
Counter-Example Guided Imitation Learning of Feedback Controllers
from Temporal Logic Specifications

Thao Dang1, Alexandre Donzé2, Inzemamul Haque3, Nikolaos Kekatos4, Indranil Saha3

Abstract— We present a novel method for imitation learning
for control requirements expressed using Signal Temporal Logic
(STL). More concretely we focus on the problem of training a
neural network to imitate a complex controller. The learning
process is guided by efficient data aggregation based on counter-
examples and a coverage measure. Moreover, we introduce a
method to evaluate the performance of the learned controller
via parameterization and parameter estimation of the STL
requirements. We demonstrate our approach with a flying robot
case study.

I. INTRODUCTION

The aim of this work is to integrate formal specifica-
tion and validation techniques in the Imitation Learning
(IL) methodology for synthesizing feedback controllers for
complex dynamical systems. While formal methods have
the advantage of rigorous formalization and reasoning, they
are very limited in the complexity and scalability of the
problems that can be practically solved. Imitation Learning,
also known as learning from demonstrations, involves the
process of learning how to mimic the behavior of an expert
by observing their actions in a given task [1]. It has many
successful applications in various fields such as robotics,
natural language processing, image and speech recognition.

In this work, we focus on the problem of training a neural
network (NN) (playing the role of a learner) to imitate
a complex controller (playing the role of an expert). The
ultimate goal is to replace this complex controller with a
trained NN. NNs have long been used to control dynamical
systems from inverted pendulums to quadcopters, learning
from scratch to control the plant by maximizing an expected
reward, e.g. [2], [3]. NNs can also be trained to replace an
existing controller that is unsatisfactory for non-functional
reasons, e.g., computationally expensive (consider model-
predictive control [4]), slow, or energy intensive. A well-
trained NN controller can provide similar control perfor-
mance much faster and is readily implemented on cheap and
energy-efficient embedded platforms [5].

To make such an imitation learning framework more for-
mal and more efficient, we add the following novel features:

∗ This work is partially supported by the Indo-French Collaborative
research project FOVERAS funded by IFCPAR/CEFIPRA, joint French-
Japanese ANR-JST project CyPhAI, and the Auvergne-Rhône-Alpes Region
Project DetAI.

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, Grenoble,
France, thao.dang@univ-grenoble-alpes.fr

2 Decyphir SAS, Moirans, France, alex@decyphir.com
3 Department of Computer Science and Engineering, IIT Kanpur, India,

{inzemam, isaha}@cse.iitk.ac.in
4 Aristotle University of Thessaloniki, Thessaloniki, Greece,

nkekatos@csd.auth.gr

(i) a formalization of performance evaluation for both the
learner’s and expert’s policies using their abilities to satisfy
requirements specified by temporal logic, (ii) a leverage of
the power of existing temporal logic property falsification
tools to create training data that matter, (iii) a new method
of data aggregation in order to guarantee a good performance
of NN in terms of imitation and generalization.

To explain these features, let us first point out some major
difficulties in this problem. Training a NN to imitate a
feedback controller is more complex than the problem of
approximating a function using pairs of input and output
values, since feedback controllers can themselves be stateful
dynamical systems. We identify the following difficulties in
data generation by executing the nominal controller in closed
loop:
• Infinite behavior space. The behavior space is not only

large but can also be infinite. It is thus important to de-
fine a coverage measure to quantify how representative
the generated training data is.

• Non-uniform accuracy. Depending on the control re-
quirement, the NN may need to be very precise around
some region of the state space while in other regions a
rough approximation is acceptable.

The problem of non-uniform accuracy is particularly pro-
nounced when the requirement depends on time or sequences
of events. This is frequently the case in control applications,
where properties such as rise time, settling time, and over-
shoot are typical. We consider complex properties that can
include not only time but also causal relationships. They
can be described in Signal Temporal Logic (STL), a formal
language that finds widespread use in formal methods and
increasing adoption in industry [6].

