝑛 and 𝑣 ∈ R𝑛 is denoted

as 𝑢
∨
𝑣 and infimum as 𝑢

∧
𝑣 where ∀𝑖 ∈ {1, . . . , 𝑛}, (𝑢∨

𝑣)𝑖 𝑗 =
max (𝑢𝑖 , 𝑣𝑖 ) and (𝑢

∧
𝑣)𝑖 𝑗 = min (𝑢𝑖 , 𝑣𝑖 ). If 𝑋 and 𝑌 are two boxes,

then we denote their box hull as a box𝑋
∨
𝑌 where max (𝑋 ∨

𝑌 ) =
max (𝑋 )∨max (𝑌 ) and min (𝑋 ∨

𝑌 ) = min (𝑋 )∧min (𝑌 ). The
Minkowski sum of two sets Ψ1 and Ψ2 is defined as Ψ1 ⊕ Ψ2 =

{𝑥 + 𝑦 |𝑥 ∈ Ψ1, 𝑦 ∈ Ψ2} . The Minkowski sum of two boxes Ψ1 =

B (𝑐, 𝑟 ) and Ψ2 = B (𝑐 ′, 𝑟 ′) is another box which can be computed

as Ψ1 ⊕ Ψ2 = B (𝑐 + 𝑐 ′, 𝑟 + 𝑟 ′).
The matrix containing absolute values of the elements of a ma-

trix 𝐴 is denoted |𝐴|, i.e., |𝐴|𝑖 𝑗 =
��𝐴𝑖 𝑗 ��. An 𝑛 ×𝑚 matrix whose

every element is equal to a real number 𝑟 is denoted [𝑟 ]𝑛×𝑚 . For a

matrix 𝐴 ⊆ R𝑛×𝑚 and Ψ ⊆ R𝑛 , we denote 𝐴Ψ = {𝐴𝑥 | 𝑥 ∈ Ψ}. The
diagonal square matrix containing elements of a vector 𝑟 along its

diagonal is diag (𝑟 ).
Given Ψ ⊆ R𝑛 , a function 𝑓 : Ψ → R𝑚 and 𝑆 ⊆ Ψ, we

denote 𝑓 (𝑆) = {𝑓 (𝑥) | 𝑥 ∈ 𝑆}. We define F (Ψ) as the subset of

{𝑓 : Ψ→ R} whose members can be constructed recursively as,

• If ∃𝑣 ∈ Q𝑛 s.t. ∀𝑥 ∈ Ψ, 𝑓 (𝑥) = 𝑣𝑇 𝑥 , then 𝑓 ∈ F (Ψ).
• If 𝑓1, 𝑓2 ∈ F (Ψ), then
{𝑓1 + 𝑓2, 𝑓1 − 𝑓2, 𝑓1 𝑓2, sin ◦𝑓 , cos ◦𝑓 , exp ◦𝑓 } ⊆ F (Ψ).
• For all 𝑓1, 𝑓2 ∈ F (Ψ) such that 𝑓2 (Ψ) ⊆ R>0 (positive func-
tion), then

{
𝑓1
𝑓2
, log ◦𝑓2

}
⊆ F (Ψ).

The Jacobian of a function 𝑓 at a point 𝑥 is denoted ∇𝑓 (𝑥). If Ψ
is an open set, then any 𝑓 ∈ F (Ψ) is infinitely differentiable and

∇𝑓 ∈ F (Ψ), which can be computed symbolically. For any function

𝑓 ∈ F (Ψ) and a box B (𝑐, 𝑟 ) ⊆ Ψ, we can compute an interval over-

approximation of 𝑓 (B (𝑐, 𝑟 )) using interval arithmetic [10], which

we denote as 𝑓 (B (𝑐, 𝑟 )). If 𝑔 ∈ F (Ψ)𝑚 is a tuple of functions, then

we denote 𝑔 (B (𝑐, 𝑟 )) = 𝑔1 (B (𝑐, 𝑟 )) × ... × 𝑔𝑚 (B (𝑐, 𝑟 )).
2



3 NONLINEAR SYSTEM AND REACHABLE
SET

A nonlinear system is specified by a function 𝑓 : Γ × 𝑈 → Γ,
called vector field, where Γ ⊆ R𝑛 is an open set called the state

space, 𝑈 ∈ R𝑚 is the input set, and 𝑓 ∈ F (Γ ×𝑈 )𝑛 . A function

x : [0,∞) → Γ is called a state trajectory of 𝑓 if there exists a

measurable function u : [0,∞) → 𝑈 , called input trajectory, such

that the following Lebesgue integral is satisfied ∀𝑡 ∈ [0,∞):

x (𝑇 ) − x (0) =
∫ 𝑇

0

𝑓 (x (𝑡) , u (𝑡)) 𝑑𝑡 . (1)

The set of all possible trajectory states x (𝑡) where x is a state

trajectory of 𝑓 , given the initial condition x (0) ∈ Ψ ⊆ R𝑛 , is called
the reachable set at time 𝑡 originating from Ψ, which we denote

as RΥ (Ψ, 𝑡). The set of reachable states in a time interval [𝑡1, 𝑡2]
originating from Ψ is RΥ (Ψ, [𝑡1, 𝑡2]) =

⋃
𝑡 ∈[𝑡1,𝑡2 ] RΥ (Ψ, 𝑡).

We consider the following problem of computing the directional

bounds on the reachable set of a nonlinear system in a sequence of

successive time intervals.

Problem 3.1. Let 𝑓 : Γ × 𝑈 → Γ be a nonlinear system where
𝑈 ⊆ R𝑚 is a box. Let Ψ be a box such that Ψ ⊆ Γ, 𝐻 ∈ Q𝑝×𝑛 be a
rational matrix and 𝛿max ∈ (0,∞). For 𝑁 ∈ Z≥1, we have to compute
a finite sequence of vectors

〈
ℎ𝑖

〉𝑁
𝑖=1

such that

∀𝑖 ∈ {1, . . . , 𝑁 } max

𝑥 ∈RΥ (Ψ, [ (𝑖−1)𝛿max,𝑖𝛿max ])
𝐻𝑥 ≤ ℎ𝑖 .

4 LINEARIZATION
We will propose a new piecewise linearization approach to the

reachability analysis problem which combines different piecewise

linearizations that minimize the linearziation error along different

directions. For explaining the motivation for our algorithm, we

briefly revisit some concepts related to linearization in this section.

A linear system is a special case of the nonlinear system where

the vector field is linear. The vector field 𝑔 : Γ × 𝑈 → Γ of an

𝑛-dimensional linear system with𝑚 inputs is

𝑔(𝑥) = 𝐴𝑥 + 𝐵𝑢
where 𝐴 ∈ R𝑛×𝑛 is called state-action matrix, 𝐵 ∈ R𝑛×𝑚 is called

input-action matrix. The reachable set of a linear system in high

dimensions can be efficiently over-approximated by zonotopes us-

ing the algorithm in [22]. The advantage of zonotope is that its

reachable set under a linear transformation is another zonotope

which can be computed very efficiently and exactly. A zonotope is

defined as follows.

Definition 4.1 ( [22]). For 𝑛, 𝑙 ∈ Z≥1, let 𝐺 ∈ R𝑛×𝑛𝑙 , called gener-

ator matrix, and 𝑐 ∈ R𝑛 , called center. Then

Zon (𝐺, 𝑐) = {𝑐 +𝐺𝜁 | 𝜁 ∈ B (0, [1]𝑛𝑙×1)}
is a zonotope of order 𝑙 .

