
Technology Solutions Lab Confidential and Proprietary

Distributed SystemsDistributed Systems

Presentation 1

Date: 26.08.2005

Technology Solutions Lab 2Confidential and Proprietary

What is Distributed ComputingWhat is Distributed Computing

Distributed Computing

 Tightly-coupled System

 Parallel Computing

 Loosely Coupled System

 Distributed Computing

Grid Computing

P2P Computing

Mobile Computing

 Pervasive Computing

Technology Solutions Lab 3Confidential and Proprietary

Models of Distributed ComputingModels of Distributed Computing

Computation Models

 Message-passing Systems

 Shared memory Systems

Timing Models

 Asynchronous

 Synchronous

Technology Solutions Lab 4Confidential and Proprietary

Message-passing System ModelMessage-passing System Model

Configuration

Event

• Computation Event

• Delivery Event

Execution: Sequence of configuration alternating with events, which satisfies
all required safety conditions for a particular system type.

Admissible Execution: An Execution that satisfies all required liveness
conditions.

Schedule

Technology Solutions Lab 5Confidential and Proprietary

Complexity MeasuresComplexity Measures

 Message Complexity

 Time complexity

Technology Solutions Lab 6Confidential and Proprietary

Example: Algorithm 1Example: Algorithm 1

Algorithm: Spanning tree broadcast algorithm.

Initially <M> is in transit from pr to all its children in the spanning tree.

Code for pr :

 upon receiving no message:

 send <M> to all children

 terminate

Code for p
i
, 0 <= i <= n - 1, i != r:

 upon receiving <M> from parent:

 send <M> to all children

 terminate

Technology Solutions Lab 7Confidential and Proprietary

Example: Algorithm 2Example: Algorithm 2
Algorithm: algorithm to construct a spanning tree:

code for processor pi, 0 <= i <= n - 1.

Initially parent = NIL, children = NIL, and other = NIL.

upon receiving no message:

 if pi = pr and parent = NIL then // root has not yet sent <M>

 send <M> to all neighbors

 parent := pi

upon receiving <M> from neighbor pj:

 if parent = NIL then // pi has not received <M> before

 parent = Pj

 send <parent> to pj

 send <M> to all neighbors except pj

 else send <already> to pj

Technology Solutions Lab 8Confidential and Proprietary

Algorithm 2 (cont.)Algorithm 2 (cont.)

upon receiving <parent> from neighbor pj:

 add pj to children

 if (children U other) contains all neighbors except parent then

 terminate

upon receiving <already> from neighbor pj:

 add pj to other

 if (children U other) contains all neighbors except parent then

 terminate

Technology Solutions Lab 9Confidential and Proprietary

Leader Election ProblemLeader Election Problem

Leader election problem can’t be solved for Anonymous ring.

Two types of algorithms for Leader Election Problem

 Uniform

 Non-uniform

Technology Solutions Lab 10Confidential and Proprietary

Asynchronous RingAsynchronous Ring

O(n2) uniform algorithm

Technology Solutions Lab 11Confidential and Proprietary

Asynchronous Ring (Cont.)Asynchronous Ring (Cont.)

O(n log n) algorithm
Algorithm: Asynchronous leader election: code for processor pi,0 <= i <= n-1.

 Initially, asleep = true

 upon receiving no message:

 if asleep then

 asleep = false

 send (probe, id, 0, 1) to left and right

 upon receiving (probe, j, k, d) from left (resp., right):

 if j = id then terminate as the leader

 if j > id and d < 2k then // forward the message

 send <probe, j, k, d + 1> to right (resp., left) //increment hop counter

 if j > id and d = 2k then // reply to the message

 send <reply, j, k> to left (resp., right) // message is swallowed

Technology Solutions Lab 12Confidential and Proprietary

Asynchronous Ring (Cont.)Asynchronous Ring (Cont.)

O(n log n) algorithm (Cont.)
upon receiving (reply, j, k) from left (resp., right):

 if j != id then

 send (reply, j, k) to right (resp., left)

 // forward the reply

 else // reply is for own probe

 if already received (reply, j, k) from right (resp., left) then

 if k != log (n-1)

 send (probe, id, k +1,1) // phase k winner

 else

 declare itself as the leader.

 send termination message to all the other processors.

The lower bound of the message complexity for the Leader election algorithm
is O(n log n).

Technology Solutions Lab 13Confidential and Proprietary

Synchronous RingSynchronous Ring

The upper bound and the lower bound of the message complexity
Leader Election Algorithm is O(n).

A non-uniform algorithm

Technology Solutions Lab Confidential and Proprietary

Distributed SystemsDistributed Systems

Presentation 2

Date: 02.09.2005

Technology Solutions Lab 15Confidential and Proprietary

Shared Memory System ModelShared Memory System Model

Components:

 n Processors

 m Registers

Each register has a type, which specifies:

 1. The values that can be taken on by the register

 2. The operations that can be performed on the register

 3. The value to be returned by each operation (if any)

 4. The new value of the register resulting from each operation

Technology Solutions Lab 16Confidential and Proprietary

Shared Memory System Model (Cont.)Shared Memory System Model (Cont.)

