
Optimal Makespan in a Minute Timespan!
A Scalable Multi-Robot Goal Assignment Algorithm for Minimizing Mission Time

Aakash and Indranil Saha
Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, India

{aakashp, isaha}@cse.iitk.ac.in

Abstract

We study a variant of the multi-robot goal assignment
problem where a unique goal to each robot needs to be
assigned while minimizing the largest cost of movement
among the robots, called makespan. A significant step in
solving this problem is to find the cost associated with
the robot-goal pairs, which requires solving a complex
path planning problem. We present OM, a scalable optimal
algorithm that solves the multi-robot goal assignment
problem by computing the paths for a significantly less
number of robot-goal pairs compared to the state-of-the-art
algorithms, leading to a computationally superior mechanism
to solve the problem. We extensively evaluate our algorithm
for hundreds of robots on randomly generated and standard
workspaces. Our experimental results demonstrate that the
proposed algorithm achieves a noticeable speedup over two
state-of-the-art baseline algorithms.

1 Introduction
Several multi-robot applications, such as warehouse
management (Li et al. 2021; Das, Nath, and Saha
2021), disaster response (Tian et al. 2009), precision
agriculture (Gonzalez-de-Santos et al. 2017), mail and
goods delivery (Grippa et al. 2019), etc., require the robots
to visit specific goal locations in the workspace to perform
some designated tasks. These applications lead to the
fundamental goal assignment problem for multi-robot
systems: Given the initial locations of a set of robots and
a set of goal locations, assign each robot to a goal such
that the largest cost of movement (makespan) for the robots
to reach their assigned goal locations is minimized. The
problem is a variant of the Anonymous Multi-Agent Path
Finding (AMAPF) problem (Stern et al. 2019), where we
decide the one-to-one robot-goal assignment and find the
corresponding collision-free paths to optimize the makespan.

The AMAPF problem for optimizing makespan has been
addressed in a number of recent works. We can organize the
literature into two categories. The papers in the first category
compute the robot-goal assignment and the corresponding
collision-free paths concurrently. These are mainly the
flow-based approaches (Yu and LaValle 2013; Ma and
Koenig 2016) that lack scalability due to the extensive size

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the flow network, which renders them ineffective for a
problem with more than a few robots.

The papers in the second category start with finding
an initial robot-goal assignment by solving the so-called
linear bottleneck assignment (LBA) problem (Fulkerson,
Glicksberg, and Gross 1953; Gross 1959), and then find the
collision-free paths for this assignment. Among these works,
SCRAM (MacAlpine, Price, and Stone 2015) employs
a graph-theoretic algorithm that is built upon unrealistic
assumptions that the environment is obstacle-free and that
a robot travels from its initial location to its goal location
along a straight-line path. To solve the LBA problem in
realistic settings where the environment has obstacles, either
the costs of all robot-goal pairs are computed by finding the
path for each pair (Turpin et al. 2013; Turpin, Michael, and
Kumar 2013; Turpin et al. 2014), or they are computed in a
lazy manner (Okumura and Défago 2022). These decoupled
approaches cannot ensure the optimality of the solution but
have the potential to provide more scalability compared to
the algorithms solving the goal assignment and the path
planning problems concurrently. However, they still have
computational limitations in solving the underlying LBA
problem, which prevent them from scaling up to large
workspaces and large number of robots.

In this paper, our aim is to solve the goal assignment
problem for a large multi-robot system with hundreds of
robots within a short duration. We do not attempt to solve
the AMAPF problem optimally as eliminating collisions
statically without compromising optimality for such large
multi-robot systems is computationally infeasible. We
instead aim to solve the multi-robot goal assignment
problem efficiently to get an optimal assignment based
on the independent optimal path for each robot-goal pair.
An efficient goal assignment algorithm enables the robots
to embark on their individual optimal paths towards their
respective goals quickly and deal with the collisions with
other robots and any dynamic obstacles using their local
collision avoidance mechanism (Alonso-Mora et al. 2010;
Snape et al. 2010; van den Berg et al. 2011; Hennes et al.
2012; Chen et al. 2017). Also, an efficient goal assignment
algorithm, when plugged into the algorithms presented
in (Turpin et al. 2013; Turpin, Michael, and Kumar 2013;
Turpin et al. 2014; Okumura and Défago 2022), provides a
more efficient solution to the AMAPF problem.

We propose a scalable centralized algorithm OM
that solves the multi-robot goal assignment problem
for Optimal Makespan. It is based on the bipartite
graph-based implementation of the dual method to solve the
LBA problem (Burkard, Dell’Amico, and Martello 2009).
However, unlike this algorithm, we do not assume that the
costs for all the edges are available a priori. Rather, we
initialize those costs with an admissible heuristic cost and
compute the actual cost by finding the optimal obstacle-free
path for any robot-goal pair on demand, i.e., if it is indeed
essential for the optimality of the goal assignment.

We implement our algorithm in Python and evaluate it
through thorough experimentation on randomly generated
2D workspaces and standard 2D and 3D workspaces. We
consider two algorithms as the baseline. The first is the goal
assignment algorithm where the costs for all robot-goal pairs
are computed, as is done in (Turpin et al. 2013, 2014). The
second is the bottleneck assignment algorithm in TSWAP
(Okumura and Défago 2022) that uses lazy evaluation of
actual costs. Our experimental results demonstrate that the
proposed algorithm achieves a noticeable speedup over the
two state-of-the-art baseline algorithms. We also go a step
ahead and replace the bottleneck assignment algorithm in
TSWAP with our algorithm for the initial goal assignment,
which makes their AMAPF solution significantly faster.