So, a box B (𝑐, 𝑟 ) is equivalently a zonotope Zon (diag (𝑟 ) , 𝑐).
Given a set of directions which are row vectors of a matrix 𝐻 ∈
R𝑝×𝑛 , the directional bounds on a zonotope Zon (𝐺, 𝑐) along these

directions can be computed as follows (Lemma 1 in [3]).

max

𝑥 ∈Zon(𝐺,𝑐)
𝐻𝑥 = 𝐻𝑐 + |𝐻𝐺 | [1]cols (𝐺)×1 . (2)

Based on above equation, we can compute the smallest box over-

approximation of a zonotope Zon (𝐺, 𝑐) as

Zon (𝐺, 𝑐) ⊆ B
(
𝐻𝑐, |𝐻 | [1]cols (𝐺)×1

)
.

We will denote the box overapproximation in the R.H.S of above

equation as Boxapp (Zon (𝐺, 𝑐))
In this paper, we subsume the algorithm in [22] to compute the

reachable set over-approximation of a linear system originating

from a zonotope. Henceforth, given a linear system 𝑔 : Γ ×𝑈 → Γ
where𝑈 is a box, a zonotope Ψ and a time interval [𝑡1, 𝑡2] ⊆ [0,∞),
we denoteZ𝑔 (Ψ, [𝑡1, 𝑡2]) as the zonotopic over-approximation of

R𝑔 (Ψ, [𝑡1, 𝑡2]) which is computed using the algorithm in [22], i.e.,

R𝑔 (Ψ, [𝑡1, 𝑡2]) ⊆ Z𝑔 (Ψ, [𝑡1, 𝑡2]) .
The interested reader may refer to [22] for details of the algorithm.

As the reachable set of a linear system can be computed very

efficiently, we can over-approximate the reachable set of a nonlinear

system at a future time point 𝑡 by using a linear approximation

of the dynamics in the interval [0, 𝑡]. Let us consider a nonlinear
system 𝑓 : Γ×𝑈 → Γ where𝑈 = B (𝑏, 𝑠) is a box. Let us consider a
set Ψ ⊆ Γ such that Ψ ⊆ B (𝑐, 𝑟 ). The algorithm in [5] uses Taylor

expansion and interval arithmetic to compute a linear system

Linearize (𝑓 ,Ψ, 𝑡) = 𝑔 : Γ ×𝑈 ×𝑊Ψ,𝑓 ,𝑡 → Γ

and 𝐽Ψ,𝑓 ,𝑡 ⊆ R𝑛 such that𝑊 ⊆ R𝑛 and ∀(𝑥,𝑢) ∈ R𝑓 (Ψ, [0, 𝑡]) ×𝑈 ,

the following is true.

𝑓 (𝑥,𝑢) ∈ 𝑔(𝑥,𝑢,𝑊 ) (3)

𝑊Ψ,𝑓 ,𝑡 = 𝐸𝑓 (Ψ,𝑈 , 𝑟, 𝑠) ⊕ 𝐽Ψ,𝑓 ,𝑡 (4)

𝐸𝑓 (𝑥,𝑢, 𝑟, 𝑠) = 0.5
[
𝑟 𝑠

] [
∇ (∇𝑓𝑖 ) (𝑥,𝑢)

] [
𝑟

𝑠

]
(5)

Therefore, if Ψ is a zonotope, then we can overapproximate the

reachable set of the nonlinear system 𝑓 at time 𝑡 by the zonotopic

over-approximation of the reachable set of the linear system 𝑔 as

R𝑓 (Ψ, 𝑡) ⊆ Z𝑔 (Ψ, 𝑡) (6)

The error in the above reachability overapproximation increases

with the size of the set Ψ as described by Equation 5. We shall call

the box 𝐸𝑓 (Ψ,𝑈 , 𝑟, 𝑠) computed using interval arithmetic as the

linearization error in this paper, which is a multi-dimensional set.

5 INTERSECTION OF UNIONS
REACHABILITY ANALYSIS

In the previous section, we have discussed the method of approxi-

mating the reachable set of a nonlinear system using linearization.

The method incurs a linearization error which is proportional to

the size of the reachable set (see (5)). Therefore, we can reduce

the linearization error by dividing the reachable set into smaller

subsets and linearizing around the smaller subsets. But the num-

ber of divisions required to reduce the linearization error below

a threshold can increase exponentially in the dimension of the

state space. Therefore, restricting the linearization error below a

threshold in higher dimensions can be computationally intractable.

Alternatively, we can fix the number of divisions and optimize the

way we divide the reachable set so as to minimize the linearization

3



error. However, as the Taylor error (5) is a multi-dimensional set,

there can be different optimal ways of dividing the reachable set

for minimizing the projection of linearization error along differ-

ent directions. In other words, finding divisions to minimize the

projection of linearization error along different directions is a multi-

objective optimization problem which has many Pareto-optimal

solutions, but no unique best solution.

Example 5.1. We adapted the time-discretized model of an au-

tonomous car from [27] into a platoon of two cars with continuous-

time dynamics and designed a stabilizing feedback controller. We

have a 12-dimensional model where the state of first car is denoted

by 𝑥 ∈ R6 and the state of the second car by 𝑦 ∈ R6. The displace-
ment of the cars are 𝑥1, 𝑦1, respectively. The steering angles are

𝑥2, 𝑦2, the velocities are 𝑥3, 𝑦3, the yaw angles are 𝑥4, 𝑦4, the rates

of change of yaw angles are 𝑥5, 𝑦5, and the slip angles are 𝑥6, 𝑦6,

respectively for both cars. There is a disturbance input 𝑢 ∈ R2.
The dynamics is given by the following vector field where the pa-

rameters are 𝑔 = 9.81,𝑚 = 1093.3, 𝜇 = 1.0489, 𝑙𝑓 = 1.156, 𝑙𝑟 =

1.422, ℎ𝑐𝑔 = 0.2, 𝐼𝑧 = 1791.6,𝐶𝑆 𝑓 = 20.89,𝐶𝑆𝑟 = 20.89, 𝑟 = 4, 𝐾1 = 3.

We reduced the parameter ℎ𝑐𝑔 compared to the original model for

increasing stability.

𝑓1 (𝑥, 𝑦,𝑢) = 𝑥3𝑐𝑜𝑠 (𝑥4 + 𝑥6), 𝑓2 (𝑥, 𝑦,𝑢) = −𝐾0 (𝑥4 + 𝑥6 + 𝑥2),
𝑓3 (𝑥, 𝑦,𝑢) = 𝐾1 (5.5 − 𝑥3) +𝑢1, 𝑓4 (𝑥, 𝑦,𝑢) = 𝑥5

𝑓5 (𝑥, 𝑦,𝑢) =
𝜇𝑚

𝐼𝑧 (𝑙𝑟 + 𝑙𝑓 )
(𝑙𝑓 𝐶𝑆𝑓 (𝑔𝑙𝑟 − 𝑓3 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔)𝑥2+

(𝑙𝑟𝐶𝑆𝑟 (𝑔𝑙𝑓 + 𝑓3 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔) − 𝑙𝑓 𝐶𝑆𝑓 (𝑔𝑙𝑟 − 𝑓3 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔))𝑥6

− (𝑙2
𝑓
𝐶𝑆𝑓 (𝑔𝑙𝑟 − 𝑓3 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔)𝑙2𝑟𝐶𝑆𝑟 (𝑔𝑙𝑓 + 𝑓3 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔))

𝑥5

𝑥3
)

𝑓6 (𝑥, 𝑦,𝑢) =
𝜇

𝑥3 (𝑙𝑟 + 𝑙𝑓 )
(𝐶𝑆𝑓 (𝑔𝑙𝑟 − 𝑓3 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔)𝑥2

