
Technology Solutions Lab Confidential and Proprietary

Distributed SystemsDistributed Systems

Presentation 1

Date: 26.08.2005



Technology Solutions Lab 2Confidential and Proprietary

What is Distributed ComputingWhat is Distributed Computing

Distributed Computing 

 Tightly-coupled System

           Parallel Computing

 Loosely Coupled System

    Distributed Computing 

Grid Computing

P2P Computing

Mobile Computing

                       Pervasive Computing
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Models of Distributed ComputingModels of Distributed Computing

Computation Models

 Message-passing Systems

 Shared memory Systems

Timing Models

 Asynchronous

 Synchronous
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Message-passing System ModelMessage-passing System Model

Configuration

Event

•      Computation Event

•      Delivery Event

Execution: Sequence of configuration alternating with events, which satisfies 
all required safety conditions for a particular system type.

Admissible Execution: An Execution that satisfies all required liveness 
conditions. 

Schedule
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Complexity MeasuresComplexity Measures

 Message Complexity

 Time complexity
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Example: Algorithm 1Example: Algorithm 1

Algorithm: Spanning tree broadcast algorithm.
 

Initially <M> is in transit from pr to all its children in the spanning tree. 

Code for pr : 

    upon receiving no message: 

        send <M> to all children

        terminate 

Code for p
i
,   0 <= i <= n - 1,  i != r: 

    upon receiving <M> from parent: 

        send <M> to all children 

        terminate 
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Example: Algorithm 2Example: Algorithm 2
Algorithm:  algorithm to construct a spanning tree: 

code for processor pi, 0 <= i <= n - 1. 

Initially parent = NIL, children = NIL, and other = NIL. 

upon receiving no message: 

    if pi = pr and parent = NIL then             // root has not yet sent <M> 

        send <M> to all neighbors 

        parent := pi 

upon receiving <M> from neighbor pj: 

    if parent = NIL then                               // pi has not received <M> before 

        parent = Pj 

        send <parent> to pj 

        send <M> to all neighbors except pj 

    else send <already> to pj 
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Algorithm 2 (cont.)Algorithm 2 (cont.)

upon receiving <parent> from neighbor pj: 

    add pj to children 

    if (children U other) contains all neighbors except parent then 

        terminate 

upon receiving <already> from neighbor pj: 

    add pj to other 

    if (children U other) contains all neighbors except parent then 

        terminate 
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Leader Election ProblemLeader Election Problem

Leader election problem can’t be solved for Anonymous ring.

Two types of algorithms for Leader Election Problem

 Uniform 

 Non-uniform
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Asynchronous RingAsynchronous Ring

O(n2) uniform algorithm
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Asynchronous Ring (Cont.)Asynchronous Ring (Cont.)

O(n log n) algorithm
Algorithm:  Asynchronous leader election: code for processor pi,0 <= i <= n-1. 

    Initially, asleep = true 

    upon receiving no message: 

        if asleep then 

            asleep = false 

            send (probe, id, 0, 1) to left and right 

    upon receiving (probe, j, k, d) from left (resp., right): 

        if j = id then terminate as the leader 

         if j > id and d < 2k then                                           // forward the message 

             send <probe, j, k, d + 1> to right (resp., left)      //increment hop counter 

         if j > id and d = 2k then                                           // reply to the message 

             send <reply,  j, k> to left (resp., right)                // message is swallowed 
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Asynchronous Ring (Cont.)Asynchronous Ring (Cont.)

O(n log n) algorithm (Cont.)
upon receiving (reply, j, k) from left (resp., right): 

    if j != id then 

        send (reply,  j, k) to right (resp., left) 

                                                                // forward the reply 

    else                                                      // reply is for own probe 

        if already received (reply, j, k) from right (resp., left) then 

            if k != log (n-1)

                send (probe, id, k +1,1)           // phase k winner 

            else

                declare itself as the leader.

                send termination message to all the other processors.

The lower bound of the message complexity for the Leader election algorithm 
is O(n log n).
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Synchronous RingSynchronous Ring

The upper bound and the lower bound of the message complexity 
Leader Election Algorithm is O(n).

