Distributed Systems

Presentation 1

Technology Solutions Lab

Confidential and Proprietary

What is Distributed Computing

Distributed Computing

Tightly-coupled System

Parallel Computing

Loosely Coupled System

Distributed Computing

- \rightarrow P2P Computing
- Mobile Computing
 - ----- Pervasive Computing

Computation Models

- Message-passing Systems
- Shared memory Systems

Timing Models

- Asynchronous
- Synchronous

Message-passing System Model

Configuration

Event

- Computation Event
- Delivery Event

Execution: Sequence of configuration alternating with events, which satisfies all required *safety conditions* for a particular system type.

Admissible Execution: An Execution that satisfies all required *liveness conditions*.

Schedule

Honeywell

- Message Complexity
- Time complexity

Algorithm: Spanning tree broadcast algorithm.

Initially $\langle M \rangle$ is in transit from p_r to all its children in the spanning tree.

Code for p_r:

upon receiving no message: send <M> to all children terminate

Code for p_i , $0 \le i \le n - 1$, $i \le r$:

upon receiving <M> from parent: send <M> to all children terminate

Example: Algorithm 2

Algorithm: algorithm to construct a spanning tree:

code for processor p_i , $0 \le i \le n - 1$.

Initially *parent* = NIL, *children* = NIL, and *other* = NIL.

upon receiving no message:

Tec

if $p_i = p_r$ and *parent* = NIL then // root has not yet sent <M>send <M> to all neighbors *parent* := p_i

upon receiving <M> from neighbor p_i:

if <i>parent</i> = NIL then	// pi has not received <n< th=""><th>/I> before</th></n<>	/I> before
$parent = P_j$		
send <parent> to p_j</parent>		
send <m> to all neighbors</m>	s except p _j	
else send <already> to p</already>		Honey
hnology Solutions Lab	Confidential and Proprietary	

Algorithm 2 (cont.)

upon receiving <parent> from neighbor p_i:

add p_i to *children*

if (*children* U *other*) contains all neighbors except *parent* then terminate

upon receiving <already> from neighbor p_i:

add p_j to *other*

if (*children* U *other*) contains all neighbors except *parent* then terminate

Leader election problem can't be solved for Anonymous ring.

Two types of algorithms for Leader Election Problem

- ➤ Uniform
- ➢ Non-uniform

Asynchronous Ring

 $O(n^2)$ uniform algorithm

Asynchronous Ring (Cont.)

O(n log n) algorithm

Algorithm: Asynchronous leader election: code for processor p_i , $0 \le i \le n-1$.

Initially, *asleep* = true

upon receiving no message:

if *asleep* then

asleep = false

send (probe, *id*, 0, 1) to left and right

upon receiving (probe, *j*, *k*, *d*) from left (resp., right):

if j = id then terminate as the leader

if j > id and $d < 2^k$ then

send <probe, j, k, d + 1> to right (resp., left)

if j > id and $d = 2^k$ then

send <reply, *j*, *k*> to left (resp., right)

- // forward the message
- //increment hop counter
- // reply to the message
- // message is swallowed Honeywell

Asynchronous Ring (Cont.)

```
O(n log n) algorithm (Cont.)
```

upon receiving (reply, *j*, *k*) from left (resp., right):

```
if j != id then
```

```
send (reply, j, k) to right (resp., left)
```

// forward the reply

else

```
// reply is for own probe
```

```
if already received (reply, j, k) from right (resp., left) then
```

```
if k != log (n-1)
```

```
send (probe, id, k+1,1) // phase k winner
```

else

declare itself as the leader.

send termination message to all the other processors.

The lower bound of the message complexity for the Leader election algorithm is $O(n \log n)$.

The upper bound and the lower bound of the message complexity Leader Election Algorithm is O(n).

A non-uniform algorithm

Distributed Systems

Presentation 2

Technology Solutions Lab

Confidential and Proprietary

Components:

- n Processors
- m Registers

Each register has a type, which specifies:

- 1. The values that can be taken on by the register
- 2. The operations that can be performed on the register
- 3. The value to be returned by each operation (if any)
- 4. The new value of the register resulting from each operation

Shared Memory System Model (Cont.)