While observing closed-loop behaviors may reduce the
number of behaviors to be sampled, we still need to find good
training samples that are relevant to an STL property. To do
this, we find counter-examples that are closed-loop behaviors
violating this property by leveraging the existing falsification
tools [7]. A falsification process can also be useful in provid-
ing correctness guarantees for the resulting NN. Indeed, if
no counter-example is found after a sufficiently large number
of scenarios, we consider the NN controller satisfactory and
stop. If a counter-example is found, we replay the nominal
controller from the counter-example situation in order to
obtain new training data, and retrain the neural network.
This new data creation is crucial for the efficiency of the
process of correcting counter-examples as well as assuring
good generalization of the NN.

Related Work. Several comprehensive surveys exist [8]

on imitation learning. A common approach is behavioral
cloning [9] for which the main problem is compounding
error, when the assumption of independent and identically
distributed data between training and testing data is not
valid for sequential predictions. A common solution to
this problem is Dataset Aggregation (DAgger) which was
proposed in [10]. It is an iterative algorithm which improves
on behavioral cloning by training on a dataset that better
resembles the observations the trained policy is likely to
encounter. In this paper, we propose a similar approach in the
sense that the expert is queried for good actions and new data
are created and aggregated in the dataset. However, our goal
is to design an approach that learns the dynamics of desirable
behavior and not the dynamics of possible behavior. Appli-
cations of imitation learning for Model Predictive Control
have been proposed in [11]. A recent approach to ”compress”
an MPC into a NN using robust tube MPC is proposed
in [12]. In [13], the need to replace an MPC controller with
a NN is exemplified for planning purposes. Our approach
is different from the previous works as we use counter-
example guided synthesis and a combination of coverage
and PSTL formal specifications. There are counter-example-
based approaches similar to ours though - for instance,
some use counter-example exploration (adversarial sample)
to train NNs that seek to satisfy a given property expressed
in temporal logic (see [14]) or through a reference trajectory
(see [15]). The closest to our work is [15], where the
behavior of an MPC is approximated with a NN to enable a
robot to follow a reference trajectory. The NN is refined by
generating additional training data from counter-examples.
However, unlike our framework, their approach is limited
to memoryless controllers, and they use tracking closeness
as the sole criterion to identify counter-examples. In our
experience, a NN need not always closely track the nominal
behavior to satisfy the specifications. It may have some
characteristics that are better than the nominal controller,
such as a smaller overshoot, or quicker stabilization in some
areas of the state space. Such behaviors would be eliminated
using their approach.

The rest of the paper is organized as follows. In Section II,
we formalize the imitation learning problem. This requires
definitions of control requirements specified using Parametric
Signal Temporal Logic. We also propose a notion of policy
performance to quantify the difference between the policy of
the learner and the expert which is necessary to assess the
imitation quality. Subsequently, in Section III and Section IV,
we describe our dataset aggregation-based learning method-
ology. Finally, we demonstrate our approach on a robotic
case study in Section V.

II. CONTROLLER IMITATION LEARNING PROBLEM

We consider a continuous-time plant S with state x ∈ Rn

that is controlled by an input signal u, observed through
an output signal y with dynamics1: ẋ(t) = f (x(t),u(t)) and

1External disturbance can be included in the system dynamics, and the
data generation process for learning can then be straightforwardly extended
to cover the disturbance space.

y(t)= ζ (x(t)). The control input u is computed by a discrete-
time controller C with state z ∈ Rnz and zk+1 = fc(zk,yk),
uk = υ(zk,yk), where yk is a discrete-time signal result-
ing from sampling the output y(·) with time step h. The
continuous-time control u(·) is a piece-wise constant function
defined as ∀t ∈ [kh,(k+1)h] u(t) = uk with k = 0,1, We
denote the closed-loop system by C ||S.

A. Control Requirements

We are given a nominal controller satisfying some re-
quirement that captures essential qualitative properties while
allowing some quantitative behavioral flexibility. This re-
quirement is expressed using Parametric Signal Temporal
Logic (PSTL), a formalism suitable for various control per-
formance properties [6]. We want to train a neural network-
based controller achieving performance comparable to that
of the nominal controller, as measured by valid parameters
of the PSTL requirement.