A non-uniform algorithm
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Shared Memory System ModelShared Memory System Model

Components:

    n Processors

    m Registers

Each register has a type, which specifies: 

    1. The values that can be taken on by the register 

    2. The operations that can be performed on the register 

    3. The value to be returned by each operation (if any) 

    4. The new value of the register resulting from each operation 
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Shared Memory System Model (Cont.)Shared Memory System Model (Cont.)

 Configuration

    C = (qo, . . . . ,qn-1,  ro, . . . . ,rm-1) 

 Events

 Execution

    Co, ø1, C1, ø2, C2, ø3 , . . . .  

 Schedule

   σ = i1, i2, ... 
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Complexity MeasuresComplexity Measures

 Space Complexity

 Time Complexity
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The Mutual Exclusion ProblemThe Mutual Exclusion Problem

Critical Section

Program of a processor is partitioned into the following sections:

• Entry

• Critical

• Exit

• Remainder 

Assumptions: 

  The variables accessed in the entry and Exit sections are not accessed in the 
Critical and the Remainder Section.

   No processor stays in the Critical section forever.



Technology Solutions Lab 19Confidential and Proprietary

The Mutual Exclusion Problem (Cont.)The Mutual Exclusion Problem (Cont.)

Conditions of Mutual Exclusion

• Mutual exclusion

• No Deadlock

• No Lockout
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Example: Binary Test&Set RegistersExample: Binary Test&Set Registers
test&set(V : memory address) returns binary value : 

    temp = V 

    V = l 

    return (temp) 

reset(V : memory address): 

     V = 0 

Algorithm: Mutual exclusion using a test&set register: (code for every processor) 

    Initially V equals 0 

    (Entry): 

        wait until test&set( V) = 0 

    (Critical Section) 

    (Exit): 

        reset(V) 

    (Remainder) 
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Example: Read-Modify-Write RegistersExample: Read-Modify-Write Registers
rmw( V : memory address,  f: function) returns value: 

    temp = V 

    V = f(V) 

    return (temp) 

Algorithm: Mutual exclusion using a read-modify-write register (code for every processor) 

Initially V = <0 , 0> 

(Entry): 

    position = rmw(V, <V.first,V.last + 1>)                                     // enqueueing at the tail 

    repeat 

        queue = rmw (V, V)                                                                // read head of queue 

    until (queue.first = position.last)                                                 // until becomes first 

(Critical Section) 

(Exit): 

    rmw (V , <V.first + V.last>)                                                       //dequeueing 

(Remainder) 
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Example: Mutual Exclusion using Local SpinningExample: Mutual Exclusion using Local Spinning  
Local spinning

Algorithm: Mutual exclusion using local spinning: (code for every processor) 

Initially     Last = 0;  Flags[0] = has-lock; Flags[i] = must-wait, 0 < i < n. 

(Entry): 

    my-place := rmw (Last, Last + 1 mod n) 

    wait until ( Flags[my-place] = has-lock)

    Flags[my-place] = must-wait 

(Critical Section) 

(Exit): 

    Flags[my-place + l mod n] = has-lock 

(Remainder) 
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Failures in Synchronous SystemsFailures in Synchronous Systems

 Crash Failure

 Byzantine Failure
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Synchronous Systems with Crash FailureSynchronous Systems with Crash Failure

Assumptions

    Communication graph is complete.

    Links are completely reliable.

Formal Model

    For a f-resilient system, at most f processors can fail.

    In the last round in which a faulty processor has a computation event, 
an arbitrary set of the outgoing messages are delivered.

The Consensus Problem

 Termination

 Agreement

 Validity
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A Simple AlgorithmA Simple Algorithm

Algorithm: Consensus algorithm in the presence of crash failures: 

code for processor pi, 0 <= i <= n - 1. 
Initially V = {x}                                                       // V contains pi's input 

round k,  1 <= k <= f+ 1: 

    send {v in V : pi has not already sent v} to all processors 

    receive Sj from pj,     0 <= j <= n-l,    j  != i 

    V =   

    if k = f + 1               then y = min( V)                   // decide 

The above algorithm solves the consensus problem in the presence off crash 

failures within f + 1 rounds. 