Configuration

- $C = (q_0, \ldots, q_{n-1}, r_0, \ldots, r_{m-1})$
- \succ Events
- ➢ Execution
 - $C_{0}, ø_{1}, C_{1}, ø_{2}, C_{2}, ø_{3}, \ldots$
- ➤ Schedule
 - $\sigma = i_1, i_2, ...$

Complexity Measures

- Space Complexity
- Time Complexity

The Mutual Exclusion Problem

Critical Section

Program of a processor is partitioned into the following sections:

- Entry
- Critical
- Exit
- Remainder

Assumptions:

- The variables accessed in the entry and Exit sections are not accessed in the Critical and the Remainder Section.
- No processor stays in the Critical section forever.

The Mutual Exclusion Problem (Cont.)

Conditions of Mutual Exclusion

- Mutual exclusion
- No Deadlock
- No Lockout

Example: Binary Test&Set Registers

test&set(V : memory address) returns binary value :

temp = VV = 1

return (temp)

reset(V : memory address):

V = 0

Algorithm: Mutual exclusion using a test&set register: (code for every processor)

Initially V equals 0

(Entry):

wait until test&set(V) = 0

(Critical Section)

(Exit):

reset(V)

(Remainder)

Honeywell

Example: Read-Modify-Write Registers

rmw(V: memory address, f: function) returns value:

temp = V V = f(V) return (temp)

Algorithm: Mutual exclusion using a read-modify-write register (code for every processor) Initially V = <0, 0> (Entry): position = rmw(V, <V.first,V.last + 1>) // enqueueing at the tail

repeat

```
queue = rmw(V, V)
```

until (queue.first = position.last)

(Critical Section)

(Exit):

```
rmw (V, <V.first + V.last>)
```

(Remainder)

Technology Solutions Lab

Honeywell

// read head of queue

// until becomes first

//dequeueing

Example: Mutual Exclusion using Local Spinning

Local spinning

Algorithm: Mutual exclusion using local spinning: (code for every processor)

Initially Last = 0; Flags[0] = has-lock; Flags[i] = must-wait, 0 < i < n.

(Entry):

```
my-place := rmw (Last, Last + 1 mod n)
```

wait until (Flags[my-place] = has-lock)

Flags[my-place] = must-wait

(Critical Section)

(Exit):

```
Flags[my-place + 1 \mod n] = has-lock
```

(Remainder)

Distributed Systems

Presentation 3

Technology Solutions Lab

Confidential and Proprietary

Failures in Synchronous Systems

Crash Failure

Byzantine Failure

Synchronous Systems with Crash Failure

Assumptions

Communication graph is complete.

Links are completely reliable.

Formal Model

For a f-resilient system, at most f processors can fail.

In the last round in which a faulty processor has a computation event, an arbitrary set of the outgoing messages are delivered.

The Consensus Problem

- Termination
- Agreement
- Validity

A Simple Algorithm

Algorithm: Consensus algorithm in the presence of crash failures:

```
code for processor p_i, 0 \le i \le n - 1.

Initially V = \{x\} // V contains p_i's input

round k, 1 \le k \le f + 1:

send {v in V : p_i has not already sent v} to all processors

receive S_j from p_j, 0 \le j \le n - 1, j != i

V = V > \sum_{j=0}^{n-1} S_j

if k = f + 1 then y = min(V) // decide
```

The above algorithm solves the consensus problem in the presence off crash failures within f + 1 rounds.

Lower Bound on the Number of Rounds

Theorem: Any consensus algorithm for n processors that is resilient to f crash failures requires at least f + 1 rounds in some admissible execution, for all $n \ge f + 2$.

Synchronous Systems with Byzantine

Formal Model

The Consensus Problem

- Termination
- Agreement
- Validity

Lower Bound on the Number of Faulty Processors

Theorem: In a system with n processors and f Byzantine processors, there is no algorithm that solves the consensus problem if n < 3f.

Honeywell

An Exponential Algorithm

f is the upper bound on the number of failures.

n >= 3f + 1.

The algorithm takes exactly f + 1 rounds.

The exponential information gathering Tree

An Exponential Algorithm (Cont.)