 Configuration

 C = (qo, ,qn-1, ro, ,rm-1)

 Events

 Execution

 Co, ø1, C1, ø2, C2, ø3 ,

 Schedule

 σ = i1, i2, ...

Technology Solutions Lab 17Confidential and Proprietary

Complexity MeasuresComplexity Measures

 Space Complexity

 Time Complexity

Technology Solutions Lab 18Confidential and Proprietary

The Mutual Exclusion ProblemThe Mutual Exclusion Problem

Critical Section

Program of a processor is partitioned into the following sections:

• Entry

• Critical

• Exit

• Remainder

Assumptions:

 The variables accessed in the entry and Exit sections are not accessed in the
Critical and the Remainder Section.

 No processor stays in the Critical section forever.

Technology Solutions Lab 19Confidential and Proprietary

The Mutual Exclusion Problem (Cont.)The Mutual Exclusion Problem (Cont.)

Conditions of Mutual Exclusion

• Mutual exclusion

• No Deadlock

• No Lockout

Technology Solutions Lab 20Confidential and Proprietary

Example: Binary Test&Set RegistersExample: Binary Test&Set Registers
test&set(V : memory address) returns binary value :

 temp = V

 V = l

 return (temp)

reset(V : memory address):

 V = 0

Algorithm: Mutual exclusion using a test&set register: (code for every processor)

 Initially V equals 0

 (Entry):

 wait until test&set(V) = 0

 (Critical Section)

 (Exit):

 reset(V)

 (Remainder)

Technology Solutions Lab 21Confidential and Proprietary

Example: Read-Modify-Write RegistersExample: Read-Modify-Write Registers
rmw(V : memory address, f: function) returns value:

 temp = V

 V = f(V)

 return (temp)

Algorithm: Mutual exclusion using a read-modify-write register (code for every processor)

Initially V = <0 , 0>

(Entry):

 position = rmw(V, <V.first,V.last + 1>) // enqueueing at the tail

 repeat

 queue = rmw (V, V) // read head of queue

 until (queue.first = position.last) // until becomes first

(Critical Section)

(Exit):

 rmw (V , <V.first + V.last>) //dequeueing

(Remainder)

Technology Solutions Lab 22Confidential and Proprietary

Example: Mutual Exclusion using Local SpinningExample: Mutual Exclusion using Local Spinning
Local spinning

Algorithm: Mutual exclusion using local spinning: (code for every processor)

Initially Last = 0; Flags[0] = has-lock; Flags[i] = must-wait, 0 < i < n.

(Entry):

 my-place := rmw (Last, Last + 1 mod n)

 wait until (Flags[my-place] = has-lock)

 Flags[my-place] = must-wait

(Critical Section)

(Exit):

 Flags[my-place + l mod n] = has-lock

(Remainder)

Technology Solutions Lab Confidential and Proprietary

Distributed SystemsDistributed Systems

Presentation 3

Date: 09.09.2005

Technology Solutions Lab 24Confidential and Proprietary

Failures in Synchronous SystemsFailures in Synchronous Systems

 Crash Failure

 Byzantine Failure

Technology Solutions Lab 25Confidential and Proprietary

Synchronous Systems with Crash FailureSynchronous Systems with Crash Failure

Assumptions

 Communication graph is complete.

 Links are completely reliable.

Formal Model

 For a f-resilient system, at most f processors can fail.

 In the last round in which a faulty processor has a computation event,
an arbitrary set of the outgoing messages are delivered.

The Consensus Problem

 Termination

 Agreement

 Validity

Technology Solutions Lab 26Confidential and Proprietary

A Simple AlgorithmA Simple Algorithm

Algorithm: Consensus algorithm in the presence of crash failures:

code for processor pi, 0 <= i <= n - 1.
Initially V = {x} // V contains pi's input

round k, 1 <= k <= f+ 1:

 send {v in V : pi has not already sent v} to all processors

 receive Sj from pj, 0 <= j <= n-l, j != i

 V =

 if k = f + 1 then y = min(V) // decide

The above algorithm solves the consensus problem in the presence off crash

failures within f + 1 rounds.

 1

0

−

=

n

j jSV

Technology Solutions Lab 27Confidential and Proprietary

Lower Bound on the Number of Lower Bound on the Number of
RoundsRounds

Theorem: Any consensus algorithm for n processors that is resilient
to f crash failures requires at least f +1 rounds in some admissible
execution, for all n >= f + 2.

Technology Solutions Lab 28Confidential and Proprietary

Synchronous Systems with Byzantine Synchronous Systems with Byzantine
FailureFailure

Formal Model

The Consensus Problem

 Termination

 Agreement

 Validity

Lower Bound on the Number of Faulty Processors

Theorem: In a system with n processors and f Byzantine
processors, there is no algorithm that solves the consensus problem
if n < 3f.

Technology Solutions Lab 29Confidential and Proprietary

An Exponential AlgorithmAn Exponential Algorithm

f is the upper bound on the number of failures.

n >= 3f + 1.