 1

0

−

=

n

j jSV
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Lower Bound on the Number of Lower Bound on the Number of 
RoundsRounds

Theorem: Any consensus algorithm for n processors that is resilient 
to f crash failures requires at least f +1 rounds in some admissible 
execution, for all n >= f + 2. 
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Synchronous Systems with Byzantine Synchronous Systems with Byzantine 
FailureFailure

Formal Model

The Consensus Problem

 Termination

 Agreement

 Validity

Lower Bound on the Number of Faulty Processors

Theorem: In a system with n processors and f Byzantine 
processors, there is no algorithm that solves the consensus problem 
if n < 3f.
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An Exponential AlgorithmAn Exponential Algorithm

f is the upper bound on the number of failures.

n >= 3f + 1. 

The algorithm takes exactly f + 1 rounds.

The exponential information gathering Tree
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An Exponential Algorithm (Cont.)An Exponential Algorithm (Cont.)

Validity Condition

Lemma. For every tree node label (pi) of the form (pi)'j, where pj  is non-faulty, 

resolvei(pi) = treej(pi'), for every non-faulty processor pi. 

Agreement Condition

Common

Common Frontier

Lemma. Let (pi) be a node. If there is a common frontier in the sub-tree rooted at 
(pi), then (pi) is common. 

Theorem: There exists an algorithm for n processors that solves the consensus 
problem in the presence off Byzantine failures within f +1 rounds using 
exponential size messages, if n > 3f. 
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A Polynomial AlgorithmA Polynomial Algorithm
Algorithm: A polynomial consensus algorithm in the presence of Byzantine failures: (n>4f)

code for pi , 0 <= i <= n - 1. 

Initially pref[i] = x                              // initial preference for self is for own input 
and pref[j]  = DEFAULT  for any j != i               // default for others 

round 2k - 1,    1 <= k <= f + 1:          // first round of phase k 
    send <pref[i]> to all processors 
    receive <vj> from pj and assign to pref[j], for all 0 <= j <= n - 1,  j != i 

    let maj be the majority value of pref[0],.. .,pref[n - 1] (DEFAULT if none) 
    let mult be the multiplicity of maj 

round 2k, 1 <= k <= f + 1:                  // second round of phase k 
    if i = k then send <maj> to all processors           //king of this phase 
    receive <king-maj> from pk (DEFAULT if none) 

    if mult > n/2 + f 
        then pref[i] = maj 
    else    pref[i] = king-maj 

    if k = f + 1    then y = pref[i]           // decide 
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A Polynomial Algorithm (Cont.)A Polynomial Algorithm (Cont.)

Validity Property

Lemma. If all non-faulty processors prefer v at the beginning of phase k, then they 
all prefer v at the end of phase k, for all k, 1 <= k <= f + 1. 

Agreement Property

Lemma.  Let g be a phase whose king pg is non-faulty. Then all non-faulty 
processors finish phase g with the same preference. 

Theorem: There exists an algorithm for n processors that solves the consensus 
problem in the presence off Byzantine failures within 2(f +1) rounds using constant 
size messages, if n > 4f. 
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Impossibilities in Asynchronous Impossibilities in Asynchronous 
SystemsSystems

Shared Memory

The Wait-Free case

Theorem: There is no wait-free algorithm for solving the consensus problem in 
an asynchronous shared memory system with n processors. 

The General Case

Theorem: There is no consensus algorithm for a read/write asynchronous shared 
memory system that can tolerate even a single crash failure. 

Message Passing

Theorem 5.25 There is no algorithm for solving the consensus problem in an 
asynchronous message-passing system with n processors, one of which may fail 
by crashing. 
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Capturing CausalityCapturing Causality

Causality relations in asynchronous message-passing system

Some Basic Concepts:

A partial order is a binary relation R over a P which is reflexive, anti-symmetric, 
and transitive.

Partially Ordered Set

Example: The set of natural numbers equipped with the (divides) relation. 

A Total order, Linear order or Simple order on a set P is any binary relation R on 
P that is anti-symmetric, transitive, and total. 

Totally Ordered Set

Example: real numbers ordered by the standard less than (<) or greater than (>) 
relations.

http://en.wikipedia.org/wiki/Reflexive_relation
http://en.wikipedia.org/wiki/Antisymmetric_relation
http://en.wikipedia.org/wiki/Transitive_relation
http://en.wikipedia.org/wiki/Antisymmetric_relation
http://en.wikipedia.org/wiki/Transitive_relation
http://en.wikipedia.org/wiki/Total_relation
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The Happens-Before RelationThe Happens-Before Relation

Given two events e1 and e2 in an execution , e1 happens before e2, denoted by 
e1=>e2, if one of the following conditions holds: 

1. e1 and e2 are events by the same processor pi, and e1 occurs before e2 in that 
execution. 