Validity Condition

Lemma. For every tree node label (pi) of the form (pi)'j, where p_j is non-faulty, resolve_i(pi) = tree_i(pi'), for every non-faulty processor p_i .

Agreement Condition

Common

Common Frontier

Lemma. Let (pi) be a node. If there is a common frontier in the sub-tree rooted at (pi), then (pi) is common.

Theorem: There exists an algorithm for n processors that solves the consensus problem in the presence off Byzantine failures within f + 1 rounds using exponential size messages, if n > 3f.

A Polynomial Algorithm

Algorithm: A polynomial consensus algorithm in the presence of Byzantine failures: (n>4f)

```
code for p_i, 0 \le i \le n - 1.

Initially pref[i] = x // initial preference for self is for own input

and pref[j] = DEFAULT for any j != i // default for others

round 2k - 1, 1 \le k \le f + 1: // first round of phase k

send <pref[i]> to all processors

receive <vj> from p_j and assign to pref[j], for all 0 \le j \le n - 1, j != i

let maj be the majority value of pref[0],...,pref[n - 1] (DEFAULT if none)

let mult be the multiplicity of mai
```

let *mult* be the multiplicity of *maj*

round 2k, $1 \le k \le f + 1$: // second round of phase k if i = k then send <maj> to all processors //king of this phase receive <king-maj> from p_k (DEFAULT if none) if *mult* > n/2 + f then pref[i] = *maj* else pref[i] = *king-maj* if k = f + 1 then y = pref[i] // decide

Technology Solutions Lab

Honeywell

A Polynomial Algorithm (Cont.)

Validity Property

Lemma. If all non-faulty processors prefer v at the beginning of phase k, then they all prefer v at the end of phase k, for all k, $1 \le k \le f + 1$.

Agreement Property

Lemma. Let g be a phase whose king p_g is non-faulty. Then all non-faulty processors finish phase g with the same preference.

Theorem: There exists an algorithm for n processors that solves the consensus problem in the presence off Byzantine failures within 2(f+1) rounds using constant size messages, if n > 4f.

The Wait-Free case

Theorem: There is no wait-free algorithm for solving the consensus problem in an asynchronous shared memory system with n processors.

The General Case

Theorem: There is no consensus algorithm for a read/write asynchronous shared memory system that can tolerate even a single crash failure.

Message Passing

Theorem 5.25 There is no algorithm for solving the consensus problem in an asynchronous message-passing system with n processors, one of which may fail by crashing.

Distributed Systems

Presentation 4

Technology Solutions Lab

Confidential and Proprietary

Capturing Causality

Causality relations in asynchronous message-passing system

Some Basic Concepts:

A partial order is a binary relation *R* over a *P* which is reflexive, anti-symmetric, and transitive.

Partially Ordered Set

Example: The set of natural numbers equipped with the (divides) relation.

A Total order, Linear order or Simple order on a set *P* is any binary relation *R* on *P* that is **anti-symmetric, transitive, and total.**

Totally Ordered Set

Example: real numbers ordered by the standard less than (<) or greater than (>) relations.

The Happens-Before Relation

Given two events e1 and e2 in an execution , e1 happens before e2, denoted by e1 => e2, if one of the following conditions holds:

1. e1 and e2 are events by the same processor p_i , and e1 occurs before e2 in that execution.

2. e1 is the send event of the message m from p_i to p_j , and e2 is the receive event of the message m by p_j .

Happens-Before relation is an Partial Order.

Honeywell
Casual Shuffle

Definition. Given an execution segment $\alpha = exec(C, \sigma)$, a permutation Π of a schedule σ is a **causal shuffle** of α if

1. For all i, $0 \le i \le n-1$, $\sigma \mid i = \Pi \mid i$, and

2. If a message m is sent during processor p_i 's (computation) event \emptyset in α , then in pi, \emptyset precedes the delivery of m.

Lemma. Let $\alpha = \exp(C, \sigma)$ be an execution fragment. Then any permutation of the events in σ that is consistent with the happens-before relation of α is a causal shuffle of α .