The algorithm takes exactly f + 1 rounds.

The exponential information gathering Tree

Technology Solutions Lab 30Confidential and Proprietary

An Exponential Algorithm (Cont.)An Exponential Algorithm (Cont.)

Validity Condition

Lemma. For every tree node label (pi) of the form (pi)'j, where pj is non-faulty,

resolvei(pi) = treej(pi'), for every non-faulty processor pi.

Agreement Condition

Common

Common Frontier

Lemma. Let (pi) be a node. If there is a common frontier in the sub-tree rooted at
(pi), then (pi) is common.

Theorem: There exists an algorithm for n processors that solves the consensus
problem in the presence off Byzantine failures within f +1 rounds using
exponential size messages, if n > 3f.

Technology Solutions Lab 31Confidential and Proprietary

A Polynomial AlgorithmA Polynomial Algorithm
Algorithm: A polynomial consensus algorithm in the presence of Byzantine failures: (n>4f)

code for pi , 0 <= i <= n - 1.

Initially pref[i] = x // initial preference for self is for own input
and pref[j] = DEFAULT for any j != i // default for others

round 2k - 1, 1 <= k <= f + 1: // first round of phase k
 send <pref[i]> to all processors
 receive <vj> from pj and assign to pref[j], for all 0 <= j <= n - 1, j != i

 let maj be the majority value of pref[0],.. .,pref[n - 1] (DEFAULT if none)
 let mult be the multiplicity of maj

round 2k, 1 <= k <= f + 1: // second round of phase k
 if i = k then send <maj> to all processors //king of this phase
 receive <king-maj> from pk (DEFAULT if none)

 if mult > n/2 + f
 then pref[i] = maj
 else pref[i] = king-maj

 if k = f + 1 then y = pref[i] // decide

Technology Solutions Lab 32Confidential and Proprietary

A Polynomial Algorithm (Cont.)A Polynomial Algorithm (Cont.)

Validity Property

Lemma. If all non-faulty processors prefer v at the beginning of phase k, then they
all prefer v at the end of phase k, for all k, 1 <= k <= f + 1.

Agreement Property

Lemma. Let g be a phase whose king pg is non-faulty. Then all non-faulty
processors finish phase g with the same preference.

Theorem: There exists an algorithm for n processors that solves the consensus
problem in the presence off Byzantine failures within 2(f +1) rounds using constant
size messages, if n > 4f.

Technology Solutions Lab 33Confidential and Proprietary

Impossibilities in Asynchronous Impossibilities in Asynchronous
SystemsSystems

Shared Memory

The Wait-Free case

Theorem: There is no wait-free algorithm for solving the consensus problem in
an asynchronous shared memory system with n processors.

The General Case

Theorem: There is no consensus algorithm for a read/write asynchronous shared
memory system that can tolerate even a single crash failure.

Message Passing

Theorem 5.25 There is no algorithm for solving the consensus problem in an
asynchronous message-passing system with n processors, one of which may fail
by crashing.

Technology Solutions Lab Confidential and Proprietary

Distributed SystemsDistributed Systems

Presentation 4

Date: 23.09.2005

Technology Solutions Lab 35Confidential and Proprietary

Capturing CausalityCapturing Causality

Causality relations in asynchronous message-passing system

Some Basic Concepts:

A partial order is a binary relation R over a P which is reflexive, anti-symmetric,
and transitive.

Partially Ordered Set

Example: The set of natural numbers equipped with the (divides) relation.

A Total order, Linear order or Simple order on a set P is any binary relation R on
P that is anti-symmetric, transitive, and total.

Totally Ordered Set

Example: real numbers ordered by the standard less than (<) or greater than (>)
relations.

http://en.wikipedia.org/wiki/Reflexive_relation
http://en.wikipedia.org/wiki/Antisymmetric_relation
http://en.wikipedia.org/wiki/Transitive_relation
http://en.wikipedia.org/wiki/Antisymmetric_relation
http://en.wikipedia.org/wiki/Transitive_relation
http://en.wikipedia.org/wiki/Total_relation

Technology Solutions Lab 36Confidential and Proprietary

The Happens-Before RelationThe Happens-Before Relation

Given two events e1 and e2 in an execution , e1 happens before e2, denoted by
e1=>e2, if one of the following conditions holds:

1. e1 and e2 are events by the same processor pi, and e1 occurs before e2 in that
execution.

2. e1 is the send event of the message m from pi to pj, and e2 is the receive event
of the message m by pj.

3. There exists an event e such that e1=>e and e=>e2.

Happens-Before relation is an Partial Order.

Technology Solutions Lab 37Confidential and Proprietary

Casual ShuffleCasual Shuffle

Definition. Given an execution segment α = exec(C, σ), a permutation Π of a
schedule σ is a causal shuffle of α if

1. For all i, 0 < i < n-1, σ | i = Π | i, and

2. If a message m is sent during processor pi's (computation) event ø in α, then in
pi, ø precedes the delivery of m.

Lemma. Let α = exec(C, σ) be an execution fragment. Then any permutation of
the events in σ that is consistent with the happens-before relation of α is a causal
shuffle of α.