Our contributions can be summarized as follows:

• We present a scalable algorithm OM for the multi-robot
goal assignment problem. Without considering collision
avoidance among the robots, the solution provided by our
algorithm is optimal with respect to makespan.

• We implement our algorithm in Python and carry out
extensive experimentation. Our results show that OM
consistently outperforms two state-of-the-art methods in
terms of computation time by a significant margin for
both randomly generated and benchmark workspaces.

• We plug our algorithm into the state-of-the-art decoupled
algorithm TSWAP for the AMAPF problem, leading to
an order-of-magnitude improvement in its computation
time for a large number of robots and thus providing a
highly scalable solution for multi-robot goal assignment
with collision-free paths.

2 Problem
2.1 Preliminaries
Notations. Let N represent the set of natural numbers and
R represent the set of real numbers. For a natural number
X ∈ N, let [X] denote the set {1, 2, 3, . . . , X}.
Workspace. A workspace WS is a rectangular (2D) or
cuboidal (3D) space which is divided by grid lines into
square-shaped or cube-shaped cells, respectively. Each cell
can be addressed using its coordinates. In general, a
workspace consists of a set O of cells that are occupied by
obstacles. Mathematically, WS = ⟨dimension,O⟩, where
dimension is a tuple of the number of cells along the
coordinate axes.
Motion Primitives. In a 2D workspace, we assume that
a robot can move in 8 directions (North, South, East,

G3 G4
R2

R1
R3

G2

G1 R4
0 1 2 3 4 5

3
4
5
6
7

6 7
0
1
2

(a)

8 5.5 4 5.5

7 4.5 1 2.5

8.5 4.5 6 4

3 3 8 8.5

G1 G2 G3

R1

R2

R3

R4

G4

(b)

5.09 5.5 4 5.5

6.08 4.5 1 2.5

6.40 4.5 5 4

3 3 7.28 7

G1 G2 G3

R1

R2

R3

R4

G4

(c)

Figure 1: An example problem

West, North-East, North-West, South-East, and South-West)
from its current location while respecting the workspace
boundaries. It can move diagonally only if the cells on the
sideways are obstacle-free. The cost of a diagonal movement
is 1.5 units, while the same for a non-diagonal movement
is 1 unit. Similarly, we consider that a 3D workspace is a
26-connected grid. We take the cost of a diagonal movement
which causes displacement in all the three axes as 2 units, the
same of a diagonal movement on a plane as 1.5 units, while
the same for a non-diagonal movement as 1 unit. Here, the
cost of each motion primitive represents both the delay and
the energy consumed in executing it.

2.2 Problem Definition
We define the problem formally in this subsection.

Problem 1 (Goal Assignment with Optimal Makespan).
Consider a multi-robot application in a grid-based
workspace WS, where the set S of start locations of the
robots and the set F of goal locations are given as inputs.
Let R = |S| and G = |F | denote the number of robots and
goals, respectively.

Each robot can be assigned to at most one goal, and each
goal can be served by at most one robot. Let cost(i, j)
denote the cost of movement between si ∈ S and fj ∈ F ,
where i ∈ [R] and j ∈ [G]. Find a robot-goal assignment
for the multi-robot application such that the largest cost
of movement among all the robots (without considering the
overhead for robot-robot collision avoidance) is minimized.

The cost information needs to be known to solve the
above problem. In order to find the actual cost of movement
between two cells in a workspace, the shortest obstacle-free
path between them has to be computed. Finding such cost
for all the robot-goal pairs requires solving several complex
path planning problems, which chokes the scalability. We
aim to design an algorithm that computes these costs
judiciously for only the necessary robot-goal pairs while
finding an optimal solution to the goal assignment problem.

2.3 Example
Consider a multi-robot application in the 8 × 8 workspace
shown in Figure 1(a). It has four robots (R1, R2, R3, and
R4) and four goals (G1, G2, G3, and G4). The black-colored
cells denote the obstacles. Figure 1(b) has a cost matrix
with an actual cost for each robot-goal pair. Here, the
green-colored cells depict the goal assignment that has an
optimal makespan. Can we obtain this assignment without

having to compute all the actual costs? Figure 1(c) shows
a cost matrix, which is an outcome of our approach. Here,
only the colored cells have actual costs, and we still have the
same optimal assignment as in Figure 1(b).

3 Algorithm
In this section, we present our graph theoretic algorithm to
solve the multi-robot goal assignment problem. Problem 1
can be expressed in graph theoretic form as follows. Given a
bipartite graph G = ([R], [G], E) with bipartition ([R], [G])
and a cost function cost : E → R+, find a maximum
cardinality matching M such that the maximum cost of the
edges (makespan) in M is minimized. Mathematically,

minimize
M

makespan(= maximum(i,j)∈M (cost(i, j))).

The readers are referred to (Leiserson et al. 1994) for the
graph theoretic concepts, such as bipartite graph, matching,
and vertex cover.

3.1 Algorithm Description
We present our goal assignment algorithm OM formally
in Algorithm 1. It uses Euclidean distance between a
robot’s start location and a goal location as the admissible
heuristic cost, or H-cost for short. Hereafter, we shall
refer to the optimal actual cost (after taking the obstacles
into account) between the same locations as A-cost for
short. For an efficient computation of optimal obstacle-free
path and the corresponding A-cost, we implement Forward
Resumable A∗ (FRA∗) after drawing inspiration from
Reverse Resumable A∗ (Silver 2005). It reuses the
information present in the open-list (OL) and the closed-list
(CL) while computing the paths from a robot’s start location
to several goal locations.