+ (𝐶𝑆𝑟 (𝑔𝑙𝑓 + 𝑓3 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔) −𝐶𝑆𝑓 (𝑔𝑙𝑟 − 𝑓3 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔))𝑥6

− (𝑙𝑓 𝐶𝑆𝑓 (𝑔𝑙𝑟 − 𝑓3 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔) + 𝑙𝑟𝐶𝑆𝑟 (𝑔𝑙𝑓 + 𝑓3 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔))
𝑥5

𝑥3
) − 𝑥5

𝑓7 (𝑥, 𝑦,𝑢) = 𝑦3𝑐𝑜𝑠 (𝑦4 + 𝑦6)
𝑓8 (𝑥, 𝑦,𝑢) = −𝐾0 (𝑦4 + 𝑦6 + 𝑦2)
𝑓10 (𝑥, 𝑦,𝑢) = 𝐾1 (𝑥3 − 𝑦3)
𝑓11 (𝑥, 𝑦,𝑢) = 𝑦5

𝑓12 (𝑥, 𝑦,𝑢) =
𝜇𝑚

𝐼𝑧 (𝑙𝑟 + 𝑙𝑓 )
(𝑙𝑓 𝐶𝑆𝑓 (𝑔𝑙𝑟 − 𝑓10 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔)𝑦2+

(𝑙𝑟𝐶𝑆𝑟 (𝑔𝑙𝑓 + 𝑓10 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔) − 𝑙𝑓 𝐶𝑆𝑓 (𝑔𝑙𝑟 − 𝑓10 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔))𝑦6

− (𝑙2
𝑓
𝐶𝑆𝑓 (𝑔𝑙𝑟 − 𝑓10 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔) + 𝑙2𝑟𝐶𝑆𝑟 (𝑔𝑙𝑓 + 𝑓10 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔))

𝑦5

𝑦3
)

𝑦′
6
=

𝜇

𝑦3 (𝑙𝑟 + 𝑙𝑓 )
(𝐶𝑆𝑓 (𝑔𝑙𝑟 − 𝑓10 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔)𝑦2+

(𝐶𝑆𝑟 (𝑔𝑙𝑓 + 𝑓10 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔) −𝐶𝑆𝑓 (𝑔𝑙𝑟 − 𝑓10 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔))𝑦6

− (𝑙𝑓 𝐶𝑆𝑓 (𝑔𝑙𝑟 − 𝑓10 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔) + 𝑙𝑟𝐶𝑆𝑟 (𝑔𝑙𝑓 + 𝑓10 (𝑥, 𝑦,𝑢)ℎ𝑐𝑔))
𝑦5

𝑦3
) − 𝑦5

In the above example, 𝑓1 (𝑥,𝑦,𝑢) is a function of only 𝑥3, 𝑥4 and

𝑥6. So, minimizing the instantaneous linearization error along 𝑥1
coordinate requires dividing only across 𝑥3, 𝑥4, and 𝑥6. On the other

hand, minimizing the instantaneous linearization error along 𝑦1
coordinate requires dividing only across 𝑦3, 𝑦4, and 𝑦6 because

𝑓7 (𝑥,𝑦,𝑢) is only a function of 𝑦3, 𝑦4 and 𝑦6. So, the optimal way

of dividing the reachable set for minimizing linearization error

along different directions can be different, i.e., it is a multi-objective

optimization problem with no unique optimum. ▲

To integrate the multiple-optimum ways of division for different

directions in reachability analysis, we intersect the unions of sets

resulting from different optimal divisions corresponding to differ-

ent directions of minimizing the linearization error. This results

in intersection of unions of sets representation of the reachable

set. We will first discuss how to cast a box into IoU of boxes that

minimizes linearization error along different directions. Since the

forward reachable sets of these boxes post linearization are zono-

topes (not boxes), we get intersection of unions of zonotopes as

forward reachable sets.

5.1 Optimizing different division vectors for a
set of projection directions

We can divide a box by partitioning across each axis and taking

Cartesian product of the different intervals obtained. Let 𝜇 ∈ Z𝑛≥1
be a vector of integers, called division vector, where the value

𝜇𝑖 , 𝑖 ∈ {1, . . . , 𝑛} denotes the number of divisions across the 𝑖𝑡ℎ

axis. Given a box Ψ = B (𝑐, 𝑟 ) ⊆ R𝑛 , a division vector 𝜇 gives a

partition of Ψ with the following collection of boxes:

divs (Ψ, 𝜇) =
{
B (𝑥,𝑦) | ∀𝑖 ∈ {1, . . . , 𝑛} 𝑦𝑖 =

𝑟𝑖

𝜇𝑖
,

∃ 𝑗 ∈ {0, . . . , 𝜇𝑖 − 1} 𝑥𝑖 = 𝑥𝑖 − 𝑟𝑖 + 2( 𝑗 − 1)
𝑟𝑖

𝜇𝑖 − 1

}
.

Let us consider an 𝑛-dimensional nonlinear system 𝑓 where 𝑈 =

B (𝑏, 𝑠) is a box. An upper bound on the offset of the linearization

error for all sets in the partition divs (Ψ, 𝜇) can be computed from

Equation (5) as follows.

Δ𝑓 ,Ψ (𝜇) = 𝐸𝑓
(
Ψ,𝑈 , 𝑟 (diag (𝜇))−1 , 𝑠

)
. (7)

According to (7), the volume of linearization error reduces by in-

creasing the division vector 𝜇. Next, an upper bound on the magni-

tude of projection of the linearization error of any of the boxes in

the partition along a direction 𝛼 ∈ Q𝑛 can be computed as

|𝛼 |𝑇 offset
(
Δ𝑓 ,Ψ (𝜇)

)
. (8)

Now, given a bound 𝜂 ∈ Z≥0 on the logarithm number of divi-

sions, i.e.,

∑𝑛
𝑖=1 log2 𝜇𝑖 ≤ 𝜂, we want to find a division vector 𝜇

that minimizes the upper bound on the magnitude of projection of

the linearization error error in Equation (8). Solving for the most

optimal division vector can be of exponential complexity in the

dimension 𝑛. So, we use the greedy optimization given in Algo-

rithm 1. In each iterative step of this algorithm, we increment the

component of division vector along an optimum axis by multiply-

ing by 2, instead of adding 1, for faster convergence. We denote the

collection of subsets from the optimized partition that minimizes

the linearization error along a direction 𝛼 as

optdivs (𝑓 ,Ψ, 𝛼, 𝜂) = divs (Ψ, optvect (𝑓 ,Ψ, 𝛼, 𝜂)) .

where optvect (𝑓 ,Ψ, 𝛼, 𝜂) is computed in Algorithm 1. But for differ-

ent projection directions, we get different types of partitions, which

we shall use in a complementary way to minimize linearization

error and increase accuracy of reachability computation.
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Algorithm 1: Optimizing division vectors given a set of

projection directions

Input: 𝑛-dimensional nonlinear system 𝑓 , box Ψ, threshold 𝜂, finite
set of direction vectors Dirs ⊆ Q𝑛 .

Output: Set of optimized division vectors optvect (𝑓 ,Ψ,Dirs, 𝜂)
1 optvect (𝑓 ,Ψ,Dirs, 𝜂) ← ∅.
2 for 𝛼 ∈ Dirs do
3 optvect (𝑓 ,Ψ, 𝛼, 𝜂) ← [1]𝑛×1
4 while

∑𝑛
𝑖=1 log2 (optvect (𝑓 ,Ψ, 𝛼, 𝜂))𝑖 ≤ 𝜂 do

5 for 𝑖 ∈ {1, . . . , 𝑛} do
6 𝜇 ← optvect (𝑓 ,Ψ, 𝛼, 𝜂)
7 𝜇𝑖 ← 2𝜇𝑖 .