Lemma. Let α = exec(C, σ) be an execution fragment. Let Π be a causal shuffle
of σ. Then α' = exec(C, Π) is an execution fragment and is similar to α.

Technology Solutions Lab 38Confidential and Proprietary

Logical ClocksLogical Clocks

Logical Timestamp LT(e)

To capture the happens-before relation, we require an irreflexive partial order
“<“ on the timestamps, such that for every pair of events, e1 and e2,

if e1 => e2, then LT(e1) < LT(e2)

Theorem. Let α be an execution, and let e1and e2 be two events in α. If e1 =>
e2, then LT(e1) < LT(e2).

If LT(e1) >= LT(e2) then e1 !=> e2

It is possible that LT(e1) < LT(e2), but e1 !=> e2

Happens-before relation is a partial order, but the logical timestamps are totally
ordered “ < “ relation.

Technology Solutions Lab 39Confidential and Proprietary

Non-causalityNon-causality
Non-causality: Two events e1 and e2 are concurrent in execution α, denoted by
e1||α e2,

 if e1!=> e2 and e2 !=> e1.

A partial ordering is needed to describe the non-causality.

Technology Solutions Lab 40Confidential and Proprietary

Vector ClocksVector Clocks
Vector timestamps provide a way to capture causality and non-causality.

Vector Clock VCi

For every processor pj, in every reachable configuration, VCj[i] < VCi[i], for
all i, 0 < i < n - l.

Theorem. Let α be an execution, and let e1 and e2 be two events in α . If
e1=>e2, then VC(e1) < VC(e2).

Theorem. Let a be an execution, and let e1 and e2, be two events in a. If
VC(e1) < VC(e2), then e1 => e2.

Technology Solutions Lab 41Confidential and Proprietary

Shared Memory SystemShared Memory System

Given two events e1 and e2 in an execution α, e1 happens before e2, denoted
e1 => e2, if one of the following conditions holds:

 1. e1 and e2 are events by the same processor pi, and e1 occurs before e2
in α.

 2. e1 and e2 are conflicting events, that is, both access the same shared
variable and one of them is a write, and e1 occurs before e2 in α.

 3. There exists an event e such that e1 => e and e => e2.

The notion of a causal shuffle can be adapted to the shared memory model.

Technology Solutions Lab 42Confidential and Proprietary

Clock SynchronizationClock Synchronization

Hardware Clock

Assumption: Hardware clocks have no drifts.

Definition. A view with clock values of a processor pi (in a model with hardware
clocks) consists of an initial state of pi, a sequence of events (computation and
deliver) that occur at pi and a hardware clock value assigned to each event.

Definition. A timed view with clock values of a processor pi (in a model with
hardware clocks) is a view with clock values together with a real time assigned
to each event. The assignment must be consistent with the hardware clock having
the form HCi (t) = t + ci; for some constant ci.

HCi

t

Technology Solutions Lab 43Confidential and Proprietary

Merging of the Time Views of the ProcessorsMerging of the Time Views of the Processors

Definition. Let α be a timed execution with hardware clocks and let x be a vector
of n real numbers. Define shift(α, x) to be merge(η0,η1,…..,ηn-1), where ηi is the
timed view obtained by adding xi to the real time associated with each event in a
α | i.

Lemma. Let α be a timed execution with hardware clocks HCi, 0 < i < n - 1, and
x be a vector of n real numbers. In shift(α , x):

(a) the hardware clock of pi, HC’i, is equal to HCi - xi, 0 < i < n - 1, and

(b) every message from pi to pj has delay δ - xi + xj, where δ is the delay of the
message in a, 0 < i, j < n - 1.

Technology Solutions Lab 44Confidential and Proprietary

Clock Synchronization ProblemClock Synchronization Problem

Hardware Clock HCi(t)

Adjusted Clock ACi(t)

ACi(t) = HCi(t) + adji(t).

Achieving ε -Synchronized Clocks: In every admissible timed execution, there
exists real time tf such that the algorithm has terminated by real time tf, and, for
all processors pi and pj, and all t > tf, |ACi(t) - ACj(t)| < ε.

ε is the Clock skew.

Maximum message delay d

Uncertainty in the message delay u

Technology Solutions Lab 45Confidential and Proprietary

The Two Processors CaseThe Two Processors Case

How to estimate the delay in the delivery of the message?

The best estimated delay is (d – u/2).

 d – u <= δ <= d => | δ – (d – u/2) | <= u/2

Technology Solutions Lab 46Confidential and Proprietary

The Two Processors Case (Cont.)The Two Processors Case (Cont.)

The best skew that can be achieved in the worst case by a clock synchronization
algorithm for two processors is u/2.