We now describe OM in detail. The first procedure
get optimal makespan captures the main module that
takes the workspace WS, and the sets S and F as
inputs. To begin with, it computes the H-cost for each
robot-goal pair and stores them in the 2D matrix C
(Line 5). We keep a record of the cost-type attribute (i.e.,
whether a cost is heuristic or actual) in the 2D matrix T ,
and it is initialized with ‘h’ (symbolizing ‘heuristic’) for
all the robot-goal pairs. The paths are initialized in the 2D
matrix P (Line 6).

Depending on the relationship between R and G
(i.e., R = G, R < G, or R > G), OM determines an
initial estimate of makespan (makespaninit) by using the
minimum A-cost information of each robot (acostRmin)
and/or each goal (acostGmin) (Lines 7-15):

R = G : makespaninit ←
max(max

i∈[R]
acostRmin(i), max

j∈[G]
acostGmin(j));

R < G : makespaninit ← max
i∈[R]

(acostRmin(i));

R > G : makespaninit ← max
j∈[G]

(acostGmin(j)). (1)

The initial makespan serves as a lower bound of the optimal
makespan. When R and G are equal, each robot and goal

must get assigned, and therefore, the optimal makespan must
be at least the maximum of the minimum A-costs of each
robot and goal. So, for this case, the initial makespan is
computed using the minimum A-cost of both the robots
and the goals. However, if R and G are unequal, then it is
computed using the minimum A-cost information of only
the minority entity, because considering the majority entity
may give a misleading value of the initial makespan (which
may be even greater than the optimal value), as some of the
elements in the majority entity would not get an assignment.

The procedure explore min acost discovers the
minimum A-cost for each robot or each goal (referred to
as pivot entity) without computing all its A-costs naively
(Lines 7-14). It uses a flag variable flag to indicate whether
the minimum A-cost has to be computed for the robots
(flag = 1) or the goals (after its invocation for the robots
(flag = 2) or independently (flag = 3)). To compute the
minimum A-cost of each robot, it proceeds in the following
way: At the outset, a particular robot i has an H-cost for
each of the goals. The procedure searches for its minimum
H-cost hcostmin and replaces it with the corresponding
A-cost. This step repeats until robot i’s current minimum
H-cost exceeds its current minimum A-cost (Line 52). This
ensures that further replacement of H-costs is unnecessary,
as they already serve as under-approximations of A-costs,
and any replacements would only yield equal or higher
A-costs. Note that when flag is 2, the minimum A-cost
for each goal is not initialized directly with infinity, but by
using an auxiliary procedure find min cost (Line 50). It
is because, for a particular goal, some H-costs may have
got replaced by corresponding A-cost while finding the
minimum A-cost for each robot. find min cost fetches the
minimum cost of a particular cost-type (heuristic or actual).
Whenever an H-cost is replaced by its corresponding A-cost,
we also (i) save the path information (Lines 55 and 59),
(ii) update the cost-type in matrix T (Lines 56 and 60), and
(iii) keep track of the number of path explorations in the
variable numexp (Line 61).

The next step (Line 16) is to formulate a threshold
bipartite subgraph Gth = ([R], [G], Eth) having bipartition
([R], [G]) and the edge set Eth which is given by:

Eth = {(i, j) | cost−type(i, j) = ‘a’ and
cost(i, j) ≤ makespan}.

Symbolically, the robots and the goals form the bipartition of
the vertex set of Gth. A maximum cardinality matching M
is obtained in Gth (Line 17). A vertex is said to be saturated
by a matching if it is an endpoint of a matched edge.
We define a matching as total matching if it completely
saturates the set of robots [R] (when R ≤ G) or the set of
goals [G] (when G ≤ R). Thus, if M is a total matching
in Gth, the procedure returns the optimal makespan as
output and terminates. However, if the current M is not a
total matching, additional steps are required to update M
until it becomes one. The additional steps begin by finding
the minimum vertex cover ⟨Rc, Gc⟩ (Line 19), which can
be computed for a bipartite graph in polynomial time by
utilizing M (Bondy and Murty 1976). The sets Rc and
Gc refer to the covered robots and goals, respectively. The

Algorithm 1: Goal Assignment Optimizing Makespan for Multi-Robot Systems (OM)

Global: C, T , P , numexp, OL, CL

1 procedure get optimal makespan (WS, S, F)
2 R← |S|, G← |F |, M ← ∅
3 for i← 1 to R do
4 for j ← 1 to G do
5 C(i)(j)← get Euclidean distance(S(i), F (j))
6 T (i)(j)← ‘h’, P (i)(j)← []

7 if R = G then
8 acostRmin ← explore min acost(WS,S, F, 1)
9 acostGmin ← explore min acost(WS,S, F, 2)

10 acostmin ← concatenate(acostRmin, acostGmin)
11 else if R < G then
12 acostmin ← explore min acost(WS,S, F, 1)
13 else
14 acostmin ← explore min acost(WS,S, F, 3)

15 makespan← max(acostmin)
16 Gth ← get threshold subgraph(WS,S, F,makespan)
17 M ← maximize match(Gth,M)

18 while M is not a total matching do
19 ⟨Rc, Gc⟩ ← get min vertex cover(Gth,M)
20 ∆← collect uncovered costs(R,G,Rc, Gc)
21 makespan← update makespan(WS,S, F,∆,

makespan)
22 Gth ← update threshold subgraph(Gth, Rc, Gc,

WS, S, F,makespan)
23 M ← maximize match(Gth,M)

