
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

An MILP Encoding for Efficient Verification of
Quantized Deep Neural Networks
Samvid Mistry, Indranil Saha, Member, IEEE and Swarnendu Biswas

Abstract—Quantized Deep Neural Networks (DNNs) have the
potential to find wide applications in safety-critical cyber-physical
systems implemented on processors supporting only integer
arithmetic. The significant challenge therein is to ensure the
correctness of the operation of the network with its approximated
computation. To address this verification challenge formally, we
present a methodology to encode the verification problem into
a Mixed-Integer Linear Programming (MILP) problem. Our
encoding is based on the bit-precise semantics of quantized
neural networks, which ensures the soundness of our method.
We implement our verification methodology using the Gurobi
MILP solver and evaluate it on several widely used DNN
benchmarks. We compare our method with state-of-the-art bit-
vector encodings, which are outperformed by our MILP-based
verification methodology by an order of magnitude in most cases.
These experimental results establish our MILP-based verification
technique as a powerful tool for developing formally verified
safety-critical systems with quantized DNNs as a component.

Index Terms—quantized neural networks, fixed-point arith-
metic, mixed-integer linear programming, formal verification.

I. INTRODUCTION

Sophisticated cyber-physical systems involve complex sens-
ing and control that can be achieved by employing Deep Neural
Networks (DNNs). For example, in an autonomous vehicle,
DNNs are used for perception, which enables the vehicle to
apply appropriate control to make progress towards the goal
by following traffic rules and avoiding collisions [1]–[4]. For
a UAV, a DNN controller can help in reducing the energy
consumption due to control computations and thus can enhance
the flight time [5]. It is widely believed that the DNNs have the
potential to revolutionize the state-of-the-art of cyber-physical
systems and IoTs in the near future.

A major challenge in deploying a DNN for safety-critical
systems is its opaque operation, which makes it challenging to
provide guarantees about their behavior. Recent work on formal
verification of DNNs [6]–[9] try to address this reliability issue
by employing mathematical reasoning and tools to establish
that the DNN satisfies some formally captured specifications.
An example of such a specification for a classification network
is that the result produced by a network should not change due
to small perturbations in its input. The result of this verification

Samvid Mistry is with GitHub. The work was carried out when the author
was with the Department of Computer Science and Engineering, Indian Institute
of Technology Kanpur.

Indranil Saha and Swarnendu Biswas are with the Department of Computer
Science and Engineering, Indian Institute of Technology Kanpur.

Email: mistrysamvid@gmail.com, {isaha, swarnendu}@cse.iitk.ac.in
Manuscript received April 07, 2022; revised June 11, 2022; accepted July 05,

2022. This article was presented at the International Conference on Embedded
Software (EMSOFT) 2022 and appeared as part of the ESWEEK-TCAD
special issue.

process is either a formal guarantee that the network satisfies
the property for all possible inputs or a concrete counterexample
demonstrating that it violates the property.

Our focus in this paper is the formal verification of systems
employing fixed-point neural networks [10], [11]. Fixed-point
neural networks have the potential to find wide applications
in safety-critical systems implemented on low-cost processors
supporting only integer arithmetic as well as powerful acceler-
ators such as GPUs and FPGAs. Systems that use fixed-point
arithmetic are faster, consume less power and memory, and
are less expensive as the computation can happen on low-
cost integer-only processors. As noted in prior work [10],
quantization is the standard practice for the deployment of
neural networks on real-time embedded devices. Though the
networks implemented using fixed-point arithmetic are known
to introduce little degradation to a network’s accuracy [12],
they are not immune to malicious misclassifications caused
by adversarial attacks, and verification of real-valued neural
networks is inadequate for establishing their correctness [10].

Recently, the verification problem for DNNs implemented
as fixed-point networks has been addressed by reducing the
problem to an SMT-solving problem involving the theory
of quantifier-free bit-vector arithmetic [10], [11]. However,
the poor scalability of the method motivates us to explore
alternative verification approaches. We introduce a method
for verification of quantized neural networks that reduces the
problem to a decision problem in the form of a Mixed-Integer
Linear Program (MILP) [13]. MILP solvers cannot be used
directly to verify quantized neural networks because they do
not support shifting and rounding operations, which are the
most basic primitives needed to perform arithmetic operations
with fixed-point numbers. Our method captures the bit-precise
semantics of quantized neural networks accurately by encoding
the fixed-point primitives as operations in a MILP program.

Based on our MILP encoding, we develop a verification
tool that uses Gurobi [14] as the back-end MILP solver. We
evaluate our verification tool on several benchmarks, including
different variants of networks solving the classification problem
on the MNIST dataset and three other popular benchmarks.
We also compare the performance of our tool with the state-of-
art SMT approaches involving the theory of bit-vectors [10],
[11], [15]. Experimental results show that our methodology
can solve significantly more verification problem instances for
most of the benchmarks than the SMT approaches. Furthermore,
our tool takes an order of magnitude less computation time
than its competitors for the instances that both the methods
can solve. These experimental results establish our MILP-
based verification technique as a powerful tool for developing

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

formally verified safety-critical systems with quantized DNNs
as a component.

Contributions: This paper makes the following contribu-
tions.
• We present a sound and scalable verification technique

for DNNs implemented using fixed-point arithmetic. Our
verification methodology is based on a novel encoding of
fixed-point arithmetic to mixed-integer linear programs.

• We implement our verification methodology in an auto-
mated tool using the Gurobi MILP solver. The tool can
automatically solve a wide range of verification problems
for systems involving fixed-point networks.

• We apply our tool to several benchmark DNN applications
to demonstrate the efficacy. We also compare our method
with two recent techniques [11], [15] addressing the same
problem, showing significant performance improvement.

II. RELATED WORK

The major focus on applying formal methods to DNNs has
been to verify the network against the robustness property.
Initially, the robustness issue was concerned with small
perturbations of data to deal with measurement errors and
other factors leading to noisy input data [16]. As more and
more networks started being deployed in safety-critical appli-
cations, it quickly became a security issue. Recent advances in
formal verification methodologies such as Satisfiability Modulo
Theories (SMT) [17] and Mixed Integer Linear Programming
(MILP) [13] have made it possible to use general-purpose
solvers to be applied to the problem of verification of neural
networks. However, these solvers were too slow to verify
any practical network [18]–[20]. Thus, additional DNN-level
reasoning was required to make any verification procedure scale.
Toward that end, DNN verification tools such as DeepPoly [21]
and ReluVal [6] use interval arithmetic with an iterative refine-
ment of bounds. Reluplex [22] and its successor Marabou [8]
have augmented the SMT theory of reals to add support
for ReLU and other piece-wise linear activation functions to
provide better reasoning through nonlinear constraints. NNV [9]
can perform verification of cyber-physical systems having
DNNs as major components through reachability analysis.

Recently, there has been significant effort in verifying
quantized neural networks. A Binarized deep Neural Network
(BNN) [23] is a network that uses binary weights to decrease the
latency and memory required by the network. Several authors
have addressed the verification problem for BNNs through
a reduction to a SAT solving problem [24]–[26] or OBDD
manipulation [27]. Recently, [28] has extended Marabou to
make it possible to reason about networks with both binary
and non-binary weights. To the best of our knowledge, the
first method for verification of quantized neural networks
implemented using fixed-point arithmetic was introduced by
[10]. It was followed by [15] giving formal semantics for fixed-
point arithmetic for SMT solvers by providing reduction to
the theory of bitvectors and reals. Recently, [11] has provided
optimizations for improving the results with SMT solvers,
building on the work by [10]. However, verification of several
properties of important benchmarks remains out of reach for
these methods due to poor scalability.

III. BACKGROUND

In this section, we briefly review fixed-point arithmetic and
quantized deep neural networks.

A. Fixed-point arithmetic

In fixed-point arithmetic, all numbers are represented in 2’s
complement form over B bit words, where F bits are reserved
for the fractional part. To denote a fixed-point type, we use the
Q-point notation from [29]. A Q-point notation is denoted as
Q[QI].[QF], where QI and QF denote the number of integer
and fractional bits allocated to a value. Adding the number of
integer bits QI with the number of fractional bits QF yields the
total number of bits used to represent a number, denoted by B.
For signed fixed-point numbers, the sign bit is also included
in the integer part of the number. Hence, the largest value of
QF can be B − 1.