α` = shift (α, <-u, 0>)

Technology Solutions Lab 47Confidential and Proprietary

n Processors Casen Processors Case

Algorithm: A clock synchronization algorithm for n processors:

code for processor pi, 0 < i < n - 1.

initially diff[i] = 0

at first computation step:

 send HC (current hardware clock value) to all other processors.

upon receiving message T from some pj:

 diff[j] := T + d - u/2 - HC

 if a message has been received from every other processor then

The above algorithm achieves u(1 – 1/n)-synchronization for n processors.

Theorem: For every algorithm that achieves ε- synchronized clocks, ε is at least
u(1 – 1/n).

∑
−

=

=
1

0

][
1 n

k

kdiff
n

adj

Technology Solutions Lab 48Confidential and Proprietary

Practical Clock Synchronization: Estimating Clock DifferencesPractical Clock Synchronization: Estimating Clock Differences

Timeout Parameter

Delay

Prob

Timeout
Parameter

Technology Solutions Lab Confidential and Proprietary

Distributed SystemsDistributed Systems

Presentation 5

Date: 30.09.2005

Technology Solutions Lab 50Confidential and Proprietary

A Formal Model for SimulationA Formal Model for Simulation

Objectives

 - To study tools and abstraction for simplifying the design of
distributed algorithms.

 - To modify our model to handle specifications and
implementation of distributed algorithms.

 - To put our focus on the interface between an algorithm
(equivalently, the processor) and the external world.

Technology Solutions Lab 51Confidential and Proprietary

Problem SpecificationProblem Specification

A problem is specified at the interface between an algorithm and the external
world.

A Problem Specification P is

 A set of inputs in(P)

 A set of outputs out(P)

 A set of allowable sequences seq(P)

Example: Mutual Exclusion Problem.

Inputs: Ti and Ei

Outputs: Ci and Ri

A sequence α of inputs and outputs is in the set of allowable sequences iff

• α | i cycles through Ti, Ci, Ei, Ri in that order

• Whenever Ci occurs, the most recent preceding output for any other j is not Cj

Technology Solutions Lab 52Confidential and Proprietary

Communication SystemsCommunication Systems

Objective:

 To provide communication system in software

Communication System is interposed between the processors.

The communication system will be different for different situation

• Different interface

• Different ordering

• Reliability

Technology Solutions Lab 53Confidential and Proprietary

Asynchronous Point-to-point Message PassingAsynchronous Point-to-point Message Passing

The interface to an asynchronous point-to-point message-passing system is with

two types of events:

 sendi(M)

 recvi(M)

There exists a mapping κ from the set of messages appearing in all the recvi(M)

events, for all i, to all the set of messages appearing in sendi(M) events, for all i,
such that each message m in a recv event is mapped to a message with the same
content appearing in an earlier send event, and the following three properties are
satisfied:

 Integrity

 No Duplicates

 Liveness

Technology Solutions Lab 54Confidential and Proprietary

Asynchronous BroadcastAsynchronous Broadcast

The interface to a basic asynchronous broadcast service is with two types of events:

 bc-sendi(m)

 bc-recvi(m, j)

There exists a mapping κ from each bc-recvi(m, j) events to an earlier bc-sendj(m)
events, with the following three properties:

 Integrity

 No Duplicates

 Liveness

Technology Solutions Lab 55Confidential and Proprietary

Process Process

A system consists of a collection of n processors (or nodes), p0 through pn-i, a
communication system C linking the nodes, and the environment E.

Node Input

Technology Solutions Lab 56Confidential and Proprietary

Process (Cont.)Process (Cont.)

Configuration

Execution

 Configuration Co is an initial configuration.

 For each i >= 1, event øi is enabled in configuration Ci-1 and configuration Ci is the result
of øi acting on Ci-1. In more detail, every state component is the same in Ci, as it is in Ci-1,
except for the (at most two) processes for which øi is an event.

 For each i >= 1, if event øi is not a node input, then i > 1 and it is on the same node as
event øi-1. Thus the first event must be a node input, and every event that is not a node
input must immediately follow some other event on the same node.

 For each i >= 1, if event øi is a node input, then no event (other than a node input) is
enabled in Ci-1. Thus a node input does not occur until all the other events have "played
out" and no more are enabled.

Schedule

Execution α top(α) bot(α)

Technology Solutions Lab 57Confidential and Proprietary

AdmissibilityAdmissibility

Admissibility Conditions

• An execution is fair if every event, other than a node input, that is
continuously enabled eventually occurs.

• An execution is user compliant for problem specification P, if the
environment satisfies the input constraints of P.

• An execution α is correct for communication system C if bot(α) is an
element of seq(C).

We define an execution to be (P, C)-admissible if it is fair, user compliant for
problem specification P, and correct for communication system C.

Technology Solutions Lab 58Confidential and Proprietary

SimulationSimulation

Global Simulation

Communication system C1 globally simulates (or simply simulates)
communication system C2 if there exists a collection of processes, one for each
node, called Sim (the simulation program) that satisfies the following:

 1. The top interface of Sim is the interface of C2

 2. The bottom interface of Sim is the interface of C1.

 3. For every (C2, C1)-admissible execution α of Sim, there exists σ sequence a in

 seq(C2) such that σ = top(α).