1) Signal Temporal Logic [6]: An STL formula ϕ con-
sists of atomic predicates along with logical and temporal
operators. Atomic predicates are defined over signal values
and have the form g(y(t)) ∼ 0, where g is a scalar-valued
function over the signal y evaluated at time t and ∼∈ {<,≤
,>,≥,=, ̸=}. Temporal operators “always” (□), “eventually”
(♢), and “until” (U) have the usual meaning and are scoped
using intervals of the form (a,b), (a,b], [a,b), [a,b], or
(a,∞), where a,b ∈ R+

0 and a < b. If I is a time interval,
the following grammar defines the STL language.

ϕ := ⊤ | g(y(t))∼ 0 | ¬ϕ | ϕ1∧ϕ2 | ϕ1UIϕ2 (1)

The ♢ operator is formally defined as ♢Iϕ ≜⊤UIϕ , and the
□ operator is defined as □Iϕ ≜ ¬(♢I¬ϕ). When omitted,
the interval I is taken to be [0,∞). The “always” operator
in □ϕ conveys that from the current time point onwards,
ϕ always holds. The “eventually” operator in ♢ϕ means
that there exists a time point in the future where ϕ holds.
The “until” operator in ϕ1U ϕ2 means that, starting from
the current time point ϕ1 should hold continuously until a
future time point where ϕ2 holds. Additionally, an interval I
can be combined with the operators to bound their scope to
a segment of time in the future rather than the whole. For
example, ϕ1U[a,b]ϕ2 holds true at time t if ϕ2 holds true at
some point t ′ ∈ [t +a, t +b] and ϕ1 is always true in [t, t ′].

2) Parametric Signal Temporal Logic [16]: Parametric
STL (PSTL) is a variant of STL which makes it possible
to replace numeric constants in an STL formula with
symbolic variables or parameters. For instance, the formula
ϕ =□[0,τ](∥y(t)∥< s) with two parameters τ and s expresses
the requirement that during τ seconds, the norm of signal
y should be less than s. Formally, a PSTL formula is
concretized into a STL formula by composing it with a
valuation, defined as a mapping from symbolic parameters to
reals. As an example, consider valuation p : {τ→ 2,s→ 10},
then ϕ(p) is the STL formula ϕ(p) =□[0,2](∥y(t)∥< 10).

Given a PSTL formula ϕ and a valuation p, a behavior
γ satisfies ϕ(p) is denoted by γ |= ϕ(p). By extension, we

say that a valuation p is satisfied by a controller C if for all
behaviors γ of the closed-loop system C ||S, γ |= ϕ(p).

The problem of finding a valuation p such that C satisfies
ϕ(p) is sometimes called mining and can be seen (and
solved) as a learning problem. In [17], an approach is pre-
sented that works for a monotonic PSTL formula. Intuitively
a formula is monotonic if its satisfaction is monotonic w.r.t.
the valuation of each individual parameter. For example,
ϕ = □[0,τ](∥y(t)∥ < s) is monotonic because if ∥y(t)∥ is
always smaller than s between time 0 and τ , then clearly
∥y(t)∥ is smaller than s′ for any s′ > s and it is also smaller
than s between time 0 and τ ′ for τ ′ ≤ τ . Formally, the
set P of all valuations is a subset of Rnp , where np is
the number of parameters in the formula. Let ⪯ be the
standard partial order on Rnp , i.e., p = (p1, . . . , pnp) ⪯ p′ =
(p′1, . . . , p′np) iff ∀i pi ≤ p′i, then if ∀γ the Boolean function
p→ γ |= ϕ(p) is monotonic in p, then the PSTL formula ϕ

is monotonic. For illustration purposes, to characterize our
controller performance, the PSTL formula Φ that we will
use is as follows:

µov := ∥y(t)∥> sov, µst := ∥y(t)∥< sst (2)
ϕst := ¬µst⇒ ♢[0,τtr]□[0,τst]µst (3)

Φ :=□¬µov∧□ϕst (4)

Equation (2) defines the atomic predicates which check
at a given time whether the signal norm is above sov (over-
shoot), or below sst (defining a stabilization region around
the equilibrium). Equation (3) defines a formula requiring
that if the system is not stabilizing (µst not satisfied), then
it should eventually stabilize, i.e., after at most τtr seconds,
µst should remain true for at least τst seconds.

