
Gigabit PikPaket: A Network Monitoring Toolfor Gigabit Networks
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Tehnology

byP Satya Srikanth

to theDepartment of Computer Siene & EngineeringIndian Institute of Tehnology, KanpurMay, 2004

Certi�ate
This is to ertify that the work ontained in the thesis entitled �Gigabit Pik-Paket: A Network Monitoring Tool for Gigabit Networks�, by P Satya Srikanth, hasbeen arried out under our supervision and that this work has not been submittedelsewhere for a degree.May, 2004
(Dr. Dheeraj Sanghi)Department of Computer Siene &Engineering,Indian Institute of Tehnology,Kanpur.

(Dr. Deepak Gupta)Department of Computer Siene &Engineering,Indian Institute of Tehnology,Kanpur.

AbstratThe extensive use of omputers and networks for exhange of information hasalso had rami�ations on the growth and spread of rime through their use. Lawenforement agenies need to keep up with the emerging trends in these areas forrime detetion and prevention. Among the several needs of suh agenies are theneed to monitor, detet and analyze undesirable network tra�. However, the mon-itoring, deteting, and analysis of this tra� may be against the goal of maintainingprivay of individuals whose network ommuniations are being monitored. Also,the bandwidth at network bakbones and Internet Servie Providers is inreasingrapidly due to the inrease in network usage. This inrease in bandwidth imposesan additional requirement on Network Monitoring Tools to monitor tra� at veryhigh speeds without losing any relevant information.PikPaket � a network monitoring tool that an handle the on�iting issuesof network monitoring and privay through its judiious use, is disussed in Refer-enes [1, 8, 9, 12℄. This thesis disusses the design and development of a networkmonitoring tool alled Gigabit PikPaket, an enhaned version of PikPaket formonitoring network at Gigabit speed. This tool e�etively uses the support of mul-tiproessor and/or multiple mahines for monitoring tra� at very high speeds.

AknowledgmentsI take this opportunity to express my sinere gratitude towards my thesis su-pervisors Dr. Dheeraj Sanghi and Dr. Deepak Gupta for their invaluable guidane.It would have never been possible for me to take this projet to ompletion with-out their innovative ideas and enouragement. I also thank the other team membersinvolved with the development of PikPaket for their ooperation and support. San-jay Jain helped me initially to understand the PikPaket arhiteture thoroughly.Ramesh helped me at every point in the development of Gigabit PikPaket. Sudheerand Ananth helped me by implementing a splitter and explained me the problemsassoiated in building a splitter at software level. I would like to thank BrajeshJi,for being ooperative and allowing me to use the �gures in his thesis report.I also wish to thank whole heartily all the faulty members of the Departmentof Computer Siene and Engineering, IIT Kanpur for enhaning my knowledge. Ialso wish to thank Navpreet SinghJi for helping me to sni� on the CC network. Iwould like to thank whole of the mteh2002 bath for the times I shared with them.My speial thanks to Saradhi for helping me whenever I faed problems in using anytool in Linux. I would like to thank everyone in the Prabhu Goel Researh Centrefor providing a nie and hallenging work environment. I would also like to thankthe Prabhu Goel Researh Centre for sponsoring my work.

i

Contents
1 Introdution 11.1 Sni�ers . 21.2 Need for Gigabit Sni�ers . 41.3 Organization of the Report . 52 PikPaket: Arhiteture and Design 62.1 Arhiteture . 62.2 Design . 72.2.1 The PikPaket Con�guration File Generator 72.2.2 PikPaket Filter . 82.2.3 The PikPaket Post-Proessor 112.2.4 The PikPaket Data Viewer 133 Design of Gigabit PikPaket 143.1 Multi-threaded Design . 153.2 Distributed Design . 213.2.1 Hub based approah . 213.2.2 Splitter based approah . 234 Implementation of Gigabit PikPaket 274.1 Con�guration File Generator . 274.2 Filter . 284.2.1 Multi-threaded Implementation 304.2.2 Clustered Implementation . 30ii

4.2.3 Signature for Dump�les . 314.2.4 Optimization of Filter . 314.3 PikPaket PostProessor . 325 Testing 345.1 Corretness Testing . 345.2 Performane Testing . 355.2.1 E�et of Multiple Threads/Proessors 365.2.2 E�et of Optimizations . 375.2.3 E�et of Tra� Patterns . 385.2.4 Performane of Hub Based Approah 395.2.5 E�et of Paket Sizes . 405.2.6 Performane of Splitter Based Approah 416 Conlusions 426.1 Further Work . 43Bibliography 45A A Sample Con�guration File 46

iii

List of Tables5.1 E�et of number of Proessors on Gigabit PikPaket's performane . 365.2 E�et of Optimizations on Gigabit PikPaket's performane 375.3 E�et of tra� pattern on Gigabit PikPaket's performane 395.4 E�et of number of mahines on hub based approah's performane . 395.5 E�et of Paket size on sni�er's performane 405.6 E�et of number of mahines on splitter based approah's performane 41

iv

List of Figures2.1 Arhiteture of PikPaket . 72.2 Filtering Levels . 92.3 The Basi Design of the PikPaket Filter 102.4 Post-Proessing Design . 123.1 The Arhiteture of Hub based approah 223.2 Paket handling in Hub based approah 243.3 The Arhiteture of Splitter based approah 254.1 Con�guration File Generator: Thread Manager Tab 29

