
Dynamic Scheduling for Networked Control Systems

Indranil Saha
UC Berkeley and UPenn

indranil@seas.upenn.edu

Sanjoy Baruah
UNC Chapel Hill

baruah@cs.unc.edu

Rupak Majumdar
MPI- SWS and UCLA

rupak@mpi-sws.org

ABSTRACT
An integrated approach, embracing both control and
scheduling theories, is proposed for implementing multiple
control loops upon shared network and computational re-
sources, where the network may additionally introduce de-
lays and packet losses. Each control system is first analyzed
from a control-theoretic perspective in order to determine
the asymptotic rate at which control signals must be com-
puted to maintain stability and optimal performance despite
network losses. Since required completion rates for control
tasks are asymptotic, and network packet drops uncertain,
the problem of scheduling multiple such control tasks upon
shared computational resources does not map to known
problems in real-time scheduling. It is therefore formalized
here as a new form of periodic task scheduling problem – one
in which each task has an associated asymptotic completion
rate requirement. Sufficient schedulability conditions are
derived, and a dynamic scheduling algorithm designed, for
solving such scheduling problems. This integrated method-
ology thus provides an effective way to incorporate network
loss and delay constraints in the design of cyber-physical sys-
tems over integrated architectures. The use of this method-
ology is illustrated, and its efficacy demonstrated, upon an
example system of five inverted pendulums.

1. INTRODUCTION
There is a trend in complex cyber-physical systems devel-

opment toward integrated architectures, in which multiple
real-time control loops are implemented on standardized and
shared computing and communication platforms [12, 14].
While integrated architectures open up the possibility for
modular design and cost-effective development of complex
systems, they also lead to challenges in the design of real-
time schedulers: sharing of the computational resources and
communication medium may cause unwanted interferences
between components, such as packet losses in the network
or unschedulability in the processor.

In this paper, we describe a methodology for designing a
dynamic scheduler for a group of control tasks in an inte-
grated, networked system that is subject to communication
and computation constraints. Our goal is to design a dy-
namic scheduler that schedules the tasks for individual con-
trollers in such a manner that global asymptotic stability is
ensured for each control system, and each controller opti-
mally rejects disturbances (as measured by the L∞ to RMS
gain), in spite of network packet losses and shared compu-
tational resources. We model an integrated architecture as
a collection of plants and discrete-time controllers, where

the state of each plant is sampled by sensors and transmit-
ted to the corresponding controller through a shared net-
work. Each plant is modeled as a discrete-time linear time-
invariant system. All the controllers execute upon a shared
CPU. The network introduces a delay in the transmission of
the state, and may additionally drop some packets. We as-
sume that there is an upper bound on the rate of packet drop
by the network, but no known deterministic mechanism for
modeling the drop of individual packets.

A number of papers address the problem of maintaining
stability in the presence of network induced delay (e.g. [15,
23]), or packet loss (e.g. [24, 9, 16]) or simultaneously de-
lay and loss (e.g. [21, 7]). However, most of these results
ignore the problem of scheduling the control tasks on a
shared processor. The scheduling problem for a set of con-
trol systems sharing computation resources was first intro-
duced by Branicky, Phillips, and Zhang [3], who studied
the effect of “dropping” control computations in case all
control tasks could not be scheduled. In order to ensure
stability, they computed a minimal rate rmin ∈ [0, 1] at
which control signals must be computed and sent to the
plant. We call rmin the minimum successful transmission
rate; rmin = 1 means that the control signal is computed in
every sampling step, rmin = 0 means it is never computed,
and rmin ∈ (0, 1) means that the control signal needs to
be computed at least rmin fraction of steps in the long run.
Majumdar et al. [11] showed how to determine the transmis-
sion rate ropt, ropt ≥ rmin, for each control system, so that
each control system achieves optimal disturbance rejection
performance. We call ropt the optimal successful transmis-
sion rate. Now, a simple schedulability check that scales
the resource requirement of each control task by ropt, and
a statically synthesized schedule [11] then ensure that all
control loops are stable and achieve optimal performance.

In the presence of network packet losses, one might ex-
pect the above procedure to apply, when ropt is replaced
by ropt + rnet, where rnet is the bound on the rate of drop
of packets by the network. Unfortunately, there is a sub-
tle problem that makes the above scheme inapplicable. In
the schedulability check above, the scheduler can choose
whether or not to compute a task, but once a decision is
made, the corresponding computation is guaranteed to exe-
cute. In the case of network drops, the choice is not entirely
to the scheduler: the scheduler might decide to compute
a task, but the state of the plant required to compute the
task may be dropped by the network. In other words, the
scheme would require a clairvoyant scheduler that predicts
when network drops will or will not happen in deciding to

schedule a task. Clearly, this is unrealistic.
In this paper, we formulate and solve the dynamic schedul-

ing problem for sets of control systems sharing computation
resources and a network that can drop packets. We make
three contributions.

First, we extend the analysis of [3] and [11] to determine
the rate at which control signals should be computed in or-
der to achieve stability as well as optimal disturbance re-
jection performance. Majumdar et al. [11] showed that the
problem of finding the lower bound on the disturbance re-
jection performance for a fixed computation rate is a convex
optimization problem. By analyzing the characteristics of
this optimization problem, we show in this paper that in
the absence of any packet drop by the network, the rate
ropr at which a controller attains its best disturbance rejec-
tion capability is either rmin (the rate required to stabilize
the plant) or rmax (the maximum rate at which the control
task can be computed, constrained by the requirement that
schedulability must be ensured for the multiple control tasks
that are executing upon a shared processor). We call ropr

the operating successful transmission rate.
Second, we formulate the dynamic scheduling problem

in the presence of network packet drops. We assume the
packet drop is bounded by a rate rnet, but that there is
no mechanism that predicts which packets may be dropped
by the network. Since the control-theoretic requirements
are asymptotic, our dynamic scheduling problem does not
map to known scheduling problems from real-time schedul-
ing theory. We formulate a novel periodic task scheduling
problem, where there is an associated asymptotic comple-
tion rate requirement for each task.

Third, while optimal schedulability for our problem re-
mains open, we derive sufficient conditions for schedulability
and design a dynamic scheduler that maintains the rate of
computation for each controller at its operating successful
transmission rate ropr despite packet drops in the network.
We illustrate our dynamic scheduling approach on an exam-
ple of five inverted pendulums implemented upon a shared
processor and using a shared network.

We compare our dynamic scheduler with the static sched-
uler proposed in [11]. The static scheduler is synthesized for
the rate ropr +rnet, and is capable of maintaining the rate in
a range [ropr, ropr + rnet], by over-provisioning the computa-
tion of control tasks. Thus, while the schedulability test for
the dynamic scheduling has to pass for ropr, the schedulabil-
ity test for the static scheduler has to pass for ropr + rnet for
the control systems, rendering the static scheduling scheme
unrealizable in many cases. The other shortcomings of the
static scheduler are that its synthesis is computationally
highly expensive, and its over-provisioning in control signal
computation leads to unnecessary increase in control cost.
We show that our dynamic scheduler provides similar per-
formance to that of the static scheduler presented in [11],
while decreasing control cost significantly avoiding the over-
provisioning inherent in the static scheduling scheme.

