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Abstract—We present an efficient algorithm for multi-robot
motion planning from Linear Temporal Logic (LTL) specifi-
cations. We assume that the dynamics of each robot can be
described by a discrete-time, linear system together with con-
straints on the control inputs and state variables. The workspace
is characterized by a set of obstacles and a set of regions of
interest, where both the obstacles and the regions are polyhedra.
Given an LTL formula ψ, specifying the multi-robot mission,
our goal is to construct a set of collision-free trajectories for all
robots, and the associated control strategies, to satisfy ψ. We
show that the motion planning problem can be formulated as
the feasibility problem for a formula ϕ over Boolean and convex
constraints, respectively capturing the LTL specification and the
robot dynamics. We then adopt a Satisfiability Modulo Convex
(SMC) programming approach that exploits a monotonicity prop-
erty of ϕ to decompose the problem into smaller subproblems.
At each iteration, a Boolean satisfiability solver searches for
candidate high-level discrete plans while completely abstracting
the low-level continuous dynamics. Convex programming is then
used to check the feasibility of the proposed plans against the
dynamic constraints, or generate succinct explanations for their
infeasibility to reduce the search space. New candidate plans
can then be efficiently generated until a feasible one is found.
Simulation results show that our algorithm is more than one
order of magnitude faster than state-of-the-art sampling-based
techniques for high-dimensional state spaces while supporting
complex missions.

I. INTRODUCTION

An increasing number of safety-critical robotics applications
(e.g., in rescue missions) as well as autonomous systems
(e.g., unmanned aircraft and self-driving cars) require ef-
ficient techniques that can rigorously reason about hybrid
system behaviors and guarantee the correctness of a controller
implementation. Algorithmic control synthesis from formal
specifications captured by a logic formalism, such as Linear
Temporal Logic (LTL) [1], holds considerable promise for
encompassing a rich set of task specifications, while provid-
ing implementations that are correct by construction [2–7].
However, the complexity of today’s robotics and autonomous
systems poses several challenges to synthesis techniques.

A major difficulty stems from the growing need to rea-
son about the tight integration of discrete abstractions (task
planning) with continuous trajectories (motion planning) [8].
This integration can soon become daunting for complex, high-
dimensional systems, since a vast hybrid, discrete/continuous
space must be searched while accounting for complex ge-
ometries, motion dynamics, collision avoidance, and temporal
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goals. In this paper, we address this challenge by focusing
on the problem of multi-robot motion planning from LTL
specifications. Given the robot model and initial state, a
description of the workspace, and a task specification as
an LTL formula ψ, we aim at planning collision-free and
dynamically-feasible motion trajectories for all robots that
satisfy ψ. While a growing body of work has focused, over the
years, on the synthesis of reactive controllers that satisfy LTL
specifications, a set of computational difficulties in this context
still comes from the interplay between motion trajectories and
task constraints. The task planner needs to generate trajectories
that the robot can execute in the physical world, i.e., which
satisfy the robot dynamics constraints (e.g., bounds on the
velocity, directions of motions, and control inputs) and are
collision-free. However, in complex systems, effective discrete
planning techniques may fail to accurately capture the con-
straints imposed by the dynamics; on the other hand, effective
methods for generating collision-free and dynamically-feasible
trajectories may turn out to be inefficient in the presence of
complex mission requirements imposed by ψ.

A first category of techniques for LTL motion planning
utilizes a discrete abstraction of the system, often obtained by
partitioning the continuous state space into polytopes, and an
automata-theoretic approach to synthesize the controller [2–
5]. However, these approaches are subject to the curse of
dimensionality and become usually impractical for systems
with more than five continuous states [9]. Moreover, some of
these approaches assume the availability of low-level feedback
controllers that are capable of generating collision-free and
dynamically-feasible trajectories that are compatible with each
automaton action, which may not always be the case for
complex robotic systems. A second category of approaches
attempts at synthesizing the high-level planner together with
the associated low-level controller, by either leveraging mixed
integer linear programming (MILP) encodings of LTL speci-
fications [10, 11] or sampling-based methods [12, 13]. MILP-
based planners can leverage the empirical performance of
state-of-the-art solvers to solve for both the discrete and
continuous constraints at the same time; however, they still
tend to be impractical when the problem size grows. On
the other hand, sampling-based techniques tend to require
large computation time for obstacle avoidance problems in
the presence of narrow passages [14] and for underactuated
systems, e.g., systems with a lower number of actuators than
degrees of freedom, under dynamic, in addition to kinematic,
constraints. Moreover, sampling-based techniques do not have,
in general, control over the length of the generated trajectory.

In this paper, we propose an efficient method for the
integration of task planning and robot motion planning from
generic LTL specifications based on the coordination of
Boolean Satisfiability (SAT) solving and convex programming.
We consider the case of robots with dynamics that can be
modeled as a discrete-time linear system. We then build on
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our previous results [15, 16] on motion planning for a single
robot under reach-avoid specifications to also address multi-
robot scenarios, including collision avoidance constraints, and
arbitrary LTL specifications.

We show that multi-robot motion planning can be formu-
lated as the feasibility problem for a type of formula ϕ,
called monotone Satisfiability Modulo Convex formula, over
a combination of Boolean and convex constraints, respectively
capturing the LTL specification and the robot dynamics. We
then adopt a Satisfiability Modulo Convex programming (SMC)
approach [16, 17] that exploits the monotonicity property of
ϕ to decompose the problem into smaller subproblems that
can be efficiently solved. In SMC, a SAT solver searches for
candidate high-level discrete plans while completely abstract-
ing the low-level continuous dynamics. Convex programming
is then used to check the feasibility of the proposed plans
against the dynamic constraints and provide the reason for the
conflict, an infeasibility certificate, whenever inconsistencies
are found. SMC can efficiently generate succinct infeasibility
explanations, which is key to reduce the search space and
achieve scalability. New candidate plans can then be rapidly
generated until a feasible one is found. In this way, we are able
to leverage the efficiency and the formal guarantees of state-
of-the-art algorithms in both the Boolean and convex analysis
domains.