8 𝛾 (𝑖) = |𝛼 |𝑇 Δ𝑓 ,Ψ (𝜇) .
9 end for

10 𝑗 ← argmin
𝑛
𝑖=1
𝛾 (𝑖) .

11 (optvect (𝑓 ,Ψ, 𝛼, 𝜂)) 𝑗 ← 2 (optvect (𝑓 ,Ψ, 𝛼, 𝜂)) 𝑗 .
12 end while
13 optvect (𝑓 ,Ψ,Dirs, 𝜂) ←

optvect (𝑓 ,Ψ, 𝛼, 𝜂)⋃ optvect (𝑓 ,Ψ,Dirs, 𝜂) .
14 end for

5.2 Propagating reachable sets as IoU of
zonotopes

Let us consider a finite set of direction vectors Dirs ⊆ Q𝑛 and a

threshold 𝜂 for the logarithm of number of divisions. Given a set of

states Ψ ⊆ R𝑛 , we want to compute an over-approximation of the

reachable setR𝑓 (Ψ, 𝑡) after a small time elapse 𝑡 using linearization,

such that we minimize the volume of projections of linearization

error along the vectors in Dirs. If Ψ is a box, then for each direction

we can compute a division which minimizes the linearization error

along that direction. Then we can approximate the reachable sets

of each division using linearization and obtain a zonotope. Since

the type of optimized division is different for different directions,

we can intersect the resulting reachable sets for different types of

divisions. This gives an intersection of union (IoU) of zonotopes as

the approximation of reachable set.

R𝑓 (Ψ, 𝑡) ⊆
⋂

𝛼 ∈Dirs

©­«
⋃

𝑋 ∈optdivs (𝑓 ,Ψ,𝛼,𝜂)
Z𝑓 (𝑋, 𝑡)

ª®¬ (9)

In this context, we define the computer representation of an IoU of

zonotopes below.

Definition 5.2. An 𝑛-dimensional IoU zonotope 𝑍 with 𝑘 in-

tersections of unions of 𝑙 pieces in each intersection is an 𝑘 ×
𝑙 matrix whose each element 𝑍𝑖 𝑗 : 𝑖 ∈ {1, . . . , rows (𝑍 )} , 𝑗 ∈
{1, . . . , cols (𝑍 )} is an 𝑛-dimensional zonotope. The IoU zonotope

denotes the set

J𝑍K =
rows (𝑍 )⋂
𝑖=1

cols (𝑍 )⋃
𝑗=1

𝑍𝑖 𝑗 .

We call an IoU zonotope with a single row in its matrix rep-

resentation as a union zonotope because it represents a union of

zonotopes without intersection. Given two IoU zonotopes 𝑍 and

𝑍 ′, we represent the IoU zonotope resulting from their intersection

as 𝑍
d
𝑍 ′, i.e. J𝑍

d
𝑍 ′K = 𝑍

⋂
𝑍 ′. If 𝑍 and 𝑍 ′ are two union zono-

topes, then we represent the union zonotope resulting from their

union as 𝑍
⊔
𝑍 ′, i.e., J𝑍

⊔
𝑍 ′K = 𝑍

⋃
𝑍 ′.

Since the forward reachable set of a box Ψ is approximated

by an IoU zonotope in (9), we need a method to approximate the

reachable set of an IoU zonotope at future time. In this process,

to reduce the linearization error in propagating an IoU zonotope

using linearization, we have to divide the IoU zonotope into subsets

which can be conveniently manipulated for reach set computation.

But accurate division of an IoU zonotope into subsets which can be

conveniently manipulated during reachability computations can

be intractable. Instead, we can divide a box over-approximation

of the IoU zonotope, since boxes can be divided accuratly into

union of boxes. However, over-approximating the IoU zonotope by

a box adds wrapping error which can reduce the accuracy of reach

set approximation. Therefore, to minimize both the linearization

error as well as wrapping error in propagating an IoU zonotope,

we intersect it with the optimized IoU division of its box over-

approximation. This computation is given in the below theorem.

In this computation, we further reduce the linearization error by

linearizing around a region which is an intersection of the box hull

of the zonotope and the box hull of the IoU. The explanation is

provided following the theorem.

Theorem 5.3. Let 𝑍 be an IoU zonotope, Dirs ⊆ Q𝑛 be a finite set
of directions and 𝑡 ∈ [0,∞). Let us define the following quantities.

Ω =

rows (𝑍 )∧
𝑖=1

cols (𝑍 )∨
𝑗=1

Boxapp

(
𝑍𝑖 𝑗

)
(10)

𝑍new = 𝑍
l ©­«

l

𝛼 ∈Dirs

⊔
𝑋 ∈optdivs (𝑓 ,Ω,𝛼,𝜂)

𝑋
ª®¬ (11)

L𝑖 𝑗 = Linearize
(
𝑓 , Boxapp

(
𝑍𝑛𝑒𝑤𝑖 𝑗

) ∧
Ω, 𝑡

)
(12)

Then we get the following over-approximation of the reachable set of
an IoU after time elapse 𝑡 .

R𝑓 (𝑍, 𝑡) ⊆
rows (𝑍 new )l

𝑖=1

cols (𝑍𝑛𝑒𝑤 )⊔
𝑗=1

ZL𝑖 𝑗

(
𝑍new
𝑖 𝑗 , 𝑡

)
(13)

Proof. In the above equations, Ω is the box over-approximation

of𝑍 computed by intersection of joins of box overapproximations of

zonotopes in different unions. Then

(d
𝛼 ∈Dirs

⊔
𝑋 ∈optdivs (𝑓 ,Ω,𝛼,𝜂) 𝑋

)
is the optimized division IoU obtained by dividing Ω. So, J𝑍newK =
J𝑍K. Then we get

R𝑓 (𝑍, 𝑡) ⊆
rows (𝑍 new )⋂

𝑖=1

cols (𝑍 new )⋃
𝑗=1

R𝑓
(
𝑍new
𝑖 𝑗 , 𝑡

)
=

rows (𝑍 new )⋂
𝑖=1

cols (𝑍 new )⋃
𝑗=1

R𝑓
(
𝑍new
𝑖 𝑗

⋂
Boxapp (𝑍 ) , 𝑡

) (14)
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From Equation 6 we derive

R𝑓 (𝑍, 𝑡) ⊆
rows (𝑍 new )⋂

𝑖=1

cols (𝑍 new )⋃
𝑗=1

R𝑓
(
𝑍new
𝑖 𝑗

⋂
Ω, 𝑡

)
⊆

rows (𝑍 new )⋂
𝑖=1

cols (𝑍 new )⋃
𝑗=1

RL𝑖 𝑗

(
𝑍new
𝑖 𝑗

⋂
Ω, 𝑡

)
⊆

rows (𝑍 new )⋂
𝑖=1

cols (𝑍 new )⋃
𝑗=1

ZL𝑖 𝑗

(
𝑍new
𝑖 𝑗 , 𝑡

)
. □

In the above theorem, while propagating a zonotope in the IoU,

we linearize in the neighborhood of the intersection of zonotope

and the IoU, instead of just linearizing in the neighborhood of the

zonotope. This is given in (12). The reason is that along some axes,

the projection volume of a constituent zonotope can happen to be

larger than that of the of IoU. So, we linearize in a neighborhood

of the intersection of the zonotope and the IoU, instead of just

considering the zonotope alone. This computation, apart from the

optimization of divisions, further reduces the linearization error. So,
each zonotope in the IoU complements other zonotopes in reducing the
linearization error, which is an advantage of the above computation.