24 return makespan

25 procedure update makespan (WS, S, F , ∆, makespan)
26 while True do
27 ⟨∆min, index⟩ ← find min delta(∆)
28 i′ ← ∆min.i, j′ ← ∆min.j
29 if ∆min.t = ‘a’ then
30 if makespan < ∆min.c then
31 makespan← ∆min.c

32 return makespan
33 else
34 ⟨c, p, OL(i′), CL(i′)⟩ ←

FRAStar(WS,S(i′), F (j′), OL(i′), CL(i′))

35 C(i′)(j′)← c, P (i′)(j′)← p, T (i′)(j′)← ‘a’
36 numexp← numexp+ 1
37 Update: ∆(index)← ⟨i′, j′, C(i′)(j′), ‘a’⟩

38 return makespan

39 procedure explore min acost (WS,S, F, flag)
40 R← |S|, G← |F |
41 if flag = 1 then
42 pivot entity ← R, scan entity ← G
43 else
44 pivot entity ← G, scan entity ← R

45 for i← 1 to pivot entity do
46 if flag ̸= 2 then
47 OL(i)← [], CL(i)← []
48 acostmin(i)←∞
49 else
50 ⟨acostmin(i), –⟩ ←

find min cost(i, scan entity, ‘a’)

51 ⟨hcostmin, hindex⟩ ←
find min cost(i, scan entity, ‘h’)

52 while ((hindex ̸= −1) & (hcostmin ≤ acostmin(i)))
do

53 if flag = 1 then
54 ⟨c, p, OL(i), CL(i)⟩ ← FRAStar(WS,S(i),

F (hindex), OL(i), CL(i))
55 C(i)(hindex)← c, P (i)(hindex)← p
56 T (i)(hindex)← ‘a’
57 else
58 ⟨c, p, OL(hindex), CL(hindex)⟩ ←

FRAStar(WS,S(hindex), F (i),
OL(hindex), CL(hindex))

59 C(hindex)(i)← c, P (hindex)(i)← p
60 T (hindex)(i)← ‘a’

61 numexp← numexp+ 1
62 ⟨hcostmin, hindex⟩ ←

find min cost(i, scan entity, ‘h’)
63 ⟨acostmin(i), –⟩ ←

find min cost(i, scan entity, ‘a’)

64 return acostmin

65 procedure collect uncovered costs (R, G, Rc, Gc)
66 for each uncovered robot i ∈ [R] \ Rc do
67 for each uncovered goal j ∈ [G] \ Gc do
68 ∆.add(⟨i, j, C(i)(j), T (i)(j)⟩)

69 return ∆

procedure collect uncovered costs collects the costs
of the edges between all the uncovered robot-goal pairs
(Line 20). The collection data structure ∆ stores tuples of
the following information, which can be accessed using the
dot operator: (i) robot ID i ∈ [R], (ii) goal ID j ∈ [G],
(iii) cost C(i)(j), and (iv) cost-type T (i)(j).

The procedure update makespan finds the minimum
uncovered A-cost and checks whether it is greater than the
current makespan estimate. If yes, then the makespan is
revised to be the minimum uncovered A-cost (Lines 27-32).
Note that this procedure invokes find min delta

procedure (Line 27), which searches for the tuple having
minimum uncovered cost and picks the one containing an
A-cost over the one containing an H-cost in case there is a
tie. Next, the threshold subgraph Gth is updated by adding
the edges between the uncovered robot-goal pairs, provided
that the corresponding A-costs do not exceed the current
makespan (Line 22). We consider only the uncovered
robot-goal pairs for the addition of new edges so as to
optimize the number of A-cost computations. We attempt to
maximize the current M on the updated Gth (Line 23). The
process loops until M becomes a total matching.

5.09 4.24 2.82 4.47

6.08 4.12 1 2.23

6.40 3.60 5 3.60

3 2.23 7.28 7

G1 G2 G3

R1

R2

R3

R4

G4

(a)

5.09 4.24 4 4.47

6.08 4.12 1 2.5

6.40 4.5 5 4

3 3 7.28 7

G1 G2 G3

R1

R2

R3

R4

G4

(b)

1

[R] [G]

4

2

3

4

1

2

3

4

2.5

1

4

3

3

(c)
<R, G>
index

Cost
Cost-
type

1-1 5.09 h
1-2 4.24 h
2-1 6.08 h
2-2 4.12 h
3-1 6.40 h
3-2 4.5 a

<R, G>
index

Cost
Cost-
type

1-1 5.09 h
1-2 4.24 h
2-1 6.08 h
2-2 4.5 a
3-1 6.40 h
3-2 4.5 a

<R, G>
index

Cost
Cost-
type

1-1 5.09 h
1-2 5.5 a
2-1 6.08 h
2-2 4.5 a
3-1 6.40 h
3-2 4.5 a

(d)

<R, G>
index

Cost
Cost-
type

1-1 5.09 h
1-2 4.24 h
2-1 6.08 h
2-2 4.12 h
3-1 6.40 h
3-2 4.5 a

<R, G>
index

Cost
Cost-
type

1-1 5.09 h
1-2 4.24 h
2-1 6.08 h
2-2 4.5 a
3-1 6.40 h
3-2 4.5 a

<R, G>
index

Cost
Cost-
type

1-1 5.09 h
1-2 5.5 a
2-1 6.08 h
2-2 4.5 a
3-1 6.40 h
3-2 4.5 a

(e)

<R, G>
index

Cost
Cost-
type

1-1 5.09 h
1-2 4.24 h
2-1 6.08 h
2-2 4.12 h
3-1 6.40 h
3-2 4.5 a

<R, G>
index

Cost
Cost-
type

1-1 5.09 h
1-2 4.24 h
2-1 6.08 h
2-2 4.5 a
3-1 6.40 h
3-2 4.5 a

<R, G>
index

Cost
Cost-
type

1-1 5.09 h
1-2 5.5 a
2-1 6.08 h
2-2 4.5 a
3-1 6.40 h
3-2 4.5 a

(f)