Due to limited precision, not all floating-point values can be
represented exactly using fixed-point arithmetic. We may need
to perform a rounding operation while converting a floating-
point number to a fixed-point number.

Definition III.1 (Rounding down or rounding towards −∞).
Let η′ be a floating-point number with a non-zero fractional
part. We can represent η′ as η′ = η′i + η′f , where η′i is an
integer and η′f is a floating-point number such that 0 < η′f < 1.
We refer to η′i as the “rounded down” version of η′ and denote
it as int(η′).

In order to convert a floating-point number to a fixed-point
number, we use the following equation [29], where int is a
function that rounds the number towards −∞:

fixedpoint = int(floatingpoint · 2F). (1)

For example, we can convert 6.125 from floating-point
to fixed-point type Q4.2 using Equation (1), such that
int(6.125 · 22) = int(24.5) = 24.

The integer representations of two fixed-point numbers can
be directly added together, as long as the radix point is aligned
for both numbers. Otherwise, one of the numbers must be
converted to be compatible with the other type. For example, a
Q1.7 and a Q2.6 number cannot be added directly. In this case,
we can either shift Q1.7 right to get a Q2.6 number or shift
Q2.6 left to get a Q1.7 number. Shifting a number left will
introduce imprecision in the integer part of the variable, which
can result in a much larger error between the floating-point
and the fixed-point numbers. Thus, it is preferable to shift a
number right and lose precision from the fractional part of a
number.

Multiplication between two fixed-point numbers can be
accomplished by directly multiplying the underlying integers.
Unlike addition, the radix point need not be aligned before
multiplication. Multiplying two numbers of type Q[a].[b] and
Q[p].[q] results in a number of type Q[a + p].[b + q]. For
example, Q1.7 ·Q2.6 = Q3.13. After multiplication, the bit-
width required to hold the result gets doubled. To bring the
result back into the original bit-width, we can shift the number
right until the result lies in the range. We have to shift the
Q3.13 number right by 8 places to get a Q3.5 number, which

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

can be stored in the original bit-width and can be used in
further computations.

A fixed-point number can be converted back to floating-point
using the following equation:

floatingpoint = fixedpoint/2F (2)

We can convert the fixed-point value 24 with type Q4.2
to the floating-point value 6.0 using Equation (2). Note that
converting a floating-point number (e.g., 6.125) to a fixed-point
number (i.e., 24) and re-converting the fixed-point number to a
floating-point number (i.e., 6.0) may lead to a loss of precision.

B. Deep Neural Networks

A neural network is a collection of neurons connected by
edges. The neurons are organized in layers such that one neuron
belongs to exactly one layer, and layers are connected with
other layers using edges. All edges have a weight associated
with them, and all nodes have an optional value associated
with them, called bias. A deep neural network (DNN) consists
of an input layer, multiple hidden layers, and an output layer.
More formally, for a DNN f , the number of layers are denoted
by n, and the size of a layer i is denoted by si. Out of these
n layers, the first layer is the input layer and the nth layer is
the output layer. All the layers in between are called hidden
layers. The output of the jth node of the ith layer is denoted
by ai,j . Consequently, the output of layer i can be packed into
a vector [ai,1, . . . , ai,si]

T, which is denoted by Ai.
Running inference on a DNN f consists of calculating the

value of An from the given value of A1. Each layer i has a
weight matrix Wi of size si−1×si and a bias vector Bi of size
si associated with it, where 2 ≤ i ≤ n. In order to calculate
An, values from A1 are propagated through the network. This
propagation is carried out in terms of a dot product between
the values of layer Ai−1 and weight matrix Wi, and then Bi is
added to the resulting value, creating the preactivation values
for all nodes in the layer i. A nonlinear activation function,
such as ReLU [30] or sigmoid [31], is applied element-wise
on the resulting vector to get the value of Ai. Thus,

Ai = fni(Wi ·Ai−1 + Bi), (3)

where fni is the activation function for layer i. Overall, a
DNN implements a function f : Rs1 → Rsn . The result of the
DNN is given by the values for the nodes in the output layer.

C. Quantized Neural Network

Quantization converts neural networks with real numbers,
that require floating-point hardware to work, into networks over
integers, whose semantics follow fixed-point arithmetic [12].
Quantization allows computation to be carried out by integer-
only architectures, widening the applicability of DNNs. Fur-
thermore, quantization allows DNN computations to use small
words, e.g., 8-bits and 16-bits, that help reduce the training
time, inference latency, and storage overhead.

We will now present how the computation in each layer of
a quantized network is carried out using fixed-point arithmetic.
First, we consider the case where the outputs of any layer

and the weights have the same fixed-point type. The following
equation, modified from Equation (3), represents the inner
workings of a quantized neural network having the same fixed-
point type for each computation in the network:

Ai = fni(int(2−F (Wi ·Ai−1 + Bi))). (4)

Variables with bar and without bar represent fixed-point and
floating-point variables, respectively. For a weight matrix Wi,
the quantized weight is Wi = rnd(2FWi), where rnd(·)
stands for some rounding scheme to an integer and is applied
element-wise on vectors and matrices. In Equation (4), the
output of Wi · Ai−1 has 2F bits in the fractional part.
Consequently, we scale Bi by 22F . For a bias vector Bi,
the quantized bias is Bi = rnd(22FBi). After the dot product
and the sum, the resulting value would have 2F number of
bits in the fractional part. To get the result with F bits in
the fractional part, we multiply by 2−F (i.e., right shift). In
Equation (4), int(·) is a specialized version of function rnd(·)
that rounds towards −∞ and fni is the fixed-point version of
fni.

Now we consider the case where the outputs of the neurons
in a layer have different fixed-point datatypes. Equation (4)
has to be modified if we want to support different number of
bits for all nodes. We use the following procedure to calculate
the value of Ai when we have different types associated with
each neuron’s output. We first convert all nodes to the same
fixed-point type. We achieve this by converting the fixed-point
numbers to floating-point and then converting them to the
required target fixed-point type. Let T and L be matrices
containing fractional bits and integer bits for each node of the
network. Ti−1 = [t1, t2, . . . , tsi−1]T is a vector containing the
number of fractional bits, and Li−1 = [l1, l2, . . . , lsi−1

]T is a
vector containing the number of integer bits for each node in
layer i− 1. Let mi = min(Ti−1) denote the minimum value
in the vector Ti−1. With this data, the following equations can
align all values from the previous layer, and each resulting
value will have m number of fractional bits:

Ai−1
′

= [Ai−1,1
′
,Ai−1,2

′
, . . . ,Ai−1,si−1

′
]T, (5)

Ai−1 = int(2miAi−1
′
). (6)

where Ai−1,α
′

= 2−tαAi−1,α, 1 ≤ α ≤ si−1, and Ai−1 is a
vector of fixed-point numbers with mi bits in the fractional
part. Equation (5) converts all fixed-point values to equivalent
floating-point values by multiplying each value with 2−tα ,
where tα is the number of fractional bits in α. Equation (6)
converts the floating-point values to fixed-point values with mi

bits in the fractional part. Similarly, all weights in Wi can now
be quantized using mi bits in the fractional part, and all biases
in Bi can be quantized using 2mi bits in the fractional part. For
the resulting node, we need Ti,j bits in the fractional part, and
we already have 2mi bits. Let Hi = [2−h1 , 2−h2 , . . . , 2−hsi]T

be a vector where hj = 2mi−Ti,j . Finally, the post-activation
value for all nodes can be computed as follows.

Ai = fni(int(Hi · (Wi ·Ai−1 + Bi))) (7)

Equation (7) is a modification of Equation (4) which can
work with networks where each node in the network can have

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

x1
3.473

x2
6.675

x3
11.81

x4
24.71

−1.36

0.25

0.25

−0.25

0.25

y1

(a) A toy floating-point neural network

x1(Q3.5)
111

x2(Q4.4)
106

x3(Q5.3)
94

x4(Q6.2)
98

−21

1

1

−1

1

y1
Q5.3

(b) Fixed-point version of Figure 1a

Fig. 1: An example of floating-point to fixed-point network conversion

a different type. First, we multiply the fixed-point weights
Wi with the incoming values from the previous layer Ai−1,
followed by the addition of bias Bi. We then multiply Hi,
which converts all the incoming values to the types specified
in the upcoming layer. Then, we round down the results by
applying the int rounding function. Finally, we apply an
activation function. The output of this expression will serve as
the input of the next layer, i.e., Ai.