2. NETWORKED CONTROL SYSTEMS
In this section, we describe a control theoretic formulation

of the behavior of a networked, discrete-time, linear time-
invariant control system with delay, in which the control
signal may not be computed at every step. For simplicity, we
assume one time unit delay between the sensing and control
computation and actuation.

�����

����	
�

���	

�	��
	���
��

������	

Figure 1: Linear control system with dropout

K

S1

S2

x k1=A x k B
1
w k B

2
u k

y k =C x k

w

u

y

x

Figure 2: Linear control system with dropout

We assume the following architecture for the system, fol-
lowing [20, 21, 9]. The state of the plant is sensed at a
regular interval and sent to the controller through a net-
work (see Figure 1). We assume that the transmission of
the plant’s state through the network and the computation
of the control signal takes less than one sampling period. We
divide a sampling period into two sub-periods. At the end
of the first sub-period, the state of the plant is available for
control computation. In the second sub-period, the control
signal is computed and the control signal is directly applied
to the plant precisely at the end of the second sub-period
(at the end of a period).

Due to network failure some packets from the sensor may
be dropped and may never reach the controller. The con-
troller itself may also decide not to compute the control sig-
nal in some rounds. The goal of the controller is to maintain
a successful transmission rate of the control signal over a pe-
riod of time so that the control system is exponentially stable
and also has the desired performance in terms of disturbance
rejection.

2.1 Scheduled Linear Control Systems
A linear time-invariant (LTI) control system in discrete

time [1] is described by a difference equation:

x(k + 1) = Ax(k) +B1w(k) +B2u(k), (1)

y(k) = Cx(k),

where x(k) ∈ Rn denotes the state of the system at the kth

time step, w(k) ∈ Rl denotes a disturbance signal at the
kth time step, u(k) ∈ Rm denotes a control input at the kth

time step, y(k) ∈ Rp denotes the outputs (the measurement
of the states by the sensors) at the kth time step, and A,
B1, B2, and C are real-valued matrices of the appropriate
dimensions. Figure 2 shows a discrete time LTI system with
disturbance input w, control input u, and output y (ignore
the switch for the moment). Such a discrete time system can
be obtained from a continuous time system using a sampling
time in the standard way [1]. The time steps k = 0, 1, . . .
are multiples of the given sampling time.

We consider state feedback controllers of the form u(k) =
−Kx(k − 1), where the matrix K denotes the gain of the
controller. Note that the control input at the k’th time step
is computed based on the state of the plant at the (k−1)’th
time step. The delay models transmission delay from the

sensor to the controller, and the computation time of the
controller. For simplicity, we assume that this one time unit
delay is enough to accommodate the transmission time of
the sensor data to the controller and the computation time
of the controller. The aim of the controller is to ensure
that the closed-loop system has certain properties, such as
exponential stability, and a certain performance. Standard
control-theoretic computations allow us to obtain state feed-
back controllers with the desired properties (see [1]).

We now describe scheduled linear control systems. The
intuition behind this model is as follows. In each discrete
time step k = 1, 2, . . ., the current state x(k) is observed, and
the scheduler tries to schedule the control computation task
if possible. If the control task is scheduled, the signal u(k) =
−Kx(k − 1) is computed and applied to the actuators. In
time steps k at which the control signal is not computed (i.e.,
in which the scheduler does not schedule the control task),
the controller retains its previous value: u(k) = u(k − 1).

The scheduled control system is modeled as a networked
control system with a loss of “data packets” between the
controller and the plant, that is, the link between the con-
troller and the plant is modeled as a channel with a switch
(see Figure 2). In each time step, if the switch is closed (in-
dicating that the scheduler ran the control task), the con-
trol signal is the updated control law, but if the switch is
open (indicating that the scheduler could not run the con-
trol task), the control signal is unchanged from the previous
control signal. Cycles in which the switch is open are said
to incur dropouts of the control signal. We now relate the
effect of dropouts on the performance of the control system.

In Figure 2, when the switch is closed (position S1), the
output of the controller is transmitted to the plant, and
when the switch is open (position S2), the output of the
switch is held at the previous value. Similar to [3], the dy-
namics of the switch can be modeled formally as follows:

When switch is in position S1 : u(k) = −Kx(k − 1), (2)

When switch is in position S2 : u(k) = u(k − 1). (3)

Define the signal s(k) = 1 if the switch is in position S1 at
the kth time step, and s(k) = 2 if the switch is in position
S2 at the kth time step. These correspond to the control
input being computed or not.

By choosing X = [xT , uT]T as the new state vector, the
closed loop system with dropout, depicted in Figure 2, is
given by:

X(k + 1) = eAs(k)X(k) + eB1s(k)w(k) (4)

y(k) = eCs(k)X(k),

where, using the dynamics of the switch in (2) and (3), we
obtain

eA1 =

»
A B2

−K 0m×m

–
, eB11 =

»
B1

0m×l

–
, eC1 = [C 0p×m];

and

eA2 =

»
A B2

0m×n Im×m

–
, eB12 =

»
B1

0m×l

–
, eC2 = [C 0p×m],

where 0m×n denotes the zero matrix in Rm×n and Im×m
denotes the identity matrix in Rm×m.

Though we assume here that the transmission delay is less
than one time period and the transmission delay and com-
putation time can be accommodated in one time period, we

can accommodate transmission delay spanning over multi-
ple time periods by introducing new state variables to hold
the old values of the states in equation (2)- (4). Once we up-
date these equations to capture time delay for more than one
time unit, all the results in the paper will follow seamlessly.

We define the successful transmission rate as the rate at
which the switch in Figure 2 is in position S1 [8]. Thus, the
successful transmission rate r is given by

r = lim
L→∞

1

L

LX
k=0

(2− s(k)). (5)

The dropout rate means the rate at which the switch in
Figure 2 is in S2. If the successful transmission rate for
a control system is r, its dropout rate is 1 − r. Clearly,
in the former case, the scheduler runs the control task and
updates the actuator, and in the latter case, it does not.
The following theorem provides a sufficient condition on the
successful transmission rate that guarantees the stability of
the closed loop system.

Theorem 1. Consider the LTI control system in (4).
Let r be the successful transmission rate. Assume that
the closed loop system with no dropout and no disturbance
is stable (i.e., maxi|λi(A − B2K)| < 1, where λi(A −
B2K) is the i-th eigenvalue of the matrix (A − B2K).
Then the LTI control system with dropout in (4), with no
disturbance, is exponentially stable for all rmin < r ≤
1, where rmin = log(β2)

log(β2)−log(β1)
, β1 = maxi|λi(eA1)|2, and

β2 = maxi|λi(eA2)|2, β1 < 1 and β2 > β1.