Technology Solutions Lab 59Confidential and Proprietary

Simulation (Cont.)Simulation (Cont.)

Local Simulation

 An execution α is locally user compliant for problem specification P if, the
environment satisfies the input constraints of P on a per node basis, but not
necessarily globally.

 An execution is (P, C) -locally-admissible if it is fair, locally user compliant
for P, and correct for the communication system C.

Communication system C1 localy simulates communication system C2 if there
exists a collection of processes, one for each node, called Sim (the simulation
program) that satisfies the following:

 1. The top interface of Sim is the interface of C2

 2. The bottom interface of Sim is the interface of C1.

 3. For every (C2,C1)-locally-admissible execution α of Sim, there exists a se-
sequence σ in seq(Ci) such that a σ | i = top(α) | i for all i, 0 <= i <= n - 1.

Technology Solutions Lab Confidential and Proprietary

Distributed SystemsDistributed Systems

Presentation 6

Date: 14.10.2005

Technology Solutions Lab 61Confidential and Proprietary

Specification of Broadcast ServicesSpecification of Broadcast Services

Quality of Service

The type of ordering

The degree of fault tolerance

The interface to a basic asynchronous broadcast service is with two types of events:

 bc-sendi(m, qos)

 bc-recvi(m, j, qos)

Technology Solutions Lab 62Confidential and Proprietary

Broadcast Service Quality: OrderingBroadcast Service Quality: Ordering

Single-Source FIFO: For all messages m1 and m2 and all processors pi and pj, if
pi sends m1 before it sends m2, then m2 is not received at pj before m1 is.

Totally Ordered: For all messages m1 and m2 and all processors pi and pj, if m1 is
received at pi before m2 is, then m2 is not received at pj before mi is.

Given a sequence of bc-send and bc-recv events, message m1 is said to happen
before message m2 if either:

• The bc-recv event for m1 happens before the bc-send event for m2, or

• m1 and m2 are sent by the same processor and m1 is sent before m2.

Causally Ordered: For all messages m1 and m2 and every processor pi, if m1
happens before m2, then m2 is not received at pi, before m1 is.

Technology Solutions Lab 63Confidential and Proprietary

Ordering (Cont.)Ordering (Cont.)

What are the relationships between these three ordering requirements?

 Causally ordered implies single-source FIFO, but does not imply totally ordered

 Totally ordered does not imply causally ordered or single-source FIFO,

 Single-source FIFO does not imply causally ordered or totally ordered.

If a broadcast service provides total ordering as well as single-source FIFO
ordering, then it is causally ordered.

Technology Solutions Lab 64Confidential and Proprietary

Broadcast Service Quality: ReliabilityBroadcast Service Quality: Reliability

There must be a partitioning of the processor indices into "faulty" and "nonfaulty"
such that there are at most f faulty processors, and the mapping k from bc-recv(m)
events to bc-send(m) events must satisfy the following properties:

Integrity

No Duplicates

Non faulty Liveness

Faulty Liveness

Different kinds of Broadcast

 Atomic broadcast or Total broadcast.

 FIFO atomic broadcast

 Causal atomic broadcast

Technology Solutions Lab 65Confidential and Proprietary

Implementing a Broadcast ServiceImplementing a Broadcast Service

Assumption: Underlying message system is asynchronous and point-to-
point.

Basic Broadcast Service

 Implemented on top of an asynchronous point-to-point message system with no
failures.

Single Source FIFO Ordering

 Implemented on top of basic broadcast.

Technology Solutions Lab 66Confidential and Proprietary

Totally Ordered BroadcastTotally Ordered Broadcast

An Asymmetric Algorithm

 - implemented on top of Basic Broadcast

 - relies on a central coordinator.

A symmetric Algorithm

 - implemented on the top of the single-source FIFO broadcast.

Technology Solutions Lab 67Confidential and Proprietary

Totally Ordered Broadcast (Cont.)Totally Ordered Broadcast (Cont.)

Algorithm1: Totally ordered broadcast algorithm: code for pi, 0 <= i <= n - 1.

Initially ts[j] = 0, 0 <= j <= n - 1, and pending is empty.

when bc-sendi(m, to) occurs:

 ts[i] := ts[i] + 1
 add (m, ts[i], i) to pending
 enable bc-sendi(<m, ts[j]>, ssf)

when bc-recv; (<m,T>, j,ssf), j != i, occurs:
 ts[j] := T
 add (m, T, j) to pending
 if T > ts[i] then
 ts[i] := T
 enable bc-sendi(<ts-up,T>, ssf)

when bc-recvj(<ts-up, T>, j, ssf), j != i, occurs:

 ts[j] := T

enable bc-recvi(m, j, to) when

 <m, T, j> is the entry in pending with the smallest (T, j)
 T <= ts[k] for all k
result: remove <m, T, j> from pending

Technology Solutions Lab 68Confidential and Proprietary

Causality without Total OrderingCausality without Total Ordering

Algorithm 2 Causally ordered broadcast algorithm: code for pi, 0 < i < n - 1.