While being inspired by the lazy Satisfiability Modulo
Theory (SMT) paradigm [18] and the counterexample-based
control approach [19], our framework differs from the com-
positional motion planning approach by Saha et al. [7], which
focuses on generating trajectories out of a library of motion
primitives for a set of safe, finite-horizon LTL properties, by
leveraging an off-the-shelf SMT solver. When compared with
MILP-based techniques, SMC approaches have shown to scale
better as the number of Boolean variables and constraints in
ϕ increases [16], which is typically the case for complex
multi-robot task planning. In fact, SMC exploits abstraction
and conflict-driven learning, together with the structure of
ϕ, to directly reduce the search space and decompose the
original problem into a sequence of convex programs with
usually a much smaller number of variables and constraints.
Conversely, MILP-based approaches leverage branching and
cutting planes to generate a sequence of continuous or La-
grangean relaxations of the original problem, whose overall
number of variables and constraints may become prohibitively
high, sometimes on the order of the number of all the Boolean
and real variables and constraints of the original problem.
Finally, the simulation results in this paper show that our
algorithm can run faster than state-of-the-art sampling-based
techniques for high-dimensional state spaces, while supporting
complex missions.

II. PROBLEM FORMULATION

We consider a set R of N robots that move in a workspace
W ⊂ Rw where w can be 2 or 3, corresponding, respectively,
to a 2-dimensional or 3-dimensional workspace. We use ||a||
to denote the infinity norm of a and formulate the motion
planning problem as follows.

A. Robot Model
We assume that the dynamics of robot Ri, i ∈ {1, . . . , N},

is described by a discrete-time linear system of the form:

xit+1 = Aix
i
t +Biu

i
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Fig. 1. Pictorial representation of the workspace regions and obstacles for
motion planning problem in this paper.

xi0 = xi0, ||xit|| ≤ xi, ||uit|| ≤ ui, ∀t ∈ N (II.2)

where xit ∈ X ⊆ Rn is the state of robot Ri at time t ∈ N,
uit ∈ U ⊆ Rm is the robot input, xi0 is the robot initial state,
and ui and xi are bounds on the input and state variables. The
matrices Ai and Bi represent the robot dynamics and have
appropriate dimensions. For a robot with nonlinear dynamics
that is either differentially flat or feedback linearizable, the
state space model (II.1) corresponds to its feedback linearized
dynamics.

B. Workspace
We assume that the robots must avoid a set of obstaclesO =

{O1, . . . ,Oo}, with Oi ⊂ Rw, and represent the obstacle-free
workspace as W =

⋃r
1Wi, where W = {W1, . . . ,Wr} is a

set of non-overlapping regions, with Wi ⊂ Rw. As pictorially
represented in Fig. 1, both the regions and the obstacles are
assumed to be polygons.

For robot Ri, we can uniquely associate to each of the above
regions a proposition in the set Πi = {πi1, . . . , πir}, where πij
evaluates to one (true) if robot Ri is in region Wj and zero
(false) otherwise. We then denote by hW→Πi : W → Πi the
map from each point w ∈ W to the proposition πij ∈ Πi

that evaluates to one at w for robot Ri. Moreover, a subset
of each robot state variables, describing its position (coor-
dinates), is also used to describe W . Therefore, we denote
as hX→W : X → W the natural projection of the state
xi onto the workspace W , and by hX→Πi the map from
the state space of robot Ri to the set of propositions Πi,
obtained after projecting the state onto the workspace, i.e.,
hX→Πi(xi) = hW→Πi(hX→W(xi)).

Finally, we introduce an adjacency function Adj : W ×
W → B over the pairs of elements in W such that
Adj(Wi,Wj) = 1 if Wi and Wj are adjacent and 0
otherwise1. Because of the one-to-one correspondence be-
tween elements in W and propositions in Πi, we also write
Adj(πij , π

i
k) = 1 if πij and πik are associated with adjacent

regions in W and 0 otherwise. Moreover, for all i and j,
Adj(πij , π

i
j) = 1 holds.

C. Collision Avoidance
We require the distance (with respect to the infinity norm)

between any two robots in the workspace at each time to
be larger than an arbitrarily small positive number ε ∈ R+.
Formally,

||hX→W(xit)− hX→W(xjt )|| ≥ ε, ∀ t ≥ 0, (II.3)
∀ i, j ∈ {1, . . . , N}, i 6= j.

1Two polyhedra in Rw are adjacent if they share a face of dimension w−1.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 56th IEEE Conference on Decision and Control.
Received March 20, 2017.



D. Linear Temporal Logic
We express the specification for a multi-robot mission using

Linear Temporal Logic (LTL) [1]. Let Π =
⋃R
i=1 Πi be the

set of propositions associated with the workspace regions for
all robots, as defined above. We consider formulas over a set
of atomic propositions Σ, where σ(π) ∈ Σ is a Boolean or
pseudo-Boolean predicate on Π. For example, we can express
that “either robot R1 or R2 must be inW1” via the proposition
σ1 := π1

1∨π2
1 or that “at least one robot must be inW2” using

the proposition σ2 :=
∑N
i=1 π

i
2 ≥ 1.