2. e1 is the send event of the message m from pi to pj, and e2 is the receive event 
of the message m by pj. 

3. There exists an event e such that e1=>e and e=>e2. 

Happens-Before relation is an Partial Order.
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Casual ShuffleCasual Shuffle

Definition. Given an execution segment α = exec(C, σ), a permutation Π of a 
schedule σ is a causal shuffle of α if 

1. For all i, 0 < i < n-1, σ | i = Π | i, and 

2. If a message m is sent during processor pi's (computation) event ø in α, then in 
pi, ø precedes the delivery of m. 

Lemma. Let α = exec(C, σ) be an execution fragment. Then any permutation of 
the events in σ that is consistent with the happens-before relation of α is a causal 
shuffle of α. 

Lemma. Let α = exec(C, σ) be an execution fragment. Let Π be a causal shuffle 
of σ. Then α' = exec(C, Π) is an execution fragment and is similar to α. 
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Logical ClocksLogical Clocks

Logical Timestamp LT(e) 

To capture the happens-before relation, we require an irreflexive partial order 
“<“ on the timestamps, such that for every pair of events, e1 and e2, 

if e1 => e2, then LT(e1) < LT(e2) 

Theorem. Let α be an execution, and let e1and e2 be two events in α. If e1 => 
e2, then LT(e1) < LT(e2). 

If LT(e1) >= LT(e2)          then e1 !=> e2 

It is possible that LT(e1) < LT(e2), but e1 !=> e2

Happens-before relation is a partial order, but the logical timestamps are totally 
ordered “ < “ relation.
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Non-causalityNon-causality
Non-causality: Two events e1 and e2 are concurrent in execution α, denoted by 
e1||α e2, 

                                             if e1!=> e2 and e2 !=> e1.

A partial ordering is needed to describe the non-causality.
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Vector ClocksVector Clocks
Vector timestamps provide a way to capture causality and non-causality.

Vector Clock VCi

For every processor pj, in every reachable configuration, VCj[i] <  VCi[i], for 
all i, 0 < i < n - l. 

Theorem. Let α be an execution, and let e1 and e2 be two events in α . If 
e1=>e2, then VC(e1) < VC(e2).

Theorem. Let a be an execution, and let e1 and e2, be two events in a. If 
VC(e1) < VC(e2), then e1 => e2.
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Shared Memory SystemShared Memory System

Given two events e1 and e2 in an execution α, e1 happens before e2, denoted 
e1 => e2, if one of the following conditions holds: 

    1. e1 and e2 are events by the same processor pi, and e1 occurs before e2 
in α. 

    2. e1 and e2 are conflicting events, that is, both access the same shared  
variable and one of them is a write, and e1 occurs before e2 in α. 

    3. There exists an event e such that e1 => e and e => e2. 

The notion of a causal shuffle can be adapted to the shared memory model.
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Clock SynchronizationClock Synchronization

Hardware Clock

Assumption: Hardware clocks have no drifts.

Definition. A view with clock values of a processor pi (in a model with hardware 
clocks) consists of an initial state of pi, a sequence of events (computation and 
deliver) that occur at pi and a hardware clock value assigned to each event. 

Definition. A timed view with clock values of a processor pi (in a model with 
hardware clocks) is a view with clock values together with a real time assigned 
to each event. The assignment must be consistent with the hardware clock having 
the form HCi (t) = t + ci; for some constant ci. 

HCi

t
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Merging of the Time Views of the ProcessorsMerging of the Time Views of the Processors

Definition. Let α be a timed execution with hardware clocks and let x be a vector 
of n real numbers. Define shift(α, x) to be merge(η0,η1,…..,ηn-1), where ηi is the 
timed view obtained by adding xi to the real time associated with each event in a 
α | i. 