We can then see that Φ is monotonic. This follows from
the monotonicity of atomic predicates and temporal operators
□ and ♢ and the fact that each parameter appears only once
in each sub-formula [16]. Monotonicity here is advantageous
not only for the mining problem but also for computing a
performance measure defined by Pareto fronts as discussed
in the next section.

B. Control Policy Performance Measure

In imitation learning, it is essential to have an appropriate
measure of performance of control policies, especially when
it is unclear what reward function is being optimized [18]. In
our framework, we use the relation between the parameters
in the PSTL requirements to compare the performance of dif-
ferent controllers. E.g., for the stabilization requirement (4),
for a given size sst of the neighborhood around the equilib-
rium, the smaller the stabilization time τst is, the faster the
controller is. Assume that P(Φ) (set of parameter valuations
for Φ) is compact. Any controller C defines a partition of
this set into falsified and valid formulas:

P(Φ) = False(C ||S,Φ)∪Valid(C ||S,Φ)

The False and Valid sets are separated by the set of Pareto-
efficient parameter values, also called the Pareto front [19];

x
p1

x
p3

x
p4

x
p2

p⊥2

Valid(Φ)

Fig. 1. Volume estimation of False parameter set. Each pi outside the
Valid set is close to the Pareto front and defines a closed hyper-box p⊥i
strictly included in False(Φ). Computing the volume of ∪i p⊥i yields an
under-approximation of vol(False(Φ).

that means no parameter can be improved without compro-
mising the others. We argue that the relative volumes of the
False (and Valid) sets can be used to measure and compare
performance of controllers. More specifically, we define the
following measure of similarity:

Definition 1 (Control Policy Similarity): Given a plant S
and two controllers C and C ′ designed to satisfy a PSTL
requirement Φ, the performance similarity between C and C ′

is defined as σS,Φ(C ,C ′) = vol(False(C ′||S,Φ)
vol(False(C ||S,Φ) where vol is the

volume of a set, assumed to be non-zero for False(C ||S,Φ).
Exact volume computation is difficult in general but mono-
tonicity makes it easy to compute under-approximations.
Indeed, consider a finite set of parameters p1, . . . , pk in
False(C ||S,Φ) and for each pi, define p⊥i the set of
parameters dominated by pi according to ⪯. Intuitively,
p⊥i is a hyper-box with largest corner pi. Then

⋃
i p⊥i ⊂

False(C ||S,Φ) and ∑i vol(p⊥i) ≤ vol(False(C ||S,Φ)). Since
p⊥i is an hyperbox, its volume computation is trivial. This
approximation is illustrated in Figure 1.

C. Imitation Learning Problem Formulation

Problem 1 (Feedback Controller Imitation Learning):
Given a plant S, a nominal controller C such that the
closed-loop system C ||S satisfies a PSTL specification Φ,
our problem is to learn a neural network controller N to
imitate C such that
• the closed-loop system N ||S satisfies Φ, and
• the performance similarity σS,Φ(C ,N) is as small as

possible.
The learning guidance here is provided using positive exam-
ples, i.e. good behaviors, generated by the nominal controller
which already satisfies the desired requirement. As we will
see later, using parametric requirements allows more freedom
in choosing nominal controllers satisfying some (minimal)
performance, however to estimate the controller similarity in
the learning process we estimate the actual Pareto-efficient
parameters satisfied by a concrete nominal controller. Such
a nominal controller may be complex and costly to execute
and the ultimate goal is thus to use the learned NN controller
to replace it. In the learning context, the nominal controller
plays the role of a teacher that generates a desired control
signal for a given system state which the NN should imitate.

In this paper, we mostly focus on the problem of how to
iteratively train NN using examples (good behaviors) and
counter-examples (bad behaviors).