Lemma. Let $\alpha = \exp(C, \sigma)$ be an execution fragment. Let Π be a causal shuffle of σ . Then $\alpha' = \exp(C, \Pi)$ is an execution fragment and is similar to α . Honeywell Technology Solutions Lab Confidential and Proprietary 37

Logical Timestamp LT(e)

To capture the happens-before relation, we require an irreflexive partial order "<" on the timestamps, such that for every pair of events, e1 and e2,

```
if e1 \Rightarrow e2, then LT(e1) < LT(e2)
```

Theorem. Let α be an execution, and let e1and e2 be two events in α . If e1 => e2, then LT(e1) < LT(e2).

If $LT(e1) \ge LT(e2)$ then $e1 \ge e2$

It is possible that LT(e1) < LT(e2), but $e1 \ge e2$

Happens-before relation is a partial order, but the logical timestamps are totally ordered " < " relation. **Honeywell**

Non-causality

Non-causality: Two events e1 and e2 are concurrent in execution α , denoted by e1||_{α} e2,

if $e1! \Rightarrow e2$ and $e2! \Rightarrow e1$.

A partial ordering is needed to describe the non-causality.

Vector Clocks

Vector timestamps provide a way to capture causality and non-causality.

Vector Clock VC_i

For every processor p_j , in every reachable configuration, $VC_j[i] < VC_i[i]$, for all i, 0 < i < n - 1.

Theorem. Let α be an execution, and let e1 and e2 be two events in α . If e1=>e2, then VC(e1) < VC(e2).

Theorem. Let a be an execution, and let e1 and e2, be two events in a. If VC(e1) < VC(e2), then e1 => e2.

Technology Solutions Lab

Given two events e1 and e2 in an execution α , e1 happens before e2, denoted e1 => e2, if one of the following conditions holds:

1. e1 and e2 are events by the same processor $p_i,$ and e1 occurs before e2 in $\boldsymbol{\alpha}.$

2. e1 and e2 are conflicting events, that is, both access the same shared variable and one of them is a write, and e1 occurs before e2 in α .

3. There exists an event e such that $e_1 => e$ and $e => e_2$.

The notion of a causal shuffle can be adapted to the shared memory model.

Hardware Clock

Assumption: Hardware clocks have no drifts.

Definition. A view with clock values of a processor p_i (in a model with hardware clocks) consists of an initial state of p_i , a sequence of events (computation and deliver) that occur at p_i and a hardware clock value assigned to each event.

Definition. A timed view with clock values of a processor p_i (in a model with hardware clocks) is a view with clock values together with a real time assigned to each event. The assignment must be consistent with the hardware clock having the form HC_i (t) = t + c_i; for some constant c_i.

Merging of the Time Views of the Processors

Definition. Let α be a timed execution with hardware clocks and let x be a vector of n real numbers. Define shift(α , x) to be merge($\eta_0, \eta_1, \dots, \eta_{n-1}$), where η_i is the timed view obtained by adding x_i to the real time associated with each event in a $\alpha \mid i$.

Lemma. Let α be a timed execution with hardware clocks HC_i, 0 < i < n - 1, and x be a vector of n real numbers. In shift(α , x):

(a) the hardware clock of p_i , HC'_i, is equal to HC_i - x_i , 0 < i < n - 1, and

(b) every message from p_i to p_j has delay $\delta - x_i + x_j$, where δ is the delay of the Honeywell message in a. 0 < i, j < n - 1. Technology Solutions Lab Confidential and Proprietary 43

Clock Synchronization Problem

Hardware Clock $HC_i(t)$

Adjusted Clock $AC_i(t)$

 $AC_i(t) = HC_i(t) + adj_i(t).$

Achieving ε -Synchronized Clocks: In every admissible timed execution, there exists real time t_f such that the algorithm has terminated by real time t_f , and, for all processors p_i and p_j , and all $t > t_f$, $|AC_i(t) - AC_j(t)| < \varepsilon$.

 ε is the Clock skew.

Maximum message delay **d**

Uncertainty in the message delay **u**

Technology Solutions Lab

The Two Processors Case

How to estimate the delay in the delivery of the message?

The best estimated delay is (d - u/2).

Improved algorithm: skew is at most u/2

$$d - u \le \delta \le d \implies |\delta - (d - u/2)| \le u/2$$

The Two Processors Case (Cont.)