1

[R] [G]

4

2

3

4

1

2

3

4

2.5
1

3

3
4.5

4.5

4

(g)

1

[R] [G]

4

2

3

4

1

2

3

4

2.5
1

3

3
4.5

4.5

4

(h)

5.09 5.5 4 5.5

6.08 4.5 1 2.5

6.40 4.5 5 4

3 3 7.28 7

G1 G2 G3

R1

R2

R3

R4

G4

(i)

Figure 2: Illustration of OM on the problem introduced in
Figure 1(a)

3.2 Example
Figure 2 illustrates the execution of OM on the multi-robot
goal assignment problem introduced in Figure 1(a).
Figure 2(a) shows the cost matrix that has an H-cost for
each robot-goal pair. Figure 2(b) shows the transformed
cost matrix after the exploration of the minimum A-cost
for each robot and goal (since R = G). The blue cells
have A-costs, while the white cells have H-costs. For a
particular robot / goal, its minimum H-cost is replaced by the
corresponding A-cost iteratively until its current minimum
H-cost exceeds its current minimum A-cost. This may lead
to the presence of more than one blue cell for a robot / goal
in the transformed cost matrix.

The initial makespan is 4 from the first formula in (1).
Using it, a threshold subgraph is configured (Figure 2(c)).
The vertices on the left denote the robots, whereas the ones
on the right denote the goals. The red edges belong to the
maximum cardinality matching M . We see that the robot
R1 is unmatched. As the current matching is not a total
matching, we proceed according to lines 18 and 19 of OM
to find the minimum vertex cover in the threshold subgraph.
The minimum vertex cover consists of R4, G3 and G4
(shown as red vertices in the Figure 2(c)).

In Figures 2(d)-(f), we illustrate the search process for
the minimum uncovered A-cost. Initially, 4.12 is retrieved
as the minimum uncovered cost. But, since it is not an
A-cost, it is replaced by its corresponding A-cost 4.5. On
searching the minimum uncovered cost again, we get 4.24,
which is again an H-cost and is therefore replaced by its

corresponding A-cost 5.5. When we search for minimum
uncovered cost one more time, we get the value 4.5, which
is an A-cost. As the minimum uncovered A-cost 4.5 exceeds
the current makespan 4, the makespan is revised to 4.5.
In Figure 2(g), the threshold subgraph gets an update such
that new edges (shown in green) that have an A-cost not
exceeding the current makespan are added. In Figure 2(h),
M is recomputed on the updated threshold subgraph, and
here we see that all the robots are matched. Therefore, the
process of finding the optimal makespan terminates with an
output of 4.5. Figure 2(i) shows the A-costs explored so far
in colored cells, and the assignment is shown in green.

3.3 Theoretical Guarantees
OM provides the following guarantees.

Theorem 1 (Correctness). OM provides an optimal solution
to the multi-robot goal assignment problem (Problem 1)
such that either the robots or the goals, whichever is
less in number, get assigned completely, and the resultant
assignment has an optimal makespan.

Theorem 2 (Time complexity). Considering Ψ denotes the
number of free cells in the workspace, the worst-case time
complexity of OM is: (a) R = G : O(max(R2Ψ, R4)),
(b) R < G : O(max(RGΨ, R3G)), (c) R > G :
O(max(RGΨ, RG3)).

4 Evaluation
In this section, we present the results obtained from our
detailed experimental evaluation of OM.

4.1 Experimental Setup
Baselines. For the evaluation of OM, we consider two
algorithms as the baseline. The first algorithm, which we
refer to as Base-1, computes the optimal obstacle-free path
for each robot-goal pair by using Dijkstra’s shortest path
algorithm (Dijkstra 1959) and then uses the dual method to
solve the LBA problem. The second algorithm, which we
refer to as Base-2, is the Bottleneck Assignment algorithm
in (Okumura and Défago 2022) that uses lazy evaluation
of A-costs to compute the optimal makespan. The original
implementation of Base-2 uses the breadth-first search with
4 motion primitives on an unweighted graph. However, as
we consider 8 and 26 motion primitives in the 2D and
3D environments, respectively, on a weighted graph with
costs proportional to their Euclidean distance, we implement
Base-2 with the more efficient FRA∗ search algorithm. We
implement the baseline algorithms (Base-1 and Base-2) and
the proposed algorithm in Python1.

Benchmarks and Evaluation Metrics. We evaluate OM
on randomly generated 2D workspaces and benchmark 2D
and 3D workspaces (Sturtevant 2012; Stern et al. 2019).
We use three evaluation metrics: (a) NumExp: the number
of robot-goal pairs for which the A-cost is computed,
(b) NumNodeExp (%): the percentage of the OL nodes

1The source code of implementation is available at
https://github.com/iitkcpslab/H-Scalable-MRGA-Makespan.git

WS
Size OD R NumExp NumNodeExp (%) Runtime (s) Speedup

OM Base 2 OM Base 2 OM Base 1 Base 2 Base 1 Base 2

1002 20 400 6148±1133 9361±1294 1.87±0.62 3.09±0.83 4.71±1.38 44.08±1.94 225.30±97.00 9.36 47.83
2002 20 400 5659±943 8603±1396 1.31±0.29 2.32±0.53 8.49±2.29 171.03±3.13 235.05±114.36 20.14 27.69
3002 20 400 5298±886 8408±1381 1.14±0.27 2.16±0.50 13.01±3.51 421.40±5.58 210.93±108.96 32.39 16.21
4002 20 400 5033±729 8242±1245 1.05±0.21 2.11±0.46 19.00±5.68 720.22±12.00 228.43±114.59 37.91 12.02