Proof. Following Theorem 6 in [24] it can be shown that
for the LTI control system in (4), if there exists a Lyapunov
function V (x(kh)) = xT (kh)Px(kh) and scalars α1 and α2

such that

αr1α
1−r
2 > 1 (6)

eAT1 P eA1 ≤ α−2
1 P (7)

eAT2 P eA2 ≤ α−2
2 P (8)

then the system is exponentially stable.
Let βi = α−2

i for i = 1, 2. From (7) and (8) we get that

β1 = maxi|λi(eA1)|2 and β2 = maxi|λi(eA2)|2. Now by taking
the log in (6) we get,

r >
log(β2)

log(β2)− log(β1)
.

Since β1 < 1 and β2 > β1, we have rmin < 1.

Note that if β2 < 1, then rmin < 0. If β2 < 1, then the
open loop system is stable, and a controller is not required
for the stability of the system. For any unstable system,
β2 > 1 and 0 < rmin < 1.

2.2 Bound on L∞ to RMS gain
We now recall the analysis of [11] relating dropouts to

control performance. We take the L∞ to RMS gain as our
notion of performance. For the discrete-time LTI control
system in (4), the L∞ to RMS induced gain from w to y is
defined as follows:

sup
‖w‖∞ 6=0,X(0)=0

“
lim supl→∞

1
l

Pl
j=0 y

T (j)y(j)
” 1

2

‖w‖∞
, (9)

where ‖w‖∞ := sup{‖w(k)‖2, k ≥ 0}, and ‖w(k)‖2 =p
wT (k)w(k).
The L∞ to RMS induced gain is a performance criterion

showing the effect of the disturbance on the output of the
plants [8]. Having smaller L∞ to RMS induced gain implies
better performance in the sense that the effect of disturbance
on the output of the plant is smaller.

The following theorem identifies a relationship between
the successful transmission rate and the upper bound of the
L∞ to RMS gain for the control system in (4).

Theorem 2 ([11]). Consider the discrete time LTI
control system in (4) with the successful transmission rate r.
The L∞ to RMS gain is less than positive constant γ if there
exists a piecewise continuous function V : Rn+m → R≥0,
such that V (0) = 0, and γ1, γ2 ∈ R such that

rγ2
1 + (1− r)γ2

2 < γ2, (10)

and

V
“ eAiX + eB1iw

”
− V (X) ≤ γ2

i w
Tw − yT y, for i = 1, 2.

(11)
Using V (X) = XTPX, where P is a symmetric positive def-
inite matrix, the inequality (11) becomes an LMI as follows:» eATi P eAi − P + eCTi eCi eATi P eB1ieBT1iP eAi eBT1iP eB1i − γ2

i

–
≤ 0. (12)

Note that by choosing V (X) = XTPX and for a given
successful transmission rate r, we can minimize γ, the up-
per bound of the L∞ to RMS induced gain, by solving the
following optimization problem:

minimize rγ2
1 + (1− r)γ2

2

subject to» eATi P eAi − P + eCTi eCi eATi P eB1ieBT1iP eAi eBT1iP eB1i − γ2
i

–
≤ 0

for i = 1, 2
γ1, γ2 ∈ R,
P > 0

(13)

Although we only deal with linear control systems in this
paper, our analysis can be extended to determine a bound
on L∞ to RMS gain for nonlinear systems. The challenge is
to obtain a suitable Lyapunov function. If the plant and the
controller can be represented as polynomials with respect
to their arguments (x(k), w(k) and u(k)), then, by using
SOS programming [13], it is possible to search for a suitable
Lyapunov function to ensure a bound on the L∞ to RMS
gain for the nonlinear control system.

2.3 Finding the Operating Rate
We now consider the problem of choosing the successful

transmission rate for a given controller to achieve the best
performance. The successful transmission rate at which the
best performance is achieved is called the optimal successful
transmission rate and is denoted by ropt. A lower bound on
the rate for each system is given by Theorem 1: this is the
rate rmin required to ensure stability. An upper bound rmax

on the rate is decided by the scheduling constraints. We
will discuss this issue in Section 3. If there is no scheduling
constraint, rmax = 1. Now, the following theorem provides
the possible successful transmission rates that may achieve
optimal performance.

Theorem 3. The L∞ to RMS gain of the discrete time
LTI control system in (4) attains the minimum value for the
successful transmission rate to be either at rmin or at rmax.

Proof. Let us assume that the values of γ1 and γ2 for
which the L∞ to RMS gain attains the minimum value are
γ1opt and γ2opt. Now there may be three cases:

Case 1: γ1opt < γ2opt. Note that the LMIs in the con-
straints (13) in the optimization problem in (13) do not de-
pend on r. Thus a solution for γ1 and γ2 is valid for any
successful transmission rate. In this case, if we decrease the
value of r for the same values of γ1 and γ2, the value of γ
also decreases with r. In this case, the minimum value of γ
is obtained at rmin.

Case 2: γ1opt > γ2opt. By using similar argument as
Case 1, we can show that the L∞ to RMS gain attains the
minimal value at rmax.

Case 3: γ1opt = γ2opt. In this case, γ becomes equal to
γ2 and thus remains constant for any successful transmission
rate. Thus rmax and rmin both gives the optimal value for
the L∞ to RMS gain.

In [11], numerical solutions to convex programming prob-
lems were used to compute the performance for different
successful transmission rates and the optimum performance
was found to vary arbitrarily in the interval between rmin

and rmax. Theorem 3 provides a precise characterization of
the optimum at one of the end points of the interval. Our
hypothesis is that the performance profile computed in [11]
suffers from numerical instabilities in the solvers used to
solve the convex optimization problems in computing the
bound on the performance for different successful transmis-
sion rates.

As shown in [11], a static scheduler can be synthesized
to maintain the computation rate of the control systems to
their optimal successful transmission rate. However, if the
network drops packet with a rate rnet, then the scheduler can
maintain the rate only in an interval [ropr−rnet, ropr], where
ropr is called the operating successful transmission rate of the
control system. The following theorem provides the candi-
date values for the operating successful transmission rates
for the control systems for synthesizing a static scheduler.

Theorem 4. The operating successful transmission rate
for a static scheduler is either rmax or rmin + rnet.

Proof. If r > rmax, then scheduling constraints will be
violated. If r < rmin + rnet, then due to packet drop in the
network, the successful transmission rate may be less than
rmin, and the system may be unstable. If we choose any
other rate r, rmin+rnet < r < rmax, we can use the reasoning
of Theorem 3 and show that by shifting the operating rate
either towards rmax or towards rmin, it is possible to decrease
the average value of the L∞ to RMS gain in the operating
region.