The best skew that can be achieved in the worst case by a clock synchronization algorithm for two processors is u/2.

n Processors Case

Algorithm: A clock synchronization algorithm for n processors:

```
code for processor pi, 0 < i < n - 1.
```

initially diff[i] = 0

at first computation step:

send HC (current hardware clock value) to all other processors.

upon receiving message T from some p_i:

diff[j] := T + d - u/2 - HC if a message has been received from every other processor then $adj = \frac{1}{n} \sum_{k=0}^{n-1} diff[k]$

The above algorithm achieves u(1 - 1/n)-synchronization for n processors.

Theorem: For every algorithm that achieves ε - synchronized clocks, ε is at least u(1-1/n).

Technology Solutions Lab

Timeout Parameter

Distributed Systems

Presentation 5

Technology Solutions Lab

Confidential and Proprietary

Objectives

- To study tools and abstraction for simplifying the design of distributed algorithms.

- To modify our model to handle specifications and implementation of distributed algorithms.

- To put our focus on the interface between an algorithm (equivalently, the processor) and the external world.

Problem Specification

A problem is specified at the interface between an algorithm and the external world.

A **Problem Specification** *P* is

- A set of inputs *in*(*P*)
- A set of outputs *out*(*P*)
- A set of allowable sequences *seq*(*P*)

Example: Mutual Exclusion Problem.

Inputs: T_i and E_i

Outputs: C_i and R_i

A sequence α of inputs and outputs is in the set of allowable sequences iff

- $\alpha \mid i$ cycles through T_i, C_i, E_i, R_i in that order
- Whenever C_i occurs, the most recent preceding output for any other j is not C_i

Objective:

To provide communication system in software

Communication System is interposed between the processors.

The communication system will be different for different situation

- Different interface
- Different ordering
- Reliability

Asynchronous Point-to-point Message Passing

The interface to an asynchronous point-to-point message-passing system is with two types of events:

- \succ send_i(M)
- $\succ recv_i(M)$

There exists a mapping κ from the set of messages appearing in all the recv_i(M) events, for all i, to all the set of messages appearing in send_i(M) events, for all i, such that each message m in a recv event is mapped to a message with the same content appearing in an earlier send event, and the following three properties are satisfied:

Integrity

➢ No Duplicates

Liveness
Technology Solutions Lab

The interface to a basic asynchronous broadcast service is with two types of events:

- \succ bc-send_i(m)
- \succ bc-recv_i(m, j)

There exists a mapping κ from each bc-recv_i(m, j) events to an earlier bc-send_j(m) events, with the following three properties:

- ➢ Integrity
- ➢ No Duplicates
- ➢ Liveness

Process

A system consists of a collection of n processors (or nodes), p_0 through p_{n-i} , a communication system C linking the nodes, and the environment E.

Node Input

Process (Cont.)

Configuration

Execution

• Configuration C_o is an initial configuration.

• For each i >= 1, event ϕ_i is enabled in configuration C_{i-1} and configuration C_i is the result of ϕ_i acting on C_{i-1} . In more detail, every state component is the same in C_i , as it is in C_{i-1} , except for the (at most two) processes for which ϕ_i is an event.

• For each $i \ge 1$, if event $ø_i$ is not a node input, then $i \ge 1$ and it is on the same node as event $ø_{i-1}$. Thus the first event must be a node input, and every event that is not a node input must immediately follow some other event on the same node.

• For each $i \ge 1$, if event $ø_i$ is a node input, then no event (other than a node input) is enabled in C_{i-1} . Thus a node input does not occur until all the other events have "played out" and no more are enabled.

Confidential and Proprietary

 $top(\alpha)$

Schedule

ecution () echnology Solutions Lab

Admissibility Conditions

- An execution is **fair** if every event, other than a node input, that is continuously enabled eventually occurs.
- An execution is **user compliant** for problem specification *P*, if the environment satisfies the input constraints of *P*.
- An execution α is **correct** for communication system *C* if bot(α) is an element of seq(*C*).

We define an execution to be (P, C)-admissible if it is fair, user compliant for problem specification P, and correct for communication system C.