2002 10 400 4679±929 7410±1180 0.88±0.26 1.71±0.41 8.15±2.18 207.46±3.10 217.90±119.24 25.46 26.74
2002 15 400 4941±587 8384±1056 1.01±0.17 2.12±0.38 9.17±2.30 190.07±3.51 264.10±127.40 20.73 28.80
2002 20 400 5691±913 9491±1988 1.34±0.31 2.67±0.78 10.37±3.23 168.10±2.22 272.75±179.18 16.21 26.30
2002 25 400 7136±1111 10848±1790 2.53±0.99 3.88±1.69 10.81±4.00 154.57±4.30 232.48±103.96 14.30 21.51

3002 20 100 925±129 1451±259 2.73±0.54 5.31±1.54 3.13±0.60 93.00±0.76 7.01±2.27 29.71 2.24
3002 20 200 2474±689 3784±842 2.13±0.87 3.85±1.26 6.10±2.28 190.89±2.09 24.28±13.01 31.29 3.98
3002 20 300 3843±770 6232±1169 1.48±0.46 2.90±0.85 8.63±1.97 293.85±3.98 89.19±49.27 34.05 10.33
3002 20 400 5410±945 8807±1343 1.21±0.30 2.36±0.52 15.33±3.71 396.12±8.08 245.86±109.93 25.84 16.04

Table 1: Experimental Results on Random Workspace

expanded with respect to Base-1, and (c) Runtime: the
execution time. We also report the Speedup that OM
achieves over the two baseline algorithms.

We run all the experiments in a desktop machine with
Intel® CoreTM i7-8700 CPU @ 3.20GHz processor, 32GB
RAM, and Ubuntu 20.04 OS. We run each experiment for
20 times and report the mean and standard deviation for the
evaluation metrics.

4.2 Experimental Results
Randomly Generated Workspaces. In Table 1, we report
the results of experiments on randomly generated 2D
workspaces having an equal number of robots and goals.
In the first block of the table, we increase the workspace
size while keeping R constant at 400. Owing to the
demand-driven computation of A-costs by OM, its NumExp
is significantly less when compared with Base-1 (which
computes R × G A-costs) and even when compared with
Base-2 due to the algorithmic differences. With an increase
in the workspace size, the speedup with respect to Base-1
increases while it decreases with respect to Base-2. Obstacle
density (OD) (i.e., the percentage of cells in a workspace
that are occupied by obstacles) varies in the middle block.
As OD increases, the speedup with respect to Base-1
declines whereas the speedup with respect to Base-2 does
not vary significantly. The number of robots R varies
in the last block. With an increase in R, first there is
a growth in the speedup relative to Base-1, which later
experiences a decline. The speedup with respect to Base-2
grows monotonically because the number of edges in the
bipartite graph increases on increasing R, which inflates
the efficiency of OM against Base-2 in the number of
evaluations of A-cost (notice the increasing difference
between NumExp of OM and Base-2).

Table 2 presents the results for cases having unequal
number of robots and goals in random workspaces.

Standard Benchmark Workspaces. Through the plots
in Figure 3, we compare the performance of OM with
that of the baseline algorithms for standard workspaces
available in the literature (Sturtevant 2012; Stern et al.
2019). The last plot is for a 3D workspace resembling

an environment in Warframe game (Brewer and Sturtevant
2018). We take 15min and 2 h as timeouts for the 2D and 3D
workspaces, respectively. OM outperforms the baselines on
both structured workspaces (e.g., warehouse and mansion)
and unstructured workspaces (e.g., den and cities). Base-1
exceeds the timeout for all the problem instances considered
in the 3D workspace.

For the 2D workspaces, we observe that Base-1
outperforms Base-2 for high robot density (large number of
robots in a small workspace) despite the fact that Base-1
computes the paths for all robot-goal pairs whereas Base-2
computes them lazily for some of the pairs. When there are
many robots and goals in the workspace, the bipartite graph
used for assignment has a large number of edges. As Base-2
computes the maximum cardinality matching after every
single addition of an edge, it turns out to be a significant

10
0

20
0

30
0

40
0

50
0

60
0

80
0

10
00

0

200

400

600

800

1000

(a) Warehouse
(123× 321)

10
0

20
0

30
0

40
0

50
0

60
0

80
0

10
00

0

200

400

600

800

1000

(b) Mansion
(270× 133)

10
0

20
0

30
0

40
0

50
0

60
0

80
0

10
00

0

200

400

600

800

1000
OM
Base-1
Base-2

(c) Den
(257×256)

10
0

20
0

30
0

40
0

50
0

60
0

80
0

10
00

0

200

400

600

800

1000

(d) Sydney
(256×256)

10
0

20
0

30
0

40
0

50
0

60
0

80
0

10
00

0

200

400

600

800

1000

(e) Shanghai
(256× 256)

10
0

20
0

30
0

40
0

50
0

60
0

80
0

10
00

0

1

2

3

4

OM
Base-2

(f) Warframe
(149×57×108)

Figure 3: Scalability plots of OM for Benchmark Workspace
(X-axis: Number of Robots, Y-axis: Runtime(s)
for (a-e); logRuntime(s) for (f))