2.4 Example
As a motivating example, we use the model of the inverted

pendulum from [22]. The state-space representation of an
inverted pendulum is given by:

ẋ = Ax+B1w +B2u;

y = Cx,

where

A =

»
0 1
g
l

ρ
ml2

–
, B2 =

»
0
1
ml

–
, (14)

B1 =

»
0.1
0

–
, C = [0.001, 0].

In this model, x = [x1, x2]T is the state of the system, with
x1 the angular position and x2 the angular velocity of the
point mass, m is the mass, l is the length of the rod, g =
9.8m/s2 is acceleration due to gravity, ρ is the rotational
friction coefficient, u is the applied force (control input),
and w is the disturbance input.

Let us consider an instance of the above system where
ρ = 0.6, m = 0.4 and l = 0.6 (all values are in S.I. units). We
discretize the plant in (14) with sampling period of 20ms.
A stabilizing controller for the discretized plant is given by
K1 = [4.8462 0.1800]. The minimum successful transmission
rate for this system to ensure stability is rmin = 0.6623.

Now we plot how the upper bound on the L∞ to RMS
gain varies with the successful transmission rate between
rmin and rmax = 1. The figure is obtained by quantizing the
successful transmission rates between rmin and rmax with a
quantization factor 0.01, and then solving the optimization
problem in (13) for each choice of the successful transmission
rate. For a given controller, we refer to the plot of trans-
mission rate vs. performance as the performance profile of
the controller. The curve in Figure 3 shows the performance
profile for the controller K1.

Note that we use the upper bound on the L∞ to RMS gain
instead of the L∞ to RMS gain for a particular disturbance
pattern while constructing the performance profile. Though
different successful transmission rates may be the best for
different disturbance patterns, we seek to determine a suc-
cessful transmission rate for which we can guarantee the
minimum bound on the L∞ to RMS gain, even if this suc-
cessful transmission rate may not be the best for all possible
disturbance patterns.

Now we come to the problem of choosing the operating
successful transmission rate. Due to scheduling constraints,
the value of rmax may be less than 1. The value of ropr

depends on the value of rmax. In our present example, if
rmax ≤ 0.87 then γm(rmin + rnet) ≤ γm(rmax). In this
case, the choice of operating successful transmission rate is
rmin + rnet, as in that case choosing rmin + rnet would give
the optimal performance and optimal CPU time usage. If
rmax > 0.87 then γm(rmax) < γm(rmin +rnet). If rmax is per-
mitted by the scheduling constraints to be greater than 0.87,
rmax may be chosen as the operating successful transmission
rate in order to get better performance. This example thus
illustrates the effect that the scheduling constraints have on
the choice of the operating successful transmission rate.

3. SCHEDULABILITY ANALYSIS IN THE
PRESENCE OF PACKET DROPOUT

In this section, we introduce the effect of multiple control
loops sharing the same CPU and the network. Since the
CPU is shared, we have to schedule the execution of the con-
trollers and ensure that each controller achieves an optimal
successful transmission rate in the presence of scheduling
constraints and network losses.

Let n denote the number of control loops. Let hi denote
the sampling period of the i’th control loop. For the i’th

0.65 0.7 0.75 0.8 0.85 0.9 0.95 14.6

4.7

4.8

4.9

5

5.1x 10−3

successful transmission rate

bo
un

d
on

 p
er

fo
rm

an
ce

Student Version of MATLAB

Figure 3: The upper bound of the L∞ to RMS gain
vs successful transmission rate for an inverted pen-
dulum for K1 = [4.8462 0.1800]

f i d i

hi

hi

0 hi 2 hi

Sch Sch

Figure 4: Periodic state transmission and control
computation

control loop, the state of the plant is sampled at the in-
stants 0, hi, 2hi, . . ., as illustrated in Figure 4. The period
hi is divided into two sub-periods fi and di. In the first fi
time duration, the state of the plant is transmitted to the
controller. At the end of the first sub-period fi, the state
of the plant is available for the computation of the control
signal. At this moment the scheduler is invoked (denoted by
Sch in Figure 4) to decide whether and how to schedule the
computation of the control signal. If the scheduler decides
to schedule the control computation, the control signal is
computed during the second sub-period di, and is applied
to the plant at the end of the sampling period. Let us refer
to this computation of the control signal as a job. Note that
these jobs arrive periodically with a period hi, and each job
has a deadline that occurs di time units after it is ready
for execution. The execution time of the scheduler is con-
sidered to be negligible, however control signal computation
requires some time. Though the computation in Equation 2
looks simple, the practical implementation of such controller
requires some amount of sensor data processing [19] that
contributes to the worst-case execution time of control sig-
nal computation. Let ci denote the worst case computation
time for the control signal of the i’th control system – ci
is thus the worst-case execution time (WCET) of each job
of the i’th control system. We denote by ri the successful
transmission rate of the control signal to the plant for the
i’th control system.

3.1 Computing Message Transmission Times
In order to determine the value of fi for the i’th control

system, we determine the worst case delivery time of the
message from the sensor to the controller. The computation
of worst case message delivery time depends on the nature
of the protocol used in the transmission of message. We
do not address the general problem in this paper, but use
known results about the worst case message delivery time
for the CAN protocol [17, 5]. In our experiments, we have
used the CAN protocol to transmit messages from a sensor
to a controller, and have used the recurrence relation in [5]
to compute the worst case message delivery time. Note that
the fi’s for different control systems may be different.

3.2 Schedulability of Control Computations
The jobs for the i’th control system arrive at the time

instants fi, fi + hi, fi + 2hi, Given hi, fi, di, ci and ri
for each control system, we seek to determine whether it
is feasible to schedule the control computations on a single
processor. Theorem 5 addresses this feasibility question. It
follows from [2, (Lemmas 3.4 and 3.5)].

Theorem 5. A necessary and sufficient condition for n
control systems to be feasible upon a shared preemptive pro-
cessor is that

∀t1, t2 : t1 < t2 :
Pn
i=1 ηi(t1, t2) ci ≤ (t2 − t1)

where ηi(t1, t2) denotes the number of jobs of the i’th control
system that are scheduled for execution, that become avail-
able at some time ≥ t1 and have deadline ≤ t2.

However, it is known [2] that checking the condition of
Theorem 5 is highly intractable – co-NP hard in the strong
sense – even for the simple case where ri = 1 for all i and
there are no network losses (rnet = 0). We will therefore
focus our attention on devising a sufficient , rather than ex-
act, feasibility test. We start out adapting the notion of
demand bound function (dbf) [2] to our specific situa-
tion: for any positive real number t,

dbfi(t) = maxt′
`
ηi(t

′, t′ + t) ci
´

(15)

I.e., dbfi(t) denotes a tight upper bound on the cumula-
tive execution requirement of computations of the i’th con-
trol system that are scheduled for execution with availabil-
ity times and deadlines within some interval of duration t.
Computing dbfi(t) for control tasks in the presence of net-
work error turns out to be a very challenging problem; we
defer a discussion on how we solve this problem to Section 5.