5.3 Reducing representation size of IoU
In Theorem 5.3, we intersected an IoU zonotope with the opti-

mized IoU casting of the box over-approximation of the IoU (11) to

minimize the linearization error. However, this step increases the

number of intersections in the IoU and therefore the representa-

tion size of the IoU in a computer. If we compute the reachable set

inductively, the representation size will increase in each iteration.

It will slow down computation speed. Therefore, we want to limit

the IoU size within a threshold.

Given a threshold number of intersections Maxintrs > 1 and

an IoU zonotope 𝑍 such that cols (𝑍 ) > Maxintrs, we will con-

struct a new IoU zonotope 𝑍 ′ using the zonotopes in 𝑍 such that

J𝑍K ⊆ J𝑍K′. But we also want the size of𝑍 ′ to be as small as possible

for accuracy of reach set approximation. In this context, we define

the over-approximation measure 𝑍 ′ relative to 𝑍 when 𝑍 ⊆ 𝑍 ′ and
Boxapp (𝑍 ) ⊆ Boxapp (𝑍 )′, as follows. For an IoU zonotope 𝑍 , let

us denote a union zonotope 𝑍𝑖 =
⊔cols (𝑍 )
𝑗=1

𝑍𝑖 𝑗 . A box overapproxi-

mation of IoU zonotope 𝑍 can be computed by taking intersection

of joins of constituent zonotopes as

Boxapp (𝑍 ) =
rows (𝑍 )∧
𝑖=1

cols (𝑍 )∨
𝑗=1

Boxapp

(
𝑍𝑖 𝑗

)
.

Then we define

𝑍 ′

𝑍
=

1

𝑛

𝑛∑
𝑖=1

𝛽𝑖 where ∀𝑖 ∈ {1, . . . , 𝑛}

𝛽𝑖 =


offset (Boxapp(𝑍 ′))𝑖
offset (Boxapp(𝑍 ))𝑖

if offset (Boxapp (𝑍 )) > 0

1 if offset (Boxapp (𝑍 ′))𝑖 = 0

∞ otherwise

(15)

We use the Algorithm 2 to reduce the number of intersections. In

the algorithm, we inductively intersect union zonotopes which

reduce the above measure for the resulting IoU. To reduce size

further, we terminate the algorithm if the final bounds of the new

Algorithm 2: Reducing number of intersections in IoU

Input: IoU zonotope 𝑍 , Maxintrs ∈ Z>1 : Maxintrs < cols (𝑍 )
Output: IoU zonotope denoted: ReduceInter (Z)

1 while rows (𝑍 ′) ≤ Maxintrs −1 and Boxapp (𝑍 ′) ≠ Boxapp (𝑍 ) do
2 for 𝑗 ∈ {1, . . . , 𝑛} do
3 𝑍 new = 𝑍 ′

d
𝑍 𝑗 .

4 𝛾 ( 𝑗) = 𝑍 new
𝑍

.

5 end for
6 𝑖 ← argmin

cols (𝑍 )
𝑗=1

𝛾 ( 𝑗) .
7 𝑍 ′ ← 𝑍 ′

d
𝑍𝑖 .

8 end while

9 𝑍 ′ ← 𝑍 ′
d (⊔rows (𝑍 )

𝑖=1
Boxapp (𝑍 )

)
.

10 ReduceInter (Z,Maxintrs) ← 𝑍 ′.

IoU along coordinate directions in an iteration are the same as that

of the original IoU. We denote the zonotope with reduced number

of intersections as ReduceInter (Z,Maxintrs). This algorithm is only

a heuristic procedure and there can be other ways to reduce the

number of intersections with improved accuracy. The problem of

efficiently reducing number of intersections has scope for further

research.

The order of zonotope can also increase while computing for-

ward reachable sets post linearization. Reducing the order of a

zonotope is a well studied problem and there are numerous algo-

rithms for this purpose (see survey [38]). We use a variant of [15] to

reduce the order of the zonotope. Given a zonotope 𝑍 and 𝑙 ∈ Z≥1,
we denote the zonotope obtained by reducing the zonotope order

to 𝑙 as ReduceOrder (𝑍, 𝑙).

5.4 Parallel algorithm for reachability analysis
Given a matrix 𝐻 ∈ Q𝑝×𝑛 , the directional bounds for an IoU zono-

tope 𝑍 =
∧
𝑖∈rows (𝑍 )

∨
𝑗 ∈cols (𝑍 ) Zon(𝐺𝑖 𝑗 ,𝑐𝑖 𝑗 ) can be computed based

on Equation (2) as

max

𝑥 ∈𝑍
𝐻𝑥 ≤

rows (𝑍 )∧
𝑖=1

cols (𝑍 )∨
𝑗=1

B
(
𝐻𝑐𝑖 𝑗 ,

��𝐻𝐺𝑖 𝑗 �� [1]cols(𝐺𝑖 𝑗 )×1
)
.

We will denote the R.H.S of above equation as 𝐻 ⊙ 𝑍 . Then, using
Theorem 5.3, we developed a parallel Algorithm 3 to compute the

directional bounds on the reachable set of a nonlinear system in a

sequence of successive time intervals. The algorithm solves Prob-

lem 3.1. The algorithm being parallel, we can use multiple CPU

cores to boost the computation speed.

Choosing directions for minimizing linearization error. The set of
directions Dirs along which the linearization error is minimized

can be defined by the user. But as a heuristic, in our experiments we

choose the directions of the coordinate axes as well as the rows of

the Jacobian of 𝑓 with respect to state variables at the center of the

initial set Ψ. Although we do not have a procedure to automatically

find the best possible set of directions, the above heuristic choice

gave good results in the experiments. The issue of choosing Dirs is
similar to the issue of choosing the template directions of polytopes

in template based reachability analysis [9, 16, 35].
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Algorithm 3: Directional bounds on reachable sets

Input: Nonlinear system 𝑓 : Γ ×𝑈 → Γ where𝑈 is a box. A box

Ψ ⊆ Γ, 𝛿max ∈ [0,∞), 𝐻 ∈ Q𝑝×𝑛 , 𝑁 ∈ Z≥1.
Output: ∀𝑖 ∈ {1, . . . , 𝑁 } ℎ𝑖 ∈ Q𝑝 :

max𝑥∈R𝑓 (Ψ,[ (𝑖−1)𝛿max,𝑖𝛿max ]) 𝐻𝑥 ≤ ℎ𝑖 .
1 Choose finite set of direction vectors Dirs ⊆ Q𝑛
2 Choose small time step 𝜏 ∈ [0, 𝛿) : ∃𝑀 ∈ Z≥1𝜏 = 𝛿max/𝑀 .

3 Choose threshold number of intersections Maxintrs ∈ Z>1 and
order of zonotope 𝑙 ∈ Z≥1.

4 𝑍 𝑖𝑛𝑖𝑡 ← Z𝑓 (Ψ, [0, 𝜏 ]) .
5 ℎ1 ← 𝐻 ⊙ 𝑍 𝑖𝑛𝑖𝑡

.

6 Ω ← Boxapp

(
𝑍 𝑖𝑛𝑖𝑡

)
.

7 𝑍 ←
d

𝛼∈Dirs
⊔

𝑋 ∈optdivs (𝑓 ,Ω,𝛼,𝜂) 𝑋

8 𝑡 ← 𝜏 .

