
Frugal Actor-Critic: Sample Efficient Off-Policy Deep
Reinforcement Learning Using Unique Experiences

Nikhil Kumar Singh, Indranil Saha
Indian Institute of Technology, Kanpur

Kanpur, India
{nksingh,isaha}@cse.iitk.ac.in

ABSTRACT
Efficient utilization of the replay buffer plays a significant role in
the off-policy actor-critic reinforcement learning (RL) algorithms
used for model-free control policy synthesis for complex dynamical
systems. Most existing methods that apply numerous heuristics for
prioritizing the experiences in the buffer for their sample-efficient
replay suffer from significant computational overhead. We propose
an alternative method for sample efficiency, which focuses on se-
lecting unique samples and adding them to the replay buffer during
the exploration with the goal of reducing the buffer size and main-
taining the independent and identically distributed (IID) nature of
the samples. Our method is based on selecting an important subset
of the set of state variables from the experiences encountered dur-
ing the initial phase of random exploration, partitioning the state
space into a set of abstract states based on the selected important
state variables, and finally selecting the experiences with unique
state-reward combination by using a kernel density estimator. We
formally prove that the off-policy actor-critic algorithm incorpo-
rating the proposed method for unique experience accumulation
converges faster than the vanilla off-policy actor-critic algorithm.
Furthermore, we evaluate our method by comparing it with two state-
of-the-art actor-critic RL algorithms on several continuous control
benchmarks available in the Gym environment. Experimental results
demonstrate that our method achieves a significant reduction in the
size of the replay buffer for all the benchmarks while achieving
either faster convergent or better accumulated reward compared to
the baseline algorithms.

KEYWORDS
Sample efficiency, Reinforcement learning, Control policy synthesis,
Off-policy actor-critic algorithm

ACM Reference Format:
Nikhil Kumar Singh, Indranil Saha. 2024. Frugal Actor-Critic: Sample Effi-
cient Off-Policy Deep Reinforcement Learning Using Unique Experiences.
In Proc. of the 23rd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10,
2024, IFAAMAS, 14 pages.

1 INTRODUCTION
The off-policy actor-critic reinforcement learning framework has
proven to be a powerful mechanism for solving the model-free
control policy synthesis problem for complex dynamical systems
with continuous state and action space. Experience replay plays

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May
6 – 10, 2024, Auckland, New Zealand. © 2024 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). This work is licenced under the
Creative Commons Attribution 4.0 International (CC-BY 4.0) licence.

a crucial role in the off-policy actor-critic reinforcement learning
algorithms. The experiences in the form of a tuple containing the
current state, the applied action, the next state, and the acquired
reward are collected through off-policy exploration and stored in
the replay buffer. These experiences are replayed to train the critic
using optimization algorithms such as stochastic gradient descent
(SGD) [1, 2], which in turn guides the training of the actor to improve
the target policy. The performance of the target policy thus depends
significantly on the quality of the experiences available in the replay
buffer.

To ensure the high quality of the experiences based on which
the critic is trained, researchers have proposed several methodolo-
gies [17, 28, 31] that focus on prioritizing the experiences based on
various heuristics. However, as the replay buffer size is generally
very large to ensure that the samples are independent and identically
distributed (IID), prioritizing the samples incur a significant com-
putational overhead. In this paper, we rather explore an alternative
strategy to ensure the quality of the experiences on which the critic
is trained. We aim to devise a mechanism that can identify unique
experiences and store them in the replay buffer when they provide
different knowledge than what is already available with the experi-
ences present in the replay buffer. Maintaining unique experiences in
the replay buffer has two major advantages. First, having unique ex-
periences in the replay buffer ensures that the samples are IID, which
is essential for the stochastic gradient descent (SGD) optimization
algorithm used in training the critic to converge faster by not suffer-
ing from instability caused by high estimation variance [22, 37] and
without the necessity of employing expensive methods for prioritiz-
ing the samples within the reply buffer. Second, it helps in reducing
the memory requirement, which is crucial for deploying actor-critic
RL algorithms in memory-constrained embedded systems [27, 32].

In this paper, we present an algorithm named Frugal Actor-Critic
(FAC) that strives to maintain unique experiences in the replay buffer.
Ideally, the replay buffer should contain those experiences that pro-
vide unique learning to the agent. From a state, it may be possible
to reach some other state and acquire the same reward by applying
different actions. However, as the goal of the agent is to maximize
the accumulated reward, it need not learn all the actions. Rather, it is
enough to learn one of those actions that lead to a specific reward
from a state while moving to another state. Thus, FAC attempts to
identify experiences based on unique state-reward combinations.

FAC employs a state-space partitioning technique based on the
discretization of the state variables to maintain unique experiences in
the replay buffer. However, a complex dynamical system may have
a high-dimensional state vector with correlated components. Thus,
state-space partitioning based on all the state variables becomes
computationally expensive. FAC employs a matrix decomposition

based technique that uses the experiences encountered during the
initial phase of random exploration to identify the most important
and independent state variables that characterize the behavior of
the dynamical system. Subsequently, the state space is partitioned
based on the equivalence of the values assumed by the selected state
variables. The goal of the FAC algorithm is to store experiences that
are from different partitions of the state space. However, naively
discarding samples whose state values are similar to those present
in the replay buffer might lead to degradation in learning (since
samples with similar states can have different rewards) and hence
synthesis of sub-optimal control policy. Since learning depends on
reward maximization, the control policy needs the knowledge of
different rewards achieved for a given state (by taking different
actions). To accommodate different rewards possible for similar
states, we introduce a mechanism for estimating the density of a
reward based on a kernel density estimator [33]. This mechanism
aims to identify those experiences for a given state partition whose
corresponding rewards are under-represented in the replay buffer.

The computational overhead of FAC is negligible and it obviates
the necessity of employing computationally demanding sample pri-
oritization methods to improve the performance of the replay buffer
based RL algorithms. We theoretically prove that the FAC algorithm
is superior to the general off-policy actor-critic algorithms in storing
IID samples in the replay buffer as well as in convergence. More-
over, We evaluate FAC experimentally by comparing it with two
state-of-the-art actor-critic RL algorithms SAC [12] and TD3 [10]
on several continuous control benchmarks available in the Gym en-
vironment [3]. Experimental results demonstrate that our method
achieves a significant reduction in the size of the replay buffer for all
the benchmarks while achieving either faster convergent or superior
accumulated reward compared to the baseline algorithms. We also
compare FAC with the state-of-the-art sample prioritization tech-
nique LABER [17], demonstrating that FAC consistently outperform
LABER in terms of convergence and accumulated reward. To the
best of our knowledge, this is the first work that attempts to control
the entries in the replay buffer to improve the performance of the
off-policy actor-critic RL algorithms.

2 PROBLEM
2.1 Preliminaries

Reinforcement Learning. To solve a control policy synthesis prob-
lem using reinforcement learning, we represent the model-free en-
vironment M as a tuple ⟨𝑆,𝐴,T , 𝑅⟩, where 𝑆 denotes the set of
continuous states 𝑠 ∈ R𝑝 of the system and 𝐴 denotes the set of con-
tinuous control actions 𝑎 ∈ R𝑞 . The function T : R𝑝×𝑞×𝑝 → [0,∞)
represents the unknown dynamics of the system, i.e., the proba-
bility density of transitioning to the next state given the current
state and action. A transition (or sample) 𝑥 at time 𝑡 is denoted by
⟨𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1⟩, where 𝑠𝑡 ∈ 𝑆 is a state, 𝑎𝑡 ∈ 𝐴 is an action, 𝑟𝑡 ∈ R is
the reward obtained by the agent by performing action 𝑎𝑡 at state 𝑠𝑡 ,
and 𝑠𝑡+1 ∈ 𝑆 is the next state. We denote by 𝑅 the reward function for
M such that 𝑅(𝜔) = ∑𝑇

𝑡=0 𝛾
𝑡 ·𝑟𝑡 , where 𝜔 = (𝑥0, . . . , 𝑥𝑇) is the trace

generated by a policy, and 𝛾 is the discount factor. To find the optimal
policy 𝜋∗ : 𝑆 → 𝐴, we define a parameterized policy 𝜋𝜃 (𝑎 |𝑠) as the
probability of choosing an action 𝑎 given state 𝑠 corresponding to

parameter 𝜃 , i.e.,
𝜋𝜃 (𝑎 |𝑠) = P[𝑎 |𝑠;𝜃] . (1)

We define the cost function (reward) associated with the policy
parameter 𝜃 as follows:

𝐽 (𝜃) = E
𝜔∼𝜋𝜃

[𝑅(𝜔)], (2)

where E
𝜔∼𝜋𝜃

denotes the expectation operation over all traces 𝜔

generated by using the policy 𝜋𝜃 .
Our goal is to learn a policy that maximizes the reward. Mathe-

matically,
𝜃∗ = arg max

𝜃

𝐽 (𝜃) (3)

Hence, our optimal policy would be the one corresponding to 𝜃∗,
i.e., 𝜋𝜃 ∗ .

Deep RL Algorithms with Experience Replay. The direct way to
find the optimal policy is via policy gradient (PG) algorithms. How-
ever, the PG algorithms are not sample-efficient and also unstable
for continuous control problems. Actor-critic algorithms [16], on
the other hand, are more sample-efficient as they use Q-function
approximation (critic) instead of sample reward return.