Simulation

Global Simulation

Communication system C_1 globally simulates (or simply simulates) communication system C_2 if there exists a collection of processes, one for each node, called *Sim* (the simulation program) that satisfies the following:

- 1. The top interface of *Sim* is the interface of C_2
- 2. The bottom interface of *Sim* is the interface of C_1 .
- 3. For every (C_2, C_1) -admissible execution α of *Sim*, there exists σ sequence a in seq (C_2) such that $\sigma = top(\alpha)$.

Local Simulation

- An execution α is locally user compliant for problem specification *P* if, the environment satisfies the input constraints of *P* on a per node basis, but not necessarily globally.
- An execution is (*P*, *C*) -locally-admissible if it is fair, locally user compliant for *P*, and correct for the communication system *C*.

Communication system C_1 localy simulates communication system C_2 if there exists a collection of processes, one for each node, called *Sim* (the simulation program) that satisfies the following:

- 1. The top interface of *Sim* is the interface of C_2
- 2. The bottom interface of *Sim* is the interface of C_1 .

3. For every (C_2, C_1) -locally-admissible execution α of *Sim*, there exists a sesequence σ in seq (C_i) such that a $\sigma \mid i = top(\alpha) \mid i$ for all i, $0 \le i \le n - 1$ **Honeywell**

Distributed Systems

Presentation 6

Technology Solutions Lab

Confidential and Proprietary

Specification of Broadcast Services

Quality of Service

- The type of ordering
- ≻The degree of fault tolerance

The interface to a basic asynchronous broadcast service is with two types of events:

- \succ bc-send_i(m, qos)
- \succ bc-recv_i(m, j, qos)

Broadcast Service Quality: Ordering

Single-Source FIFO: For all messages m_1 and m_2 and all processors p_i and p_j , if p_i sends m_1 before it sends m_2 , then m_2 is not received at p_j before m_1 is.

Totally Ordered: For all messages m_1 and m_2 and all processors p_i and p_j , if m_1 is received at p_i before m_2 is, then m_2 is not received at p_i before m_i is.

Given a sequence of bc-send and bc-recv events, message m_1 is said to happen before message m_2 if either:

- The bc-recv event for m_1 happens before the bc-send event for m_2 , or
- m_1 and m_2 are sent by the same processor and m_1 is sent before m_2 .

Causally Ordered: For all messages m₁ and m₂ and every processor p_i, if m₁ happens before m₂, then m₂ is not received at p_i, before m₁ is. Technology Solutions Lab Confidential and Proprietary 62

Ordering (Cont.)

What are the relationships between these three ordering requirements?

- Causally ordered implies single-source FIFO, but does not imply totally ordered
- Totally ordered does not imply causally ordered or single-source FIFO,
- Single-source FIFO does not imply causally ordered or totally ordered.

If a broadcast service provides total ordering as well as single-source FIFO ordering, then it is causally ordered.

Broadcast Service Quality: Reliability

There must be a partitioning of the processor indices into "faulty" and "nonfaulty" such that there are at most f faulty processors, and the mapping k from bc-recv(m) events to bc-send(m) events must satisfy the following properties:

➢Integrity

≻No Duplicates

≻Non faulty Liveness

≻Faulty Liveness

Different kinds of Broadcast

- Atomic broadcast or Total broadcast.
- FIFO atomic broadcast
- Causal atomic broadcast

Implementing a Broadcast Service

Assumption: Underlying message system is asynchronous and point-topoint.

Basic Broadcast Service

Implemented on top of an asynchronous point-to-point message system with no failures.

Single Source FIFO Ordering

Implemented on top of basic broadcast.

Totally Ordered Broadcast

An Asymmetric Algorithm

- implemented on top of Basic Broadcast
- relies on a central coordinator.

A symmetric Algorithm

- implemented on the top of the single-source FIFO broadcast.

Totally Ordered Broadcast (Cont.)