9 for 𝑖 ∈ {1, . . . , 𝑁 } do
10 𝑍 ← 𝑍

d (d
𝛼∈Dirs

⊔
𝑋 ∈optdivs (𝑓 ,Ω,𝛼,𝜂) 𝑋

)
.

11 for 𝑗 ∈ {1, . . . , rows (𝑍 ) } In Parallel do
12 for 𝑘 ∈ {1, . . . , cols (𝑍 ) } In Parallel do
13 𝑍𝑖 𝑗 ← ReduceOrder

(
𝑍𝑖 𝑗 , 𝑙

)
.

14 L ← Linearize
(
𝑓 , Boxapp

(
𝑍𝑖 𝑗

) ⋂
Ω
)
.

15 𝑍𝑖 𝑗 ← ZL
(
𝑍𝑖 𝑗 , 𝜏

)
16 𝑆𝑖 𝑗 ← Boxapp

(
𝑍𝑖 𝑗

)
.

17 𝑏𝑖 𝑗 ← 𝐻 ⊙ 𝑍𝑖 𝑗 .
18 end for
19 end for
20 𝑡 ← 𝑡 + 𝜏 .
21 Ω ← ∧rows (𝑍 )

𝑖=1

∨cols (𝑍 )
𝑗=1

𝑆𝑖 𝑗 .

22 if 𝑡 > 𝑖𝛿max then
23 𝑖 ← 𝑖 + 1.
24 ℎ𝑖 ← ∧rows (𝑍 )

𝑖=1

∨cols (𝑍 )
𝑗=1

𝑏𝑖 𝑗 .

25 else
26 ℎ𝑖 ← ℎ𝑖

∨ (∧rows (𝑍 )
𝑖=1

∨cols (𝑍 )
𝑗=1

𝑏𝑖 𝑗

)
.

27 end if
28 𝑍 ← ReduceInter (Z,Maxintrs) .
29 end if
30 end for

Complexity. The number of elementary arithmetic operations

required in computing reachable set of an order 𝑙 zonotope after

small time elapse in an 𝑛-dimensional linear system is O
(
𝑛3𝑙

)
. The

number of arithmetic operations required to compute bounds on a

zonotope is O
(
𝑛2𝑙

)
. The number of arithmetic operations required

to optimize the Taylor error in Algorithm 1 is O (𝑛𝜂 len (∇ (∇𝑓 )))
where len (∇ (∇𝑓 )) is the length of the symbolic formula of the

Hessian of 𝑓 . We consider that rational numbers are soundly over-

approximated by floating point interval bounds of bounded preci-

sion using interval arithmetic. Then given 𝜔 processors, the time

complexity of our parallel algorithm is

O
(
𝑁

(
𝑛3𝑙 + 𝑛𝑚 + 𝑛𝑚 + 𝜂 𝑛 len (∇ (∇𝑓 ))

)
2
𝜂 (Maxintrs + |𝑑𝑖𝑟𝑠 |)

𝜔

)
(16)

We can set the user defined parameters 𝜂 and Maxintrs to tune

the computation speed. When 𝜂 and Maxintrs are fixed, the above
complexity is polynomial time in dimension, number of inputs,

order of zonotope and number of time steps.

6 EVALUATION
We performed experiments on three high-dimensional nonlinear

models of real-world system having highly nonlinear differential

equations containing trigonometric functions, inverse functions,

and polynomials. The models are given below.

6.1 Models
2-Car platoon. We consider a 12-dimensional model of the pla-

toon of 2 autonomous cars given in the previous Example 5.1. We

consider the following initial set in S.I. units:

[−1, 1] × [−0.5, 0.5] × [8, 9] × [−0.3, 0.3]
× [−0.2, 0.2] × [−0.3, 0.3] × [−25,−25] × [−0.1, 0.1]
× [5, 9] × [−0.05, 0.05] × [−0.1, 0.1] × [−0.05, 0.05] ,

and an input set [−0.01, 0.01]2. The dynamics of first and second

car are coupled by the function 𝑓10 (𝑥,𝑦,𝑢) = 𝐾1 (𝑥3 − 𝑦3).

Unicycle platoon. Let us consider a platoon of unicycle vehicles

where the 𝑖𝑡ℎ vehicle follows the (𝑖 − 1)𝑡ℎ vehicle and the rela-

tive displacements between the vehicles are controlled by a state-

dependent feedback. It is modeled by a tuple

(
𝑓 ,𝑈 ,R3𝑙

)
where 𝑙 is

the number of vehicles,𝑈 = {5} is the input velocity of the leader

vehicle, and 𝑓 : R3𝑙 × 𝑈 → R3𝑙 is the vector field given by the

following equations. Below, 𝑥 ∈ R3𝑙 is the state vector and 𝑢 ∈ 𝑈 is

the input. Let 𝑖 ∈ Z≥0 denote the index of a vehicle in the platoon,

where 𝑖 = 0 denotes the leading vehicle and 𝑖 = 𝑙 − 1 denotes the
last vehicle in the platoon.

if 𝑖 = 0, then

𝑓3𝑖+1 (𝑥,𝑢) = 𝑢 cos (𝑥3) /
(
1 + 𝑥32

)
𝑓3𝑖+2 (𝑥,𝑢) = 𝑢 sin (𝑥3) /

(
1 + 𝑥32

)
𝑓3𝑖+3 (𝑥,𝑢) = −𝑥3

(
0.5 + 2𝑥2

3

)
.

if 0 < 𝑖 < 𝑙, then

𝑓3𝑖+1 (𝑥,𝑢) =
0.3 (𝑥3𝑖−2 − 𝑥3𝑖+1 + 10) cos (𝑥3𝑖+3)

1 + 𝑥3𝑖+32

𝑓3𝑖+2 (𝑥,𝑢) =
0.3 (𝑥3𝑖−2 − 𝑥3𝑖+1 + 10) sin (𝑥3𝑖+3)

1 + 𝑥3𝑖+32

𝑓3𝑖+3 (𝑥,𝑢) = −𝑥3𝑖+3
(
0.5 + 2𝑥2

3𝑖+3
)
.

Above, 𝑥3𝑖+1 is the displacement along𝑋 -axis of the (𝑖+1)𝑡ℎ vehicle,
𝑥3𝑖+2 is the displacement along 𝑌 -axis of the (𝑖 + 1)𝑡ℎ vehicle and

𝑥3𝑖+3 is its orientation angle with𝑋 -axis. The leading vehicle moves

with a bounded time-varying speed 𝑢. The other vehicles follow

the leading vehicle by applying a state-dependent feedback control,

which results in the above dynamics. We consider 4 vehicles, i.e.,

𝑙 = 4. We are given an initial set of states specified by the interval

vector Ψ where

Ψ1:3 =
[
[60, 70] [−0.1, 0.1] [−0.5, 0.5]

]𝑇
,

Ψ4:6 =
[
[40, 50] [−0.1, 0.1] [−0.5, 0.5]

]𝑇
,

Ψ7:9 =
[
[20, 30] [−0.1, 0.1] [−0.5, 0.5]

]𝑇
and Ψ10:12 =

[
[0, 10] [−0.1, 0.1] [−0.5, 0.5]

]𝑇
.