WS
Size OD R G NumExp NumNodeExp (%) Runtime (s) Speedup

OM Base 2 OM Base 2 OM Base 1 Base 2 Base 1 Base 2

2002 20 150 200 1336±336 1824±300 1.66±0.90 2.82±1.99 1.47±0.57 61.55±1.35 3.72±1.38 41.87 2.53
200 250 1964±520 2741±484 2.25±1.33 3.53±2.22 2.55±1.07 82.03±1.75 8.01±2.47 32.17 3.14

2002 20
200 150 1313±245 1824±411 1.26±0.87 1.94±1.28 1.40±0.74 81.83±1.08 3.51±1.43 58.45 2.51
250 200 1838±398 2839±663 1.57±1.09 3.18±2.98 2.20±1.15 104.82±2.01 8.39±3.89 47.65 3.81

Table 2: Results for R ̸= G cases in Random Workspace

WS
Size R Makespan GA Runtime (s) PP Runtime

(s)
Total Runtime (s) Overall

SpeedupBefore PP After PP OM Base 2 OM Base 2

Warehouse
123×321

100 64.54±14.51 64.54±14.51 1.91±0.55 7.20±3.93 0.05±0.01 1.96±0.55 7.25±3.98 3.70
200 50.10±13.44 50.10±13.44 3.85±0.89 39.71±18.49 0.16±0.06 4.01±0.89 39.87±18.61 9.94
400 39.32±8.52 39.70±8.89 16.82±5.82 720.37±465.80 0.41±0.11 17.23±5.82 720.78±466.72 41.83

Mansion
270×133

100 50.74±10.25 51.14±10.31 3.44±0.48 7.66±1.63 0.04±0.01 3.48±0.48 7.70±1.63 2.21
200 41.22±7.90 42.48±8.09 7.21±1.58 59.75±27.90 0.10±0.02 7.31±1.58 59.85±28.02 8.19
400 34.76±5.43 38.86±6.90 25.65±6.80 559.56±216.52 0.27±0.05 25.92±6.81 559.83±216.86 21.60

Den
257×256

100 74.74±13.57 75.08±13.56 6.10±2.06 12.95±4.18 0.06±0.02 6.16±2.06 13.01±4.22 2.11
200 60.62±13.84 61.02±14.08 10.04±4.50 68.55±49.01 0.16±0.06 10.20±4.50 68.71±49.24 6.74
400 47.56±7.95 48.80±8.64 25.19±6.94 750.02±439.98 0.48±0.13 25.67±6.94 750.50±441.02 29.24

Sydney
256×256

100 73.14±9.31 73.24±9.28 3.66±0.83 9.10±3.16 0.05±0.01 3.71±0.82 9.15±3.17 2.47
200 50.34±6.31 50.58±6.59 6.80±1.45 39.29±18.88 0.16±0.03 6.96±1.45 39.45±18.94 5.67
400 43.78±6.82 44.16±6.98 16.77±3.58 446.55±336.09 0.44±0.07 17.21±3.58 446.99±336.64 25.97

Table 3: Comparison with TSWAP

overhead which could dominate the path computation time
when the robot density is high. However, for the 3D
benchmark, the robot density is low and thus Base-2’s
performance is significantly better than Base-1, which
computes the paths for all the robot-goal pairs, requiring
exorbitant amount of time in such a large workspace.

4.3 Comparison with TSWAP
To illustrate that our goal assignment algorithm OM can
help improve the state-of-the-art algorithms for the AMAPF
problem, we consider the offline TSWAP (Okumura and
Défago 2022) which solves the AMAPF problem by first
finding an initial goal assignment (GA) and then using a
suboptimal path planning (PP) module to plan collision-free
paths for the robots. We replace its Bottleneck Assignment
algorithm (Algorithm 2 in (Okumura and Défago 2022),
which we refer to as Base-2) by OM. In TSWAP, the path
planner uses 4 motion primitives (for 2D workspace) with
equal costs and a ‘stay’ primitive. Instead, we use 8 motion
primitives with different costs and a ‘stay’ primitive. We
take the cost of the ‘stay’ motion primitive as the cost of
movement of the other robot that caused the stay. We present
the experimental results in Table 3. As the number of robots
and goals in the workspace increases, the mean makespan
decreases due to the heightened likelihood of having a robot
positioned closer to each goal. The mean makespan shows
no significant difference before and after PP, as mitigating
robot-robot collisions rarely alter the optimal makespan. We
also observe that solving goal assignment takes majority
of the total runtime of the AMAPF solution process, and
thus, plugging OM into the algorithm for AMAPF provides
significant speedup.

4.4 Comparison with CBM
The Conflict-Based Min-Cost-Flow (CBM) algorithm (Ma
and Koenig 2016) provides optimal goal assignment having
collision-free paths. However, it is not scalable for large
workspaces having large number of robots. For example,
CBM takes approximately 6500 s to solve a problem
instance comprising of a 100 × 100 random workspace
and 100 robots (with 4 motion primitives). Table 3 shows
that OM along with the collision-free path planning module
of TSWAP takes less than 30 s on average for 400 robots
(with 8 motion primitives) in the benchmark 2D workspaces,
which is beyond the capability of CBM.

5 Conclusion
We have presented a scalable centralized algorithm to
solve the optimal-makespan goal assignment problem
for multi-robot systems. Our method outperforms the
state-of-the-art methods for the same problem considerably
in both 2D and 3D environments. We have shown that our
algorithm can be easily plugged into a decoupled method
like TSWAP for the AMAPF problem, leading to an order
of magnitude speed up in computing the goal assignment
and collision-free paths for a large number of robots.
It is straightforward to extend our algorithm to find an
assignment having optimal total cost among the assignments
having an optimal makespan by plugging the algorithm from
(Aakash and Saha 2022) after minor modifications.