Applying the notion of demand bound function to Theo-
rem 5 immediately yields the following sufficient feasibility
condition for our collection of n control systems:

∀t : t > 0 :

nX
i=1

dbfi(t) ≤ t (16)

The following theorem asserts that under suitable con-
straints, Condition 16 can be validated quite efficiently. The
proof is similar to [2, Theorem 3.1].

Theorem 6. Let κ be a fixed constant, 0 < κ < 1, such
that

Pn
i=1 ri

ci
hi
≤ κ. If Condition 16 is violated then it will

be violated for some t that is O(nmax{hi−di}), and is equal
to (`hi + di) for some integer ` ≥ 0 and some i, 1 ≤ i ≤ n.

We have designed an algorithm, testFeasibility, for
determining the feasibility of collections of control sys-
tems satisfying the condition of Theorem 6. Algo-
rithm testFeasibility takes as input vectors h, d, c, and r
for the control systems, and validates Condition 16 for each
of pseudo-polynomially many different values of t at which
the condition may be violated according to Theorem 6. We
will see in Section 4.1 that each dbfi(t) can be determined
in constant time; hence, Algorithm testFeasibility has
pseudo-polynomial run-time.

3.3 Computation of Maximum Successful
Transmission Rates

Algorithm 3.1: Computation of Maximum Successful
Transmission Rates

function findMaximumRates(h,d, c)1

begin2

r := ropt3

while r ≥ rmin do4

result := testFeasibility(h,d, c, r)5

if result = feasible then6

return r7

end8

for i = 1 . . . n do9

if r(i) > rmin(i) then10

r(i) := r(i)− ε11

end12

end13

end14

return “not feasible”15

end16

Algorithm 3.1 shows how to compute an upper bound on
the rate of successful transmission for all control systems so
that the tasks are schedulable. It takes as input the vectors
h, d and c representing the period, deadline, and compu-
tation time of the control tasks for all the control systems,
respectively. The symbol r denotes the vector represent-
ing the successful transmission rates of the control systems.
Initially, the components of r are set to ropt, where ropt

is a vector capturing the optimal successful transmission
rate for the individual control systems when no scheduling
constraint is present. The elements of ropt are thus either
minimum successful transmission rate for the corresponding
control system, or 1. The algorithm runs in a loop. At each
step, it calls Algorithm testFeasibility to check whether
the control tasks with the rate vector r is feasible. If yes,
vector r is returned as the vector containing the maximum
successful transmission rates. Otherwise, if an element of r
is greater than the minimum successful transmission rate of
the corresponding control system, then the element is decre-
mented by a constant ε. The loop continues to run when any
element of r is greater than the minimum successful trans-
mission rate of the corresponding control system.

4. SCHEDULER SYNTHESIS
In this section, we describe a dynamic scheduling strat-

egy for the control tasks on a shared processor, so that the
transmission rates for the control systems are maintained at
their corresponding operating successful transmission rates.
The requirement that a fraction ri of the jobs of the i’th con-
troller complete by their deadlines is an asymptotic one —
it simply asserts that as the number ν of jobs generated by
the controller approaches ∞, the number of these jobs that
complete execution by their deadlines equals (or exceeds)
ν × ri. Hence if ri = 0.5, for example, it is perfectly accept-
able, according to this definition, to execute every other job;
or to execute the first ten jobs and then skip the next ten;
or to skip the first one hundred jobs and execute the next
one hundred; etc.

While such asymptotic requirements on completion ratio
arise naturally in control theory, they lead to scheduling
problems that is not easily solved using current techniques
from real-time scheduling theory. (In particular, we were
unable to map such an asymptotic completion rate require-
ment into any of the known models for scheduling soft or

firm real-time systems.) Our scheduling strategy, presented
in pseudo-code form in Algorithm 4.1, is more restrictive
than mandated by such an asymptotic completion-ratio re-
quirement: we seek to have the rate of executed control
computations approach the specified operating rate ri from
below, while ensuring that it never exceeds ri. (Such a strat-
egy in essence does away with the “asymptotic” nature of
the completion-ratio requirement, choosing instead to sat-
isfy it as soon as possible while simultaneously minimizing
the amount of execution that must be performed.) If a col-
lection of control systems is deemed schedulable by Algo-
rithm 4.1 (we discuss our schedulability test in Section 4.1
below), then it is guaranteed that the rates of control com-
putations eventually reach ropr and stay there if there is no
packet drop by the network (here, ropr is a vector of the in-
dividual desired successful completion rates – the ri’s). As
we show in Section 4.1, under certain assumption on the oc-
currence of packet drop in the network, the schedulability
analysis can be performed precisely. If the control tasks are
schedulable, the scheduler can maintain the rate of control
computation at ropr even in the presence of packet drops.

In the pseudo-code, r(i) and m(i) denote the current suc-
cessful transmission rate and the number of periods that
have occurred thus far for the i’th control system. The
scheduler runs in an infinite loop. Upon receiving the state
of a plant for the control computation, the scheduler first
checks whether completing the job would make the rate of
scheduled jobs go above the operating rate ropr(i). If not,
then the control computation is scheduled based on earliest
deadline first (EDF) strategy.

As pointed out above, Algorithm 4.1 makes no attempt
to exploit the asymptotic nature of the completion-ratio re-
quirements, and is therefore not an optimal algorithm for
scheduling the control systems. Despite its sub-optimality,
Algorithm 4.1 is clearly correct – any system that it does
schedule in a manner that meets all the deadlines of all the
jobs that are selected for execution, does indeed satisfy the
properties desired by the control application (provided the
network failure rate rnet is small enough to allow this to
happen). In what follows, we present a schedulability anal-
ysis of Algorithm 4.1. Specifically, we will show that under
the assumption ropr(i) ≤ 1 − rnet, we can provide precise
schedulability analysis for Algorithm 4.1.