Syntax. From atomic propositions σ ∈ Σ, any LTL formula
can be generated according to the following grammar:

ψ := σ | ¬ψ0 | ψ1∧ψ2 | ψ1∨ψ2 | ©ψ0 | ψ1 U ψ2 | ψ1 R ψ2,

where ψ0, ψ1, ψ2 are LTL formulas. Given the above grammar,
we can define false and true in the following way: false =
ψ ∧ ¬ψ and true = ¬false. Given the temporal operators
next (©), until (U), and release (R), we can derive additional
temporal operators, for example, eventually (♦) and always
(�). These operators are derived as:

♦ψ = true U ψ and �ψ = false R ψ.

Semantics. The semantics of an LTL formula is defined over
an infinite sequence ρ of valuations, i.e., truth assignments to
the propositions used in the formula. Let ρt denote the set
of atomic propositions that are true at the t-th position of ρ.
For an LTL formula ψ, we denote by ρ, t |= ψ the fact that
the sequence ρ starting with the t-th element satisfies the LTL
formula. Satisfaction is recursively defined as follows:

ρ, t |= σ iff σ ∈ ρt
ρ, t |= ¬ψ iff ρ, t 6|= ψ

ρ, t |= ψ1 ∧ ψ2 iff ρ, t |= ψ1 and ρ, t |= ψ2

ρ, t |= ψ1 ∨ ψ2 iff ρ, t |= ψ1 or ρ, t |= ψ2

ρ, t |=©ψ iff ρ, t+ 1 |= ψ

ρ, t |= ψ1Uψ2 iff there exists k ≥ t such that ρ, k |= ψ2

and for all t ≤ j < k, ρ, j |= ψ1

ρ, t |= ψ1Rψ2 iff for all k ≥ t: ρ, k |= ψ2

or for some t ≤ j < k, ρ, j |= ψ1

The sequence ρ satisfies a formula ψ, if ρ, 0 |= ψ.

Closure. For an LTL formula ψ, the closure cl(ψ) is the small-
est set of subformulas that satisfy the following conditions:

ψ ∈ cl(ψ)
ψ1 ∈ cl(ψ) if ◦ ψ1 ∈ cl(ψ) for ◦ ∈ {¬,©}
ψ1, ψ2 ∈ cl(ψ) if ψ1 ◦ ψ2 ∈ cl(ψ) for ◦ ∈ {∧,∨,U ,R}

E. Problem Definition
Definition 2.1 (Problem Instance): A problem instance is a

tuple P = (R,W,Π, Adj,Σ, D, x0, x, u, ε, ψ), where:
• R is the set of robots,
• W is the workspace,
• Π is the set of propositions corresponding to the

workspace regions and robots,
• Adj is the adjacency function defining the connectivity

of the different regions in the workspace,
• Σ is the set of atomic propositions for the robot mission,

• D = {(A1, B1), . . . , (AN , BN )} is the set of dynamics
for the group of robots,

• x0 = (x1
0, . . . , x

N
0 ) is the set of initial states for the group

of robots,
• x = (x1, . . . , xN ) is the set of bounds on the states for

the group of robot,
• u = (u1, . . . , uN ) is the set of bounds on the control

inputs for the group of robots,
• ε ∈ R+ is the positive margin for collision avoidance,
• ψ denotes the LTL specification defined over the atomic

propositions Σ that the robots have to satisfy.
Definition 2.2 (Trajectory): A system trajectory for a prob-

lem instance P = (R,W,Π, Adj,Σ, D, x0, x, u, ε, ψ) is a
triple (x, λ, ρ(λ)) including the following infinite sequences:
• x = x0x1x2 . . . is a sequence of system states, where the

system state xt = (x1
t , . . . , x

N
t ) ∈ XN includes the states

of all the robots at time t;
• λ = λ0λ1λ2 . . . is a sequence of valuations over Π,

where λt = (λ1
t , . . . , λ

N
t ) ∈ Π1 × . . . × ΠN is the

set of workspace propositions that are true at xt, i.e.,
λit = hX→Πi(xit) for all t ≥ 0 and i ∈ {1, . . . , N};

• ρ(λ) = ρ0(λ0)ρ1(λ1)ρ2(λ2) . . . is a sequence of val-
uations over Σ, where ρt(λt) is the truth assignment
associated with state xt and propositions λt.

We call x and λ, respectively, the state trajectory and the
region trajectory of the multi-robot system. Similarly, we call
xi = xi0x

i
1x
i
2 . . . and λi = λi0λ

i
1λ
i
2 . . ., respectively, the state

and region trajectory for robot Ri.
Definition 2.3 (Valid Trajectory): A trajectory (x, λ, ρ) for

a problem instance P = 〈R,W,Π, Adj,Σ, D, x0, x, u, ε, ψ〉 is
a valid trajectory if the following holds:
• Initial state constraint: x0 = x0,
• Dynamics, input, and state constraints: for all i ∈
{1, . . . , N} and k ≥ 0 there exists uik such that xik+1 =
Aix

i
k +Biu

i
k, ||xik|| ≤ xi, and ||uik|| ≤ ui,

• Workspace and obstacle avoidance constraints:
Adj(λik, λ

i
k+1) = 1, ∀ k ≥ 0, ∀ i ∈ {1, . . . , N},

• Collision avoidance constraints: ∀ k ≥ 0, ∀ i, j ∈
{1, . . . , N}, i 6= j, ||hX→W(xik)− hX→W(xjk)|| ≥ ε,

• LTL constraints: ρ satisfies the formula ψ, i.e., ρ, 0 |= ψ.
We now formally define the motion planning problem that

we solve in this paper.
Problem 2.4 (Motion Planning Problem): Given a problem

instance P = 〈R,W,Π, Adj,Σ, D, x0, x, u, ε, ψ〉, synthesize a
valid trajectory for the multi-robot system.