Acknowledgements
We thank Hang Ma for making the source code of the CBM
implementation available for our experiments.

References
Aakash; and Saha, I. 2022. It Costs to Get Costs! A
Heuristic-Based Scalable Goal Assignment Algorithm for
Multi-Robot Systems. In ICAPS, 2–10. AAAI Press.
Alonso-Mora, J.; Breitenmoser, A.; Rufli, M.; Beardsley,
P. A.; and Siegwart, R. 2010. Optimal Reciprocal Collision
Avoidance for Multiple Non-Holonomic Robots. In DARS
2010, Lausanne, Switzerland, 203–216.
Bondy, J. A.; and Murty, U. S. R. 1976. Graph Theory with
Applications, volume 290. Macmillan London.
Brewer, D.; and Sturtevant, N. R. 2018. Benchmarks for
Pathfinding in 3D Voxel Space. SoCS.
Burkard, R.; Dell’Amico, M.; and Martello, S. 2009.
Assignment Problems. USA: Society for Industrial and
Applied Mathematics. ISBN 0898716632.
Chen, Y. F.; Liu, M.; Everett, M.; and How, J. P. 2017.
Decentralized Non-Communicating Multi-Agent Collision
Avoidance with Deep Reinforcement Learning. In ICRA,
285–292.
Das, S. N.; Nath, S.; and Saha, I. 2021. OMCoRP: An
Online Mechanism for Competitive Robot Prioritization. In
ICAPS, 112–121.
Dijkstra, E. W. 1959. A Note on Two Problems in
Connexion with Graphs. Numerische mathematik, 1(1):
269–271.
Fulkerson, D. R.; Glicksberg, I. L.; and Gross, O. A. 1953.
A Production-Line Assignment Problem. Santa Monica,
California: The Rand Corporation.
Gonzalez-de-Santos, P.; Ribeiro, A.; Fernandez-Quintanilla,
C.; Lopez-Granados, F.; Brandstoetter, M.; Tomic, S.;
Pedrazzi, S.; Peruzzi, A.; Pajares, G.; Kaplanis, G.;
Perez-Ruiz, M.; Valero, C.; del Cerro, J.; Vieri, M.;
Rabatel, G.; and Debilde, B. 2017. Fleets of Robots for
Environmentally-Safe Pest Control in Agriculture. Precision
Agriculture, 18: 574–614.
Grippa, P.; Behrens, D. A.; Wall, F.; and Bettstetter, C.
2019. Drone Delivery Systems: Job Assignment and
Dimensioning. Auton. Robots, 43(2): 261–274.
Gross, O. 1959. The Bottleneck Assignment Problem.
Technical Report P-1620, The Rand Corporation, Santa
Monica, California.
Hennes, D.; Claes, D.; Meeussen, W.; and Tuyls, K.
2012. Multi-Robot Collision Avoidance with Localization
Uncertainty. In AAMAS, 147–154.
Leiserson, C. E.; Rivest, R. L.; Cormen, T. H.; and Stein,
C. 1994. Introduction to Algorithms, volume 3. MIT press
Cambridge, MA, USA.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2021. Lifelong Multi-Agent Path Finding in
Large-Scale Warehouses. In AAAI, 11272–11281.
Ma, H.; and Koenig, S. 2016. Optimal Target Assignment
and Path Finding for Teams of Agents. In AAMAS,
1144–1152.
MacAlpine, P.; Price, E.; and Stone, P. 2015. SCRAM:
Scalable Collision-Avoiding Role Assignment with
Minimal-Makespan for Formational Positioning. In AAAI.

Okumura, K.; and Défago, X. 2022. Solving Simultaneous
Target Assignment and Path Planning Efficiently with
Time-Independent Execution. In ICAPS, 270–278.
Silver, D. 2005. Cooperative Pathfinding. Aiide, 1: 117–122.
Snape, J.; Van Den Berg, J.; Guy, S. J.; and Manocha, D.
2010. Smooth and Collision-Free Navigation for Multiple
Robots under Differential-Drive Constraints. In IROS,
4584–4589.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. SoCS, 151–158.
Sturtevant, N. 2012. Benchmarks for Grid-Based
Pathfinding. Transactions on Computational Intelligence
and AI in Games, 4(2): 144 – 148.
Tian, Y.-T.; Yang, M.; Qi, X.-Y.; and Yang, Y.-M.
2009. Multi-Robot Task Allocation for Fire-Disaster
Response Based on Reinforcement Learning. In 2009
International Conference on Machine Learning and
Cybernetics, volume 4, 2312–2317.
Turpin, M.; Michael, N.; and Kumar, V. 2013. Concurrent
Assignment and Planning of Trajectories for Large Teams of
Interchangeable Robots. In ICRA, 842–848.
Turpin, M.; Mohta, K.; Michael, N.; and Kumar, V. 2013.
Goal Assignment and Trajectory Planning for Large Teams
of Aerial Robots. In RSS.
Turpin, M.; Mohta, K.; Michael, N.; and Kumar, V. 2014.
Goal Assignment and Trajectory Planning for Large Teams
of Interchangeable Robots. Auton. Robots, 37(4): 401–415.
van den Berg, J. P.; Snape, J.; Guy, S. J.; and
Manocha, D. 2011. Reciprocal Collision Avoidance with
Acceleration-Velocity Obstacles. In ICRA, 3475–3482.
Yu, J.; and LaValle, S. M. 2013. Multi-Agent Path Planning
and Network Flow. In Algorithmic foundations of robotics
X, 157–173. Springer.