4.1 Schedulability analysis of Algorithm 4.1
We start out studying the kinds of processor loads that

are generated by Algorithm 4.1 when scheduling jobs of a
particular control system. So let us consider a particular
control system i, with parameters (hi, di, ci, ri). It is evident
that the computational demand by jobs of the i’th control
system over an interval of duration t is maximized if a job
that is selected for execution is released at the very start
of the interval. In this case, the number of jobs that are
released, and have their deadlines, within the interval of
duration t is given by (b t−di

hi
c + 1). However, not all these

jobs may be selected for execution by Algorithm 4.1 – for any
non-negative integer n, let Di(n) denote the largest number
of jobs of the i’th control system that Algorithm 4.1 will
select for execution, out of any sequence of n consecutive
jobs. Given the function Di(n), we can easily compute the
demand bound function for the task: for any t > 0:

dbfi(t) = ci ·Di(b
t− di
hi
c+ 1) (17)

Algorithm 4.1: Dynamic Scheduler

function scheduleControlComputation(ropr)1

ropr is a vector: ropr(i) is the desired successful completion2

rate for the i’th control system
begin3

for i = 1 . . . n do4

r(i) = 0, m(i) = 05

end6

time := 07

while true do8

for i = 1 . . . n do9

if (time− fi)%hi = 0 then10

success new rate :=
r(i)∗m(i)+1

m(i)+111

failure new rate :=
r(i)∗m(i)
m(i)+112

if The state of the plant is received then13

if success new rate ≤ ropr(i) then14

Schedule based on EDF strategy15

r(i) := success new rate16

else17

// Scheduler drops the computation18

r(i) := failure new rate19

end20

else21

// Packet drop by network22

r(i) := failure new rate23

end24

m(i) := m(i) + 125

end26

end27

time := time+ 128

end29

end30

Hence to compute the demand bound function dbfi(·), it
suffices to determine the function Di(n). We now discuss
how Di(n) may be determined. In what follows, we refer a
packet drop by the network as a network fault.
Job execution sequences. In the absence of network er-
rors, Algorithm 4.1 selects jobs for execution according to a
deterministic pattern. If ri is a rational number1 then this
pattern is cyclic: if ri is equal to a/b where a and b are in-
tegers and gcd(a, b) = 1, the pattern will be of length b, out
of which a jobs will be executed. E.g., if ri = 0.6 = 3/5, the
pattern is (NYNY Y)∞, where a “N” denotes that a job is
not executed; a “Y,” that it is.

Note that computing Di(n) for a given n is equivalent to
determining some job execution sequence of length n con-
taining the largest number of “Y”’s (i.e., that correspond
to jobs that are actually executed by Algorithm 4.1). We
may restrict our search to job execution sequences beginning
with a “Y”. (To see why this is so, consider some sequence
of length n that begins with a ”N”. The sequence of length
n obtained by shifting rightwards by one job would yield a
sequence of length n in which the number of “Y”’s does not
decrease, and may in fact increase if the new job added at
the end of the pattern were a “Y”.) Henceforth, therefore,
we restrict our attention to sequence that begin with a “Y.”

No faults. Let D
(o)
i (n) denote the largest number of jobs

that Algorithm 4.1 will end up executing for the i-th control
system out of any sequence of n consecutive jobs, in the

absence of any network fault. D
(o)
i (n) is easily determined

1We do not deal with non-rational ri’s.

by inspection of the cyclic pattern of execution. Letting
ri = a/b (as above), the general expression is

D
(o)
i (n) = a× bn

b
c+

`
a−

ja
b
× (b− n mod b)

k´
(18)

Here, the first term on the right-hand side represents the
fact that a jobs are executed out of every consecutive b jobs,
and the second term yields the amount of jobs executed from
amongst those remaining after every group of b consecutive
jobs is thus accounted for. Let us illustrate by revisiting
our example of the control task i with ri = 3/5. It is not
difficult to show that

D
(o)
i (n) =

8>><>>:
1, if n = 1
2, if n = 2 or 3
3, if n = 4 or 5
3× bn/5c+Do(n mod 5) if n >= 5

A single network fault. Now, suppose that a single net-
work fault, impacting upon Algorithm 4.1’s ability to exe-
cute a single job of the i’th control system, were to occur.
If this fault occurs during a job that Algorithm 4.1 would
not have chosen for execution, then it has no effect on the
computational demand. However, a fault during a job that
would otherwise (i.e., in the absence of the fault) have been
selected for execution prevents that job from getting exe-
cuted; i.e., Algorithm 4.1 would not execute this job and in-
stead seek to execute the next job that would not have been
chosen for execution had the fault not occurred. Letting
“Y” (“N,” respectively) denote a job that would have been
selected (would not have been selected, resp.) for execution
in the absence of a fault, the fault on the “Y” effectively
results in that “Y” becoming a “N,”, and causes the next
“N” to become a “Y”.

As we had argued above, in determining Di(n) we may
restrict our attention to sequences that begin with a “Y.”
Upon all sequences that have been hit with a single fault,
note that if the sequence does not begin with the new “Y”
resulting from the fault, the worst-case effect of this change
is absorbed: a “YN” has simply become a “NY,” and the
total number of “Y”s in the sequence has not increased.
Hence, we only need to consider sequences that begin with
the new “Y.” To do so, we perform the following steps.

1. We separately consider the possibility that the single
fault occurred in each of the a “Y”’s in the cyclic pat-
tern of length b characterizing the job execution se-
quences of the i’th control task

2. For each possibility so considered, we identify and en-
capsulate in an equation, the largest number of “Y”’s
in any n consecutive jobs; once again, such an equation
is easily determined by inspection of the pattern.

3. The desired value for Di(n) is then obtained by simply
taking the maximum of the numbers of “Y”’s deter-
mined by each such individual equation.

We illustrate on our earlier example of ropr = 0.6 for which
we had identified the cyclic pattern (NYNY Y)∞. If the
single fault had occurred during the first “Y” in this pattern,
the resulting sequence would have been of the form

YYY Y (NYNY Y)∞,

with the Y denoting the job that could not be executed
due to the fault, and the following (bold-font) Y one denot-
ing the previous “N” that has now become a “Y.” Letting

D
(1)
i (n) denote the number of Y ’s from amongst the first n

symbols for this sequence, we have

D
(1)
i (n) =

8>>><>>>:
n, if n ≤ 3
3, if n = 4
4, if n = 5 or 6
5, if n = 7
3× bn−3

5
c+D′i(n− b

n−3
5
c × 5) if n ≥ 8

If the single fault had instead occurred during the second
“Y” in the cyclic pattern (NYNY Y)∞, the resulting se-
quence would have been of the form

YYYY NY Y (NYNY Y)∞

This sequence can also be analyzed in a manner similar to
the way we had analyzed the sequence above. And finally,
we would also need to consider the possibility that the fault
had occurred in the third “Y” in the pattern.

Multiple faults. Another disconnect between the worlds of
control theory and real-time scheduling is highlighted in the
consideration of the network error rate rnet. In the control-
theoretic specification of the problem, this rate too is an
asymptotic one which allows for the possibility that an arbi-
trarily long time interval with no faults will be followed by
a very long one with multiple repeated faults. However, it
is obvious that Algorithm 4.1 cannot make any non-trivial
schedulability guarantees under such a fault model: we must
make assumptions bounding the absolute number of faults
that will occur within some specified duration in order to
be able to guarantee schedulability by Algorithm 4.1. Such
assumptions will limit the number of distinct jobs that may
be affected by faults, within any specified window of succes-
sive jobs. We make the following assumption on the fault
model. If the operating rate for a control system is given
by r = a

b
, then no more than b − a faults can occur out of

any b successive jobs. Given a bound on the rate of packet
drop by the network to be rnet, this entails that the operat-
ing rate cannot be more than 1− rnet for the schedulability
test to hold. Our fault assumption ensures that the oper-
ating rate does not deviate from the desired rate for more
than b cycles, as the scheduler has sufficient empty slots to
compensate for the network faults.