The gradient for the Actor (policy) can be approximated as fol-
lows:

∇𝜃 𝐽 (𝜃) = E𝜋𝜃 [
𝑇∑︁
𝑡=0
∇𝜃 𝑙𝑜𝑔 𝜋𝜃 (𝑎𝑡 |𝑠𝑡) ·𝑄 (𝑠𝑡 , 𝑎𝑡)] (4)

The function 𝑄 (𝑠𝑡 , 𝑎𝑡) is given as:

𝑄 (𝑠𝑡 , 𝑎𝑡) = E𝜋𝜃 [
𝑇∑︁
𝑖=𝑡

𝛾𝑖 · 𝑟𝑖 |𝑠𝑡 , 𝑎𝑡] (5)

The policy gradient, given by Equation (4), is used to find the
optimal policy. The critic, on the other hand, uses an approximation
to the action-value function to estimate the function 𝑄 (𝑠𝑡 , 𝑎𝑡). This
approximation function is learned using transitions stored in a replay
buffer which is collected under the current policy. Experience replay,
i.e., storing the transitions in a replay buffer R, plays a vital role in
actor-critic based algorithms. It enables efficient learning by reusing
the experiences (transitions) multiple times. Moreover, as the replay
buffer samples are more IID compared to that in the case of on-policy,
the learning is more stable due to better convergence.

We use the term general actor-critic (GAC) algorithms to de-
note the general class of off-policy actor-critic algorithms that use
samples from the replay buffer for learning.

2.2 Problem Definition
Before we present the problem addressed in the paper formally, let
us motivate the need to maintain unique samples in the replay buffer
while synthesizing a control policy using the classical example of
controlling an inverted pendulum to maintain its upright position.
By default, a pendulum freely hangs in the downward position, and
the goal is to balance it vertically upward. During the exploration
phase, it spends much time swinging around the downward posi-
tion towards the left and right. Consequently, the replay buffer is
populated with samples mostly from a small region of the state
space (around the downward position). In the learning phase, this

behaviour leads to oversampling from a specific subset of the experi-
ences and under-sampling from the rest. This phenomenon leads to
the less frequent replay of critical and rare experiences (for example,
those corresponding to the pendulum’s upright position), leading to
the delay in learning the control policy.

The above discussion emphasizes the importance of collecting the
experience from all regions of the state space uniformly. In general,
maintaining unique experiences in the replay buffer is essential to
maintain the IID characteristics of the samples, which is crucial
for the superior performance of the optimization algorithms used
for learning. Moreover, it also helps in optimizing the size of the
replay buffer, which, though may not pose any challenge for a simple
system like the pendulum, may be a bottleneck for large and complex
systems such as a humanoid robot.

Keeping the above reasoning in mind, we will now define the
problem formally.

Definition 1 (Equivalent Experience). Let us consider a transition
𝑥 = ⟨𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1⟩. We define a transition 𝑥 as an (approximate)
equivalent of 𝑥 ′ if following condition hold:

• state (𝑥) and state (𝑥 ′) are in close proximity in some
metric space.
• reward (𝑥) and reward (𝑥 ′) are in close proximity in some

metric space.

Note that the two metric spaces for state and reward can be different.
A transition 𝑥 is unique w.r.t. a replay buffer R if R does not contain
any transition 𝑥 ′ which is equivalent to 𝑥 .

PROBLEM 1 (SAMPLE EFFICIENCY). LetM be an open-loop
dynamical system with unknown dynamics. Synthesize a control
policy 𝜋∗ with replay buffer R only containing unique samples
(generated by policy 𝜋), so that the expectation of rewards generated
by the policy gets maximized. Mathematically,

𝜋∗ = arg max
𝜋

E
𝜔∼R𝜋

R𝜋∼sim(𝜋,M)

[𝑅(𝜔)]

s.t. R𝜋 contains unique samples. (6)

3 THE FAC ALGORITHM
The FAC Algorithm is presented in Algorithm 1. FAC takes the
model of the environmentM and the number of time-steps𝑇 as input
and returns the optimal control policy 𝜋∗. For this purpose, We start
with a random policy (line 2) and collect transitions (rollouts) using
it (line 3). Then we find the important dimensions of the state-space
from the collected rollouts using find_important_dimensions
method (line 4). Along these important dimensions, the state-space
is partitioned using partition_state_space method (line 5) to
create a set of abstract states. Then, these abstract states are used to
identify unique samples using select_samples_for_insertion
function to find the optimal policy (line 6). We now present each of
these functions in detail.

3.1 Finding Significant State Dimensions
The FAC algorithm identifies unique experiences based on the ab-
stract states created through the partition of the state space. However,
for high-dimensional complex nonlinear systems, naive partitioning
of the state space leads to a very large number of abstract states

Algorithm 1: FRUGAL ACTOR-CRITIC

1 procedure frugal_actor_critic(M, 𝑇)
2 𝜋𝜃 ← initialize_policy()
3 Ω ← initial_rollout(M, 𝜋𝜃)
4 𝜅 ← find_important_dimensions(Ω)
5 𝛼 ← partition_state_space(M, 𝜅, 𝜇)
6 𝜋∗ ← learn(M, 𝜋𝜃 , 𝛼,𝑇)
7 return 𝜋∗

8 procedure find_important_dimensions(Ω)
9 ⟨Q, R, E⟩ ← matrix_decomposition(Ω)

10 𝑖𝑑𝑥 ← index(|diag(𝑅) | ≥ 𝜈 · |diag(𝑅) [0] |)
11 𝜅 ← 𝐸 [diag(𝑅) [𝑖𝑑𝑥]]
12 return 𝜅

13 procedure learn (M, 𝜋𝜃 , 𝛼 ,𝑇)
14 R ← ∅; 𝜙 ← {}; 𝑠0 ∼ 𝜌𝜋
15 while 𝑡 < 𝑇 do
16 𝑎𝑡 ← 𝜋𝜃 (𝑠𝑡)
17 𝑠𝑡+1, 𝑟𝑡 ← sim(M, 𝑠𝑡 , 𝑎𝑡)
18 R ← select_samples_for_insertion(𝜙, 𝛼, 𝑠𝑡 , 𝑟𝑡)
19 Sample b transitions ⟨𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1⟩

from R
20 𝛿𝑖 ← 𝑟𝑖 + 𝛾 · max

𝑎
𝑄 (𝑠𝑖+1, 𝑎;𝜃) −𝑄 (𝑠𝑖 , 𝑎𝑖 ;𝜃)

21 𝜃𝑘+1 ← 𝜃𝑘 + 𝑙𝑟 ∗
∑𝑏
𝑖=1 𝛿𝑖 · ∇𝜃𝑄 (𝑠𝑖 , 𝑎𝑖 ;𝜃)

22 𝑡 ← 𝑡 + 1
23 return 𝜋∗

𝜃

24 procedure select_samples_for_insertion(𝜙, 𝛼, 𝑠𝑡 , 𝑟𝑡)
25 R(𝑟𝑡 , 𝑠𝑡) ←

∫ 𝑟𝑡+𝛽
𝑟𝑡−𝛽 𝜌𝐾 (𝑦, 𝑠𝑡) 𝑑𝑦

26 𝜖𝑠 = 𝜖

exp(|𝜙 [𝛼 (𝑠)] |
𝜂

)
27 if R(𝑟𝑡 , 𝑠𝑡) < 𝜖𝑠 then
28 R ← R ∪ ⟨𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 ⟩
29 𝜙 [𝛼 (𝑠𝑡)] ← 𝜙 [𝛼 (𝑠𝑡)] ∪ {𝑟𝑡 }
30 else
31 discard(⟨𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1, 𝑟𝑡 ⟩)
32 return R

which hinders the scalability of the algorithm. Several states of a
high-dimensional system have insignificant impacts on the overall
behavior of the system. Moreover, as some of the state dimensions
might be correlated, considering all the state dimensions would un-
necessarily introduce several abstract states which are not reachable
by the system. Thus, as the first step (Lines 2-4), FAC finds a subset
of independent state variables that captures the unique behaviors of
the system.

FAC collects the trace Ω = (𝑠0, 𝑠1, . . . , 𝑠T−1), 𝑠𝑖 denoting the state
at the 𝑖-th step, based on the random policy 𝜋𝜃 used in the initial
rollout process before the learning starts at the T-th step. These
traces are now used to extract the subset of significant state dimen-
sions 𝜅. This is reasonable as the initial policy is completely random,
and hence data collected is sufficiently exhaustive to approximate
the overall behavior. One could imagine that Principal Component

Analysis (PCA) [35] is suitable for implementing this step. How-
ever, though PCA is capable of providing a low-dimensional rep-
resentation of the original high-dimensional data, it is incapable
of identifying the subset of state dimensions that contributes the
most to the low-dimensional representation. Thus, we rather employ
the rank-revealing QR decomposition [4], which gives us the state
dimensions (i.e., features) sorted according to their singular values.
This enables us to discard the less critical state dimensions contain-
ing minor information (i.e., variance) or contain information that is
already present in some other dimension (i.e., correlation).

To apply QR decomposition on the initially collected system
trace Ω, the function find_important_dimensions creates a ma-
trix [𝑠T0 𝑠

T
1 . . . 𝑠

T
T−1]

T with time-step as rows and state dimension
as columns. The function matrix_decomposition refers to the
permuted-QR decomposition such that Ω[:, 𝐸] = 𝑄 · 𝑅, where 𝐸 is
the permutation matrix. The function index fetches the index of
columns (state dimensions) that satisfies the input constraints, i.e.,
features whose singular value is larger than 𝜈 times the largest singu-
lar value among all features. Here 𝜈 ∈ R is a hyperparameter having
a value between 0 and 1.