III. SMC-BASED SOLUTION STRATEGY

Using state space discretizations to account for constraints
on the continuous dynamics may lead to state explosion as
the number of continuous states and the number of obstacles
increase. Our strategy aims, instead, at exploiting coarser
abstractions of both the state space and the workspace, thus
effectively decoupling the problem of generating an obstacle-
free path from the ones of checking physical realizability
and collision avoidance. By leveraging a Satisfiability Modulo
Convex (SMC) programming approach, we then partition the
planning problem into two smaller subproblems involving
reasoning, respectively, on sets of discrete and continuous
variables from the original problem. These subproblems can
be efficiently solved using specialized techniques.
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Algorithm 1 SMC-BASED MOTION PLANNER

1: Initialize horizon: L := 1;
2: while Trajectory is not found do
3: |[P, L]|D := ENCODE-DIS-PLAN(P, L)
4: |[P, L]|C := ENCODE-CON-PLAN(P, L)
5: (STATUS, λ, x, u) := SMC.SOLVE(|[P, L]|D, |[P, L]|C);
6: if STATUS == UNSAT then
7: Increase horizon: L := L+ 1;
8: return (λ, x, u);

As summarized in Algorithm 1, we first observe that the
multi-robot motion planning problem for a fixed horizon L can
be formulated as the feasibility problem for a special type of
formula ϕ over Boolean and convex constraints, respectively
capturing the constraints in the LTL specification ψ (subfor-
mula |[P, L]|D) and the dynamics (subformula |[P, L]|C). The
formula ϕ is a monotone SMC formula that can be solved
via a finite number of convex programs [16]. Specifically,
SMC.SOLVE follows an iterative approach combining efficient
SAT solving with a convex programming engine. At each
iteration, the SAT solver generates candidate high-level paths
λ that satisfy the set of constraints expressed by ψ. These
paths are only defined over the set of Boolean propositions Π
and ignore the robots’ dynamics, input and state constraints,
as well as the collision avoidance constraints.

The feasibility of the generated paths λ is then checked with
respect to the system dynamics D, the control input bounds
u, the state bounds x, the robots’ initial states x0, and the col-
lision avoidance constraints, by casting a convex optimization
problem. If both the Boolean and the real-valued constraints
are satisfied, a valid trajectory is returned, consisting of the
proposed plan and the corresponding state and control input
trajectories for the group of robots. Otherwise, the proposed
sequence λ is marked as infeasible and new candidate plans are
generated until either a feasible one is found, or SMC.SOLVE
returns UNSAT, meaning that no trajectory is feasible for
the current horizon length. A prominent feature of SMC
is the generation of compact infeasibility certificates, i.e.,
“succinct explanations” that can capture the root causes for
the infeasibility of a plan and rule out the largest possible
number of invalid plans for the SAT solver to accelerate the
search. In what follows, we provide details on the encodings
of both the discrete and continuous planning problems and
discuss the formal guarantees of Algorithm 1.

IV. SMC ENCODING OF THE PROBLEM

A. Encoding the High-Level Discrete Planning Problem

We translate the high-level, discrete planning problem into a
conjunction of Boolean constraints using the Bounded Model
Checking (BMC) encoding technique for LTL model checking
by Biere et al. [20]. Though a trace that satisfies an LTL
formula is given as an infinite execution path of the system,
such trace can be represented by a finite path under the
following conditions: (i) the finite path is a valid prefix of
all its infinite extensions, (ii) a portion of the finite path can
loop to generate a valid infinite path. Let (x, λ, ρ(λ)) be a
valid trajectory of the system under generic LTL constraints.
The system trajectory ρ = ρ0ρ1ρ2 . . . can then be represented
as

ρ = (ρ0ρ1 . . . ρk−1)(ρk . . . ρL)ω,

where 0 < k ≤ L and ρL = ρk−1. Such a representation of a
trajectory is called an (L, k)-loop. The trajectory (ρk . . . ρL)ω

denotes an infinite trajectory that can be obtained by repeating
the sequence (ρk . . . ρL).

Given a problem instance P =
(R,W,Π, Adj,Σ, D, x0, x, u, ε, ψ), and a positive constant
L, let (x0, λ0) represent the initial state of the system,
where x0 = (x1

0, . . . , x
N
0 ), λ0 = (λ

1

0, . . . , λ
N

0 ) and, for
all i ∈ {1, . . . , N}, λi0 = hX→Πi(xi0). Our objective is to
generate a formula that represents any valid trajectory of
the multi-robot system in the form of an (L, k)-loop. The
decision variables for the formula are ultimately given by
the propositions associated with the workspace regions to
be occupied by each robot and the variable k represents
the location at which the loop starts. Specifically, for all
i ∈ {1, . . . , N}, j ∈ {1, . . . , r}, t ∈ {0, . . . , L}, we introduce
a Boolean variable πijt which evaluates to one if and only
if robot Ri is in region Wj at time t. Let Π̃ be the set of
all these decision variables. Based on these variables, the
encoding of the discrete trajectory synthesis problem is linear
in L and captures three kinds of constraints:
• Workspace and obstacle avoidance constraints, denoted

by |[W]|,
• LTL formula constraints, denoted by |[LTL]|,
• Loop constraints, denoted by |[LOOP ]|.
1) Workspace Constraints: A set of workspace constraints

can be captured by the following formula:

|[W]| := (λ0 = λ0) ∧
N∧
i=1

L∧
t=1

λit ∈ N (λit−1),

where N (λit) = {πij ∈ Πi |Adj(λit, πij) = 1} denotes the set of
regions that are adjacent (neighbors) to λit. The above formula
enforces that the trajectory starts with the initial regions in
λ0 and proceeds by only visiting regions that are adjacent.
For instance, adjacency constraints can be encoded using the
variables in Π̃ as follows: ∀i ∈ {1, . . . , N}, t ∈ {1, . . . , L−1},
j ∈ {1, . . . , r},