It is easily seen that faults after the first sequence of con-
tiguous faults (i.e., faults that effect consecutive jobs of a
particular control system) cannot increase the Di(n) func-
tion, and consequently the demand bound function dbfi(·).
To see why, consider all the jobs that arrive in, and have
deadlines within, some time interval. If a job that is not
at the beginning of this interval and that would have been
selected for execution in the absence of a fault is hit with a
fault, it will not be selected for execution by Algorithm 4.1;
a subsequent job, which would not have been selected for
execution had the fault not occurred, will be executed in-
stead. If both these jobs are within the interval, then the
cumulative demand over the interval (as measured by the
dbf function) is unchanged; if the second job (the “N” that
becomes a “Y” due to the fault) is not within the interval,
the demand has actually decreased and this interval cannot
therefore be the one that defines the demand bound function
for this particular interval-length (see Equation 15).

Hence in order to deal with multiple faults, we need only
extend the form of analysis for a single fault, allowing for
multiple faults rather than just one at the beginning of the
sequence. The number of cases to be considered increases:

the analysis of a single fault required the consideration of
a cases, where a is the numerator in the representation of
the desired completion rate as a fraction. If our fault model
allows for the possibility of up to w consecutive faults, then
the total number of cases we need consider is bounded from
above by w × a, which remains pseudo-polynomial in the
representation of the system. With our assumption on the
fault model, w = (b− a).

5. EXPERIMENTS
Implementation. We use the YALMIP modeling lan-
guage [10] and SDPT3 semidefinite program solver [18] to
solve the convex optimization problem to find the upper
bound on the L∞ to RMS induced gain for a specific success-
ful transmission rate. We use the Truetime simulator [4] to
implement the control tasks and the scheduler, and simulate
the systems under different disturbance conditions. We as-
sume that the plant state is transmitted by the sensor using
the CAN protocol. The choice of CAN in our experiments
is motivated by the fact that CAN is a widely used protocol
in the domain of networked control systems and Truetime
supports simulation using CAN protocol. The plant state is
transmitted in a single precision floating point format. The
plant has two states. Thus for 2 states the data packet from
the sensor to the controller contains 8 bytes. We assume
that the speed of the CAN bus is 250kbits/s. As shown
in [5], the transmission time of a CAN message m with 11-
bit identifier and sm data bytes is given by (55 + 10sm)τbit,
where τbit is the time required to transmit 1 bit through
the CAN network. With 250kbits/s speed of the CAN bus,
τbit = 0.004ms. Thus, the transmission of a message from
the sensor to the controller requires 0.54ms.

Case Study. We illustrate our results on the ex-
ample of the five inverted pendulums modeled in Sec-
tion 2.4, sharing a communication network and a pro-
cessor. We assume that all pendulums have mass m =
0.5, and rotational friction coefficient ρ = 0.6. The
pendulums differ from each other in their lengths, cho-
sen as [l1, l2, l3, l4, l5] = [0.50, 0.50, 0.60, 0.50, 0.60], and
their sampling times, chosen as h = [h1, h2, h3, h4, h5] =
[15ms, 20ms, 20ms, 25ms, 25ms]. We assume that the com-
putation time for all the controllers is the same and equal to
4 ms. All constants and variables are expressed in SI units.

We use the algorithm provided in [5] to compute the
worst case message delivery time for the individual con-
trol systems. The priorities for the CAN messages are
assigned according to periods, with larger periods assigned
lower priority. The worst case message delivery time for
the control systems are given by [f1, f2, f3, f4, f5] =
[0.54ms, 1.08ms, 1.62ms, 2.16ms, 2.70ms], and the
deadlines by [d1, d2, d3, d4, d5] = [12.30ms, 17.30ms,
17.30ms, 22.30ms, 22.30ms]. We assume that the rate of
packet drop in the network is 0.05. Table 1 shows the
controllers for the five pendulums, their minimum success-
ful transmission rates rmin, and the operating successful
transmission rates ropr. In all the cases, the operating
successful transmission rate is 1− rnet.

We consider the following two disturbance scenarios in our
simulation:

• Disturbance Scenario 1: A band-limited white
noise with noise power 0.1 and sample time 0.01.

Systems Controller rmin ropr
System 1 [5.4395 -0.1315] 0.79 0.95
System 2 [5.8461 -0.0907] 0.59 0.95
System 3 [5.8843 0.2607] 0.62 0.95
System 4 [5.9949 -0.0750] 0.60 0.95
System 5 [5.5978 -0.0116] 0.68 0.95

Table 1: Parameters of the controllers

Disturbance State Cost Control Cost
Scenario Static Dynamic Static Dynamic

white noise 331.10 330.76 328.00 323.00
pulse 186.92 186.94 335.00 339.00

Table 2: State cost and control cost for the static
scheduler and the dynamic scheduler for System 3

• Disturbance Scenario 2: A disturbance signal of
pulse shape with amplitude 1 unit, period 10s, pulse
width 1s, and zero phase delay.

Figure 5(a) and Figure 5(b) show the evolution of angu-
lar position of the plant for System 3 under the dynamic
scheduler in the effect of the two disturbance scenarios, re-
spectively.

Comparison with Static Scheduler. We compare
our dynamic scheduler with the static scheduler presented
in [11]. We first attempt to synthesize a static scheduler
for the five systems in Table 1. However, the SMT solver
Yices [6] could not generate a schedule even in 12 hours. The
reason behind the failure in synthesizing the static scheduler
is that the sampling periods are different for the control sys-
tems, thus the hyperperiod (i.e., the lcm of the periods) be-
comes large and the SMT solver needs to deal with many
variables. We rather consider synthesizing a static scheduler
for a group of four control systems where the individual con-
trol systems are an instantiation of system 3, having period
to be 20ms. We could easily synthesize a static scheduler
for the four control systems using Yices. We compare the
behavior of one control systems under both the static and
the dynamic scheduler and under the two disturbance sce-
narios. Our comparison is based on the state cost and the
control cost. The state cost is defined as the sum of the
the Euclidean norm2 of the state of the plant at the end
of each sampling period for a time duration of 100s. The
control cost is measured as the sum of the amplitude of the
control signal at the end of each sampling period for a time
duration of 100s. The state costs and the control costs are
summarized in Table 2. The results show that the state cost
and the control cost are comparable for the static and the
dynamic scheduler. However, the benefit of our dynamic
scheduling scheme is that unlike the static scheduler, the
implementation of a dynamic scheduler does not have high
computational overhead.