3.2 State-Space Partitioning
Once the important state dimensions 𝜅 are decided, FAC partitions
the state space along those dimensions using the partition_state_
space function (line 5). It uses a vector 𝜇 of length |𝜅 | whose element
𝜇𝑖 decides the granularity of the 𝑖-th important state, i.e., the range
of values of the 𝑖-th important state is divided into 𝜇𝑖 partitions.
Overall, the state space partitioning results in a non-uniform multi-
dimensional grid structure, leading to an abstract state-space as
A = ⟨𝑎1, . . . , 𝑎𝑣⟩ where 𝑎𝑖 ∈ R𝜅 . The hyperparameter 𝜇 controls
the coarseness of the partition of the abstract state-space — smaller
values for the elements in 𝜇 lead to larger number of abstract states,
i.e., the value of 𝑣 . Note that although we have infinite states in the
original state-space, we have a finite (𝑣) number of abstract states.

We use 𝛼 : 𝑆 → A to denote a state partition function. For a state
𝑠 ∈ 𝑆 , we denote the vector containing the values in 𝜅 dimensions,
preserving the order as 𝑠𝜅 . The corresponding mapped abstract state
𝑎 for state 𝑠 is given as

𝑎 = arg min
𝑎∈A

∥𝑠𝜅 − 𝑎∥. (7)

3.3 Density Estimation
Once the abstract states are identified, FAC requires a mechanism to
identify experiences providing unique rewards for an abstract state.
We create a function 𝜙 : A → P(𝑅), where P(𝑅) represents the
power set of the set 𝑅 having all the distinct reward values present in
the replay buffer. Here, 𝜙 is a mapping from each abstract state to a
set of dissimilar (unique) reward values. We use density estimation
to control the insertion of a sample ⟨𝑠, 𝑎, 𝑠′, 𝑟 ⟩ into the replay buffer,
i.e., we estimate the density of the reward corresponding to the new
sample using the set of rewards corresponding to an abstract state. If
the new sample’s reward density is low (i.e., distinct), then we insert
it, else we reject it.

Our density estimation procedure is motivated by the kernel den-
sity estimator (KDE) [33]. We define the density estimation function

for a reward 𝑟 w.r.t a given state 𝑠 as follows:

𝜌𝐾 (𝑟, 𝑠) =
∑︁
𝑖

𝐾 (𝑟 − 𝜙 [𝛼 (𝑠)]𝑖 ;ℎ), (8)

where 𝑖 refers to the indexes of the different rewards corresponding
to 𝜙 [𝛼 (𝑠)]. Also, 𝐾 refers to the kernel function, and ℎ refers to the
bandwidth, which acts as a smoothing parameter.

We define the reward density estimate (RDE) R of a reward
sample 𝑟 as follows:

R(𝑟, 𝑠) =
∫ 𝑟+𝛽

𝑟−𝛽
𝜌𝐾 (𝑦, 𝑠) · 𝑑𝑦 (9)

where 𝛽 controls the space width around the reward 𝑟 used to com-
pute reward density. An experience with state 𝑠 and reward 𝑟 is
stored in the replay buffer if R(𝑟, 𝑠) ≤ 𝜖, where 𝜖 ∈ (0, 1) is a
hyperparameter.

Generally, for a given abstract state, if we have a high RDE for any
reward value (or range), this indicates that we have enough samples
in that reward region. Consequently, more samples are not needed
in that region. However, we might encounter a scenario where an
abstract state has a large number of samples for those many different
rewards. Consequently, each sample’s probability mass contribution
would be much less for the RDE of any reward region, ultimately
leading to low RDE for all the reward regions of that abstract state.
A low RDE by default would encourage new samples to be added
to the replay buffer (since R(𝑟, 𝑠) < 𝜖), which we want to avoid as
we already have enough samples. To address this issue, we use a
dynamic value of 𝜖 by scaling it 1/exp(|𝜙 [𝛼 (𝑠)] |𝜂) times as follows:

𝜖𝑠 =
𝜖

exp(|𝜙 [𝛼 (𝑠)] |𝜂)
(10)

Here 𝜂 is a hyperparameter that represents a large number to keep
the value of the exponential term closer to 1 in general and to make it
attain a higher value only for an extremely large number of samples.

In Algorithm 1, RDE is computed at line 25. In case of low RDE
(line 27), the transition tuple is inserted into replay buffer R (line 28)
and 𝜙 is updated (line 29). In case the reward density is high, i.e.,
there are already a sufficient number of samples in the region, the
transition is discarded (line 31).

3.4 Learning from Replay Buffers.
In Algorithm 1, the learning continues for 𝑇 time-steps (line 15).
Each simulation step of the policy under the environment at time 𝑡
generates the transition tuple ⟨𝑠𝑡 , 𝑎𝑡 , 𝑟𝑟 , 𝑠𝑡+1⟩ (line 17). In line 18, the
function select_samples_for_insertion to compute the RDE of
the sample at time 𝑡 is invoked, which in turn adds the sample to the
replay buffer or rejects it. Subsequently, a mini-batch of samples is
uniformly sampled from the replay buffer (line 19) and is used to
update the control policy parameters 𝜃 (line 21).

FAC controls the insertion of samples into the replay buffer,
thereby ensuring the uniqueness of samples present in the replay
buffer. Practically, this is analogous to a sampling strategy where we
pick unique samples. Controlling insertions into the replay buffer
rather than sampling from the replay buffer is primarily driven by
computational efficiency. Due to this, FAC incurs very little over-
head vis-𝑎-vis the GAC algorithms. The uniform sampling strategy

(UER), which is computationally the least expensive [34], is used in
FAC.

3.5 Computation Overhead
We now present an analysis of the complexity of the operations
used in the FAC algorithm. In Line 3-5, we perform a few addi-
tional computations before starting the control policy synthesis. All
these operations are performed before the training starts and involve
negligible overhead. While inserting samples into the replay buffer,
we perform some additional computations in Line 25 for density
estimation for a given sample using the samples in its close vicinity
(the number of such samples is fewer due to our insertion strat-
egy). Hence, the time complexity of the insertion operation of FAC
remains O(1), i.e., constant in terms of the number of samples. Al-
though negligible cost, the additional computations that we perform
help us achieve the sampling from the replay buffer in O(1) time
due to uniform sampling strategy. Prioritization sampling, on the
other hand, is computationally expensive with O(log 𝑛) complexity
due to the updation of priorities of the batch samples (via priority
queues). We circumvent this issue by controlling the insertion into
the replay buffer (using operations having negligible cost) rather
than performing prioritized sampling from the replay buffer.

4 THEORETICAL ANALYSIS
We use the notion of regret bound [11, 29] to compare the conver-
gence of FAC algorithms vis-a-vis the GAC algorithm. The stan-
dard definition of cost function in reinforcement learning (refer
Equation 2) uses a function of policy parameter 𝜃 . In this case, the
traces/transitions are implicit as they are generated from a policy
with parameter 𝜃 (i.e., 𝜋𝜃). However, in the off-policy setting, the
transitions used for learning are not directly generated by the policy
but sampled from the replay buffer. To take this into account, we
denote the cost function as 𝐽 (𝜃, 𝑥) instead of 𝐽 (𝜃) where 𝑥 represents
the transitions from replay buffer R.

Theorem 1 (Convergence). Let 𝐽 (𝜃, 𝑥) be an L-smooth convex cost
function in policy parameter 𝜃 and 𝑥 ∈ R. Assume that the gradient
∇𝜃 𝐽 (𝜃, 𝑥) has 𝜎2-bounded variance for all 𝜃 . Let 𝜁 represent the
number of equivalent samples in a mini-batch of size 𝑏 (𝜁 ≤ 𝑏). Then,

FAC would converge 𝑏+𝜁 2+𝜁
𝑏

times faster than the GAC algorithms.

PROOF. Refer Appendix A. □

As mentioned earlier, a good mini-batch of data samples is one
which has independent and identically distributed data samples. In
statistics, this means that the samples should be as random as pos-
sible. One way of quantifying randomness is using entropy [30] in
data. In the following theorem, we prove that the FAC algorithm
improves the IID-ness of the samples stored in the replay buffer.

Theorem 2. [Improving the IID characteristic of replay buffer]
Let the replay buffer consist of samples {𝑥1, . . . , 𝑥𝑚} with 𝜁 equiva-
lent elements. Then the increase in the entropy of the replay buffer
samples populated via the FAC algorithm with respect to the GAC
algorithm is given by

ΔH =
(𝜁 + 1) · log (𝜁 + 1)

𝑚
.

PROOF. Refer Appendix A. □

Table 1: Details of the Benchmarks

Environment #Observations #Actions 𝜅

Pendulum 3 1 1
MCC 2 1 1
LLC 8 2 2
Swimmer 8 2 4
Reacher 11 2 5
Hopper 11 3 4
Walker 17 6 5
Ant 27 8 8
Humanoid 376 17 16

In Theorem 1, we define convergence using a mini-batch of sam-
ples (size 𝑏) that is sampled from the replay buffer at any time step,
whereas in Theorem 2, we define IID characteristics over the whole
replay buffer (size𝑚).