Algorithm1: Totally ordered broadcast algorithm: code for p_i , $0 \le i \le n - 1$.

```
Initially ts[j] = 0, 0 \le j \le n - 1, and pending is empty.
```

```
when bc-send<sub>i</sub>(m, to) occurs:
  ts[i] := ts[i] + 1
  add (m, ts[i], i) to pending
   enable bc-send<sub>i</sub>(<m, ts[j]>, ssf)
when bc-recv; (\langle m,T \rangle, j,ssf), j != i, occurs:
  ts[i] := T
  add (m, T, j) to pending
  if T > ts[i] then
      ts[i] := T
      enable bc-send<sub>i</sub>(<ts-up,T>, ssf)
when bc-recv<sub>i</sub>(<ts-up, T>, j, ssf), j != i, occurs:
  ts[i] := T
enable bc-recv<sub>i</sub>(m, j, to) when
   <m, T, j> is the entry in pending with the smallest (T, j)
   T \le ts[k] for all k
result: remove <m. T, j> from pending
Technology Solutions Lab
```

Causality without Total Ordering

Algorithm 2 Causally ordered broadcast algorithm: code for p_i , $0 \le i \le n - 1$.

Initially vt[j] = 0, $0 \le j \le n - 1$, and *pending* is empty

when bc-send_i(m, co) occurs:

```
vt[i] = vt[i] + 1
enable bc-recv,({m),co)
enable bc-send,((m,vt),basic)
```

```
when bc-recv<sub>j</sub>(<m, v>), j, basic), j != i, occurs:
```

```
add <m, v, j> to pending
```

```
enable bc-recv; (m, j, co) when:
```

```
(m, v, j) is in pending
```

```
v[j] = vt[j] + 1
```

```
v[k] \le vt[k] for all k != i
```

result: remove <m, v, j> from pending

vt[j] := vt[j] + 1

Technology Solutions Lab

Causality without Total Ordering

Reliable Basic Broadcast

Algorithm 3 Reliable broadcast algorithm: code for p_i , $0 \le i \le n - 1$.

when bc-send_i(m, reliable) occurs:

enable bc-send,(<m, i>, basic)

when bc-recv_i(<m, k>, j, basic) occurs:

if m was not already received then enable bc-send_i(<m, k>, basic)

enable bc-recv_i(m, k, reliable)

Specification of Multicast Services

Quality of Service

- ≻The type of ordering
- ≻The degree of fault tolerance

The interface to a basic asynchronous broadcast service is with two types of events:

- \succ bc-send_i(m, G, qos)
- \succ bc-recv_i(m, j, qos)

Ordering and reliability

Ordering

- Single Source FIFO
- ➢ Totally Ordered

> Multiple-Group Ordering: Let m_1 and m_2 be messages. For any pair of processors p_i and p_j , if the events mc-recv(m_1) and mc-recv (m_2) occur at p_i and p_j , then they occur in the same order.

Causally Ordered

Reliability

- ➢ Integrity
- ➢ No Duplicates
- Nonfaulty Liveness
- ➢ Faulty Liveness

Technology Solutions Lab
Distributed Systems

Presentation 7

Technology Solutions Lab

Confidential and Proprietary

Distributed Shared Memory

Distributed shared memory is a model for interprocess communication that provides the illusion of a shared memory on top of a message passing system.

The simulation program, which runs on top of the message system providing the illusion of shared memory is called the **Memory Consistency System** (MCS).

Honeywell

Operation – Pairs of invocation and matching responses

Sequential Specification – Set of operations and a set of legal sequences of operations.

Example: Read/Write object X

- The invocation for a read is $read_i(X)$ and responses are $return_i(X, v)$, where i indicates the node and v the return value.

- The invocations for a write have the form $write_i(X, v)$, where v is the value to be written, and the response is $ack_i(X)$.

- A sequence of operations is legal if each read returns the value of the most recent preceding write, if there is one, and otherwise returns the initial value.

Linearizable Shared Memory

Inputs – invocations on shared objects

Outputs – responses from the shared object

For a sequence σ to be in the allowable set, the following properties must be satisfied:

Correct interaction: For each p_i , $\sigma|i$ consists of alternating invocations and matching responses, beginning with an invocation. This condition imposes constraints on the inputs.

Liveness: Every invocation has a matching response.

Linearizability: There exists a permutation Π of all the operations in a such that

1. For each object O, $\Pi|O$ is legal (i.e., is in the sequential specification of O)

2. If the response of operation o_1 occurs in σ before the invocation of operation o_2 , then o_1 appears before o_2 in Π .