Example 1. Figure 1a shows a toy neural network with floating-
point values. Figure 1b shows the converted network with fixed-
point types and values, where each input node in the network
has a different type. From Figure 1b, we can observe that x1
has type Q3.5. Since T1 is the vector containing fractional
parts of the inputs, its first element is the fractional part of x1,
i.e., 5. Similarly, L1 is the vector containing integer parts of
the inputs. Its first element is the integer part of x1, i.e., 3. With
values from all inputs, we can see that T1 = [5, 4, 3, 2]T and
L1 = [3, 4, 5, 6]T. The weights in the floating-point network
are W2 = [0.25, 0.25,−0.25, 0.25]T . The fractional part of
the fixed-point representations of the weights is decided as the
minimum fractional part in any type in the previous layer, i.e.,
min(T1) = 2. The fractional part is then subtracted from the
total number of bits to get the integer part, which in this case is
6. With type Q6.2, we can convert W2 to W2 = [1, 1,−1, 1]T.

Let A1 = [x1, x2, x3, x4]T = [3.473, 6.675, 11.81, 24.71]T

and B2 = [−1.36] (chosen arbitrarily as shown in Figure 1a).
Based on the fixed-point datatypes of the nodes in the input
layer, A1 = [x1, x2, x3, x4]T = [111, 106, 94, 98]T. From the
fixed-point data types of the input nodes, we can see that
m1 = min(T1) = 2. Consequently, H2 = [2−(2m1−T2,1)] =
[2−1]. From Equation (5), we can calculate

A1
′

=[2−T1,1A1,1, 2
−T1,2A1,2, 2

−T1,3A1,3, 2
−T1,4A1,4]T

=[3.46875, 6.625, 11.75, 24.5]T,

A1 =int(22 · [3.46875, 6.625, 11.75, 24.5]T)

=[13, 26, 47, 98]T.

The type of all values in A1 is Q6.2. Since all values in W2 also
have type Q6.2, the type of the resulting vector will be Q12.4
after multiplication. To be able to add bias to the resulting

vector, we need all values of the bias vector to be of type
Q12.4. Consequently, B2 = int(24 ·B2) = [−21].

W2 ·A1 + B2 =[13 · 1 + 26 · 1 + 47 · −1 + 98 · 1] + [−21]

=[69]

With that result, we can now scale the Q12.4 value to the
resulting type Q5.3. To match the fractional part, we need to
shift the result to the right by 1 bit. Using 8 bits, we can only
represent integers in the range [-256, 255]. So we need to
clip the result between those bounds if it overflows, i.e., any
value less than -256 will be replaced with -256, and any value
greater than 255 will be replaced with 255.

int(H2 · (W2 ·A1 + B2)) =int([2−1] · [69])

=int(34.5) = 34.

Since 34 ∈ [-256, 255], we do not need to clip the result.
Lastly, we will apply ReLU as our activation function fni.

A2 = fni(int(H2 · (W2 ·A1 + B2))) = max(0, 34) = 34

IV. PROBLEM DEFINITION

A DNN verification query checks a property against a DNN.
The property can be any set of arbitrary constraints involving
the nodes and the edges of the neural networks. Typically, a
property constrains the input range and implies that the output
nodes or some combination of output nodes will be in some
range. The verification problem involves guaranteeing that none
of the valid inputs in the range violates the output property.

Let f be the quantized version of neural network f . Let
fxp(v, τ , ι) be a function which converts v to fixed-point
vector v such that vi has τ i number of fractional bits and ιi
number of integer bits. Let fp(v, τ) be a function that converts
a fixed-point vector v back to floating-point. Given a bounded
input domain D and a property P, we want to prove that

∀x ∈ D. (x = fxp(x,T1,L1)) ∧
(y = f(x)) ∧ (y = fp(y,Tn)) =⇒ P (y) (8)

where P is a predicate that takes the output of a network as input
and checks for the satisfaction of some arbitrary constraints. In
other words, it consists of checking an input/output relationship.
Equation (8) checks the property P over the real-valued output

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

0

0

0

0

1

1

−1

−1

1

1

−1

x1
[2.09375, 3]

x2
[0.5, 1]

y1

Fig. 2: Example neural network where a property holds with
floating-point values but not with fixed-point values

y since the properties are generally defined by domain experts
for the original domain, and the domains generally use floating-
point values for computation. For example, consider a closed-
loop control system where the controller implemented using
fixed-point arithmetic gets floating-point inputs from the sensors
and has to produce floating-point output for the actuators. Given
the fixed-point datatype of the output, from the quantized output
ȳ, the floating-point output y can be determined uniquely. The
above problem formulation also works with minor changes
if the inputs and outputs of the quantized network and the
property are given in fixed-point arithmetic. This formulation
of the verification problem is very abstract and generalizes
over various verification queries, such as queries involving
perturbation of inputs and queries comparing values of different
output nodes.

Example 2. We give a concrete example to discuss the
verification problem. Consider the neural network in Figure 2.
The values inside the nodes in the floating-point network f
indicate biases, and the values on the edges indicate weights.
All values are floating-point numbers. The numbers below the
input node labels indicate the range of valid values for that
node. D is considered as [2.09375, 3]× [0.5, 1].

The property we want to prove is P (y) = y1 ≥ 2.09375.
The network f satisfies the property for any input from the
chosen ranges for x1 and x2. Interestingly, when we convert
the network to fixed-point with type Q4.4, the same property
gets violated. For the chosen range of inputs, the smallest
value that such a fixed-point network can get for y1 is 2.0625.
This shows that even if a property holds on the floating-point
network, it may not hold on a fixed-point network [10].

V. MILP ENCODING

In this section, we present how we solve the verification
problem introduced in Section IV through a reduction to an
MILP problem. Our goal is to encode the verification condition
in Equation (8) as a mixed-integer linear program such that
the verification result can be concluded from its solution.

The difficulty with the formulation in Equation (8) is that it
cannot be directly encoded into an MILP solver, as an MILP
solver cannot solve a validity problem. The validity problem
can be reduced to a satisfiability problem by taking a negation
of the input formula, which can be solved using an MILP solver.
If the negated formula is unsatisfiable, then the input formula
is valid (verification is successful). On the other hand, if the
negated formula is satisfiable, then the input formula is not

valid (verification fails), which is evident by the counterexample
generated from the solution produced by the solver.

To convert the validity problem to a satisfiability problem,
we take the negation of the formula in Equation (8), which
leads to the following verification condition1:

∀x ∈ D. (x = fxp(x,T1,L1)) ∧ (9a)

(y = f(x)) ∧ (9b)
(y = fp(y,Tn)) ∧ (9c)
¬P (y) (9d)

This verification condition can be directly encoded into an
MILP solver since negation and conjunction are natively
supported by the MILP solvers.

In the rest of this section, we will show how we encode this
verification condition into a mixed-integer linear program. Note
that though the MILP solvers are routinely used for solving
optimization problems, we use the MILP solvers to check the
feasibility of the equations and not for optimization.

Running inference on the fixed-point network f involves
passing input values to A1 and calculating the values at An by
repeatedly applying Equation (7) between layers. Wi and Bi

along with A1 can be obtained by quantizing respective floating-
point values before running the MILP solver, and the quantized
values can be directly used in the MILP encoding. Values of T
and L are known in advance (e.g., using range analysis), so all
values of H can be computed. However, Equation (7) involves
multiplication by Hi followed by the int(·) operation, which
is equivalent to shifting right F places where 2−F is any
element from Hi. In the following, we discuss challenges in
designing the MILP encoding and their solutions.

A. Encoding Shift Operation

MILP solvers do not provide primitives to shift numbers.
We must divide by 2F to simulate shifting. The problem with
division is that MILP solvers carry out all arithmetic operations
in floating-point, and we may be left with some fractional part
after division since fixed-point operations are to be carried
out using integers only. MILP solvers also do not provide
any primitives to take away this fractional part. The following
theorem introduces a set of constraints to encode rounding in
a program. They are designed to make sure that there is only
one integer that the solver can choose as the result of division,
and that is the rounded-down version of the result of division.