Lemma. Let α be a timed execution with hardware clocks HCi, 0 < i < n - 1, and 
x be a vector of n real numbers. In shift(α , x): 

(a) the hardware clock of pi, HC’i, is equal to HCi - xi, 0 < i < n - 1, and 

(b) every message from pi to pj has delay δ - xi + xj, where δ is the delay of the 
message in a, 0 < i, j < n - 1. 
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Clock Synchronization ProblemClock Synchronization Problem

Hardware Clock HCi(t)

Adjusted Clock ACi(t)

ACi(t) = HCi(t) + adji(t).

Achieving ε -Synchronized Clocks: In every admissible timed execution, there 
exists real time tf such that the algorithm has terminated by real time tf, and, for 
all processors pi and pj, and all t > tf, |ACi(t) - ACj(t)| < ε. 

ε is the Clock skew.

Maximum message delay d

Uncertainty in the message delay u
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The Two Processors CaseThe Two Processors Case

How to estimate the delay in the delivery of the message?

The best estimated delay is (d – u/2).

        d – u <= δ <= d        =>        | δ – (d – u/2) | <= u/2
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The Two Processors Case (Cont.)The Two Processors Case (Cont.)

The best skew that can be achieved in the worst case by a clock synchronization 
algorithm for two processors is u/2.

α` = shift (α, <-u, 0>) 



Technology Solutions Lab 47Confidential and Proprietary

n Processors Casen Processors Case

Algorithm: A clock synchronization algorithm for n processors: 

code for processor pi, 0 < i < n - 1. 

initially diff[i] = 0 

at first computation step: 

    send HC (current hardware clock value) to all other processors.

upon receiving message T from some pj: 

    diff[j] := T + d - u/2 - HC 

    if a message has been received from every other processor then 

The above algorithm achieves u(1 – 1/n)-synchronization for n processors.

Theorem: For every algorithm that achieves ε- synchronized clocks, ε is at least  
u(1 – 1/n).

∑
−

=

=
1

0

][
1 n

k

kdiff
n

adj
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Practical Clock Synchronization: Estimating Clock DifferencesPractical Clock Synchronization: Estimating Clock Differences

Timeout Parameter

Delay

Prob

Timeout
Parameter
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A Formal Model for SimulationA Formal Model for Simulation

Objectives

   - To study tools and abstraction for simplifying the design of 
distributed algorithms.

    - To modify our model to handle specifications and 
implementation of distributed algorithms.

    - To put our focus on the interface between an algorithm 
(equivalently, the processor) and the external world.
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Problem SpecificationProblem Specification

A problem is specified at the interface between an algorithm and the external 
world.

A Problem Specification P is 

 A set of inputs in(P)

 A set of outputs out(P)

 A set of allowable sequences seq(P)

Example: Mutual Exclusion Problem.

Inputs: Ti and Ei

Outputs: Ci and Ri

A sequence α of inputs and outputs is in the set of allowable sequences iff

• α | i cycles through Ti, Ci, Ei, Ri in that order

• Whenever Ci occurs, the most recent preceding output for any other j is not Cj
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Communication SystemsCommunication Systems

Objective:

    To provide communication system in software

Communication System is interposed between the processors.

The communication system will be different for different situation

• Different interface

• Different ordering

• Reliability
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Asynchronous Point-to-point Message PassingAsynchronous Point-to-point Message Passing

The interface to an asynchronous point-to-point message-passing system is with 

two types of events: 

 sendi(M)

 recvi(M)

There exists a mapping κ from the set of messages appearing in all the  recvi(M) 

events, for all i, to all the set of messages appearing in  sendi(M) events, for all i, 
such that each message m in a recv event is mapped to a message with the same 
content appearing in an earlier send event, and the following three properties are 
satisfied:

 Integrity

 No Duplicates

 Liveness
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Asynchronous BroadcastAsynchronous Broadcast

The interface to a basic asynchronous broadcast service is with two types of events: 

 bc-sendi(m)

 bc-recvi(m, j)

There exists a mapping κ from each bc-recvi(m, j) events to an earlier bc-sendj(m) 
events, with the following three properties:

 Integrity

 No Duplicates

 Liveness
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Process Process 

A system consists of a collection of n processors (or nodes), p0 through pn-i, a 
communication system C linking the nodes, and the environment E. 

Node Input
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Process (Cont.)Process (Cont.)

Configuration

Execution

 Configuration Co is an initial configuration. 