5 EVALUATION
This section presents our experiments on synthesizing control policy
using our proposed FAC algorithm.

5.1 Experimental Setup
We implement our FAC algorithm as a generic algorithm that can be
used on top of any off-policy actor-critic algorithm. To simulate the
environment, we use the gym simulator [3]. The training for control
policies synthesis (refer plots in Appendix B.1) is done using the
same configuration as used in the stable-baselines3 [26]. We run
all the synthesized control policy on 100 random seeds to measure
the reward accumulation. All experiments are carried out on an
Ubuntu22.04 machine with Intel(R) Xeon(R) Gold 6226R @2.90
GHz×16 CPU, NVIDIA RTX A4000 32GB Graphics card, and
48 GB RAM. The source code of our implementation is submitted
as supplementary materials.

5.1.1 Baselines. We use two state-of-the-art deep RL algorithms,
SAC [12] and TD3 [10], developed by introducing specific enhance-
ments to the GAC algorithm, as the baseline for comparison with our
proposed FAC algorithm. While SAC uses stochastic policy gradient,
TD3 uses deterministic policy gradient.

5.1.2 Benchmarks. We use 9 benchmarks based on Gym (Mu-
joco, classical control, and box2d) in our experiments. The details
of the benchmarks are provided in Table 1.

5.2 Performance Metrics
Here we present the performance metrics we use to evaluate FAC in
comparison to the baseline algorithms.

5.2.1 Convergence. We define convergence point (CP) as the
timestep at which reward improvement settles down, i.e., it enters
a band of reward range [0.9 · 𝑟𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥] and remains within it
thereafter till the end of learning. Here, 𝑟𝑚𝑎𝑥 refers to the maximum
reward attained during the training.

We define the percentage improvement in convergence (Δ𝐶𝑃)
achieved by FAC (𝐶𝑃𝐹) w.r.t. baselines (𝐶𝑃𝐵) as:

Δ𝐶𝑃 =
𝐶𝑃𝐵 −𝐶𝑃𝐹

𝐶𝑃𝐵
× 100 (11)

Table 2: Comparison of Convergence (CP), Replay buffer size (R) and Reward (R) of FAC with baselines SAC and TD3

Model 𝐶𝑃𝐵 𝐶𝑃𝐹 Δ𝐶𝑃 |R𝐵 | |R𝐹 | ΔR 𝑅𝐵 𝑅𝐹 Δ𝑅 𝑃

Pendulum (SAC) 17600 17600 − 20000 11412 42.94 −143.97±87.80 −144.66±88.53 −0.47 1.75
Pendulum (TD3) 18400 18400 − 20000 14137 29.31 −138.80±88.56 −136.89±85.41 +1.37 1.44

MC (SAC) 30696 23089 24.78 50000 10001 80.00 −7.01±0.09 −7.09±0.41 −1.14 4.94
MC (TD3) 38419 33590 12.56 100000 10004 90.00 −6.13±0.22 −5.97±0.07 +2.61 10.27

LLC (SAC) 315118 215108 31.73 500000 422642 15.47 182.28±17.50 179.72±16.05 −1.40 1.17
LLC (TD3) 290846 263927 9.25 200000 70026 65.00 137.90±51.81 146.43±26.90 +6.18 3.03

Swimmer (SAC) 232000 188000 18.96 500000 83922 83.21 338.11±1.95 328.11±1.98 −2.95 5.82
Swimmer (TD3) 216000 928000 − 1000000 61289 93.87 47.45±1.37 114.86±1.91 +142.06 46.75

Reacher (SAC) 183600 171600 6.53 300000 151743 49.41 19.18±10.70 19.96±10.23 +4.06 2.17
Reacher (TD3) 249600 243600 2.40 20000 20000 0 13.45±12.10 17.10±10.28 +27.13 1.40

Hopper (SAC) 725191 577319 20.39 1000000 290327 70.96 3273.10±5.98 3529.13±6.49 +7.82 3.72
Hopper (TD3) 998851 848361 15.06 1000000 320182 67.98 3232.16±246.55 3269.26±562.92 +1.14 3.16

Walker (SAC) 986412 779446 20.98 1000000 696091 30.39 4332.53±546.30 5386.14±24.75 +24.33 1.79
Walker (TD3) 784014 855112 − 1000000 755460 24.45 4517.75±9.86 4875.14±57.47 +7.91 1.43

Ant (SAC) 909250 782363 13.95 1000000 872183 12.78 3800.34±1289.42 5057.42±1022.72 +33.08 1.52
Ant (TD3) 784967 676999 13.75 1000000 754430 24.55 5397.40±400.47 5416.09±139.93 +0.34 1.33

Humanoid (SAC) 1819768 1079479 40.68 1000000 807923 19.20 5706.61±639.32 5479.23±786.85 −3.98 1.19
Humanoid (TD3) 1841538 1320449 28.29 1000000 436749 56.32 5231.64±695.39 5217.76±396.35 −0.26 2.29

5.2.2 Size of Replay Buffer. The size of a replay buffer |R | is the
number of transitions stored in it at the completion of learning. The
replay buffer in the baseline setting is denoted by R𝐵 and w.r.t the
FAC Algorithm by R𝐹 . We measure the reduction in size of replay
buffer ΔR achieved via FAC w.r.t. baseline as:

ΔR =
|R𝐵 | − |R𝐹 |
|R𝐵 |

× 100. (12)

Since FAC always leads to a reduction in the size of the replay buffer,
we do not use signs for the values of ΔR .

5.2.3 Reward. The total reward accumulated in the baseline set-
ting is denoted by 𝑅𝐵 and for the FAC Algorithm by 𝑅𝐹 . The per-
centage change in total reward accumulated Δ𝑅 by FAC algorithm
w.r.t. baseline algorithm is defined as

Δ𝑅 =
𝑅𝐹 − 𝑅𝐵
𝑅𝐵

× 100. (13)

5.2.4 Sample Efficiency. We define this metric to capture the
combined effect of reward improvement w.r.t. reduction in the size
of the replay buffer. We denote the per-sample efficiency for FAC
using 𝑃𝐹 and that of baseline using 𝑃𝐵 as 𝑃𝐹 = 𝑅𝐹 /|R𝐹 | and 𝑃𝐵 =

𝑅𝐵/|R𝐵 |.
Now we define a metric 𝑃 to capture the relative per-sample

efficiency achieved by FAC w.r.t baseline algorithm as

𝑃 =
𝑃𝐹

𝑃𝐵
=
𝑅𝐹 · |R𝐵 |
|R𝐹 | · 𝑅𝐵

. (14)

Note that the above equation is meaningful if the rewards are
positive. In case of negative rewards, we first translate them into
positive values by adding to them the sum of absolute values of the
reward in both cases. For instance, in case of pendulum w.r.t. SAC
(see Table 2), the addition term is abs(−143.97) + abs(−144.66) =

Table 3: Hyper-parameters used in the experiments

𝜈 𝜇 𝛽 𝜂 𝜖

0.5 50 0.2 1𝑒5 0.2

288.63. So, the translated reward for baseline (𝑅𝐵) is 144.66, and for
FAC is 143.97.

5.3 Hyper-parameters
We run the experiments using the same configuration as used in
the baseline [26], i.e., the state-of-the-art GAC algorithms SAC and
TD3. In Equation 8, we use the Epanechnikov kernel [15] function
The values of other hyper-parameters used in experiments are shown
in Table 3.

We found three kernels suitable for our density estimation, namely
Gaussian, Tophat, and Epanechnikov. In general, the curve corre-
sponding to Gaussian kernel is too smooth while that of Tophat
kernel is quite coarse. Thus, we select the Epanechnikov kernel as
the curve is well balanced w.r.t. smoothness and coarseness. We per-
form experiments on three benchmark systems to judge the efficacy
of the kernels. We observe that Epanechnikov kernel indeed provides
the best results consistently among all these three kernels in terms
of the accumulated rewards (refer to Appendix B.2 for the details).

The results of experiments for deciding the other hyper-parameters
values are provided in the Appendix B.3.

5.4 Results
In this subsection, we present our experimental results.

Convergence, Replay Buffer Size and Accumulate Reward. Ta-
ble 2 compares the convergence, size of the replay buffer, total
accumulate reward, and sample efficiency of FAC with those of
SAC and TD3 on nine benchmarks. From the Table, we can see the
following trends:
• FAC converges faster than both SAC and TD3 on most of the

benchmarks. In comparison to SAC and TD3, it converges up
to 40% and 28% faster, respectively.
• FAC consistently requires a significantly smaller replay buffer

compared to both SAC and TD3. It achieves up to 83% reduc-
tion in the size of the replay buffer in comparison to SAC and
up to 94% reduction in comparison to TD3. For instance, the
memory requirement of the replay buffer in case of Humanoid
is 5.7GB for TD3 and 2.48GB for FAC.
• For several benchmarks, FAC achieves significantly better

accumulated reward. In the remaining cases, the degradation
is marginal (up to only 4%).
• For all the benchmarks, FAC convincingly outperforms both