The input set is {5.0}. All units are S.I.
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Table 1: Computation times and hyperparameters

2-Car Platoon Quadrotor Unicycle Platoon

Method CT (s) Method CT (s) Method CT (s)

IoU (p) 𝑙 : 50, 𝜏 : 0.005, 𝜂 : 2 224 IoU (p) 𝑙 : 200, 𝜏 : 0.025, 𝜂 : 3 196 IoU (p) 𝑙 : 50, 𝜏 : 0.01, 𝜂 : 1 65

IoU 𝑙 : 50, 𝜏 : 0.005, 𝜂 : 1 118 IoU 𝑙 : 200, 𝜏 : 0.02, 𝜂 : 2 94 IoU 𝑙 : 50, 𝜏 : 0.01, 𝜂 : 2 193

IoU 𝑙 : 50, 𝜏 : 0.005, 𝜂 : 3 457 IoU 𝑙 : 200, 𝜏 : 0.025, 𝜂 : 4 457 IoU 𝑙 : 50, 𝜏 : 0.01, 𝜂 : 3 367

IoU 𝑙 : 25, 𝜏 : 0.005, 𝜂 : 1 82 IoU 𝑙 : 50, 𝜏 : 0.02, 𝜂 : 3 136 IoU 𝑙 : 25, 𝜏 : 0.01, 𝜂 : 1 43

IoU 𝑙 : 10, 𝜏 = 0.005, 𝜂 : 1 62 IoU: 𝑙 : 25, 𝜏 : 0.02, 𝜂 : 3 82 IoU 𝑙 : 10, 𝜏 : 0.01, 𝜂 : 1 29

SO 𝑙 : 50, 𝜏 : 0.005, 𝜂 : 2 225 SO 𝑙 : 100, 𝜏 : 0.02, 𝜂 : 3 (IC) 10 SO 𝑙 : 50, 𝜏 : 0.01, 𝜂 : 1 (IC) 2

PZ 𝑙 : 100, 𝜏 : 0.005, 𝐷𝐺𝑂 : 8 123 PZ: 𝑙 : 150, 𝜏 : 0.01, 𝐷𝐺𝑂 : 200 403 PZ 𝑙 : 200, 𝜏 : 0.0025, 𝐷𝐺𝑂 : 8 (IC) 340

CL 𝑙 : 100, 𝜏 : 0.001 124 CL: 𝑙 : 1000, 𝜏 : 0.0025 170 CL: 𝑙 : 100, 𝜏 : 0.001 (IC) 28

TM 𝐸𝑂 : 4, 𝜏 : 0.001, 𝑅𝐸 : 0.1 (IC) 168 TM 𝐸𝑂 : 4, 𝜏 : 0.005, 𝑅𝐸 = 0.1 (IC) 223 TM: 𝐸𝑂 : 4, 𝜏 : 0.005, 𝑅𝐸 : 0.1 86

IoU: IoU algorithm using multiple solutions of multi-objective optimization,

SO: Variant of IoU algorithm using single type of division from optimzation of (17)

PZ: Polynomial zonotope, CL: Conservative linearization, TM: Taylor model, 𝑙 : Zonotope order, DGO: Dependent zonotope order

𝜏 : Time step, 𝜂: log
2
(no. divisions per union), RE: Remainder estimation𝑀𝑎𝑥𝑖𝑛𝑡𝑟𝑠 = 12, 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = 12, 𝜖 = 1𝑒 − 10, 𝜅 = 1000.

IC: Incomplete due to reach set explosion.

(a) 2-Car platoon
Inter-vehicle distance

(b) 2-Car platoon
maximum of yaw and slip for first car

(c) 2-Car platoon
maximum of yaw and slip for second
car

(d) Quadrotor (e) Quadrotor (f) Unicycle platoon
Minimum lateral distance be-
tween all vehicles

(g) Unicycle platoon
Maximum horizontal displace-
ment of all vehicles

∗Quadrotor model has larger initial set than ARCH competition, so plots are different

Figure 1: Comparison of different algorithms

Quadrotor. We consider the 12-dimensional model of a quadrotor

with three inputs presented in the ARCH competition [19]. It has

a 12-dimensional state vector 𝑥 = (𝑝𝑛, 𝑝𝑒 , ℎ, 𝑏, 𝑣,𝑤, 𝜙, 𝜃,𝜓, 𝑝, 𝑞, 𝑟 ),
where ℎ is the height of the quadrotor and a 3-dimensional input

vector 𝑢 = (𝑢1, 𝑢2, 𝑢2). The dynamics is given below:

¤𝑝𝑛 = 𝑏𝑐𝑜𝑠 (𝜙)𝑐𝑜𝑠 (𝜃 ) − 𝑣 (𝑐𝑜𝑠 (𝜙)𝑠𝑖𝑛 (𝜓 )−
𝑐𝑜𝑠 (𝜓 )𝑠𝑖𝑛 (𝜙)𝑠𝑖𝑛 (𝜃 )) + 𝑤 (𝑠𝑖𝑛 (𝜙)𝑠𝑖𝑛 (𝜓 )+

𝑐𝑜𝑠 (𝜙)𝑐𝑜𝑠 (𝜓 )𝑠𝑖𝑛 (𝜃 ))
¤𝑝𝑒 = 𝑣 (𝑐𝑜𝑠 (𝜙)𝑐𝑜𝑠 (𝜓 ) + 𝑠𝑖𝑛 (𝜙)𝑠𝑖𝑛 (𝜓 )𝑠𝑖𝑛 (𝜃 ))+

𝑏𝑐𝑜𝑠 (𝜃 )𝑠𝑖𝑛 (𝜓 ) − 𝑤 (𝑐𝑜𝑠 (𝜓 )𝑠𝑖𝑛 (𝜙)−
𝑐𝑜𝑠 (𝜙)𝑠𝑖𝑛 (𝜓 )𝑠𝑖𝑛 (𝜃 ))

¤ℎ = 𝑏𝑠𝑖𝑛 (𝜃 ) − 𝑤𝑐𝑜𝑠 (𝜙)𝑐𝑜𝑠 (𝜃 ) − 𝑣𝑐𝑜𝑠 (𝜃 )𝑠𝑖𝑛 (𝜙)
¤𝑏 = 𝑟 𝑣 − 𝑞𝑤 − 𝑔𝑠𝑖𝑛 (𝜃 )
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Figure 2:Minimumnumber of intersections of IoU zonotope
required at each time step for greedily minimizing the rela-
tive IoU measure (see Equation 18 and Algorithm 2)

¤𝑣 = 𝑝𝑤 − 𝑟𝑏 + 𝑔𝑐𝑜𝑠 (𝜃 )𝑠𝑖𝑛 (𝜙)

¤𝑤 = 𝑞𝑏 − 𝑝𝑣 + 𝑔𝑐𝑜𝑠 (𝜙)𝑐𝑜𝑠 (𝜃 ) − 𝑚𝑔 − 10(ℎ −𝑢1) + 3𝑤
𝑚

¤𝜙 = 𝑝 + 𝑟𝑐𝑜𝑠 (𝜙)𝑠𝑖𝑛 (𝜃 )/𝑐𝑜𝑠 (𝜃 ) + 𝑞𝑠𝑖𝑛 (𝜙)𝑠𝑖𝑛 (𝜃 )/𝑐𝑜𝑠 (𝜃 )
¤𝜃 = 𝑞𝑐𝑜𝑠 (𝜙) − 𝑟𝑠𝑖𝑛 (𝜙)
¤𝜓 = 𝑟𝑐𝑜𝑠 (𝜙)/𝑐𝑜𝑠 (𝜃 ) + 𝑞𝑠𝑖𝑛 (𝜙)/𝑐𝑜𝑠 (𝜃 )
¤𝑝 = (−(𝜙 −𝑢2) − 𝑝)/𝐽 𝑥 + 𝑞𝑟 ( 𝐽 𝑦 − 𝐽 𝑧)/𝐽 𝑥
¤𝑞 = (−(𝜃 −𝑢3) − 𝑞)/𝐽 𝑦 + 𝑝𝑟 ( 𝐽 𝑥 − 𝐽 𝑧)/𝐽 𝑦
¤𝑟 = 0/𝐽 𝑧 + 𝑝𝑞 ( 𝐽 𝑥 − 𝐽 𝑦)/𝐽 𝑧.