III. FEEDBACK CONTROLLER LEARNING
METHODOLOGY

We will explain our approach for solving Problem 1 via an
example that uses the PSTL formula Φ defined in (4). The
major steps of our approach are as follows. Since initially
we do not know the concrete performance of the nominal
controller, we can assume that we conservatively choose a
parameter valuation p so that Φ(p) is satisfied by the nominal
controller. We train a NN controller satisfying Φ(p) using an
iterative neural network training approach which is detailed
in the subsequent subsections.

We generate and accumulate the traces generated by both
controllers during the process. We use these traces to approx-
imate their False domain. Then, we compute their volumes
to estimate their policy similarity. Retraining is needed if this
similarity is not as small as desired. To create data for such
retraining, a finer grid can be used.

A. Neural Network Structure and Training

Intuitively, the NN controller is trained based on the
good closed-loop behaviors we want it to learn. Let γ =
(x(·),u(·),y(·)) be a good closed-loop behavior, from which
we extract the data of the form dγ =

{
(xk,yk,uk)

∣∣ k < K
}

where xk, yk, and uk are respectively the state, output, and
control values at time tk; K is the discrete-time horizon
(that is, the number of sampled time points). When many
behaviors are considered, the data set D is the union of
all dγ . We generate a neural network N to fit the data
set D . The structure of the NN should capture the input-
output relationships of the nominal controller C . We keep
some past values to represent the memory needed to compute
the output at each discrete step. The input of the NN is
(yk−1, . . . ,yk−my ,uk−1, . . . ,uk−mu) where nz = my +mu repre-
sents the dimension of the state variable of the controller.
The NN output is uk. To train the NN, we use a loss
function defined via the Root Mean Square Error (RMSE):√

1
nd

nd

∑
k=1

(∥uk−uk∥)2 where u is the output of the nominal

controller and u is the output of the NN. It is possible to use
other loss functions such as MSE (Mean Square Error); in
our experiments so far the MRSE metric is more convenient
in terms of interpreting the effects of control input error.
A data point is a pair of input and output values, the total
number nd of data points is the number of data points per
system behavior multiplied by the number of behaviors. The
NN accuracy is defined by the training and validation errors,
which are obtained from evaluating the loss function on the
training and validation data.

B. Coverage based Data Generation

In order to achieve a robust NN controller, we need to
provide data representing diverse settings that the NN should
learn to cope with. Note that the set of reachable states of

Algorithm 1 Dataset aggregation-based training algorithm.
1: N0← /0, D0← /0, k← 1
2: repeat
3: (Dk, Status) ← getNewData (Nk−1,Dk−1)
4: if Dk ̸= Dk−1 then ▷ In this case Dk−1 ⊂Dk
5: Nk← Train (Dk)
6: k← k+1
7: until Dk = Dk−1 or k > kmax
8: return Nk, Status

the system is infinite, we thus use a coverage measure based
on ε-net [20] to quantify how well a finite set of sampled
states covers the reachable set.

We propose a simple grid-based method to construct ε-
nets satisfying a separation requirement. These notions of
ε-net and ε-separated sets are important to measure function
approximation quality, expressed roughly as how to obtain
an accurate function approximation with a small number of
function evaluations.

Let us assume that the state space is a box Br = [r,r]n.
We use a grid G to partition Br into a set G of rectangular
cells with equal side length 2ε , assuming for simplicity that
(r− r)/(2ε) is an integer. The set C of center points of all
the cells in G is an ε-net of the state space. It can be proved
that it is an ε-net with minimal cardinality and additionally
a ε-separated set with maximal cardinality2.

Datasets constructed using ε-nets guarantee ε coverage.
However, as we shall see later, the falsification procedure
(to check if a neural network satisfies the requirement)
uses optimization-based search algorithms which can explore
many states outside the ε-nets. To estimate a coverage mea-
sure that better reflects the portion of the tested behaviors,
we can use a finer grid Gc and take the ratio between the
number of cells visited by both the sampling and falsification
procedures and the total number of cells in this grid Gc.

IV. DATASET AGGREGATION-BASED TRAINING

The top-level iterative training algorithm implements a
data aggregation method, inspired by [10], which uses
the current NN to generate new data (from examples and
counter-examples) that will be aggregated to the whole
dataset to train a new NN. This dataset aggregation method
considers the coverage and separation measures discussed in
the previous section, to enable the NN to generalize well and
provide high confidence in the correctness of the final NN.