πij(t−1) ⇒
∨

j′∈I(j)

πij′t,

where I(j) = {j′|Adj(πij , πij′) = 1, πij′ ∈ Πi}. At each time t
and for each robot Ri only one of the πijt can be one, which
can be captured by the following pseudo-Boolean constraints:

r∑
j=1

πijt = 1, ∀i ∈ {1, . . . , N}, ∀t ∈ {0, . . . , L},

which are also part of the formula |[W]|. Obstacle avoidance
is implicitly encoded by the fact that Π and Adj are defined
only over the regions in the free space.

2) LTL Constraints: We generate Boolean constraints cap-
turing the LTL formula specification using the eventuality
encoding [20]. Specifically, we leverage this encoding to
generate constraints that only hold for the discrete plan, as
in expressions (IV.1)-(IV.7) below. The full SMC formula
encoding, including constraints on both Boolean and real
variables, will follow in Section IV-B.

A fresh unconstrained propositional variable bϕt , called for-
mula variable, is introduced for every subformula ϕ ∈ cl(ψ)
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and for all 0 ≤ t ≤ L. The variable bϕt is true iff ϕ holds at
time point t on the trajectory. We also introduce the Boolean
variable loopexists, which is true if the bounded trajectory
contains a loop. Moreover, the Boolean variable inloopt is
true if the t-th index of the trajectory is in the loop part of the
trajectory. The encoding is then defined in terms of Boolean
constraints over the formula variables as described below.

Proposition and logical operators: The propositional LTL
subformulas are encoded as follows: ∀t ∈ {0, . . . , L+ 1}:

b
σ(π)
t ⇔ (σ(π) ∈ ρt) b¬ψt ⇔ ¬bψt
bψ1∧ψ2

t ⇔ bψ1

t ∧ b
ψ2

t bψ1∨ψ2

t ⇔ bψ1

t ∨ b
ψ2

t

(IV.1)

Specifically, let fσ(π1
1 , π

1
2 , . . . , π

N
r−1, π

N
r ) be the Boolean or

pseudo-Boolean predicate providing the truth assignment for
a proposition σ as a function of an evaluation over Π. We
enforce this predicate to hold at each time point in the
trajectory as follows: ∀t ∈ {0, . . . , L+ 1}, ∀σ ∈ Σ:

bσt ⇔ fσ(π1
1t, π

1
2t, . . . , π

N
(r−1)t, π

N
rt). (IV.2)

Temporal operators: The temporal components of the clo-
sure of an LTL formula can be encoded as follows: ∀t ∈
{0, . . . , L},

b© ψ1

t ⇔ bψ1

t+1

bψ1 U ψ2

t ⇔ bψ2

t ∨ (bψ1

t ∧ b
ψ1 U ψ2

t+1 )

bψ1 R ψ2

t ⇔ bψ2

t ∧ (bψ1

t ∨ b
ψ1 R ψ2

t+1 )

(IV.3)

When the trajectory contains a loop, auxiliary constraints are
required to ensure the correct semantics of the U operator.
In the constraints below, let q♦ψ2

t be an auxiliary variable
denoting the evaluation of the formula ♦ψ2 at the t-th location
of the trajectory. Then, we enforce:

q♦ψ2

0 = false

loopexists⇒ (bψ1 U ψ2

L ⇒ q♦ψ2

L )
∀t ∈ {1, . . . , L} :

q♦ψ2

t = q♦ψ2

t−1 ∨ (inloopt ∧ bψ2

t )

(IV.4)

The constraints ensure that if a loop exists, then q♦ψ2

L is the
evaluation of the formula ♦ψ2 at the L-th location of the
trajectory. The conjunction of the formula constraints obtained
as in (IV.1), (IV.2), (IV.3), and (IV.4) forms the |[LTL]|
formula.

3) Loop Constraints: The loop constraints are used to non-
deterministically decide the value of k for the (L, k)-loop. For
this purpose, L + 1 fresh variables l0, . . ., lL are introduced
as loop selector variables. At most one of these variables can
be true. If lj is true then ρL = ρj−1 and for all ϕ ∈ cl(ψ),
bϕL = bϕj−1. In this case the bounded trajectory is a (L, j)-loop.
If none of the variables is true then the LTL formula can be
satisfied using a finite length trajectory. The loop constraints
are encoded as the conjunction of the constraints given below:

l0 ⇔ false, inloop0 ⇔ false
∀t ∈ {1, . . . , L} :

inloopt ⇔ inloopt−1 ∨ lt
inloopt−1 ⇒ ¬lt

loopexists⇔ inloopL.

(IV.5)

Maintaining region consistency: The region occupied by
each robot at the L-th time instance is equal to the region
of the robot at the time instance before the loop starts, i.e.,

∀t ∈ {1, . . . , L} : lt ⇒ (ρL = ρt−1). (IV.6)

Maintaining formula consistency: For each subformula
ϕ ∈ cl(ψ), we ensure that their evaluation at the (L + 1)-th
location of the trajectory is equivalent to their evaluation at
the location where the loop starts. In the no-loop case, the
evaluation of the sub formulas at the (L + 1)-th location is
false.