Linearizable Shared Memory (Cont.)

Examples:

```
Processor p_0 and p_1
```

```
Shared registers x and y, both initially 0.
```

 $\sigma 1 = \text{write}_0(x, 1) \text{ write}_1(y, 1) \text{ ack}_0(x) \text{ ack}_1(y) \text{ read}_0(y) \text{ read}_1(x) \text{ return}_0(y, 1) \text{ return}_1(x, 1)$ $\Pi_1 = W_0 W_1 r_0 r_1$

- Linearizable.

 $\sigma 2 = \operatorname{write}_{0}(x,1) \operatorname{write}_{1}(y,1) \operatorname{ack}_{0}(x) \operatorname{ack}_{1}(y) \operatorname{read}_{0}(y) \operatorname{read}_{1}(x) \operatorname{return}_{0}(y,0) \operatorname{return}_{1}(x,1)$

- Not Linearizable.

Sequentially Consistent Shared Memory

A sequence σ of invocations and responses is sequentially consistent if there exists a permutation Π of the operations in a such that

1. For every object O, $\Pi \mid$ O is legal, according to the sequential specification of O.

2. If the response for operation o_1 at node p_i occurs in σ before the invocation for operation o_2 at node p_i , then o_1 appears before o_2 in Π , equivalently, $\sigma \mid i = \Pi \mid i$.

Sequentially Consistent Shared Memory (Cont.)

Example:

 $\sigma 2 = write_0(x,1) write_1(y,1) ack_0(x) ack_1(y) read_0(y) read_1(x) return_0(y,0) return_1(x,1)$

 $\Pi_2 = W_0 r_0 W_1 r_1$

Sequentially consistent.

 $\sigma 3 = \text{write}_0(x,1) \text{ write}_1(y,1) \operatorname{ack}_0(x) \operatorname{ack}_1(y) \operatorname{read}_0(y) \operatorname{read}_1(x) \operatorname{return}_0(y,0) \operatorname{return}_1(x,0)$ Not sequentially consistent.

Algorithm

Assumption: Underlying message passing communication system supports totally ordered broadcast.

```
bc-send_i(m, total) \rightarrow tbc-send_i(m)
```

```
bc-recv_i(m, total) \rightarrow tbc-recv_i(m)
```

There is a local copy of every shared object in the state of the MCS process at every node.

Algorithm: Linearizability

when $read_i(x)$ occurs:

enable tbc-send_i (x).

when write_i(x, v) occurs:

```
enable tbc-send<sub>i</sub> (x,v).
```

when tbc-recv_i (x, v) from p_j occurs:

```
copy[x] := v
```

```
if j = i then enable ack_i(x)
```

when tbc-recv_i (x) from p_i occurs:

```
if j = i then enable return<sub>i</sub> (copy[x])
```


Algorithm: Sequentially Consistent Local Read

```
code for processor p_i, 0 \le i \le n - 1.
```

Initially copy[x] holds the initial value of shared object x, for all x.

when $read_i(x)$ occurs:

```
enable return<sub>i</sub> (x, copy[x])
```

when write_i(x, v) occurs:

```
enable tbc-send<sub>i</sub> (x,v)
```

when tbc-recv_i (x, v) from p_j occurs: copy[x] := vif j = i then enable ack_i (x)

Algorithm: Sequentially Consistent Local Write

```
code for processor p_i, 0 \le i \le n - 1.
```

Initially copy[x] holds the initial value of shared object x, for all x, and num = 0.

when $read_i(x)$ occurs:

```
if num = 0 then enable return<sub>i</sub> (x, copy[x]).
```

```
when write<sub>i</sub> (x, v) occurs:
```

```
num := num + 1
```

```
enable tbc-send<sub>i</sub>(x, v)
```

```
enable ack_i(x)
```

```
when tbc-recv<sub>i</sub> (x, v) from p_i occurs:
```

```
copy[x] := v
if j = i then
num = num - 1
if num = 0 and a read on x is pending then
enable return<sub>i</sub> (x, copy[x]).
```


Thank You

Technology Solutions Lab

Confidential and Proprietary