 For each i >= 1, event øi is enabled in configuration Ci-1 and configuration Ci is the result 
of øi acting on Ci-1. In more detail, every state component is the same in Ci, as it is in Ci-1, 
except for the (at most two) processes for which øi is an event. 

 For each i >= 1, if event øi is not a node input, then i > 1 and it is on the same node as 
event øi-1. Thus the first event must be a node input, and every event that is not a node 
input must immediately follow some other event on the same node. 

 For each i >= 1, if event øi is a node input, then no event (other than a node input) is 
enabled in Ci-1. Thus a node input does not occur until all the other events have "played 
out" and no more are enabled. 

Schedule

Execution α top(α) bot(α)
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AdmissibilityAdmissibility

Admissibility Conditions

• An execution is fair if every event, other than a node input, that is 
continuously enabled eventually occurs. 

• An execution is user compliant for problem specification P, if the 
environment satisfies the input constraints of P. 

• An execution α is correct for communication system C if bot(α) is an 
element of seq(C). 

We define an execution to be (P, C)-admissible if it is fair, user compliant for 
problem specification P, and correct for communication system C. 
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SimulationSimulation

Global Simulation

Communication system C1 globally simulates (or simply simulates) 
communication system C2 if there exists a collection of processes, one for each 
node, called Sim (the simulation program) that satisfies the following: 

    1. The top interface of Sim is the interface of C2 

    2. The bottom interface of Sim is the interface of C1. 

    3. For every (C2, C1)-admissible execution α of Sim, there exists σ sequence a in

        seq(C2) such that σ = top(α). 
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Simulation (Cont.)Simulation (Cont.)

Local Simulation

 An execution α is locally user compliant for problem specification P if, the 
environment satisfies the input constraints of P on a per node basis, but not 
necessarily globally. 

 An execution is (P, C) -locally-admissible if it is fair, locally user compliant 
for P, and correct for the communication system C. 

Communication system C1 localy simulates communication system C2 if there 
exists a collection of processes, one for each node, called Sim (the simulation 
program) that satisfies the following: 

    1. The top interface of Sim is the interface of C2 

    2. The bottom interface of Sim is the interface of C1.

    3. For every (C2,C1)-locally-admissible execution α of Sim, there exists a se- 
sequence σ in seq(Ci) such that a σ | i = top(α) | i for all i, 0 <= i <= n - 1. 
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Specification of Broadcast ServicesSpecification of Broadcast Services

Quality of Service

The type of ordering

The degree of fault tolerance

The interface to a basic asynchronous broadcast service is with two types of events: 

 bc-sendi(m, qos)

 bc-recvi(m, j, qos)



Technology Solutions Lab 62Confidential and Proprietary

Broadcast Service Quality: OrderingBroadcast Service Quality: Ordering

Single-Source FIFO: For all messages m1 and m2 and all processors pi and pj, if 
pi sends m1 before it sends m2, then m2 is not received at pj before m1 is. 

Totally Ordered: For all messages m1 and m2 and all processors pi and pj, if m1 is 
received at pi before m2 is, then m2 is not received at pj before mi is. 

Given a sequence of bc-send and bc-recv events, message m1 is said to happen 
before message m2 if either: 

• The bc-recv event for m1 happens before the bc-send event for m2, or 

• m1 and m2 are sent by the same processor and m1 is sent before m2. 

Causally Ordered: For all messages m1 and m2 and every processor pi, if m1 
happens before m2, then m2 is not received at pi, before m1 is. 
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Ordering (Cont.)Ordering (Cont.)

What are the relationships between these three ordering requirements? 

 Causally ordered implies single-source FIFO, but does not imply totally ordered 

 Totally ordered does not imply causally ordered or single-source FIFO, 

 Single-source FIFO does not imply causally ordered or totally ordered. 

If a broadcast service provides total ordering as well as single-source FIFO 
ordering, then it is causally ordered. 
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Broadcast Service Quality: ReliabilityBroadcast Service Quality: Reliability

There must be a partitioning of the processor indices into "faulty" and "nonfaulty" 
such that there are at most f faulty processors, and the mapping k from bc-recv(m) 
events to bc-send(m) events must satisfy the following properties: 

Integrity

No Duplicates

Non faulty Liveness

Faulty Liveness

Different kinds of Broadcast

 Atomic broadcast or Total broadcast. 