The dataset aggregation algorithm (Algorithm 1) deter-
mines whether it should generate new data for retraining
or stop. It stops after a maximum number of iterations kmax
or as soon as the procedure responsible for providing new
training samples fails to do so.

The training procedure is successful if it terminates with
Dk = Dk−1, i.e., no new data is found, and the Status
returned by GetNewData is “No counter-example found”.
This GetNewData procedure is described in Algorithm 2.

2This cardinality determines the ε-entropy and ε-capacity of the state
space [20].

Algorithm 2 New data acquisition procedure.
1: procedure GETNEWDATA(D , N)
2: if D is /0 then ▷ Sample traces from initial set
3: InitSamples ← getInitSamples ()
4: InitTraces ← simNominal (InitSamples)
5: Dnew← gridFilter (InitTraces)
6: Status ← “New data available for training.”
7: else ▷ Search for counter-examples
8: CexTraces ← falsify (N)
9: if CexTraces ̸= /0 then

10: (Dnew, Status) ← fixAndMerge (D , CexTraces)
11: else ▷ Success.
12: Dnew←D
13: Status ← ”No counter-example found.”

Algorithm 3 Augmenting the training data from bad traces.
1: procedure FIXANDMERGE(D , CexTraces)
2: NeighSamples ← gridFilter (CexTraces)\Cover(D)
3: if NeighSamples = /0 then
4: Status ← “Counter-examples do not add new data.”
5: Dnew←D
6: else ▷ Get fixed traces from some bad samples
7: NeighSamples ← selectNeigh (NeighSamples)
8: FixedTraces ← simNominal (NeighSamples)
9: Dnew← gridFilter (D ∪ FixedTraces)

10: Status ←“New data available for training.”

In the first call of Algorithm 2, when no neural net-
work has been trained yet and the data set is empty, it
samples states using an ε-net over the initial set via the
getInitSamples function and computes nominal traces
from these initial states, that is traces generated by the
nominal controller via the simNominal function. The
gridFilter function collects samples from these traces
and ensures that only one sample per grid cell is kept so
that the data remains ε-separated. Indeed the gridFilter

function “filters” the sampled states by removing the newly
sampled states from the cells that are covered by existing data
already. A subset of the remaining samples is then used to
compute new nominal traces, producing new data. This step
is illustrated in Fig. 2. At the subsequent calls, new data is
obtained by testing the current neural network Nk, looking
for traces that violate the requirement using falsification
(falsify function). The procedure fixAndMerge described
in Algorithm 3 is called to produce new nominal traces
and add data from these new nominal traces, in order to
“fix” these counter-examples. Again, to keep samples well
separated, new nominal traces are generated only from the
samples resulting after applying gridFilter on the bad
traces (CexTraces - Line 2). We also remove samples that
are already covered by D (Cover(D)), represented as blue
cells in Fig. 2).

Furthermore, in selectNeigh the samples close to the
cells which are already covered have higher priority to be
selected, which helps the neural net to generalize more easily.
This can be seen in Fig. 2 where the green cells (containing
new data selected for retraining) are close to the blue cells
(containing current training data).

Algorithm 1 stops either when no new data is returned by

-8 -6 -4 -2 0 2 4 6 8

x1

-8

-6

-4

-2

0

2

4

6

8

x2

Initial Set
Cells with current training data
NN control counter example traces
Nominal control new traces
Cells with new training data

Fig. 2. One iteration of the learning algorithm.

Algorithm 2 or when kmax is reached. In the first case (no
new data), there are two situations:
• “No counter-example found”: Successful case. The fal-

sification procedure has failed to falsify the neural
network controller, providing our strongest evidence
that we have obtained a correct controller with test
coverage at least ε .

• “Counter-examples do not add new data.”. This means
that the grid is likely too coarse and the counter-
examples do not allow visiting new cells.

If the maximum number of iterations is reached, the two
statuses above are still possible (both stopping conditions are
met), otherwise, the status returned is: “New data available
for training.” which indicates that the user can resume the
process using the data aggregated so far.