Theorem 1. Let η be a floating-point variable and ζ and η be
fixed-point variables such that ζ = int(η) and η = η · 2−F ,
i.e., ζ is the result of shifting and rounding η. Let offset ∈ R
be a constant chosen satisfying the following constraint:
(1− 2−F) ≤ offset < 1. Then the constraints

η − offset ≤ ζ, (10)

ζ ≤ η. (11)

shift η by F places and provide sound rounding towards −∞.

Proof. To prove the theorem, we consider two different
possibilities for the value of η: (i) η is an integer, (ii) η is

1¬(a⇒ b)⇔ ¬(¬a ∨ b)⇔ a ∧ ¬b

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

a non-integer number with some positive fractional part. We
show that in both cases, Equation (10) and Equation (11) ensure
that ζ is assigned a unique value correctly.

Case (i) : In case η is an integer, the value of ζ should be
η. As offset < 1, Equation (10) gives us ζ > η − 1. On the
other hand, Equation (11) ensures that ζ ≤ η. Thus, the two
equations in the theorem ensure that the only possible value
for ζ is η when η is an integer.

Case (ii) : In case η is a non-integer number with some
fractional part, we can write η = ηi+ηf , where ηi is an integer
and 0 < ηf < 1. In this case, the value of ζ should be ηi.

Since fixed-point numbers are distributed evenly on the
number line, we can calculate the largest value ηf can take
by subtracting the smallest nonzero positive value it can take
from 1. The smallest nonzero positive value ηf can take is
2−F . Consequently, the largest value for ηf is 1 − 2−F . As
the value of offset is chosen to be greater than or equal to
(1− 2−F), η−offset ≤ ηi and Equation (10) ensures that ηi
is one of the feasible values for ζ. Moreover, as offset < 1,
we get from Equation (10) that ηi − 1 < η − offset ≤ ζ.
Thus, the value of ζ cannot be equal to or lower than ηi − 1.
As Equation (11) requires the value of ζ to be less than or
equal to η, the maximum possible value for ζ is ηi (as ζ is an
integer). Thus, the only value ζ can assume in this case is ηi.

The next example shows an application of the above theorem.

Example 3. Let η = 55 be an integer representing a fixed-
point number with type Q4.4. We would like to shift η 2 places
to the right. That essentially means we want to do ζ = int(η′)
where η′ = η · 2−2 = 13.75. According to Theorem 1, we
want to choose offset such that 1− 2−2 ≤ offset < 1→
0.75 ≤ offset < 1. Let offset = 0.75. The equations from
Theorem 1 will now become

η′ − offset ≤ ζ → 13.75− 0.75 ≤ ζ (12)

ζ ≤ η′ → ζ ≤ 13.75 (13)

Since subtracting 0.75 brings 13 into the allowed range of
values, any value greater than 0.75 and less than 1 will also
bring 13 into the allowed range of values and produce the
correct set of equations. The example shows that the only
feasible value for ζ that satisfies both equations is 13, which
is int(η′). We can also see that if we chose offset < 0.75,
then no value would be able to satisfy the equations, and the
problem would become infeasible.

B. Encoding the Verification Condition in MILP

Here we present the MILP constraints for encoding the
verification problem captured in Equation (9). A SAT result
for Equation (9) indicates that a counter-example violating the
property is found. An UNSAT indicates successful verification.
In the encoding, we write [|n|], n ∈ N, to denote the set
{1, 2, . . . , n}.

1) Input nodes: We start with presenting the MILP con-
straints corresponding to the first conjunct in the verification
condition given in Equation (9a). For all input nodes, we
have some constraints bounding the value that the node can

take. Let UB and LB be vectors containing upper bounds
and lower bounds for floating-point inputs, respectively. We
can have fixed-point vectors UB = fxp(UB,T1,L1) and
LB = fxp(LB,T1,L1) containing upper and lower bounds
for fixed-point inputs, respectively. There are typically only 2
types of constraints present when bounding the input, and the
encoding for both of them is shown below.

∀r ∈ [|T1|]. A1,r ≤ UBr, A1,r ≥ LBr (14)

2) Hidden nodes: Now we present the MILP constraints
corresponding to the second conjunct in the verification
condition given in Equation (9b). These constraints capture the
internal processing of the quantized neural network through the
hidden layers. For any node in a hidden layer, the following
set of constraints can be used to encode its operation. Let us
assume the node for which we are encoding the constraints is
the jth node of the ith layer. If all the incoming edges into a
node do not have the same type, then we first align the radix
points. We introduce a vector F with floating-point type and
encode the following constraints into the solver.

∀r ∈ [|Ti−1|]. Fr = Ai−1,r/2
Ti−1,r . (15)

Equation (15) converts all fixed-point values coming from the
previous layer back into the floating-point values. Now these
values can be converted back to fixed-point with desired number
of fractional bits, i.e., having mi bits in the fractional part
where mi = min(Ti−1). Following the quantization procedure
and Theorem 1, we can use the following constraints to quantize
F back to fixed-point. We introduce a vector Xi,j to hold the
quantized values.

∀r ∈ [|Ti−1|]. Fr · 2mi − offset ≤ Xi,j
r (16)

∀r ∈ [|Ti−1|]. Xi,j
r ≤ Fr · 2mi (17)

If all the incoming edges in a node have the same type, then
we can directly assign the incoming values to Xi,j .

∀r ∈ [|Ti−1|]. Xi,j
r = Ai−1,r (18)

With the aligned inputs with us, we simply need to perform
a dot product with the weights and add the bias to get the
pre-activation value for this node. We introduce a variable pr
to hold the value of the result of this computation.

pri,j = Wi,j ·Xi,j +Bi,j (19)

The value in pri,j currently has 2m number of bits in the
fractional part. As noted in Section III, we need to shift by
Hi,j bits. We introduce a variable γ to hold the pre-activation
value of this neuron. We can shift by Hi,j bits using the
following constraints.

pri,j ·Hi,j − offset ≤ γi,j (20)
γi,j ≤ pri,j ·Hi,j (21)

An issue with Equations (20) and (21) is that the output value
can be larger than the fixed-point type can hold. There are
mainly two ways to handle this overflow. One way is to let
the hardware take its natural path and wrap around the value.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

x1

x2

X2,1

X2,2

pr2,1

pr2,2

γ2,1

γ2,2

q2,1

q2,2

z2,1

z2,1

y

floating-point
input

floating-point
input

eq. (28)

eq. (29)

eqs. (30) and (31)

eqs. (32) and (33)

eq. (34)

eq. (35)

eq. (36)

eq. (37)

floating-point
output

Fig. 3: Fixed-point encoding of Figure 2 with intermediate steps.

Since the theory of bitvectors in SMT natively supports wrap-
around as a mode of rounding, this type of rounding can be
handled in SMT solvers easily, while MILP solvers offer no
such primitive, and hence it would be difficult to accurately
implement the semantics of wrap-around in MILP encoding.
The other would be to saturate the value to the maximum or
minimum that the fixed-point type can hold. We use saturation
as the mechanism to handle overflow. Let lb = −2Li,j+Ti,j−1

and ub = 2Li,j+Ti,j−1 − 1 be the lowest and highest value
representable by this node. We introduce a variable qi,j to hold
the result of this computation.

qi,j = min(ub,max(lb, γi,j)) (22)

Finally, we can apply any piecewise-linear activation function
on q. We use ReLU as the activation function. We introduce a
variable zi,j to hold the value of post-activation.

zi,j = max(0, qi,j) (23)

Since linear programming cannot reason about functions that
are not linear or piecewise-linear, our methodology supports
only a limited set of activation functions. Nonlinear activation
functions such as sigmoid and hyperbolic tangent are beyond
the scope of the current paper.

3) Output nodes: We now present the MILP constraints
corresponding to the third conjunct in the verification condition
given in Equation (9c). In the final layer, we return the value
of the output node without applying any activation function,
i.e., z = q. Once we have collected all the outputs in a vector
y, we convert the vector back to floating-point.

y = fp(y,Tn) (24)

We can encode ¬P (y) (the last component in the verification
condition in Equation (9d)) into the solver to find a counter-
example for the property. The presented method encodes the
semantics of fixed-point arithmetic exactly and completely.