SAC and TD3 in terms of sample efficiency.
However, there are a few exceptions to the general trends. For

instance, for the simplest case of Pendulum in which the duration of
control policy synthesis is small, we do not observe any improvement
in convergence or the accumulated reward with FAC, but we observe
a significant reduction in replay buffer size (upto 43%). In the case
of Swimmer, the FAC requires significantly more steps to converge
than TD3. However, no useful control policy could be synthesized
for baseline TD3, as evidenced by low accumulated reward, but
the FAC extension of TD3 could synthesize a significantly superior
controller with an improvement of 142% in the accumulated reward
with almost 94% smaller replay buffer. Similarly, in the case of Walker
w.r.t. baseline TD3, convergence was slightly delayed on account
of improvement in the size of the replay buffer and the reward
accumulation. In the case of Reacher, w.r.t. baseline TD3, there
was no reduction in replay buffer size as the baseline replay buffer
size was already very small. However, we get 27% improvement in
reward accumulation and improved convergence.
Control Cost. In general, we observe a decrease in control cost for
FAC w.r.t. the baselines (refer Table 4). In some cases, there has
been an increase in the control cost (shown in red), but it led to the
synthesis of a superior control policy with more reward accumulation
(see Table 2).
Computation Time. The computation time overhead during training
due to the FAC algorithm is negligible compared to overall time
(refer Figure 1). For instance, in case of Hopper, we observed that
the time taken by SAC and FAC algorithms was 18065s and 18254s,
respectively.
Comparison with prioritization-based methods. We compare
FAC with a recently proposed sample prioritization method named
LABER [17] which is integrated with state-of-the-art off-policy
actor-critic algorithms such as SAC and TD3 to improve their perfor-
mance. LABER [17] initially samples a larger batch than the ones
considered for SAC and TD3, and down-sample it to mini-batch size
using variance reduction distribution. We present the comparison
of FAC with LABER in Table 5. We observe that FAC outperforms
LABER in terms of both convergence and accumulated reward for
most benchmarks while maintaining a significantly smaller size for

Table 4: Comparison of control cost of the policy synthesized via
FAC w.r.t SAC and TD3

Model Baseline FAC

Pendulum (SAC) 180.24 ± 32.33 72.49 ± 42.16
Pendulum (TD3) 135.46 ± 52.47 119.08 ± 48.45

MCC(SAC) 76.06 ± 17.51 70.99 ± 4.19
MCC(TD3) 61.32 ± 2.21 59.78 ± 0.79

LLC (SAC) 141.68 ± 105.20 113.64 ± 59.35
LLC (TD3) 257.93 ± 295.78 182.72 ± 110.07

Swimmer(SAC) 1394.31 ± 8.86 1264.12 ± 4.99
Swimmer(TD3) 1135.26 ± 224.99 1340.31 ± 22.94

Reacher(SAC) 13.20 ± 8.86 13.30 ± 8.88
Reacher(TD3) 69.51 ± 56.77 40.18 ± 32.89

Hopper(SAC) 969.93 ± 11.94 1025.52 ± 12.55
Hopper(TD3) 1390.49 ± 119.07 1325.62 ± 221.50

Walker(SAC) 2992.32 ± 328.23 3169.07 ± 16.37
Walker(TD3) 4901.46 ± 14.49 4592.26 ± 476.37

Ant(SAC) 2166.00 ± 602.51 2205.39 ± 401.49
Ant(TD3) 2327.36 ± 156.66 2186.27 ± 42.31

Humanoid(SAC) 1415.79 ± 146.36 1065.29 ± 121.39
Humanoid(TD3) 1953.06 ± 246.69 1807.19 ± 131.33

P M L S R Ho W A Hu
Benchmarks

0
5000

10000
15000
20000
25000
30000
35000

Co
m

pu
ta

ti
on

 t
im

e

SAC
FAC

(a) FAC v/s SAC

P M L S R Ho W A Hu
Benchmarks

0
2000
4000
6000
8000

10000
12000
14000
16000

Co
m

pu
ta

ti
on

 t
im

e

TD3
FAC

(b) FAC v/s TD3

Figure 1: Comparison of computation time (in seconds required
for training using FAC w.r.t. SAC and TD3.

the replay buffer (The replay buffer size |R | for LABER is the same
as the baseline SAC/TD3). Comparing the convergence of FAC w.r.t.
LABER, we observe an improvement up to 59.83% in case of SAC
and 52.77% in case of TD3. In case of Swimmer and Walker for
TD3, convergence is delayed on account of improvement in reward
accumulation. In terms of reward accumulation, FAC performs much
better than LABER in almost all cases. For the Swimmer benchmark
with SAC and the Humanoid benchmark with TD3, LABER can-
not find a controller with sufficient reward accumulation, leading
to a poor controller. However, FAC becomes successful in finding
controllers with excellent accumulated rewards.

6 RELATED WORK
The first use of experience replay in machine learning was in [19],
where training was improved by repeating rare experiences. Of late,
replay buffers have played a significant role in the breakthrough
success of deep reinforcement learning [13, 18, 20, 21]. An ideal

Table 5: Comparison of Convergence (CP) and Reward (R) of FAC with baseline LABER w.r.t. SAC and TD3

Model 𝐶𝑃𝐿 𝐶𝑃𝐹 Δ𝐶𝑃 𝑅𝐿 𝑅𝐹 Δ𝑅 𝑃

Pendulum (SAC) 13600 17600 − −180.17±209.52 −144.66±88.53 +24.54 2.18
Pendulum (TD3) 18400 18400 − −142.29±87.62 −136.89±85.41 +3.94 1.47

MC (SAC) 29635 23089 22.09 −7.07±1.37 −7.09±0.41 −0.28 4.99
MC (TD3) 71131 33590 52.77 −9.75±0.05 −5.97±0.07 +63.31 16.33

LLC (SAC) 423928 215108 49.25 183.49±18.10 179.72±16.05 −2.05 1.16
LLC (TD3) 299600 263927 11.90 139.37±47.06 146.43±26.90 +5.06 3.00

Swimmer (SAC) 468000 188000 59.83 1.25±6.00 328.11±1.98 +26148.8 1563.88
Swimmer (TD3) 796000 928000 − 34.36±3.11 114.86±1.91 +234.28 54.54

Reacher (SAC) 172800 171600 0.69 19.32±10.17 19.96±10.23 +3.31 2.04
Reacher (TD3) 249600 243600 2.40 13.33±12.07 17.10±10.28 +28.28 2.54

Hopper (SAC) 952414 577319 39.38 1844.07±256.41 3529.13±6.49 +91.37 6.59
Hopper (TD3) 877102 848361 3.27 3315.74±82.07 3269.26±562.92 −1.40 3.08

Walker (SAC) 863761 779446 9.76 4321.31±843.80 5386.14±24.75 +24.64 1.79
Walker (TD3) 648102 855112 − 3809.35±36.37 4875.14±57.47 +27.97 1.69

Ant (SAC) 885086 782363 11.61 3443.06±770.65 5057.42±1022.72 +46.88 1.68
Ant (TD3) 924276 676999 26.75 3082.34±1518.43 5416.09±139.93 +75.71 2.33

Humanoid (SAC) 1822733 1079479 40.77 4838.66±1294.53 5479.23±786.85 +13.23 1.40
Humanoid (TD3) 1999903 1320449 33.97 412.38±30.78 5217.76±396.35 +1165.27 28.97

replay strategy is expected to sample transitions in a way that maxi-
mizes learning by the agent. To address this, two types of methods
are applicable. The first one focuses on which experiences to add
and keep in the replay buffer, and the second one focuses on how to
sample important experiences from the replay buffer.

There has been very little research in developing strategies to con-
trol the entries into the replay buffer. The authors in [5, 6] suggest
that for simple continuous control tasks, the replay buffer should con-
tain transitions that are not close to current policy to prevent getting
trapped in local minima, and also, the best replay distribution is in be-
tween on-policy distribution and uniform distribution. Consequently,
they maintain two buffers, one for on-policy data and another for
uniform data, but this involves a significant computational overhead.
This approach works in cases where policy is updated fewer times
and hence is not suitable for complex tasks where policy is updated
for many iterations. In [14], the authors show that a good replay
strategy should retain the earlier samples as well as maximize the
state-space coverage for lifelong learning. Hence, for stable learn-
ing, it is extremely crucial to identify which experiences to keep or
discard from the replay buffer, such that sufficient coverage of the
state-action space is enforced.

Most of the recent works have focused on sampling important
transitions from the replay buffers to achieve sample efficiency. By
default, the transitions in a replay buffer are uniformly sampled.
However, many other alternatives have been proposed to prioritize
samples during the learning process, most notably PER [28] which
assigns TD errors as priorities to samples that are selected in a
mini-batch. But, PER is computationally expensive and does not
perform well in continuous environments and leads to synthesis of
sub-optimal control policies [8, 9, 24, 25]. The issue of outdated

priorities and hyper-parameter sensitivity of PER have been ad-
dressed in [17], where the authors propose importance sampling
for estimating gradients. In [31], the authors propose re-weighting
of experiences based on their likelihood under the stationary distri-
bution of the current policy to minimize the approximation errors
of the value function. The work in [23] is based on the idea that
transitions collected on-policy are more useful to train the current
policy and hence enforce similarity between policy and transitions
in the replay buffer. In [36], a replay policy is learned in addition
to the agent policy. A replay policy helps in sampling useful expe-
riences. All these methods are orthogonal to our approach, though
all of them can potentially get benefited by using FAC to maintain
unique samples in a replay buffer and reduce its size. Moreover, the
prioritization based methods use some approximation of TD-errors
as priority which is problematic as it is biased towards outliers. FAC,
on the other hand, uniformly samples from replay buffer and hence
is not biased towards outliers.