Initially vt[j] = 0, 0 < = j <= n - 1, and pending is empty

when bc-sendi(m, co) occurs:

 vt[i] = vt[i] + 1

 enable bc-recv,({m),co)

 enable bc-send,((m,vt),basic)

when bc-recvj(<m, v>), j, basic), j != i, occurs:

 add <m, v, j> to pending

enable bc-recv; (m, j, co) when:

 (m, v, j) is in pending

 v[j] = vt[j] + 1

 v[k] <= vt[k] for all k != i

result: remove <m, v, j> from pending

 vt[j] := vt[j] + 1

Technology Solutions Lab 69Confidential and Proprietary

Causality without Total OrderingCausality without Total Ordering

Technology Solutions Lab 70Confidential and Proprietary

Reliable Basic BroadcastReliable Basic Broadcast

Algorithm 3 Reliable broadcast algorithm: code for pi, 0 < i < n - 1.

when bc-sendi(m, reliable) occurs:

 enable bc-send,(<m, i>, basic)

when bc-recvi(<m, k>, j, basic) occurs:

 if m was not already received then

 enable bc-sendi(<m, k>, basic)

 enable bc-recvi(m, k, reliable)

Technology Solutions Lab 71Confidential and Proprietary

Specification of Multicast ServicesSpecification of Multicast Services

Quality of Service

The type of ordering

The degree of fault tolerance

The interface to a basic asynchronous broadcast service is with two types of events:

 bc-sendi(m, G, qos)

 bc-recvi(m, j, qos)

Technology Solutions Lab 72Confidential and Proprietary

Ordering and reliabilityOrdering and reliability

Ordering

 Single Source FIFO

 Totally Ordered

 Multiple-Group Ordering: Let m1and m2 be messages. For any pair of
processors pi and pj, if the events mc-recv(m1) and mc-recv (m2) occur at pi

and pj, then they occur in the same order.

 Causally Ordered

Reliability

 Integrity

 No Duplicates

 Nonfaulty Liveness

 Faulty Liveness

Technology Solutions Lab Confidential and Proprietary

Distributed SystemsDistributed Systems

Presentation 7

Date: 28.10.2005

Technology Solutions Lab Confidential and Proprietary

Distributed Shared MemoryDistributed Shared Memory

Distributed shared memory is a model for interprocess communication that
provides the illusion of a shared memory on top of a message passing system.

The simulation program, which runs on top of the message system providing the
illusion of shared memory is called the Memory Consistency System (MCS).

Technology Solutions Lab Confidential and Proprietary

Shared ObjectShared Object

Operation – Pairs of invocation and matching responses

Sequential Specification – Set of operations and a set of legal sequences of
operations.

Example: Read/Write object X

- The invocation for a read is readi(X) and responses are returni(X, v), where i
indicates the node and v the return value.

- The invocations for a write have the form writei(X, v), where v is the value to be
written, and the response is acki(X).

- A sequence of operations is legal if each read returns the value of the most recent
preceding write, if there is one, and otherwise returns the initial value.

Technology Solutions Lab Confidential and Proprietary

Linearizable Shared MemoryLinearizable Shared Memory

Inputs – invocations on shared objects

Outputs – responses from the shared object

For a sequence σ to be in the allowable set, the following properties must be
satisfied:

Correct interaction: For each pi, σ|i consists of alternating invocations and
matching responses, beginning with an invocation. This condition imposes
constraints on the inputs.

Liveness: Every invocation has a matching response.

Linearizability: There exists a permutation Π of all the operations in a such that

1. For each object O, Π|O is legal (i.e., is in the sequential specification of O)

2. If the response of operation o1 occurs in σ before the invocation of operation o2,
then o1 appears before o2 in Π.

Technology Solutions Lab Confidential and Proprietary

Linearizable Shared Memory (Cont.)Linearizable Shared Memory (Cont.)

Examples:

Processor p0 and p1

Shared registers x and y, both initially 0.

σ1 = write0(x,1) write1(y,1) ack0(x) ack1(y) read0(y) read1(x) return0(y, 1) return1(x, 1)

Π1= w0w1r0r1

- Linearizable.

σ2 = write0(x,1) write1(y,1) ack0(x) ack1(y) read0(y) read1(x) return0(y, 0) return1(x, 1)

- Not Linearizable.

Technology Solutions Lab Confidential and Proprietary

Sequentially Consistent Shared MemorySequentially Consistent Shared Memory

A sequence σ of invocations and responses is sequentially consistent if there
exists a permutation Π of the operations in a such that

1. For every object O, Π | O is legal, according to the sequential specification of
O.

2. If the response for operation o1 at node pi occurs in σ before the invocation for
operation o2 at node pi, then o1 appears before o2 in Π, equivalently, σ | i = Π | i.

Technology Solutions Lab Confidential and Proprietary

Sequentially Consistent Shared Memory Sequentially Consistent Shared Memory
(Cont.)(Cont.)