Example 4. To illustrate the encoding procedure with a
concrete example, we are going to encode the network in
Figure 2. All nodes in the fixed-point network will have type
Q4.4. Figure 3 shows the intermediate variables and the
constraints used to generate them visually. The constraints
for input nodes will be as follows.

A1,1 = x1 ≤ 48,A1,1 = x1 ≥ 33 (25)

A1,2 = x2 ≤ 16,A1,2 = x2 ≥ 8 (26)

Since all nodes in the network have the same type, we need
not align the incoming values for the intermediate layer. We

are directly going to assign the values to intermediate vector
X for each node.

∀j ∈ [|T2|].∀r ∈ [|T1|].X2,j
r = A1,r (27)

Once we have the values in the intermediate vector, we can
encode the dot product with the weights and addition of the
bias.

pr2,1 = [16,−16]T ·X2,1 + 0 (28)

pr2,2 = [−16, 16]T ·X2,2 + 0 (29)

The result of the dot product will be of type Q8.8. The
resulting type we want is Q4.4. We need to shift the result
4 times to the right to get the desired number of fractional
bits. Therefore, Hi = [2−4, 2−4]. Let offset = 1− 2−2∗8 =
0.999984741211. The procedure to choose a sound value for
offset is explained in Section V-C. The shifting and rounding
can be encoded using the following constraints.

pr2,1 · 2−4 − offset ≤ γ2,1 (30)

γ2,1 ≤ pr2,1 · 2−4 (31)

pr2,2 · 2−4 − offset ≤ γ2,2 (32)

γ2,2 ≤ pr2,2 · 2−4 (33)

We need to saturate the result so that it fits in the resulting
type Q4.4. The largest value a Q4.4 type fixed-point number
can hold is 255, and the smallest is -256.

q2,1 = min(255,max(−256, γ2,1)) (34)
q2,2 = min(255,max(−256, γ2,2)) (35)

We now need to apply the ReLU activation function to the
result.

z2,1 = max(0, q2,1) (36)
z2,2 = max(0, q2,2) (37)

The constraints to encode the output layer are identical,
except that we do not encode the activation function. We instead
encode the negation of the property that we want to prove. In
this case, the output of the final layer before the activation
function will be denoted by q3,1. As per Equation (2), we can
convert the result to floating point by multiplying 2−4. The
floating-point result will be denoted by y.

y = q3,1 · 2−4 (38)

Finally, we encode the negation of the property as follows

y < 2.09375 (39)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

C. Choosing offset for a network

In a program with multiple types, the value of offset
must be chosen carefully to make sure that all different types
get rounded in a sound manner. The solution is to choose an
offset which works for the largest divisor in the network, and
it will work for all instances of rounding. The constraint system
defined in this section has 2 instances of rounding, namely in
Equations (16) and (17) and Equations (20) and (21).

Equations (16) and (17) involves division by 2Ti−1,r which
can take the largest value of 2B−1 where B is the total number
of bits. Equations (20) and (21) involve division by Hij =
2−(2m−Ti−1,j) which can take the largest value of 2−(2B−2).
Hence, choosing offset such that (1 − 2−(2B−2)) ≤
offset < 1 will work for all instances of rounding. Avoiding
all the complexity, we recommend choosing the value of
offset = 1 − 2−2B . Since 1 − 2−(2B−2) < 1 − 2−2B < 1,
the equations will be sound with offset = 1− 2−2B . Given
that we are going to work with small values of B, we are
unlikely to run into precision issues while storing 1− 2−2B

in a floating-point variable.

D. Implementation of max in MILP Solvers

There are mainly two ways to implement z = max(x, lb) in
MILP solvers, where x is a variable and lb is a constant. The
implementation of min is also analogous.

1) Big-M constraints: Let blb and bx be two binary variables.
Taking M to be a very large positive constant, we can use the
following assertions to encode the max operation.

blb + bx = 1 (40a)
z ≥ lb (40b)

x− z −M · blb ≤ 0 (40c)
x− z +M · blb ≥ 0 (40d)
z −M · bx ≤ lb (40e)
x−M · bx ≤ lb (40f)

The set of constraints works in the following way to make
sure the maximum is assigned to z. Equation (40a) makes
sure that exactly one of blb and bx is 1. M is supposed to
be a constant so large that it can be treated as ∞. When
blb = 1 and bx = 0, Equations (40c) and (40d) will be trivially
satisfied as −∞ ≤ 0 and ∞ ≥ 0. Equations (40b), (40e)
and (40f) will make sure that z = lb and x ≤ lb. When
blb = 0 and bx = 1, Equations (40e) and (40f) will be trivially
satisfied as −∞ ≤ lb. Equations (40c) and (40d) will make
sure that x = z and Equation (40b) will make sure that z ≥ lb
so transitively x ≥ lb.

2) Indicator constraints: Solvers such as Gurobi [14] and
CPLEX [32] offer an alternative to Big-M constraints in the
form of indicator constraints. With indicator constraints, we
can store the result of a constraint in a binary variable. This
binary variable can be further used to conditionally apply a

constraint. Let b be a binary variable. We can encode the max
function using the following set of constraints.

x > lb = b (41a)
b = 0→ z = lb (41b)
b = 1→ z = x (41c)

The set of constraints works in the following way to make sure
that the maximum is assigned to z. Equation (41a) assigns 0 to
b if x ≤ lb else assigns 1 to b. Based on the value of b, either
Equation (41b) or Equation (41c) is applied as a constraint
and the other is ignored. If b = 0, it implies that x ≤ lb and
z = lb should be applied. If b = 1, it implies that x > lb and
z = x should be applied.

VI. EVALUATION

In the following, we compare the efficiency and robustness
of our approach with closely-related prior work [11], [15].

A. Experimental Setup

1) Implementation: We implement our verification method-
ology in Python, which is available at https://github.com/
iitkcpslab/QNNV. Our implementation takes neural network
models in the NNet [33] format. To decide on the target solver,
we ran a preliminary comparison between solvers using the
Collision Avoidance benchmark (described below) to decide on
the solver to use with our experiments. The results are reported
in Table I. Gurobi performed the best among all the solvers
we tried. It should be noted that ≈ 1033 seconds are spent in
preprocessing and generating the MILP constraints from the
neural network. So in most cases, the solving takes only a
fraction of a second with Gurobi. Thus, it was a natural choice
for us to implement our tool using Gurobi as the backend
solver. Our implementation uses Gurobi v9.0.3 [14] to encode
the constraints provided in Section V-B. Table II shows the
Gurobi parameters we configure and their influence on the
solver. In the rest of the paper, we refer to our work as the
MILP encoding.

Prior work by Baranowski et al. [15] provides a set of
primitives for describing fixed-point computation by extending
PySMT [34]. These primitives can be rewritten to use an
existing theory supported by current SMT solvers [35]–[37]. It
can be reduced to either the theory of bitvectors or the theory
of reals. We use the reduction to the theory of bitvectors since
it performed better in their evaluation, and we refer to this
encoding as the BV-SMT encoding. We use Boolector as the
underlying SMT solver with PySMT, which is the same solver
used by [15]. We do not test the reduction to the theory of
reals since Boolector does not support the theory of reals.
Furthermore, prior work [15] shows that the reduction to the
theory of bitvectors performed better than the theory of reals.