Another benefit of the dynamic scheduler over the static
scheduler is that the dynamic scheduler is capable of operat-
ing with any rate of network packet drop rnet as long as the
operating rates of the individual control systems are below
1−rnet. For example, in the case of synthesizing a scheduler
for four control systems as above, suppose we want to main-
tain the computation rate of each control system at 0.70. If
we want to synthesize a static scheduler for a network with

2The Euclidean norm of x ∈ Rn is given by

‖x‖ =
p
x2

1 + x2
2 + . . .+ x2

n

0 20 40 60 80 100−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

An
gu

la
r P

os
iti

on

Student Version of MATLAB

(a) White noise

0 20 40 60 80 100−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

An
gu

la
r P

os
iti

on

Student Version of MATLAB

(b) Pulse shaped disturbance

Figure 5: Evolution of angular position with time for
System 3 from initial state 〈1, 1〉 under the dynamic
scheduler under the effect of (a)band-limited white
noise and (b) a pulse shaped disturbance signal

rnet State Cost Control Cost
Static Dynamic Static Dynamic

0.30 340.74 342.86 230.00 228.00
0.20 336.28 337.88 274.00 231.00
0.10 341.51 335.87 319.00 236.00
0.00 328.92 335.69 334.00 238.00

Table 3: State cost and control cost for the static
scheduler and the dynamic scheduler for different
values of rnet under Disturbance Scenario 1

packet drop rnet = 0.30, we have to choose the operating rate
of the static scheduler to be 1. Now if we use the same static
scheduler in another network with the rate of packet drop
to be less than 0.3, the static scheduler will not be able to
cope with the new situation and would schedule more com-
putation than required. On the other hand, the dynamic
scheduler will be able to adjust to the new requirement. Ta-
ble 3 shows the state cost and the control cost of one of the
four control systems for rnet = 0.30, rnet = 0.20, rnet = 0.10
and rnet = 0 under Disturbance Scenario 1. Our objective is
to maintain the successful transmission rate at 0.70 and the
static scheduler is synthesized for rnet = 0.30. The results
show that both the static scheduler and the dynamic sched-
uler maintain almost the same state cost under different rate
of packet drop. However, when the rate of packet drop de-
creases, the control cost under the static scheduler increases
monotonically, whereas the dynamic scheduler maintains al-
most the same control cost for any rate of packet drop.

6. CONCLUSION
We have presented a dynamic scheduling methodology for

achieving optimal disturbance rejection for a group of con-
trollers in the presence of network packet drops and shared
computational resources. Our scheduling algorithm is use-
ful in integrated architectures of networked control systems,
where multiple control loops share a single processor and
communication medium. Although we have focused on a
specific performance criterion (L∞ to RMS induced gain),
our methodology is applicable to other performance criteria
as well, provided there is way to relate the rate of packet
drops with performance.

7. REFERENCES
[1] K. J. Åström and B. Wittenmark. Computer-controlled

systems: theory and design. Prentice-Hall, Inc., 2nd
edition, 1990.

[2] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms
and complexity concerning the preemptive scheduling of

periodic real-time tasks on one processor. Real-Time
Systems, 2:301–324, 1990.

[3] M. S. Branicky, S. M. Phillips, and W. Zhang. Scheduling
and feedback co-design for networked control systems. In
CDC, pages 1211–1217, 2002.

[4] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E.
Årzén. How does control timing affect performance?
Analysis and simulation of timing using Jitterbug and
TrueTime. IEEE Control Systems Magazine, 23(3):16–30,
2003.

[5] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien.
Controller area network (CAN) schedulability analysis:
Refuted, revisited and revised. Real-Time Systems,
35(3):239–272, 2007.

[6] B. Dutertre and L. de Moura. A fast linear-arithmetic
solver for DPLL(T). In CAV, pages 81–94, 2006.

[7] M. Garca-Rivera and A. Barreiro. Analysis of networked
control systems with drops and variable delays.
Automatica, 43(12):2054 – 2059, 2007.

[8] A. Hassibi, S. P. Boyd, and J. P. How. Control of
asynchronous dynamical systems with rate constraints on
events. In CDC, volume 2, pages 1345 –1351, 1999.

[9] M. Lemmon and X. S. Hu. Almost sure stability of
networked control systems under exponentially bounded
bursts of dropouts. In HSCC, pages 301–310, 2011.

[10] J. Lofberg. YALMIP: a toolbox for modeling and
optimization in MATLAB. In IEEE Symp. CACSD, pages
284–289, 2004.

[11] R. Majumdar, I. Saha, and M. Zamani. Performance-aware
scheduler synthesis for control systems. In EMSOFT, pages
299–308, 2011.

[12] R. Obermaisser, C. E. Salloum, B. Huber, and H. Kopetz.
From a federated to an integrated architecture. IEEE
Transaction on Computer-Aided Design of Integrated
Circuits and Systems, 28(7):956–965, 2009.

[13] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A.
Parrilo. SOSTOOLS: Control applications and new
developments. IEEE Symp. CACSD, pages 315–320, 2004.

[14] A. Sangiovanni-Vincentelli and M. D. Natale. Embedded
system design for automotive applications. IEEE
Computer, 40(10):42–51, 2007.

[15] H. Shousong and Z. Qixin. Stochastic optimal control and
analysis of stability of networked control systems with long
delay. Automatica, 39(11):1877–1884, 2003.

[16] D. Soudbakhsh, L. T. X. Phan, A. Annaswamy,
O. Sokolsky, and I. Lee. Co-design of control and platform
with dropped signals. In Proceedings of ICCPS, 2013.

[17] K. W. Tindell, H. Hansson, and A. J. Wellings. Calculating
controller area network (CAN) message response time.
Control Engineering Parctice, 3(8):1163–1169, 1995.

[18] R. Tutuncu, K. Toh, and M. Todd. Solving
semidefinite-quadratic-linear programs using SDPT3.
Mathematical Programming Ser. B, 95:189–217, 2003.

[19] S. Vyas, A. Gupte, C. D. Gill, R. K. Cytron, J. Zambreno,
and P. H. Jones. Hardware architectural support for control
systems and sensor processing. ACM Trans. Embed.
Comput. Syst., 13(2):16:1–16:25, Sept. 2013.

[20] G. Walsh and H. Ye. Scheduling of networked control
systems. Control Systems, IEEE, 21(1):57 –65, 2001.

[21] M. Yu, L. Wang, T. Chu, and G. Xie. Stabilization of
networked control systems with data packet dropout and
network delays via switching system approach. In CDC,
volume 4, pages 3539–3544, 2004.

[22] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney. Task
scheduling for control oriented requirements for
cyber-physical systems. In RTSS, pages 47– 56, 2008.

[23] L. Zhang, Y. Shi, T. Chen, and B. Huang. A new method
for stabilization of networked control systems with random
delays. IEEE TAC, 50(8):1177 – 1181, 2005.

[24] W. Zhang, M. S. Branicky, and S. M. Phillips. Stability of
networked control systems. IEEE Control Systems
Magazine, 21:84–99, 2001.