Example:

σ2 = write0(x,1) write1(y,1) ack0(x) ack1(y) read0(y) read1(x) return0(y, 0) return1(x, 1)

Π2= w0 r0 w1 r1

Sequentially consistent.

σ3 = write0(x,1) write1(y,1) ack0(x) ack1(y) read0(y) read1(x) return0(y, 0) return1(x, 0)

Not sequentially consistent.

Technology Solutions Lab Confidential and Proprietary

AlgorithmAlgorithm

Assumption: Underlying message passing communication system supports totally
ordered broadcast.

bc-sendi (m, total) -> tbc-sendi (m)

bc-recvi (m, total) -> tbc- recvi (m)

There is a local copy of every shared object in the state of the MCS process at
every node.

Technology Solutions Lab Confidential and Proprietary

Algorithm: LinearizabilityAlgorithm: Linearizability

when readi(x) occurs:

 enable tbc-sendi (x).

when writei(x, v) occurs:

 enable tbc-sendi (x,v).

when tbc-recvi (x, v) from pj occurs:

 copy[x] := v

 if j = i then enable acki (x)

when tbc-recvi (x) from pj occurs:

 if j = i then enable returni (copy[x])

Technology Solutions Lab Confidential and Proprietary

Algorithm: Sequentially Consistent Local ReadAlgorithm: Sequentially Consistent Local Read

code for processor pi, 0 <= i <= n - 1.

Initially copy[x] holds the initial value of shared object x, for all x.

when readi(x) occurs:

 enable returni (x, copy[x])

when writei(x, v) occurs:

 enable tbc-sendi (x,v)

when tbc-recvi (x, v) from pj occurs:

 copy[x] := v

 if j = i then enable acki (x)

Technology Solutions Lab Confidential and Proprietary

Algorithm: Sequentially Consistent Local WriteAlgorithm: Sequentially Consistent Local Write

code for processor pi, 0 <= i <= n - 1.

Initially copy[x] holds the initial value of shared object x, for all x, and num = 0.

when readi(x) occurs:

 if num = 0 then enable returni (x, copy[x]).

when writei (x, v) occurs:

 num := num +1

 enable tbc-sendi (x, v)

 enable acki (x)

when tbc-recvi (x, v) from pj occurs:

 copy[x] := v

 if j = i then

 num = num - 1

 if num = 0 and a read on x is pending then

 enable returni (x, copy[x]).

Technology Solutions Lab Confidential and Proprietary

Thank YouThank You

	Distributed Systems
	What is Distributed Computing
	Models of Distributed Computing
	Message-passing System Model
	Complexity Measures
	Example: Algorithm 1
	Example: Algorithm 2
	Algorithm 2 (cont.)
	Leader Election Problem
	Asynchronous Ring
	Asynchronous Ring (Cont.)
	Slide 12
	Synchronous Ring
	Slide 14
	Shared Memory System Model
	Shared Memory System Model (Cont.)
	Slide 17
	The Mutual Exclusion Problem
	The Mutual Exclusion Problem (Cont.)
	Example: Binary Test&Set Registers
	Example: Read-Modify-Write Registers
	Example: Mutual Exclusion using Local Spinning
	Slide 23
	Failures in Synchronous Systems
	Synchronous Systems with Crash Failure
	A Simple Algorithm
	Lower Bound on the Number of Rounds
	Synchronous Systems with Byzantine Failure
	An Exponential Algorithm
	An Exponential Algorithm (Cont.)
	A Polynomial Algorithm
	A Polynomial Algorithm (Cont.)
	Impossibilities in Asynchronous Systems
	Slide 34
	Capturing Causality
	The Happens-Before Relation
	Casual Shuffle
	Logical Clocks
	Non-causality
	Vector Clocks
	Shared Memory System
	Clock Synchronization
	Merging of the Time Views of the Processors
	Clock Synchronization Problem
	The Two Processors Case
	The Two Processors Case (Cont.)
	n Processors Case
	Practical Clock Synchronization: Estimating Clock Differences
	Slide 49
	A Formal Model for Simulation
	Problem Specification
	Communication Systems
	Asynchronous Point-to-point Message Passing
	Asynchronous Broadcast
	Process
	Process (Cont.)
	Admissibility
	Simulation
	Simulation (Cont.)
	Slide 60
	Specification of Broadcast Services
	Broadcast Service Quality: Ordering
	Ordering (Cont.)
	Broadcast Service Quality: Reliability
	Implementing a Broadcast Service
	Totally Ordered Broadcast
	Totally Ordered Broadcast (Cont.)
	Causality without Total Ordering
	Slide 69
	Reliable Basic Broadcast
	Specification of Multicast Services
	Ordering and reliability
	Slide 73
	Distributed Shared Memory
	Shared Object
	Linearizable Shared Memory
	Linearizable Shared Memory (Cont.)
	Sequentially Consistent Shared Memory
	Sequentially Consistent Shared Memory (Cont.)
	Algorithm
	Algorithm: Linearizability
	Algorithm: Sequentially Consistent Local Read
	Algorithm: Sequentially Consistent Local Write
	Slide 84