∀t ∈ {1, . . . , L} : lt ⇒ (bϕL+1 = bϕt )
¬loopexists⇒ (bϕL+1 = false)

(IV.7)

The conjunction of constraints (IV.5), (IV.6), and (IV.7) pro-
vides the formula |[LOOP ]|.

4) Full Discrete Problem Encoding: The full encoding of
the discrete portion of the problem is denoted by |[P, L]|D,
and is given by the conjunction of the above three sets of
constraints and the constraint that ensures that the LTL formula
ψ holds in the initial state:

|[P, L]|D ⇔ |[W]| ∧ |[LTL]| ∧ |[LOOP ]| ∧ bψ0
B. Encoding the Low-Level Motion Planning Problem

A valid trajectory must satisfy a set of dynamic, input, and
state constraints, as well as collision avoidance constraints. We
encode them via a conjunction of hybrid constraints including
Boolean variables, as well as convex constraints on the reals.

Dynamics, State, and Input Constraints. We enforce that
valid trajectories progress according to the robots’ dynamics
with the conjunction of the following constraints:

xit+1 = Aix
i
t +Biu

i
t, ∀t ∈ {0, . . . , L− 1}, ∀i ∈ {1, . . . , N}

xi0 = xi0, ∀i ∈ {1, . . . , N} (IV.8)

‖xit‖ ≤ xi ∀t ∈ {0, . . . , L− 1}, ∀i ∈ {1, . . . , N}
‖ui

t‖ ≤ ui ∀t ∈ {0, . . . , L− 1}, ∀i ∈ {1, . . . , N}

Maintaining Consistency Between Regions and States. The
state of each robot must be consistent with the workspace
region occupied at each time. Since each workspace region
Wj is a polyhedron, it can be captured by an affine in-
equality of the form (Pjw + qi ≤ 0). We therefore obtain,
∀i ∈ {1, . . . , N} :

πi
jt ⇒

(
PjhX→W(xit) + qj ≤ 0

)
, ∀t ∈ {0, . . . , L}, j ∈ {1, . . . , r}

lt ⇒ (xiL = xit−1), ∀t ∈ {1, . . . , L}, (IV.9)

where hX→W(.), the natural projection of the state space onto
the workspace, is also an affine function. We also require
that, if there is a loop, the state of each robot at time L is
identical to its state before the loop starts. While this is only a
sufficient condition for the existence of a continuous trajectory
that is consistent with the discrete plan, it can be shown from
reachability analysis that this condition becomes necessary
under some technical assumptions on the robot dynamics [21].

Collision Avoidance Constraints. For each pair of robots at
each time and a workspace of dimension w, we create pairs
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of fresh Boolean variables {(cijkt, d
ij
kt)|t ∈ {0, . . . , L}, k ∈

{1, . . . , w}, i, j ∈ {1, . . . , N}, i 6= j} and encode the collision
avoidance conditions via the conjunction of the following
constraints:
∀i, j ∈ {1, . . . , N}, i 6= j, ∀t ∈ {0, . . . , L}:

cijkt ⇒ (hk
X→W(xit)− hk

X→W(xjt)) ≥ ε, ∀k ∈ {1, . . . , w}
dijkt ⇒ (−hk

X→W(xit) + hk
X→W(xjt)) ≥ ε,∀k ∈ {1, . . . , w}

w∑
k=1

(cijkt + dijkt) ≥ 1, (IV.10)

where hkX→W(.) is the natural projection of the state space
onto the k-th dimension of the workspace.

The conjunction of the sets of constraints (IV.8), (IV.9), and
(IV.10), denoted as |[P, L]|C , is conjoined with the formula
|[P, L]|D for the discrete plan to provide the overall formula
|[P, L]| encoding the motion planning problem in this paper:

|[P, L]| ⇔ |[P, L]|D ∧ |[P, L]|C . (IV.11)

The following result states that |[P, L]| can be efficiently
solved by combining SAT solving, convex programming, and
conflict-driven learning techniques, as shown in Algorithm 1,
since it falls into the category of monotone SMC formulas.

Proposition 4.1 (Monotone SMC-Based Encoding): Given
a multi-robot motion planning problem instance P and a finite
horizon L, let |[P, L]| be the formula obtained in (IV.11).
|[P, L]| is a monotone SMC formula, hence its satisfiability
problem can be cast as the feasibility problem for a finite
disjunction of convex programs, and solved as shown in
Algorithm 1.

Proof: The formula |[P, L]| is expressed in conjunctive
normal form, where clauses can be pseudo-Boolean predicates
or disjunctions of literals, and literals can be Boolean vari-
ables or convex constraints. By inspection of all its clauses,
|[P, L]| complies with the formal syntax of SMC formulas [16,
Definition 3.1]. By the properties of SMC formulas [16,
Proposition 3.5], the satisfiability problem for |[P, L]| can be
solved as the feasibility problem for a finite disjunction of
convex programs. Finally, Algorithm 1, for a fixed horizon L,
turns into the SMC decision procedure [16, Algorithm 1] and
can be used to solve the satisfiability problem for |[P, L]| [16,
Proposition 4.1 and 5.2].

We can finally state the formal guarantees of Algorithm 1.
Theorem 4.2 (Correctness of Algorithm 1): Given a multi-

robot motion planning problem instance P , Algorithm 1,
leveraging the SMC-based encoding |[P, L]| in (IV.11), is
sound.