7 CONCLUSION
We have proposed a novel off-policy actor-critic RL algorithm for
control policy synthesis for model-free complex dynamical sys-
tems with continuous state and action spaces. The major benefit of
the proposed method is that it stores unique samples in the replay
buffer, thus reducing the size of the buffer and improving the IID
characteristics of the samples. We provide a theoretical guarantee
for its superior convergence with respect to the general off-policy
actor-critic RL algorithms. We also demonstrate experimentally that
our technique, in general, converges faster, leads to a significant
reduction in the size of the replay buffer and superior accumulated
rewards, and is more sample efficient in comparison to the current
state-of-the-art algorithms. Going forward, we plan to explore the

possibility of exploiting the capability of FAC in reducing the size
of the replay buffer in synthesizing a control policy represented by a
smaller actor network without compromising its performance.

REFERENCES
[1] Léon Bottou and Olivier Bousquet. 2007. The Tradeoffs of Large Scale Learn-

ing. In Advances in Neural Information Processing Systems, J. Platt, D. Koller,
Y. Singer, and S. Roweis (Eds.), Vol. 20. Curran Associates, Inc.

[2] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. 2018. Optimization Methods
for Large-Scale Machine Learning. SIAM Rev. 60, 2 (2018), 223–311.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. CoRR abs/1606.01540
(2016). arXiv:1606.01540 http://arxiv.org/abs/1606.01540

[4] Tony F. Chan. 1987. Rank revealing QR factorizations. Linear Algebra Appl.
88-89 (1987), 67–82.

[5] Tim de Bruin, Jens Kober, K.P. Tuyls, and Robert Babuska. 2015. The importance
of experience replay database composition in deep reinforcement learning. In
Deep Reinforcement Learning Workshop, NIPS 2015.

[6] Tim de Bruin, Jens Kober, Karl Tuyls, and Robert Babuska. 2016. Improved
deep reinforcement learning for robotics through distribution-based experience
retention. 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (2016), 3947–3952.

[7] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. 2012. Optimal
Distributed Online Prediction Using Mini-Batches. J. Mach. Learn. Res. 13 (jan
2012), 165–202.

[8] Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. 2019. Diagnosing Bot-
tlenecks in Deep Q-learning Algorithms. In Proceedings of the 36th International
Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 97). PMLR, 2021–2030.

[9] Scott Fujimoto, David Meger, and Doina Precup. 2020. An Equivalence between
Loss Functions and Non-Uniform Sampling in Experience Replay. In Advances in
Neural Information Processing Systems, Vol. 33. Curran Associates, Inc., 14219–
14230.

[10] Scott Fujimoto, Herke van Hoof, and David Meger. 2018. Addressing Func-
tion Approximation Error in Actor-Critic Methods. In Proceedings of the 35th
International Conference on Machine Learning, Vol. 80. 1587–1596.

[11] Geoffrey J. Gordon. 1999. Regret Bounds for Prediction Problems. In Proceedings
of the Twelfth Annual Conference on Computational Learning Theory (Santa Cruz,
California, USA) (COLT ’99). Association for Computing Machinery, New York,
NY, USA, 29–40.

[12] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor. In ICML. 1861–1870.

[13] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence (Phoenix, Arizona) (AAAI’16). AAAI Press,
2094–2100.

[14] David Isele and Akansel Cosgun. 2018. Selective Experience Replay for Lifelong
Learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence (New Orleans, Louisiana, USA). AAAI Press.

[15] M. C. Jones. 1990. The performance of kernel density functions in kernel distribu-
tion function estimation. Statistics and Probability Letters 9, 2 (1990), 129–132.

[16] Vijay R. Konda and John N. Tsitsiklis. 2003. OnActor-Critic Algorithms. SIAM
Journal on Control and Optimization 42, 4 (2003), 1143–1166.

[17] Thibault Lahire, Matthieu Geist, and Emmanuel Rachelson. 2022. Large Batch Ex-
perience Replay. In Proceedings of the 39th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 162). 11790–11813.

[18] Timothy et. al. Lillicrap. 2016. Continuous control with deep reinforcement
learning. In 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

[19] Longxin Lin. 1992. Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching. Machine Learning 8 (1992), 293–321.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with Deep
Reinforcement Learning. (2013). http://arxiv.org/abs/1312.5602 arxiv:1312.5602
: NIPS Deep Learning Workshop 2013.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Ve-
ness, Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby
Fidjeland, Georg Ostrovski, Stig Petersen, Charlie Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. 2015. Human-level control through deep reinforcement learning.
Nature 518 (2015), 529–533.

[22] Deanna Needell, Rachel Ward, and Nati Srebro. 2014. Stochastic Gradi-
ent Descent, Weighted Sampling, and the Randomized Kaczmarz algorithm.
In Advances in Neural Information Processing Systems, Vol. 27. Curran
Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2014/file/

f29c21d4897f78948b91f03172341b7b-Paper.pdf
[23] Guido Novati and Petros Koumoutsakos. 2019. Remember and Forget for Expe-

rience Replay. In Proceedings of the 36th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 97), Kamalika Chaud-
huri and Ruslan Salakhutdinov (Eds.). 4851–4860.

[24] Youngmin Oh, Kimin Lee, Jinwoo Shin, Eunho Yang, and Sung Ju Hwang. 2021.
Learning to Sample with Local and Global Contexts in Experience Replay Buffer.
In International Conference on Learning Representations.

[25] Youngmin Oh, Jinwoo Shin, Eunho Yang, and Sung Ju Hwang. 2022. Model-
augmented Prioritized Experience Replay. In International Conference on Learn-
ing Representations.

[26] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernes-
tus, and Noah Dormann. 2021. Stable-Baselines3: Reliable Reinforcement Learn-
ing Implementations. Journal of Machine Learning Research 22, 268 (2021),
1–8.

[27] Siva Satyendra Sahoo, Akhil Raj Baranwal, Salim Ullah, and Akash Kumar. 2021.
MemOReL: A Memory-Oriented Optimization Approach to Reinforcement Learn-
ing on FPGA-Based Embedded Systems. In Proceedings of the 2021 on Great
Lakes Symposium on VLSI (Virtual Event, USA) (GLSVLSI ’21). Association for
Computing Machinery, New York, NY, USA, 339–346.

[28] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2016. Prioritized
Experience Replay. In 4th International Conference on Learning Representations,
ICLR, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.

[29] Shai Shalev-Shwartz. 2012. Online Learning and Online Convex Optimization.
Found. Trends Mach. Learn. 4, 2 (feb 2012), 107–194.

[30] C. E. Shannon. 1948. A mathematical theory of communication. The Bell System
Technical Journal 27, 3 (1948), 379–423.

[31] Samarth Sinha, Jiaming Song, Animesh Garg, and Stefano Ermon. 2022. Experi-
ence Replay with Likelihood-free Importance Weights. In Proceedings of The 4th
Annual Learning for Dynamics and Control Conference (Proceedings of Machine
Learning Research, Vol. 168). 110–123.

[32] Camélia Slimani, Stéphane Rubini, and Jalil Boukhobza. 2019. K -MLIO: En-
abling K -Means for Large Data-Sets and Memory Constrained Embedded Sys-
tems. In 2019 IEEE 27th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS). 262–268.

[33] George R. Terrell and David W. Scott. 1992. Variable Kernel Density Estimation.
The Annals of Statistics 20, 3 (1992), 1236 – 1265.

[34] Mnih et. al. Volodymyr. 2015. Human-level control through deep reinforcement
learning. Nature 518 (2015), 529–533.

[35] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis.
Chemometrics and Intelligent Laboratory Systems 2, 1 (1987), 37–52. Proceedings
of the Multivariate Statistical Workshop for Geologists and Geochemists.

[36] Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. 2019. Experience
Replay Optimization. In Proceedings of the 28th International Joint Conference
on Artificial Intelligence (Macao, China) (IJCAI’19). AAAI Press, 4243–4249.

[37] Peilin Zhao and Tong Zhang. 2015. Stochastic Optimization with Importance
Sampling for Regularized Loss Minimization. In Proceedings of the 32nd Inter-
national Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 37). Lille, France, 1–9.

https://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1312.5602
https://proceedings.neurips.cc/paper_files/paper/2014/file/f29c21d4897f78948b91f03172341b7b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/f29c21d4897f78948b91f03172341b7b-Paper.pdf

Appendix
A PROOFS OF THEOREMS

Theorem 1. [Convergence] Let 𝐽 (𝜃, 𝑥) be a L-smooth convex cost function in policy parameter 𝜃 and 𝑥 ∈ R represents the samples in
replay buffer R. Assume that the gradient ∇𝜃 𝐽 (𝜃, 𝑥) has 𝜎2-bounded variance for all 𝜃 . Let 𝜁 represents the number of equivalent samples in a

mini-batch of size 𝑏 (𝜁 ≤ 𝑏). Then, FAC would converge 𝑏+𝜁 2+𝜁
𝑏

times faster than the GAC algorithms.