V. FLYING ROBOT CASE STUDY

This example is taken from Mathworks [21] and describes
a model of a flying robot that is driven by a nonlinear model
predictive controller. The flying robot has two thrusters to
move it in a 2-D space. The state of the flying robot,
denoted by x, consists of six components: x1, x2 (horizontal
and vertical coordinate) θ (robot thrust direction), and their
derivatives ẋ1, ẋ2 and θ̇ . The thrusts are represented by u =
(u1,u2). The dynamics of the robot are given by ẍ1 = (u1 +
u2) ·cos(θ), ẍ2 = (u1+u2) ·sin(θ) and θ̈ =α ·u1+β ·u2. The
parameters are α = 0.2 and β = 0.2. For each thrust, there is
an operating range [−umax,umax] with umax = 3. Considering
the following set X0 of initial conditions

X0 = {
(
x1(0),x2(0),θ(0), ẋ1(0), ẋ2(0), θ̇(0)

)
s.t.

x1(0),x2(0) ∈ [3.8,3.8],θ(0) ∈ [−2.5,2.5],
ẋ1(0), ẋ2(0) ∈ [−1.6,1.6], θ̇(0) ∈ [−0.8,0.8]

}
,

the goal of the control input is to drive the flying robot from
any state in X0 to a region close to the origin and maintain
it in this region indefinitely. We define y as y(t) = ∥x(t)∥,
so that the problem becomes to stabilize y close to 0. The
nominal controller is provided by a model predictive control
(MPC) scheme which computes inputs at each step that

1 2 3 4 5 6
Training Iteration

8

9

10

11

s ov
 (

O
ve

rs
ho

ot
)

Overshoot vs number of training iterations

Stabilization Performance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

tr (Transient time (s))

0

2

4

6

8

10
s st

ab
 (

S
ta

bi
liz

at
io

n
re

gi
on

)
Nominal Controller False Domain
Pareto Front 1, =2.12
Pareto Front 2, =1.52
Pareto Front 5, =1.25

Fig. 3. Result of training NN controllers for the flying robot. Good
performance is obtained after only 5 iterations. The red region (Nominal
Controller False Domain) represents the valuations p for which Φ(p) are not
satisfied by the nominal controller. The boundary of this region represents
the Pareto front of the nominal controller. Other plots represent the Pareto
fronts for several instances of the NN controllers computed for different
iterations. Similarity with the nominal MPC controller is indicated in the
legend.

minimizes y(t) over a given horizon. The simulation time
is 15 seconds. To evaluate the performance of a controller
for this problem, we used the PSTL formula Φ defined in
Equation 4, where we set τst to +∞ and considered overshoot
sov, transient time τtr and stabilization region sst as variables
to measure. We applied our algorithm with the STL formula
Φ(p) with p = {sov→ 15,τtr→ 14,sst→ 2}.

The inputs of NNs we trained correspond to the state vari-
ables of the system and the previous control input variables.
They have RELU as activation functions, 6 hidden layers
(each with 256 neurons), one scaling layer and one output
layer. Figure 3 shows the performance evaluations of the
nominal controller and a sample of different trained NN
controllers obtained after 6 iterations, computed in around
120 minutes of computation time on a standard PC with an
Intel Core i7 10700 processor and 64 Go of memory. After
only two iterations, the NN controller manages to improve
on the overshoot. However, looking at the False domain for
(τst,τtr), we can see that the stabilization region is larger than
that of the MPC controller, meaning that neural networks
have trouble stabilizing the robot close to the origin due to
the inherent instability of the system at this state.

VI. CONCLUSION

In this paper, we have presented a framework for effi-
ciently training a neural network-based controller by imi-
tation learning using a dataset aggregation approach with
several novel aspects. Most notably, the collection of data
from the nominal (expert) controller is done at states where
the trained controller caused the plant to fail according to a
specification expressed in Signal Temporal Logic. Moreover,
the same specification is parameterized and can be used
to evaluate the performance of the trained controller and
how far or how differently it behaves with respect to the
nominal controller. The method was evaluated on a nonlinear
robotic system with promising results. Further experiments
will be conducted and different practical and theoretical
questions remain to be explored but we believe that this
work represents an interesting step in the direction of safer

and more efficient imitation learning methods of complex
control systems.