Proof: Termination and soundness are guaranteed by
the correctness of the SMC decision procedure [16, Propo-
sition 4.1 and 5.2] and by the fact that the purely Boolean
encoding for the system trajectories, based on the eventuality
encoding, is sound and complete [20, Theorem 3.2]. However,
as discussed above, |[P, L]| offers only a sufficient encoding
for the multi-robot motion planning problem P and horizon
length L. Any satisfying assignment for |[P, L]| is an L-
horizon valid trajectory for P . On the other hand, the pro-
posed encoding cannot guarantee completeness because of the
condition on the states in (IV.9) in the presence of a loop.

V. RESULTS

We implemented Algorithm 1 in PYTHON on top of the
SATEX solver [16], using Z3 [22] as a SAT solver and

π3

π2π1

x [m]

y
[m

]

x [m]

y
[m

]

Fig. 2. (Left) Workspace and propositions used in our experiments; (right)
trajectories generated by the SMC-based (black), Synergistic RRT (dashed
blue), and Synergistic EST (dotted red) motion planners for the double
integrator dynamics.

CPLEX [23] as a convex optimization solver. We gener-
ate infeasibility certificates that are minimal by providing,
at each iteration, an Irreducibly Inconsistent Set (IIS) of
linear constraints [24]. Moreover, in each convex program,
we instruct SATEX to search for a continuous trajectory
that minimizes the `1-norm of the overall control “effort”∑

0≤t≤L,1≤i≤N ||uit||1, over all robots at all times, among the
trajectories compatible with the discrete plan from the SAT
solver. All the experiments were executed on an Intel Core i7
3.4-GHz processor with 16 GB of memory.

A. Single-Robot Reach-Avoid Specification

As a first scenario to validate our approach, we consider a
single robot subject to a reach-avoid specification, an essential
motion planning problem, which is embedded in almost all
robotics applications. A single-robot scenario also allows com-
paring against alternative sampling-based algorithms which do
not support, as yet, multi-robot formulations. We consider
the workspace represented on the left side of Figure 2,
where the black dot marks the initial position of the robot.
We compare the performance of our algorithm against state-
of-the-art sampling-based techniques implemented in Syclop
(Synergistic Combination of Layers Of Planning), which have
been shown to outperform traditional sampling-based algo-
rithms by orders of magnitude [25]. Syclop, available from
the Open Motion Planning Library (OMPL)2, is a meta-
planner that combines a high-level guide computed over a
decomposition of the state space with a low-level planning
algorithm. The progress that the low-level planner makes is
fed back to the high-level planner which uses this information
to update the guide. We consider two versions, namely, Syclop
RRT (Rapidly-exploring Random Trees) and Syclop EST
(Expansive Space Trees) using, respectively, the RRT and EST
algorithms as their low-level planners. We also compare with
state-of-the-art SMT solvers supporting nonlinear constraints
on the reals, namely, Z3 and DREAL [26], when directly
applied to the monotone SMC formula encoding the motion
planning problem. MILP-based techniques are not considered
in this paper, since the SMC-based planner has already been
shown to scale better on similar problems [15, 16].

We consider robot dynamics captured by chains of inte-
grators, one chain for each coordinate of the workspace, and
a sampling time of 0.5 s. The robot starts at the point with
coordinates (0.5, 0.5) (in meters) and is required to reach the

2https://ompl.kavrakilab.org/planners.html
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TABLE I
EXECUTION TIME OF DIFFERENT MOTION PLANNING ALGORITHMS AS A

FUNCTION OF THE NUMBER OF CONTINUOUS STATES FOR THE
WORKSPACE IN FIG. 2. RESULTS ARE AVERAGED ACROSS 20 TRIALS.

TIMEOUT IS SET TO 1 HOUR.

Number of SMC-Based Synergistic Synergistic dReal Z3
States [s] RRT [s] EST [s] [s] [s]

4 3.007 33.166 0.6151 time out time out
6 4.590 3216.402 791.444 time out time out
8 7.502 time out time out time out time out

10 10.207 time out time out time out time out
12 34.775 time out time out time out time out
14 60.413 time out time out time out time out
16 39.070 time out time out time out time out
18 70.631 time out time out time out time out
20 75.843 time out time out time out time out

TABLE II
EXECUTION TIME OF THE SMC-BASED MOTION PLANNER VERSUS

SYCLOP LTL. TIMEOUT IS SET TO 15 MINUTES.

Number of Number of SMC-Based Synergistic
States Propositions [s] LTL [s]

1 6.6614 2.4978
4 2 16.0456 44.3815

3 36.651 153.389
1 25.2670 13.003

6 2 54.517 timeout
3 73.0913 timeout
1 6.280 timeout

8 2 26.385 timeout
3 225.255 timeout

point (5.5, 2.0), while higher order derivatives are set to 0
both at the initial and target points. The corresponding LTL
formula is ψ1 := (

∧
j ¬ηj) U γ, where ηj , j ∈ {1, . . . , o},

are propositions associated with the obstacles and γ is the
proposition associated with the goal region in the workspace.
The upper bound on the control input is u = 0.2, in appropriate
units based on the number of integrators in the chain. Table I
reports the execution times of different algorithms as the
number of integrators in the chain, hence the number of
state variables, increases. Times are averaged over 20 trials.
RRT and EST-based planners show much higher variability in
execution time than the SMC-based planner, as is expected
because of their randomized search schemes. Syclop EST
performs better for a small number of continuous states, but
its runtime rapidly increases and reaches a 1-hour timeout for
a chain of four integrators. Our algorithm scales better over
the whole range of continuous states scoring more than one
order of magnitude reduction in computation time. Moreover,
the generated trajectory is usually smoother because of the
`1-norm minimization. Z3 and DREAL exceed the timeout
threshold in all the experiments.