2) Benchmarks: For the first benchmark, we use the MNIST
dataset [38] containing images of handwritten digits which need
to be classified. A classifier maps a n-dimensional input to one
out of µ target classes. If the outputs of a classification network
are o1, . . . , oµ, then the prediction of the network is given by
class(o1, . . . , oµ) = arg maxi oi. We trained three different

https://github.com/iitkcpslab/QNNV
https://github.com/iitkcpslab/QNNV

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE I: Preliminary comparison of solvers on the Collision Avoidance benchmark

Solver Solved Timeout Exception Total time (s) Total time excluding encoding time (s)

Gurobi 500 0 0 1079 46
Gurobi (8-Threads) 500 0 0 1087 54
GLPK 309 191 0 12621 11588
CBC 495 3 2 2626 1593
CBC (8-Threads) 495 1 4 1795 762

TABLE II: Impact of Gurobi parameters on the solving algorithm

Variable Purpose

SolutionLimit = 1 Stop after 1 solution is found
MIPFocus = 1 Focus on finding feasible solutions quickly
IntFeasTol = 1e-9 Tolerance for considering a floating-point value as integer
DualReductions = 0 Do not perform dual reduction. Useful for debugging
InfUnbdInfo = 1 Extra information when solution is infeasible or unbounded for debugging
Threads = 8 Number of threads to use for solving
ConcurrentMIP = 8 Spawn 8 independent MILP solvers, with different configurations

networks for verification using the TensorFlow framework [39].
The first network has an architecture of 784× 16× 16× 10,
referred to as MNIST-S (i.e., a small network). The second
network has 10 hidden layers, each having 10 nodes, referred
to as MNIST-D (i.e., a short and deep network). The third
network has an architecture of 784× 256× 256× 10, referred
to as MNIST-T (i.e., a tall but shallow network). Along with
our own trained benchmarks, we use a 784× 256× 256× 10
network from the mnistfc benchmark from VNN-COMP [40],
referred to as MNIST-FC.

We use the first 100 images from the test set of the MNIST
dataset from the Keras [41] library to check for the robustness
property. Prior work [10] defines robustness as follows: A
sample s is robust when, for all perturbations within distance
ε, the sample gets classified in the same class as s, denoted
by c. ε > 0 is some notion of distance. If we denote x as a
perturbation of s within ε distance and class ◦ f be the result
of classification, then we can define the following property for
the verification of robustness for s

|s− x|∞ ≤ ε =⇒ c = class ◦ f(x). (42)

We use three other popular benchmarks in our evaluation.
Collision Avoidance [7] contains attributes about two vehicles,
and the network predicts whether the two vehicles will collide.
The network contains 40 linear nodes in the first layer, followed
by a MaxPool layer where each node has 4 incoming edges,
followed by a layer with 19 ReLU nodes, and a final layer with
2 ReLU nodes. There are 500 properties defined on the network
based on safety margins around the tuples in the dataset.

In TwinStream [42], a network has two streams of data
coming into the final layer. Both streams have the same
architecture, weights, and inputs. The final layer computes the
difference between the two streams and adds a positive bias;
the output of the network is always equal to the bias added in
the final layer. The benchmark contains 81 randomly-generated
networks. The networks vary in depth, number of hidden nodes,
number of inputs, and the value of the margin. The only
property to check on all the 81 networks is that the output at
the final layer is positive, which is true by construction.

TABLE III: Number of variables in each benchmark

Benchmark Number of variables

MNIST-S 18,805
MNIST-D 15,229
MNIST-T 2,78,485
MNIST-FC 2,78,485
Collision Avoidance 5,253
ACAS Xu 15,480
TwinStream 10,608

The ACAS Xu benchmark [43] contains 45 DNNs to control
an aircraft. Each network has six hidden layers of 50 nodes
each. We use four properties that are applicable on all networks.
The properties describe scenarios about the position and speed
of both the aircraft and what advisories must not be given in
those cases. The properties are described in detail in [22].

All the networks used in our evaluation have 4 bits allocated
to the integer part and 4 bits allocated to the fractional part, i.e.,
Q4.4 except for MNIST-FC. MNIST-FC uses ε value of 0.05,
which cannot be represented by a Q4.4 type. Consequently, it
uses a Q3.5 type. To convert and encode floating-point networks
into fixed-point, we have followed the semantics described
in Section III. Table III contains the number of variables
in the MILP encoding in our implementation. TwinStream
benchmarks contain networks of various sizes. The number
of variables reported in the table corresponds to the largest
network in the TwinStream benchmark.
Platform. The experiments were run on a system with an
Intel® Core™ i7-4770 processor, having 4 physical cores (8
logical with hyperthreading), running at 3.40 GHz and with
16 GB of memory. The single-threaded experiments were run
simultaneously in groups of eight, as was done in [10]. For
multithreaded experiments, we used 8 threads.

B. Results

The evaluation results for comparison between MILP and
BV-SMT encoding are summarized in Table IV. The detailed
results are described below.

1) MNIST Dataset: The results for the 4 MNIST networks
are shown in Figure 4. The timeout for the MNIST-S is set to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

MNIST-SMALL MNIST-DEEP MNIST-TALL MNIST-FC

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
 (

s)

MILP (Single) performance

(a)

0 1000 2000 3000
MILP single thread

0

500

1000

1500

2000

2500

3000

3500

M
IL

P
8
-t

h
re

a
d
s

MILP multithreaded performance

MNIST-DEEP
MNIST-TALL
MNIST-SMALL
MNIST-FC

(b)

Fig. 4: Comparison of the MILP implementations and BV-SMT
on the MNIST networks. Red lines indicate timeout.

Q2.2 Q2.4 Q4.4 Q4.6 Q6.6 Q6.8 Q8.8
Fixed-point type

0

25

50

75

100

125

150

175

Ti
m

e
 (

s)

Scalability of MILP

MILP mean
SMT mean

(a)

Q2.2 Q2.4 Q4.4 Q4.6 Q6.6 Q6.8 Q8.8
Fixed-point type

0

20

40

60

80

100

N
o.

 o
f
re

su
lt
s

Robustness of MNIST

SAT
UNSAT
TIMEOUT

(b)

Fig. 5: Scalability and robustness of the MILP encoding.

60s, while it is 3600s for the networks MNIST-D, MNIST-T,
and MNIST-FC. Figure 4a and Table IV show that our approach
is able to verify 290 out of 315 problems using single-threaded
MILP and verify all 315 problems within the timeout limit
with multithreaded MILP. The SMT solver timed out on all
instances of the problem in the case of MNIST-S, MNIST-D,
and MNIST-T. In case of MNIST-FC, BV-SMT consistently ran
out of memory. In our experiments, it seems that the memory
consumption in BV-SMT is highly sensitive to the number of
bits in the fractional part. Our technique using MILP uses a
relatively consistent amount of memory since the bit-width that
the MILP solver works with does not change with changes
in fixed-point types. These benchmarks show that our tool is
well-equipped to handle short and deep networks (e.g., MNIST-
D) as well as tall and shallow networks (e.g., MNIST-T and
MNIST-FC). Figure 4b compares the performance of single-
threaded and multithreaded MILP on the 4 networks. The red
lines in Figure 4b indicate timeout values. The performance
improvement on average for the MNIST-S network is modest
(∼36%) because the run time with a single thread is low. The
speedup is more significant for the two larger networks: 4.5X
for MNIST-D and 2.7X for MNIST-T on average.

Scalability of MILP encoding: After Q2.2, all instances of
BV-SMT time out because the run time of BV-SMT encoding
increases quasi-exponentially [10]. The MILP encoding scales
well, as the run time stays relatively stable with the increase in
the number of bits. The reason is that the MILP solver does not
work with the numbers of different bit widths. MILP solvers
model variables with a double-precision floating-point type.
The bit width for the variables stays the same for all problems
while changing the fixed-point type for the network results
in a change of bounds only. Figure 5b shows the detailed

information about the instances verified by MILP encoding.
Given the scalability of the MILP encoding, it can be used
to search the space of fixed-point types and find robust types,
which also minimize the number of bits required to achieve
that level of robustness.

2) Collision Avoidance, TwinStream, and ACAS Xu: Fig-
ures 6a and 6b compare the performance of the MILP tool
with BV-SMT on the benchmarks Collision Avoidance and
TwinStream. The figure includes results for both single-threaded
and multithreaded implementation of our proposed MILP
approach. For Collision Avoidance, the single-threaded MILP
implementation verified the properties 10X faster on average
than BV-SMT. With multiple threads, the speedup increases to
15X on average. In the case of TwinStream, single-threaded
MILP verified the properties 2.26X faster than BV-SMT, and
parallel MILP verified the properties 2.5X faster than BV-
SMT, on average. For TwinStream, BV-SMT timed out on
17 instances, while the single-threaded and the multithreaded
MILP solver run timed out on 15 instances each.