PROOF. Let𝑚 represents the total number of samples in the replay buffer. Let 𝑏 represents the number of samples in a mini-batch. Assume
wlog that𝑚 is divisible by 𝑏. Let ⟨𝑥1, . . . , 𝑥𝑏⟩ ∈ R𝑏 represent mini-batch set of size 𝑏 sampled from replay buffer R. Let each mini-batch
contains 𝜁 similar samples on average. Let the space of control policy parameter 𝜃 be denoted as Θ. Let 𝐽 : Θ × R𝑏 → R be the mean of cost
function 𝐽 over all mini-batches, defined as:

𝐽 (𝜃, (𝑥1, . . . , 𝑥𝑏)) =
1
𝑏

𝑏∑︁
𝑠=1

𝐽 (𝜃, 𝑥𝑠) (15)

Consequently,
E𝑥∈R𝑏 𝐽 (𝑤, 𝑥) = E𝑥∈R 𝐽 (𝜃, 𝑥) = J (𝜃)

Using linearity of gradients, we have

∇𝜃 𝐽 (𝜃, (𝑥1, . . . , 𝑥𝑏)) =
1
𝑏

𝑏∑︁
𝑠=1
∇𝜃 𝐽 (𝜃, 𝑥𝑠)

The euclidean norm of variance of the gradients is given as:

∥∇𝜃 𝐽 (𝜃, 𝑥) − ∇J (𝜃)∥2 = ∥ 1
𝑏

𝑏∑︁
𝑠=1
(∇𝜃 𝐽 (𝜃, 𝑥𝑠) − ∇J (𝜃))∥2

=
1
𝑏2

𝑏∑︁
𝑠=1

𝑏∑︁
𝑠′=1
⟨∇𝜃 𝐽 (𝜃, 𝑥𝑠) − ∇J (𝜃),∇𝜃 𝐽 (𝜃, 𝑥𝑠′) − ∇J (𝜃)⟩ (16)

Case 1: GAC. Now we derive the regret bound in case of GAC algorithm. Observe the independent samples in the Equation 16. We note that
𝑥𝑠 and 𝑥𝑠′ are independent whenever 𝑥 ≠ 𝑥 ′. However there are 𝜁 similar samples in each set 𝑥𝑠 and 𝑥𝑠′ and due to this we get 𝜁 · (𝜁 + 1) less
independent samples. Therefore the 𝑏2 − (𝑏 + 𝜁 2 + 𝜁) independent samples in the product vanishes, i.e.

E⟨∇𝜃 𝐽 (𝜃, 𝑥𝑠) − ∇J (𝜃),∇𝜃 𝐽 (𝜃, 𝑥𝑠′) − ∇J (𝜃)⟩ =
⟨E[∇𝜃 𝐽 (𝜃, 𝑥𝑠) − ∇J (𝜃)],E[∇𝜃 𝐽 (𝜃, 𝑥𝑠′) − ∇J (𝜃)]⟩ = 0

Moreover, since we have 𝜎2-bounded gradient variance, i.e.

E𝑥 [∥∇𝜃 𝐽 (𝜃, 𝑥) − ∇J (𝜃)∥2] ≤ 𝜎2

Hence,

E∥∇𝜃 𝐽 (𝜃, 𝑥) − ∇J (𝜃)∥2 =
𝑏 + 𝜁 2 + 𝜁

𝑏2 · 1
𝑏 + 𝜁 2 + 𝜁

𝑏+𝜁 2+𝜁∑︁
𝑠=1

∥(∇𝜃 𝐽 (𝜃, 𝑥𝑠) − ∇J (𝜃))∥2

≤ 𝜎
2 · (𝑏 + 𝜁 2 + 𝜁)

𝑏2

The above equation shows that ∇𝜃 𝐽 (𝜃, 𝑥 𝑗) has 𝜎2 · (𝑏+𝜁 2+𝜁)
𝑏2 bounded variance and hence the regret bound of 𝐽 is given as

E[
𝑚/𝑏∑︁
𝑗=1
(𝐽 (𝜃 𝑗 , 𝑥 𝑗) − 𝐽 (𝜃∗, 𝑥 𝑗))] ≤ 𝜓 (

𝜎2 · (𝑏 + 𝜁 2 + 𝜁)
𝑏2 ,

𝑚 · (𝑏 + 𝜁 2 + 𝜁)
𝑏2)

Using Equation 15 and multiplying by 𝑏, we get

E[
𝑚/𝑏∑︁
𝑗=1

𝑗𝑏∑︁
𝑖=(𝑗−1)𝑏+1

(𝐽 (𝜃 𝑗 , 𝑥𝑖) − 𝐽 (𝜃∗, 𝑥𝑖))] ≤ 𝑏 ·𝜓 (
𝜎2 · (𝑏 + 𝜁 2 + 𝜁)

𝑏2 ,
𝑚 · (𝑏 + 𝜁 2 + 𝜁)

𝑏2)

The goal of deriving the regret bounds for the GAC algorithms is to estimate its convergence rate. There are many formulations of the
function𝜓 in literature for such comparison. Here, we use Theorem 2 in [7] to define𝜓 as

𝜓 (𝜎2,𝑚) = 2𝐷2𝐿 + 2𝐷𝜎
√
𝑚

Thus, the regret bound in case of GAC algorithms is

2𝑏𝐷2𝐿 + 2𝐷𝜎
𝑏 + 𝜁 2 + 𝜁

𝑏

√
𝑚

Case 2: FAC. In case of FAC, all the similar samples are removed from the replay buffer R, i.e., 𝜁 = 0. Therefore the 𝑛2 − 𝑛 independent
samples in the product vanishes. Hence,

E∥∇𝜃 𝐽 (𝜃, 𝑥) − ∇J (𝜃)∥2 =
1
𝑏

𝑏∑︁
𝑠=1
E∥(∇𝜃 𝐽 (𝜃, 𝑥𝑠) − ∇J (𝜃))∥2 ≤

𝜎2

𝑏

Let 𝑥 𝑗 denote the 𝑗𝑡ℎ mini-batch sampled from R𝑏 , i.e. 𝑥 𝑗 = ⟨𝑥 (𝑗−1)𝑏+1, . . . , 𝑥 𝑗𝑏⟩. It is clear from above that ∇𝜃 𝐽 (𝜃, 𝑥 𝑗) has 𝜎2

𝑏
bounded

variance. Assuming that the update equation line 21, Algorithm 1 has a regret bound of𝜓 (𝜎2,𝑚) over𝑚 entries of replay buffer, then the regret
bound of 𝐽 is given as

E[
𝑚/𝑏∑︁
𝑗=1
(𝐽 (𝜃 𝑗 , 𝑥 𝑗) − 𝐽 (𝜃∗, 𝑥 𝑗))] ≤ 𝜓 (

𝜎2

𝑏
,
𝑚

𝑏
)

Using Equation 15 and multiplying by 𝑏, we get

E[
𝑚/𝑏∑︁
𝑗=1

𝑗𝑏∑︁
𝑖=(𝑗−1)𝑏+1

(𝐽 (𝜃 𝑗 , 𝑥𝑖) − 𝐽 (𝜃∗, 𝑥𝑖))] ≤ 𝑏 ·𝜓 (
𝜎2

𝑏
,
𝑚

𝑏
)

Using𝜓 (𝜎2,𝑚) = 2𝐷2𝐿 + 2𝐷𝜎
√
𝑚, the regret bound in case of FAC is

2𝑏𝐷2𝐿 + 2𝐷𝜎
√
𝑚

This shows that the leading term of regret bound of FAC is 𝑏+𝜁
2+𝜁
𝑏

times lower than that of GAC algorithms which proves faster convergence
via FAC algorithm.

□

Theorem 2. [Improving the IID characteristic of replay buffer] Let the replay buffer consists of samples {𝑥1, . . . , 𝑥𝑚} with 𝜁 equivalent
elements. Then the increase in the entropy of the replay buffer samples populated via FAC algorithm with respect to the GAC algorithm is
given by

ΔH =
(𝜁 + 1) · log (𝜁 + 1)

𝑚
.

PROOF. Let 𝑋 = ⟨𝑥1, 𝑥2, . . . , 𝑥𝑚⟩ be the batch samples used in line 11 of Algorithm 1. Assume that replay buffer consists of more than two
elements, i.e.𝑚 > 2. Consider that this set contains 𝜁 equivalent sample of 𝑥1 such that 𝑥1 = 𝑥2 = . . . = 𝑥𝜁+1. In this proof, we have considered
multiple duplicacy of a single element for the sake of brevity. In general, the replay buffer can have multiple duplicacy of multiple elements.
We slightly abuse the notation 𝑋 to also represent it as a random variable. Thus, the probability mass function of 𝑋 is given as:

P(𝑋 = 𝑥𝑖) =
{

1
𝑚 if 𝑖 ∈ [𝜁 + 2,𝑚]
𝜁+1
𝑚 otherwise

(17)

The replay buffer populated via FAC contains only unique samples and hence 𝑋 ′ = ⟨𝑥1, . . . , 𝑥𝑚⟩ where 𝜁 = 0. Intuitively, samples in 𝑋 and
𝑋 ′ refers to the snapshot of the replay buffer (populated via GAC and FAC algorithm respectively) at a given time instant. The probability mass
function of 𝑋 ′ is given as:

P(𝑋 ′ = 𝑥𝑖) =
1
𝑚
∀𝑖 ∈ [1,𝑚] (18)

The entropy of 𝑋 is given as

H(𝑋) = −
𝑚−𝜁∑︁
𝑖=1
[P(𝑋𝑖) · log P(𝑋𝑖)]

= −
[
𝜁 + 1
𝑚
· log 𝜁 + 1

𝑚
+ 1
𝑚
· log 1

𝑚
+ . . . + 1

𝑚
· log 1

𝑚

]
= −

[
𝜁 + 1
𝑚
· log 𝜁 + 1

𝑚
+ 𝑚 − 𝜁 − 1

𝑚
· log 1

𝑚

]
= −

[
𝜁 + 1
𝑚
· log 𝜁 + 1

𝑚
− 𝑚 − 𝜁 − 1

𝑚
· log 𝑚

]
= − 1

𝑚
[(𝜁 + 1) · (log (𝜁 + 1) − log 𝑚) − (𝑚 − 𝜁 − 1) · log 𝑚]