 FIFO atomic broadcast 

 Causal atomic broadcast 
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Implementing a Broadcast ServiceImplementing a Broadcast Service

Assumption: Underlying message system is asynchronous and point-to-
point.

Basic Broadcast Service

    Implemented on top of an asynchronous point-to-point message system with no 
failures.

Single Source FIFO Ordering

    Implemented on top of basic broadcast.
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Totally Ordered BroadcastTotally Ordered Broadcast

An Asymmetric Algorithm

    - implemented on top of Basic Broadcast

    - relies on a central coordinator.

A symmetric Algorithm

    - implemented on the top of the single-source FIFO broadcast.
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Totally Ordered Broadcast (Cont.)Totally Ordered Broadcast (Cont.)

Algorithm1: Totally ordered broadcast algorithm: code for pi, 0 <= i <= n - 1. 

Initially ts[j] = 0, 0 <= j <= n - 1, and pending is empty. 

when bc-sendi(m, to) occurs:

    ts[i] := ts[i] + 1 
    add (m, ts[i], i) to pending 
    enable bc-sendi(<m, ts[j]>, ssf) 

when bc-recv; (<m,T>, j,ssf), j != i, occurs: 
    ts[j] := T 
    add (m, T, j) to pending 
    if T > ts[i] then 
        ts[i] := T 
        enable bc-sendi(<ts-up,T>, ssf)

when bc-recvj(<ts-up, T>, j, ssf), j != i, occurs: 

    ts[j] := T 

enable bc-recvi(m, j, to) when 

    <m, T, j> is the entry in pending with the smallest (T, j) 
    T <= ts[k] for all k 
result: remove <m, T, j> from pending 
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Causality without Total OrderingCausality without Total Ordering

Algorithm 2  Causally ordered broadcast algorithm: code for pi, 0 < i < n - 1. 

Initially vt[j] = 0, 0 < = j <= n - 1, and pending is empty 

when bc-sendi(m, co) occurs: 

    vt[i] = vt[i] + 1 

    enable bc-recv,({m),co) 

    enable bc-send,((m,vt),basic) 

when bc-recvj(<m, v>), j, basic),  j != i, occurs: 

    add <m, v, j> to pending 

enable bc-recv; (m, j, co) when: 

    (m, v, j) is in pending 

    v[j] = vt[j] + 1 

    v[k] <= vt[k] for all k != i 

result: remove <m, v, j> from pending 

    vt[j] := vt[j] + 1 
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Causality without Total OrderingCausality without Total Ordering
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Reliable Basic BroadcastReliable Basic Broadcast

Algorithm 3 Reliable broadcast algorithm: code for pi, 0 < i < n - 1. 

when bc-sendi(m, reliable) occurs: 

    enable bc-send,(<m, i>, basic)

when bc-recvi(<m, k>, j, basic) occurs: 

    if m was not already received then 

        enable bc-sendi(<m, k>, basic) 

        enable bc-recvi(m, k, reliable) 
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Specification of Multicast ServicesSpecification of Multicast Services

Quality of Service

The type of ordering

The degree of fault tolerance

The interface to a basic asynchronous broadcast service is with two types of events: 

 bc-sendi(m, G, qos)

 bc-recvi(m, j, qos)
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Ordering and reliabilityOrdering and reliability

Ordering

 Single Source FIFO

 Totally Ordered

 Multiple-Group Ordering: Let m1and m2 be messages. For any pair of 
processors pi and pj, if the events mc-recv(m1) and mc-recv (m2) occur at pi 

and pj, then they occur in the same order. 

 Causally Ordered

Reliability

 Integrity

 No Duplicates

 Nonfaulty Liveness

 Faulty Liveness
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Distributed SystemsDistributed Systems
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Distributed Shared MemoryDistributed Shared Memory

Distributed shared memory is a model for interprocess communication that 
provides the illusion of a shared memory on top of a message passing system.

The simulation program, which runs on top of the message system providing the 
illusion of shared memory is called the Memory Consistency System (MCS). 
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Shared ObjectShared Object

Operation – Pairs of invocation and matching responses

Sequential Specification – Set of operations and a set of legal sequences of 
operations.

Example: Read/Write object X

- The invocation for a read is readi(X) and responses are returni(X, v), where i 
indicates the node and v the return value.

- The invocations for a write have the form writei(X, v), where v is the value to be 
written, and the response is acki(X).