Figure 6c shows the verification performance of ACAS Xu
properties with the MILP solver configurations and BV-SMT.
Single-threaded MILP verified the properties 2.5X faster, and
the multithreaded MILP verified the properties 13X faster, on
average, excluding instances that timed out. However, the MILP
solver timed out on more instances than BV-SMT. Single-
threaded implementation timed out on 40 instances while
multithreaded MILP timed out on 20 instances, compared to
BV-SMT, which timed out for 5 instances. We hypothesize that
the MILP solver with a single thread got stuck in the wrong part
of the search space and was unable to identify feasible solutions
and hence timed out. We ran multiple different instances
of the MILP solver using ConcurrentMIP with slightly
different configurations to explore different areas of the search
tree. Consequently, the multithreaded MILP was a significant
improvement (∼5.25X faster) on the single-threaded runs. The
number of timeouts also decreased from 40 to 20 with multiple
threads, validating our hypothesis. We are investigating other
reasons for the performance difference.

3) Comparison with [11]: In a recent work [11], the authors
present an improved bitvector encoding for SMT, which we
refer to as BV2-SMT in this paper. In order to compare with
BV2-SMT, we run the MILP implementation on the networks
used by [11], where the network trained on the MNIST dataset
is referred to as MNIST-C, and the network trained on the
Fashion-MNIST dataset is referred to as FASHION-C. We run
the benchmark with type Q4.2 for all the nodes using a single
thread for a fair comparison, same as [11]. We verified the
same set of properties. More specifically, we used the first 400
MNIST and fashion MNIST images where ε = 1 for first 100,
ε = 2 for next 100, ε = 3 for the next 100 and ε = 4 for the
last 100. Here ε represents the maximum deviation allowed for
any node in the input, i.e., L∞ norm.

A comparison of MILP encoding with BV2-SMT is provided
in Table V. MILP encoding performs 15X faster in case of
MNIST benchmarks and 8.5X faster in case of fashion MNIST
benchmark, on average. The difference between mean and
medians in the case of MILP encoding is negligible, showing
that MILP encoding consistently performs better than BV2-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

20 40 60 80
BV-SMT Time (s)

2

3

4

5
M

IL
P

Ti
m

e
 (

s)

Collision Avoidance

MILP Single
MILP Parallel

(a)

0 2000 4000 6000
BV-SMT Time (s)

0

1000

2000

3000

4000

5000

6000

7000

M
IL

P
Ti

m
e
 (

s)

TwinStream

(b)

0 1000 2000 3000
BV-SMT Time (s)

0

500

1000

1500

2000

2500

3000

3500

M
IL

P
Ti

m
e
 (

s)

ACAS Xu

(c)

Fig. 6: Comparison of MILP with the theory of bitvectors in SMT on the Collision Avoidance, TwinStream, and ACAS Xu
benchmarks. Red lines indicate timeout.

TABLE IV: Performance comparison of MILP and BV-SMT on all the benchmarks. TO = timeout.

Computation time (s) (Mean | Median) # Timeouts

Benchmarks # Props TO MILP BV-SMT MILP BV-SMT
Single Parallel Single Parallel

MNIST-S 100 60s 8.429 | 7.920 6.183 | 4.560 NaN 0 0 100
MNIST-D 100 3600s 592.3 | 319.1 128.8 | 51.04 NaN 14 0 100
MNIST-T 100 3600s 450.5 | 261.1 162.2 | 106.8 NaN 8 0 100
MNIST-FC 15 3600s 427.1 | 15.71 253.8 | 30.99 − 3 0 −
CollAvoid 500 3600s 2.682 | 2.770 1.630 | 1.610 25.83 | 22.80 0 0 0
TwinStream 81 7200s 105.1 | 1.710 96.07 | 1.330 238.3 | 12.41 15 15 17
ACAS Xu 180 3600s 88.90 | 3.380 16.94 | 4.160 229.6 | 97.55 40 20 5

TABLE V: Comparison with [11]. TO = 180s

Benchmark # Props
Time (s) # Timeouts

(Mean | Median)

MILP BV2 MILP BV2

MNIST-C 400 5.53 | 5.4 90 | 5 0 82
FASHION-C 400 5.73 | 5.46 49 | 4 0 206

SMT and not just on average. Moreover, MILP encoding
verified all 800 instances, while BV2-SMT timed out on 288
instances. Please note that our experimental setup is slightly
different, but is comparable to [11].

VII. CONCLUSION

To the best of our knowledge, this work is the first to present
a methodology to encode the quantized DNN verification
problem into an MILP problem. We present a sound round-
down procedure for MILPs and prove its correctness. We also
present a set of constraints for encoding a fixed-point network
as an MILP problem. We compare our results with closely-
related prior work and show that our MILP encoding is faster
by an order of magnitude in most cases.

Though our MILP encoding provides significant performance
improvement compared to prior work, its performance in
solving some problems may be less than satisfactory, as evident
by the number of timeouts experienced for the ACAS Xu
benchmark. This is because the DNN verification problem is
NP-complete, and there may be instances where the heuristics
employed by the MILP solver are not effective in finding a
solution quickly. In future work, we would like to investigate the
reason for the timeouts encountered for ACAS Xu. Furthermore,

we would like to incorporate more network-level reasoning
into the MILP encoding. For example, one can perform a range
analysis before verification to disable those ReLUs that will not
take values on both sides of 0. Such preprocessing is expected
to speed up the verification process, as decreasing the amount
of nonlinearity is known to help verification tools significantly.

REFERENCES

[1] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang,
X. Zhang, J. Zhao, and K. Zieba, “End to End Learning for Self-
Driving Cars,” CoRR, vol. abs/1604.07316, 2016. [Online]. Available:
http://arxiv.org/abs/1604.07316

[2] G. Liu, A. Siravuru, S. P. Selvaraj, M. M. Veloso, and G. Kantor,
“Learning End-to-end Multimodal Sensor Policies for Autonomous
Navigation,” in 1st Annual Conference on Robot Learning (CoRL), ser.
Proceedings of Machine Learning Research, vol. 78, 2017, pp. 249–261.

[3] H. Xu, Y. Gao, F. Yu, and T. Darrell, “End-to-End Learning of Driving
Models from Large-Scale Video Datasets,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3530–3538.

[4] M. Jaritz, R. de Charette, M. Toromanoff, E. Perot, and F. Nashashibi,
“End-to-End Race Driving with Deep Reinforcement Learning,” in IEEE
International Conference on Robotics and Automation (ICRA), 2018, pp.
2070–2075.

[5] P. Varshney, G. Nagar, and I. Saha, “DeepControl: Energy-Efficient
Control of a Quadrotor using a Deep Neural Network,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2019,
pp. 43–50.

[6] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal Security
Analysis of Neural Networks using Symbolic Intervals,” in USENIX
Conference on Security Symposium (SEC), 2018, pp. 1599–1614.

[7] R. Ehlers, “Formal Verification of Piece-Wise Linear Feed-Forward
Neural Networks,” in International Symposium on Automated Technology
for Verification and Analysis (ATVA), 2017, pp. 269–286.

[8] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljic, D. L. Dill, M. J. Kochenderfer, and C. W.
Barrett, “The Marabou Framework for Verification and Analysis of Deep
Neural Networks,” in Computer Aided Verification - 31st International
Conference (CAV), 2019, pp. 443–452.

http://arxiv.org/abs/1604.07316

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

[9] H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W. Xiang,
S. Bak, and T. T. Johnson, “NNV: The Neural Network Verification
Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical
Systems,” in International Conference on Computer Aided Verification
(CAV), 2020, pp. 3–17.

[10] M. Giacobbe, T. A. Henzinger, and M. Lechner, “How Many Bits Does
it Take to Quantize Your Neural Network?” in International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2020, pp. 79–97.

[11] T. A. Henzinger, M. Lechner, and D. Zikelic, “Scalable Verification
of Quantized Neural Networks,” in Thirty-Fifth AAAI Conference on
Artificial Intelligence (AAAI), 2021, pp. 3787–3795.

[12] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and Training of Neural Networks
for Efficient Integer-Arithmetic-Only Inference,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 2704–2713.

[13] G. Sierksma and Y. Zwols, Linear and Integer Optimization: Theory and
Practice. CRC Press, 2015.