REFERENCES

[1] S. Schaal, “Learning from demonstration,” in Advances in Neural
Information Processing Systems, 1996.

[2] M. T. Hagan, H. B. Demuth, and O. D. Jesús, “An introduction to
the use of neural networks in control systems,” International Journal
of Robust and Nonlinear Control: IFAC-Affiliated Journal, vol. 12,
no. 11, pp. 959–985, 2002.

[3] C. Nicol, C. J. B. Macnab, and A. Ramirez-Serrano, “Robust neural
network control of a quadrotor helicopter,” in Canadian Conference
on Electrical and Computer Engineering, 2008, pp. 1233–1238.

[4] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–
348, 1989.

[5] P. Varshney, G. Nagar, and I. Saha, “Deepcontrol: Energy-efficient
control of a quadrotor using a deep neural network,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2019, pp.
43–50.

[6] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Ničković, and S. Sankaranarayanan, “Specification-based mon-
itoring of cyber-physical systems: a survey on theory, tools and
applications,” in Lectures on Runtime Verification, 2018, pp. 135–175.

[7] A. Donzé, “Breach, A toolbox for verification and parameter synthesis
of hybrid systems,” in Computer Aided Verification, 22nd International
Conference. Springer, 2010, pp. 167–170.

[8] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters
et al., “An algorithmic perspective on imitation learning,” Foundations
and Trends in Robotics, vol. 7, no. 1-2, pp. 1–179, 2018.

[9] D. Michie, M. Bain, and J. Hayes-Miches, “Cognitive models from
subcognitive skills,” IEE control engineering series, vol. 44, pp. 71–
99, 1990.

[10] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in International
conference on artificial intelligence and statistics, 2011, pp. 627–635.

[11] F. S. Acerbo, M. Alirczaei, H. Van der Auweraer, and T. D. Son,
“Safe imitation learning on real-life highway data for human-like
autonomous driving,” in 2021 IEEE International Intelligent Trans-
portation Systems Conference (ITSC). IEEE, 2021, pp. 3903–3908.

[12] A. Tagliabue, D.-K. Kim, M. Everett, and J. P. How, “Efficient guided
policy search via imitation of robust tube MPC,” in International
Conference on Robotics and Automation, 2022, pp. 462–468.

[13] S. Chow, D. Chang, and G. A. Hollinger, “Parallelized control-aware
motion planning with learned controller proxies,” IEEE Robotics and
Automation Letters, 2023.

[14] S. Yaghoubi and G. Fainekos, “Worst-case Satisfaction of STL Speci-
fications using Feedforward Neural Network Controllers: A Lagrange
Multipliers Approach,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 18, no. 5s, pp. 1–20, 2019.

[15] A. Clavière, S. Dutta, and S. Sankaranarayanan, “Trajectory tracking
control for robotic vehicles using counterexample guided training of
neural networks,” in International Conference on Automated Planning
and Scheduling, 2019, pp. 680–688.

[16] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric Iden-
tification of Temporal Properties,” in Runtime Verification - Second
International Conference, 2011, pp. 147–160.

[17] X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining
Requirements From Closed-Loop Control Models,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 11, pp. 1704–1717, 2015.

[18] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and
J. Peters, “An algorithmic perspective on imitation learning,” CoRR,
vol. abs/1811.06711, 2018.

[19] V. Pareto, “Manuel d’é conomie politique,” Bull. Amer. Math. Soc,
vol. 18, p. 462–474, 1912.

[20] A. N. Kolmogorov and V. M. Tikhomirov, “ε-entropy and ε-capacity
of sets in function spaces,” Uspekhi Matematicheskikh Nauk, vol. 14,
no. 2, pp. 3–86, 1959.

[21] Mathworks, “Imitate nonlinear MPC controller for flying robot,”
[Online] Available at https://in.mathworks.com/help/reinforcement-
learning/ug/imitate-nonlinear-mpc-controller-for-flying-robot.html.