- A sequence of operations is legal if each read returns the value of the most recent 
preceding write, if there is one, and otherwise returns the initial value. 
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Linearizable Shared MemoryLinearizable Shared Memory

Inputs – invocations on shared objects

Outputs – responses from the shared object

For a sequence σ to be in the allowable set, the following properties must be 
satisfied: 

Correct interaction: For each pi, σ|i consists of alternating invocations and 
matching responses, beginning with an invocation. This condition imposes 
constraints on the inputs. 

Liveness: Every invocation has a matching response. 

Linearizability: There exists a permutation Π of all the operations in a such that 

1. For each object O, Π|O is legal (i.e., is in the sequential specification of O)

2. If the response of operation o1 occurs in σ before the invocation of operation o2, 
then o1 appears before o2 in Π. 
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Linearizable Shared Memory (Cont.)Linearizable Shared Memory (Cont.)

Examples:

Processor p0 and p1

Shared registers x and y, both initially 0.

σ1 = write0(x,1) write1(y,1) ack0(x) ack1(y) read0(y) read1(x) return0(y, 1) return1(x, 1) 

Π1= w0w1r0r1 

- Linearizable.

σ2 = write0(x,1) write1(y,1) ack0(x) ack1(y) read0(y) read1(x) return0(y, 0) return1(x, 1) 

- Not Linearizable.
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Sequentially Consistent Shared MemorySequentially Consistent Shared Memory

A sequence σ of invocations and responses is sequentially consistent if there 
exists a permutation Π of the operations in a such that 

1. For every object O, Π | O is legal, according to the sequential specification of 
O.

2. If the response for operation o1 at node pi occurs in σ before the invocation for 
operation o2 at node pi, then o1 appears before o2 in Π, equivalently, σ | i = Π | i.
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Sequentially Consistent Shared Memory Sequentially Consistent Shared Memory 
(Cont.)(Cont.)

Example:

σ2 = write0(x,1) write1(y,1) ack0(x) ack1(y) read0(y) read1(x) return0(y, 0) return1(x, 1)

Π2= w0 r0 w1 r1 

Sequentially consistent.

σ3 = write0(x,1) write1(y,1) ack0(x) ack1(y) read0(y) read1(x) return0(y, 0) return1(x, 0)

Not sequentially consistent.
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AlgorithmAlgorithm

Assumption: Underlying message passing communication system supports totally 
ordered broadcast.

bc-sendi (m, total) -> tbc-sendi (m)

bc-recvi (m, total) -> tbc- recvi (m)

There is a local copy of every shared object in the state of the MCS process at 
every node.



Technology Solutions Lab Confidential and Proprietary

Algorithm: LinearizabilityAlgorithm: Linearizability

when readi(x) occurs:

 enable tbc-sendi (x).

when writei(x, v) occurs: 

    enable tbc-sendi (x,v).

when tbc-recvi (x, v) from pj occurs: 

    copy[x] := v 

    if j = i then enable acki (x) 

when tbc-recvi (x) from pj occurs: 

    if j = i then enable returni (copy[x]) 
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Algorithm: Sequentially Consistent Local ReadAlgorithm: Sequentially Consistent Local Read

code for processor pi, 0 <= i <= n - 1. 

Initially copy[x] holds the initial value of shared object x, for all x.

when readi(x) occurs: 

    enable returni (x, copy[x]) 

when writei(x, v) occurs: 

    enable tbc-sendi (x,v) 

when tbc-recvi (x, v) from pj occurs: 

    copy[x] := v 

    if j = i then enable acki (x) 
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Algorithm: Sequentially Consistent Local WriteAlgorithm: Sequentially Consistent Local Write

code for processor pi, 0 <= i <= n - 1. 

Initially copy[x] holds the initial value of shared object x, for all x, and num = 0.

when readi(x) occurs:

    if num = 0 then enable returni (x, copy[x]).

when writei (x, v) occurs: 

    num := num +1 

    enable tbc-sendi (x, v) 

    enable acki (x) 

when tbc-recvi (x, v) from pj occurs: 

    copy[x] := v 

    if j = i then 

        num = num - 1 

        if num = 0 and a read on x is pending then 

            enable returni (x, copy[x]). 
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Thank YouThank You
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