[14] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: http://www.gurobi.com

[15] M. Baranowski, S. He, M. Lechner, T. S. Nguyen, and Z. Rakamarić,
“An SMT Theory of Fixed-Point Arithmetic,” in International Joint
Conference on Automated Reasoning (IJCAR), 2020, pp. 13–31.

[16] M.-Y. Chow and S. O. Yee, “A Measure of Relative Robustness for
Feedforward Neural Networks Subject to Small Input Perturbations,”
International Journal of Neural Systems, vol. 3, no. 03, pp. 291–299,
1992.

[17] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
Modulo Theories,” in Handbook of Satisfiability, A. Biere, H. van Maaren,
and T. Walsh, Eds. IOS Press, 2009, vol. 4, ch. 8.

[18] L. Pulina and A. Tacchella, “Checking Safety of Neural Networks with
SMT Solvers: A Comparative Evaluation,” in AI*IA 2011: Artificial
Intelligence Around Man and Beyond, 2011, pp. 127–138.

[19] C. Cheng, G. Nührenberg, and H. Ruess, “Maximum Resilience of
Artificial Neural Networks,” in Automated Technology for Verification
and Analysis - 15th International Symposium (ATVA), 2017, pp. 251–268.

[20] W. Xiang, H. Tran, and T. T. Johnson, “Output Reachable Set Estimation
and Verification for Multilayer Neural Networks,” IEEE Trans. Neural
Networks Learn. Syst., vol. 29, no. 11, pp. 5777–5783, 2018.

[21] G. Singh, T. Gehr, M. Püschel, and M. Vechev, “An Abstract Domain for
Certifying Neural Networks,” Proceedings of the ACM on Programming
Languages (POPL), vol. 3, pp. 1–30, 2019.

[22] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks,”
in International Conference on Computer Aided Verification (CAV), 2017,
pp. 97–117.

[23] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems (NIPS), 2016, pp.
4114–4122.

[24] N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh,
“Verifying Properties of Binarized Deep Neural Networks,” in AAAI
Conference on Artificial Intelligence (AAAI), 2018, pp. 6615–6624.

[25] N. Narodytska, H. Zhang, A. Gupta, and T. Walsh, “In Search for a
SAT-friendly Binarized Neural Network Architecture,” in International
Conference on Learning Representations (ICLR), 2019.

[26] K. Jia and M. Rinard, “Efficient Exact Verification of Binarized Neural
Networks,” in Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[27] A. Shih, A. Darwiche, and A. Choi, “Verifying Binarized Neural
Networks by Angluin-Style Learning,” in International Conference on
Theory and Applications of Satisfiability Testing (SAT), 2019, pp. 354–
370.

[28] G. Amir, H. Wu, C. W. Barrett, and G. Katz, “An SMT-Based Approach
for Verifying Binarized Neural Networks,” in Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), 2021, pp. 203–222.

[29] E. Oberstar, “Fixed-Point Representation and Fractional Math (re-
vision 1.2),” 2007, http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/
FixedPointRepresentationFractionalMath.pdf.

[30] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines,” in Proceedings of the 27th International Confer-
ence on Machine Learning (ICML), 2010, pp. 807–814.

[31] J. Han and C. Moraga, “The Influence of the Sigmoid Function Parameters
on the Speed of Backpropagation Learning,” in International workshop
on artificial neural networks, 1995, pp. 195–201.

[32] IBM ILOG Cplex, “User’s Manual for CPLEX V12.1,” International
Business Machines Corporation, 2009.

[33] K. Julian, “NNet file format,” 2018, https://github.com/sisl/NNet.
[34] M. Gario and A. Micheli, “PySMT: A Solver-Agnostic Library for Fast

Prototyping of SMT-Based Algorithms,” in SMT Workshop, 2015.
[35] L. De Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in

International conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2008, pp. 337–340.

[36] B. Dutertre and L. De Moura, “A Fast Linear-Arithmetic Solver for
DPLL(T),” in International Conference on Computer Aided Verification
(CAV), 2006, pp. 81–94.

[37] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0,” J. Satisf. Boolean
Model. Comput., vol. 9, no. 1, pp. 53–58, 2014.

[38] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST Database of
handwritten digits,” 2009, http://yann.lecun.com/exdb/mnist.

[39] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System for Large-Scale
Machine Learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016, pp. 265–283.

[40] “2nd International Verification of Neural Networks Competition (VNN-
COMP’21),” 2021, https://sites.google.com/view/vnn2021.

[41] A. Gulli and S. Pal, Deep Learning with Keras. Packt Publishing Ltd,
2017.

[42] R. Bunel, I. Turkaslan, P. H. Torr, P. Kohli, and M. P. Kumar, “Piecewise
Linear Neural Networks Verification: A Comparative Study,” Technical
Report, 2018, https://arxiv.org/abs/1711.00455v1.

[43] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer,
“Policy Compression for Aircraft Collision Avoidance Systems,” in
IEEE/AIAA Digital Avionics Systems Conference (DASC), 2016, pp.
1–10.

Samvid Mistry is a Software Engineer at GitHub.
He obtained his Diploma in Computer Engineering
from Institute of Diploma Studies, Nirma University
in 2016, B.E. degree in Computer Engineering
from Vishwakarma Government Engineering College,
Ahmedabad in 2019, and M.Tech. degree in Com-
puter Science and Engineering from Indian Institute
of Technology Kanpur in 2021. After completing
M.Tech., he joined GitHub as a Software Engineer.
His research interests lie in formal verification, high
performance computing, and machine learning.

Indranil Saha (M’12) is an Associate Professor in
the Department of Computer Science and Engineering
at IIT Kanpur. Prior to joining IIT Kanpur in 2015,
he was a postdoctoral researcher affiliated with the
Department of Electrical Engineering and Computer
Sciences at the University of California, Berkeley and
the Department of Computer and Information Science
at the University of Pennsylvania. He obtained his
B.Tech. degree in Electronics and Communication
Engineering from Kalyani Government Engineering
College in 2003, M.Tech. degree in Computer Science

from Indian Statistical Institute, Kolkata in 2005, and Ph.D. degree in Computer
Science from the University of California Los Angeles in 2013. From 2005 to
2008, he was a research scientist at Honeywell, Bangalore. His research interest
lies in the application of formal methods to embedded and cyber-physical
systems and robotics. He was a recipient of the Best Paper Award at the ACM
SIGBED International Conference on Embedded Software (EMSOFT) in 2010.
He received the ACM SIGBED Frank Anger Memorial Award in 2012 for his
contribution in the intersection of embedded systems and software engineering.

Swarnendu Biswas is an Assistant Professor at the
Department of Computer Science and Engineering
at the Indian Institute of Technology Kanpur. Swar-
nendu has a BE in Computer Science and Engineering
from the National Institute of Technology Durgapur,
an MS in Computer Science and Engineering from
Indian Institute of Technology Kharagpur, and a Ph.D.
from the Ohio State University. Swarnendu was a
postdoctoral fellow at the University of Texas at
Austin before joining Kanpur, and has also worked
as a software developer at Wipro Technologies for

three years. His research interests are Programming Languages, Compilers
and Runtime Systems, and parallel Software Systems.

http://www.gurobi.com
http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/FixedPointRepresentationFractionalMath.pdf
http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/FixedPointRepresentationFractionalMath.pdf
https://github.com/sisl/NNet
http://yann.lecun.com/exdb/mnist
https://sites.google.com/view/vnn2021
https://arxiv.org/abs/1711.00455v1

	Introduction
	Related Work
	Background
	Fixed-point arithmetic
	Deep Neural Networks
	Quantized Neural Network

	Problem Definition
	MILP Encoding
	Encoding Shift Operation
	Encoding the Verification Condition in MILP
	Input nodes
	Hidden nodes
	Output nodes

	Choosing offset for a network
	Implementation of max in MILP Solvers
	Big-M constraints
	Indicator constraints

	Evaluation
	Experimental Setup
	Implementation
	Benchmarks

	Results
	MNIST Dataset
	Collision Avoidance, TwinStream, and ACAS Xu
	Comparison with henzinger2020scalable

	Conclusion
	References
	Biographies
	Samvid Mistry
	Indranil Saha
	Swarnendu Biswas