B. Single Robot Under LTL Specifications

While our encoding supports generic LTL specifications,
in this scenario, we only focus on co-safe LTL formulas,
since this is the only fragment supported by the Syclop LTL
motion planner version. We consider the same workspace and
initial condition as in Figure 2 under LTL formulas of the
form ψ2 :=

∧
i♦πi

∧
j �¬ηj , where ηj , j ∈ {1, . . . , o}, are

propositions associated with the obstacles in the workspace.
The robot must visit a set of regions, in arbitrary order, while
avoiding obstacles.

Table II reports the execution times of our algorithm and
Syclop LTL as both the number of chained integrators cap-
turing the robot dynamics, hence the number of continuous
variables, and the number of regions to be visited, hence the
number of Boolean variables in the specification, increase.

x [m]

y
[m

]

x [m]

y
[m

]

Fig. 3. Workspace and trajectories under reach avoid specifications for a
2-robot scenario (left) and a 4-robot scenario (right).

TABLE III
PERFORMANCE OF THE SMC-BASED MOTION PLANNER AND SIZE OF THE

PROBLEM IN MULTI-ROBOT SCENARIOS WITH REACH-AVOID
SPECIFICATION AND SPECIFICATION ψ3 . TIMEOUT IS SET TO 30 MINUTES.

Number Number SMC-Based SMC-Based
of of States Reach-avoid specification ψ3 := (�♦σ1) ∧ (�♦σ2) ∧ (�♦σ3)

Robots (per robot) time #real #Boolean time #real #Boolean
[s] vars vars [s] vars vars

4 0.3346 336 19.269 960
6 0.822 420 44.72625 1200

2 8 1.0625 504 66 67.6701 1440 2370
10 0.915 588 76.3877 1680
12 2.444 672 665.4057 1920
4 0.7170 504 105.661 1440
6 2.1074 630 196.425 1800

3 8 3.8263 756 117 253.077 2160 3449
10 15.005 882 1151.087 2520
12 8.654 1008 466.6257 2880
4 0.9621 672 444.354 1920
6 5.1138 840 829.665 2400

4 8 6.3493 1008 180 986.9366 2880 4648
10 44.4658 1176 timeout 3360
12 80.0632 1344 timeout 3840

5 4 5.8121 840 255 1334.822 2400 5967
6 4 26.4051 1008 342 timeout 2880 7406
7 4 142.896 1008 441 timeout 3360 8965
8 4 1229.5425 1344 552 timeout 3840 10644

Results are averaged over 10 trials. Syclop exceeds the 15-
minute timeout threshold for a system with 3 integrators and
and an LTL specification including two regions (i=2). In the
case of one region to be visited for a 3-integrator chain, Syclop
reaches the timeout value in 4 runs; we then report the average
time over the remaining 6 runs.

C. Multi-Robot Scenarios

We first show the effectiveness of the proposed collision
avoidance encoding on the workspace in Figure 3, where we
force the robots to “cross” each other in the same region as
they move from their initial positions to their targets subject to
reach-avoid specifications. Table III reports the performance
of our motion planner as the number of robots (hence the
number of Boolean variables in the problem) and the number
of integrators (hence the continuous states in the problem)
increase. Trajectories for a 2-robot and a 4-robot scenario
are visualized, respectively, on the left and right sides of
Figure 3, illustrating the satisfaction of the collision avoidance
constraints with a safety margin ε = 0.2 m.

We finally demonstrate the capabilities of our algorithm in
a multi-robot scenario under generic LTL specifications. We
consider the workspace in Figure 2, an even number of robots
N , and the LTL formula ψ3 := (�♦σ1)∧ (�♦σ2)∧ (�♦σ3),
where σ1 :=

∑N
i=1 π

i
1 = N , σ2 :=

∑N/2
i=1 π

i
2 = N/2, and

σ3 :=
∑N
i=N/2+1 π

i
3 = N/2. In words, we require the robots

to visit, all together, region 1 infinitely often. Similarly, a first
half of robots must also visit region 2, while the second half
must visit region 3, all together, infinitely often. Again, we
report in Table III the performance of our motion planner as
the number of robots and chained integrators increase together
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Fig. 4. Trajectories of robots R1, R2, R3, and R4 (from left to right), subject to ψ3 :=
(
�♦

∑4
i=1 π

i
1 = 4

)
∧
(
�♦

∑2
i=1 π

i
2 = 2

)
∧
(
�♦

∑4
i=3 π

i
3 = 2

)
.

The trajectories of R1 and R2 visit region 2 while the ones of R3 and R4 touch region 3 as specified.

with the problem size in terms of number of Boolean and
real variables. The trajectories for the 4-robot scenario are
separately shown in Figure 4.

VI. CONCLUSIONS

We presented an efficient SMC-based algorithm for multi-
robot motion planning from generic Linear Temporal Logic
(LTL) specifications, under the assumption of discrete-time,
linear dynamics and workspaces described by unions of poly-
hedra. Our algorithm is more than one order of magnitude
faster than state-of-the-art sampling-based techniques for high-
dimensional state spaces, while supporting complex missions.
Future work includes investigating further strategies for effi-
cient generation of infeasibility certificates, and extending the
proposed techniques to planning in the presence of uncertain-
ties in the dynamics and bounded disturbances.
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