We took a larger initial set than the one given in the compe-

tition [19] so that there is significant linearization error in the

flowpipe. Our initial set in S.I. units is [−0.8, 0.8]6 × [−0.5, 0.5]2 ×
[0, 0]× [−1, 1]2×[0, 0]. The input set is (𝑢1, 𝑢2, 𝑢3) ∈ [−0.99, 1.01]×
[−0.001, 0.001]2. Notice that the angles in the initial set are larger

than that given in the ARCH competition. Therefore, the plots, com-

putation times and hyperparameters are different from the ARCH

competition.

6.2 Experiments
We did the experiments in the following sections to demonstrate

the advantage of using IoU zonotope based algorithm. The primary

hyperparameters our algorithm used in the implementation are

given in the first row of Table 1 labeled (p). These parameters

are changed depending on the experiment. We chose the set of

directions Dirs along which linearization error is optimized as the

collection of co-ordinate axes directions and the rows of Jacobian

with respect to the state variables at the midpoint of the initial set.

Computing platform. Our IoU algorithm and CORA tool were

run on a Macbook Air with M1 chip having 8 CPU cores and 8GB

RAM. We used all 8 cores for parallel processing in our algorithm.

The Flowstar algorithm was run on as AWS tc2 large computer

with 8GB RAM.

6.2.1 Multiple types of division vs single type of division. We want

to show the advantage of using multiple types of optimized divi-

sions, instead of a single type of division resulting from optimizing

a reasonable scalar objective function. So, we considered the fol-

lowing single objective function which is the infinity norm of the

normalized upper bound on the offset of linearization error. Be-

low, 𝜅 (𝜇) is the objective function of the division vector 𝜇, 𝑓 is the

nonlinear system and Ψ is the box being divided:

𝜅 (𝜇) = 𝑛
max

𝑖=1









offset

(
Δ𝑓 ,Ψ (𝜇)

)
𝑖

offset
(
Δ𝑓 ,Ψ ( [1]𝑛×1)

)
𝑖
+ 1𝑒 − 10








 . (17)

We implemented a reachability analysis algorithm where we op-

timized the above objective (17) in Algorithm 1 and replaced the

resulting single type of division at each time step in Algorithm 3.

We compared the accuracy of both algorithms under the primary

settings (see Table 1 row 1). The approximation of reachable sets is

given in Figure 1. The reachable set of the variant of our algorithm

which optimizes the scalar objective function is plotted with the

legend "single objective". There is not much difference in compu-

tation speed as shown in Table 1. But there is large increase in

accuracy with our proposed approach using multiple optimized

divisions compared to the one using only one optimized division

at each time step. The plots are shown in Figure 1. The reason is

that a single type of division may not minimize linearization error

along multiple directions. But our multiple-type division approach

optimizes linearization error along multiple projection directions.

Since the differential equations are coupled, the linearization error

may need to be minimized along multiple directions to get good

approximation accuracy of reachable set along any direction.

6.2.2 Intersecting more unions increases accuracy. Wewant to show

that increasing number of intersections in the IoU gives more ac-

curate approximation of the reachable set. So, at each time step

of our algorithm, we plotted the smallest size of the IoU obtained

form reducing intersections using Algorithm 2, such that the over-

approximation of box hull of the reduced IoU is the same as the

over-approximation of box hull of the original IoU. This number is

defined below for IoU zonotope 𝑍 .

Δ(𝑍 ) = min

{
𝑘 ∈ {1, . . . , cols (𝑍 )} |
Boxapp (ReduceInter (Z, k)) = Boxapp (𝑍 )

}
(18)

If the above number at a time step is greater than one, it means

that we need more than one zonotope to reduce the relative IoU

measure given in (15). As shown in Figure 2, this number is typically

greater than 5 at most of the time steps. So, increasing the number

of intersections of the IoU zonotope reachable set increases the

accuracy of approximating the reachable set.

6.2.3 Changing number of divisions and zonotope order. We per-

formed simulations by changing the number of divisions per union

and the order of zonotope. As expected, we found a significant

increase in accuracy by increasing the number of divisions on all

models. This is because increasing divisions reduces the lineariza-

tion error. There is also increase in accuracy by increasing the

zonotope order. The plots are shown in the Figure 3. But increasing

divisions and zonotope order can increase computation time accord-

ing the complexity measure in (16). The increase in computation

time is noted in Table 1.
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(a) 2-Car platoon (b) Quadrotor (c) Unicycle platoon

Figure 3: Changing the number of divisions per union

(a) 2-Car platoon (b) Quadrotor (c) Unicycle platoon

Figure 4: Changing the order of zonotope

6.2.4 Comparison with other methods. We compare our approach

with three state of the art algorithms, i.e., (i) Conservative lineariza-

tion [5] which minimizes linearization error by splitting reach-

able set into unions of zonotopes (not intersection of unions), (ii)

Polynomial zonotopes [1], and (iii) Taylor models [13]. We imple-

mented conservative linearization and polynomial zonotopes in

CORA tool [2], while Taylor models are implemented in Flowstar

tool [12]. The performance of CORA and Flowstar can be sensitive

to hyperparameter setting. We note that it can take unreasonably

long time to find the best performing hyperparameters of these

tools using hyperparameter optimization. Therefore, we manually

tuned the hyperparameters to increase accuracy while ensuring

that the computation time is close to that of our IoU algorithm.

Therefore, we manually tuned some of these hyperparameters, like

the zonotope order, Taylor expansion order, dependent zonotope

order, remainder estimation threshold and time step. We set the

rest of the hyperparameters as those used in the ARCH competi-

tion [19]. Some of the tuned hyperparameter settings for Flowstar

and CORA are given in Table 1.

As shown in Figures 1, the accuracy of our IoU algorithm is much

higher than the other tools for comparable computation times. This

establishes significant progress in the state-of-the-art of reachability

analysis by our proposed method.

7 CONCLUSION
Dividing reachable set to restrict the linearization error below

a threshold can become computationally intractable in high di-

mensional spaces. Alternatively, we can fix the number of pieces

and then find a good division of the reach set that minimizes the

linearization error. However, the linearization error being multi-

dimensional renders the optimization problem to be multi-objective,

which has no single best solution. We proposed a new approach

to piecewise linearization that leverages different types of divi-

sions resulting from optimization of multiple different projections

of linearization error. Our solution uses intersection of unions of

zonotopes, where each intersecting union corresponds to an opti-

mized division for each projection direction for the linearization

error. We compared our algorithm with an alternative algorithm

which optimizes a single objective function resulting in a single

type of division. Our experiments demonstrated that intersecting

multiple different optimized divisions can give better accuracy than

using a single type of division. Furthermore, evaluation of this

method on real world examples showed high increase in accuracy

compared to state-of-the-art techniques.

An important direction for future research is extending this tech-

nique to polynomialization, where we try to minimize the error in

polynomial approximation of non-linear systems along different

directions using intersection of unions. In this case, we could possi-

bly use polynomial zonotopes or Taylor models as constituent sets

of the IoU representation. Furthermore, extending this approach

to handle hybrid dynamics with switching conditions can require

more sophisticated analysis.
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