= − 1
𝑚
[(𝜁 + 1) · log (𝜁 + 1) − (𝜁 + 1)log 𝑚 −𝑚 · log 𝑚 + 𝜁 · log 𝑚 + log 𝑚]

= − 1
𝑚
[(𝜁 + 1) · log (𝜁 + 1) −𝑚 · log 𝑚]

= log 𝑚 − (𝜁 + 1) · log (𝜁 + 1)
𝑚

(19)

The entropy of 𝑋 ′ is given as

H(𝑋 ′) = −
𝑚∑︁
𝑖=1
[P(𝑋𝑖) · log P(𝑋𝑖)]

= −
[

1
𝑚
· log 1

𝑚
+ . . . + 1

𝑚
· log 1

𝑚

]
= −

[
𝑚

𝑚
· log 1

𝑚

]
= log (𝑚)

The random variable 𝑋 represents the replay buffer populated via GAC algorithm and 𝑋 ′ represents the replay buffer populated via FAC
algorithm. Hence, in case replay buffer contains equivalent elements, i.e. 𝜁 > 0, we expect higher entropy for 𝑋 ′ than that of 𝑋 . The change in
entropy is given as

ΔH = H(𝑋 ′) − H (𝑋)

= log (𝑚) −
(
log 𝑚 − (𝜁 + 1) · log (𝜁 + 1)

𝑚

)
=
(𝜁 + 1) · log (𝜁 + 1)

𝑚

> 0 (20)

□

B ADDITIONAL RESULTS
The source code of our implementation and other artefact for re-
peatability evaluation are provided as supplementary material. The
full repository (containing the synthesized control policies) can be
found at https://anonymous.4open.science/r/FAC-12E7

B.1 Training Plots for FAC w.r.t. SAC and TD3
In Figure 2 and 3, we present the comparison of FAC and LABER
algorithm w.r.t SAC and TD3 respectively. Each plot shows the
improvement in reward accumulated with each time-step.

-1.6e+3

-1.2e+3

-800

-400

2k 6k 10k 14k 18k

(a) Pendulum

50

60

70

80

90

100

5k 15k 25k 35k 45k

(b) MCar

-250

-150

-50

50

150

250

350

0 100k 200k 300k 400k 500k

(c) LLC

0

100

200

300

400

0 100k 200k 300k 400k 500k

(d) Swimmer

-10

0

10

20

0 50k 100k 150k 200k 250k 300k

(e) Reacher

0

1e+3

2e+3

3e+3

0 200k 400k 600k 800k 1M

(f) Hopper

0

1e+3

2e+3

3e+3

4e+3

5e+3

0 200k 400k 600k 800k 1M

(g) Walker

-1e+3

0

1e+3

2e+3

3e+3

4e+3

5e+3

0 200k 400k 600k 800k 1M

(h) Ant

0

2e+3

4e+3

6e+3

0 400k 800k 1.2M 1.6M 2M

(i) Humanoid

Figure 2: Training plots for SAC: baseline (orange) v/s FAC
(blue) v/s LABER (red)

-1.2e+3

-1.1e+3

-1e+3

-900

2k 6k 10k 14k 18k

(a) Pendulum

-20

20

60

100

10k 30k 50k 70k 90k

(b) MCar

-250

-150

-50

50

150

250

0 100k 200k 300k

(c) LLC

0

40

80

120

0 200k 400k 600k 800k 1M

(d) Swimmer

-15

-5

5

15

0 40k 80k 120k 160k 200k 240k

(e) Reacher

0

1e+3

2e+3

3e+3

0 200k 400k 600k 800k 1M

(f) Hopper

0

1e+3

2e+3

3e+3

4e+3

5e+3

0 200k 400k 600k 800k 1M

(g) Walker

0

2e+3

4e+3

6e+3

0 200k 400k 600k 800k 1M

(h) Ant

0

1e+3

2e+3

3e+3

4e+3

5e+3

0 400k 800k 1.2M 1.6M 2M

(i) Humanoid

Figure 3: Training plots for TD3: baseline (orange) v/s FAC
(blue) v/s LABER (red)

B.2 Kernel Function Selection
We show the training plots for different kernel functions in Figure 4.

0

1e+3

2e+3

3e+3

4e+3

0 200k 400k 600k 800k 1M

(a) Hopper

0

1e+3

2e+3

3e+3

4e+3

5e+3

0 200k 400k 600k 800k 1M

(b) Walker

-1e+3

0

1e+3

2e+3

3e+3

4e+3

5e+3

0 200k 400k 600k 800k 1M

(c) Ant

Figure 4: Plots showing comparison of epanechnikov (dark blue),
tophat (dark red) and gaussian (sky blue) kernels.

B.3 Hyper-parameter selection
We show the training plots for different values of hyper-parameters
𝜖, 𝜂, 𝛽 and 𝜇 in Figures 5-8. Note that in all the plots, the plot
corresponding to the best value of a hyper-parameter is shown in
dark blue.

In case of 𝜖, we observe that control policy synthesis is worst
in case of value 0.1. This is because for this value, it becomes too
conservative and starts throwing away even the important samples.
For large value of 𝜖, the synthesis is sub-optimal due to presence of
large number of equivalent samples (as overall lesser samples are
discarded).

0

1e+3

2e+3

3e+3

4e+3

0 200k 400k 600k 800k 1M

(a) Hopper

0

1e+3

2e+3

3e+3

4e+3

5e+3

0 200k 400k 600k 800k 1M

(b) Walker

-500

500

1.5e+3

2.5e+3

3.5e+3

4.5e+3

0 200k 400k 600k 800k 1M

(c) Ant

Figure 5: Plots showing training for different values of 𝜖 - 0.1
(pink), 0.2 (dark blue), and 0.3 (green) and 0.5 (light blue).

In case of 𝜂, for the least value 10𝑘 (light blue), the synthesized
control policy is among the worst. An interesting trend is witnessed
for value 50𝑘 (pink) which performs poorly for Hopper but close
to best for Walker. This is due to the fact that maximum number of
distinct rewards for an abstract state is around 70𝑘 in Hopper and
13𝑘 in Walker.

0

1e+3

2e+3

3e+3

0 200k 400k 600k 800k 1M

(a) Hopper

0

1e+3

2e+3

3e+3

4e+3

5e+3

0 200k 400k 600k 800k 1M

(b) Walker

-1e+3

1e+3

3e+3

5e+3

0 200k 400k 600k 800k 1M

(c) Ant

Figure 6: Plots showing training for different values of 𝜂 - 10k
(light blue), 50k (pink), 100k (dark blue) and 150k (green) .

The parameter 𝛽 is like the radius of a region whose density is
calculated to check if a new sample can be added or not. For value
0.5 (light blue), the synthesized control policy is among the worst.
This is because we check density of a large region and quite possibly
it would be higher (hence discard samples) even though it could ac-
commodate more unique samples. For value 0.1 (green), the density
is estimated for a very small region. This leads to accommodation
of more samples than needed, i.e., a closer equivalent samples can
be added as it doesn’t lie inside the region.

For 𝜇, the worst control policy is synthesized when the size of
abstract state is large (and hence lesser number of abstract states).

https://anonymous.4open.science/r/FAC-12E7

0

1e+3

2e+3

3e+3

0 200k 400k 600k 800k 1M

(a) Hopper

0

1e+3

2e+3

3e+3

4e+3

5e+3

0 200k 400k 600k 800k 1M

(b) Walker

-500

500

1.5e+3

2.5e+3

3.5e+3

4.5e+3

0 200k 400k 600k 800k 1M

(c) Ant

Figure 7: Plots showing training for different values of 𝛽 - 0.1
(green), 0.2 (dark blue), 0.3 (gray) and 0.5 (light blue).

This means discarding too many samples as they would be classified
as equivalent. This is witnessed for 𝜇 = 30. The best control policy
was synthesized for 𝜇 = 50 and thereafter it gets saturated. This is

because smaller size of abstract state would lead to classification of
even equivalent states as distinct states.

0

1e+3

2e+3

3e+3

4e+3

0 200k 400k 600k 800k 1M

(a) Hopper

0

1e+3

2e+3

3e+3

4e+3

5e+3

0 200k 400k 600k 800k 1M

(b) Walker

-500

500

1.5e+3

2.5e+3

3.5e+3

4.5e+3

0 200k 400k 600k 800k 1M

(c) Ant

Figure 8: Plots showing training for different values of 𝜇 - 30
(green), 50 (dark blue), 70 (orange) and 100 (gray).

	Abstract
	1 Introduction
	2 Problem
	2.1 Preliminaries
	2.2 Problem Definition

	3 The FAC Algorithm
	3.1 Finding Significant State Dimensions
	3.2 State-Space Partitioning
	3.3 Density Estimation
	3.4 Learning from Replay Buffers.
	3.5 Computation Overhead

	4 Theoretical Analysis
	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Metrics
	5.3 Hyper-parameters
	5.4 Results

	6 Related Work
	7 Conclusion
	References
	A Proofs of Theorems
	B Additional Results
	B.1 Training Plots for FAC w.r.t. SAC and TD3
	B.2 Kernel Function Selection
	B.3 Hyper-parameter selection