v

Chapter 1IntrodutionThere has been a tremendous growth in the amount of information being transferredbetween omputers with the advent of Internet. Internet has now beome the majormedium of ommuniation for people all over the world. Unfortunately, riminalsare just as quik to exploit new tehnologies as any other setion of the people. Theyare inreasingly relying on the Internet for ommuniation and exhange of informa-tion pertaining to unlawful ativity. Consequently law enforement agenies need tomonitor the data �owing aross the net to detet and prevent suh ativities. Com-panies that want to safeguard their reent developments and researh from fallinginto the hands of their ompetitors also resort to intelligene gathering. Monitoringtools are also useful in evaluating and diagnosing performane problems of serversand network omponents. Monitoring tools should however, not ompromise theprivay of individuals whose network ommuniations are being monitored.With the inrease in use of omputers and networks, the bandwidth at networkbakbones and Internet Servie Providers is also inreasing rapidly. For monitoringtra� at suh busy segments of the network, there is a need for monitoring toolsthat an work at gigabit speeds without losing any relevant information. Suh toolsare also useful for monitoring Gigabit Ethernet LANs.
1

1.1 Sni�ersNetwork sni�ers are software appliations that are often bundled with hardwaredevies and are used for eavesdropping on network tra�. Sni�ers usually providesome form of protool-level analysis that allows them to deode the data �owingaross the network aording to the needs of the user. A sni�er may be used tounderstand and �x problems in network tra� or to detet abnormal ativities, andunfortunately one may also be used by an attaker to steal ritial information.Sni�ers on a LAN often means monitoring the tra� on the Ethernet. Ethernetwas built around a shared priniple: all mahines on a loal network share thesame wire. Ethernet ard (the standard network adapter) is hard-wired with apartiular MAC address and ignores all tra� not intended for that address. Theprimary mehanism of sni�ng in Ethernet is by putting the Ethernet hardware into�promisuous mode� that turns o� the �ltering mehanism of the hardware hip onthe network adapter and auses it to ollet all frames irrespetive of the destinationMAC address. In a swithed network, all mahines do not reeive all the pakets asthe swith sends a paket on only one outgoing port depending on the destinationMAC address of the paket . Most swithes allow �port mirroring� where a port anbe on�gured as a �monitor� or �span� port that will get a opy of some or all of thetra� going aross the swith. These ports an be used by sni�ers. Alternatively,Ethernet taps an be used that allow us to examine network tra� without ausingany data stream interferene.The amount of information that �ows aross the network is very high. A simplesni�er that just aptures all the data �owing aross the network and dumps it tothe disk soon �lls up the entire disk if plaed on a busy segment of the network.Analysis of this data for di�erent protools and onnetions also takes onsiderabletime and resoures. Moreover, it would be desirable to gather data so that theprivay of individuals who are aessing and dispensing data through the networkis not ompromised. It is therefore neessary to �lter, on-line, the data gathered bythe sni�er.Current day sni�ers often ome oupled with a �lter that an �lter pakets basedon various riteria. Three levels of �ltering an be applied on these pakets. The2

�rst level of �ltering is based upon network parameters like IP addresses, protoolsand port numbers. This level of �ltering is generally supported at the kernel levelalso. The seond level of �ltering is based on appliation spei� riteria like email-id for SMTP, hostname for HTTP et. The third level of �ltering is based on theontent present in the appliation pay load. Sni�ers also ome bundled with theirown post-apture analysis and proessing tools whih extrat information from thedump and present it in a human-readable form.Several ommerially and freely available sni�ers exist urrently. Sni�ers omein di�erent �avors and apabilities for di�erent Operating Systems. Ethereal [4℄and WinDump [2℄ are two suh popular tools for Windows. On UNIX sni�ers aregenerally based upon libpap and/or BPF [10℄ (Berkeley Paket Filter). Libpapis a standard paket apture library used to store pakets on the disk. Many om-merial and free post-proessing and rendering tools are available that an analyzethe pakets stored by sni�ers in the pap format. BPF is an in-kernel paket �lterthat �lters pakets based on a direted ayli Control Flow Graph method. BPFuses an interpreter for exeuting the �lter ode that assumes a pseudo mahine withsimple funtionality akin to assembly language. Two popular sni�er tools on Unixare tpdump [7℄ and Ethereal [4℄. Tpdump is based on libpap and BPF �lters.WinDump is a version of tpdump for Windows that uses a libpap-ompatiblelibrary alled WinCap.Carnivore [5, 6, 14℄ is a network monitoring tool developed by FBI. It an bethought of as a tool with the sole purpose of direted surveillane. This tool anapture pakets based on a wide range of appliation-layer based riteria. It fun-tions through wire-taps aross gateways and ISPs. Carnivore is also apable ofmonitoring dynami IP address based networks. The apabilities of string searhesin appliation-level ontent seems limited in this pakage. It an only apture emailmessages to and from a spei� user's aount and all network tra� to and from aspei� user or IP address. It an also apture headers for various protools.PikPaket is a network monitoring tool that an address the on�iting issues ofnetwork monitoring and privay through its judiial use. This tool has been devel-oped as a part of the researh projet sponsored by the Department of Information3

Tehnology, MCIT, New Delhi. The basi frame work for this tool and design andimplementation of appliation layer �lter for Simple Mail Transfer Protool (SMTP)and Telnet has been disussed in Referene [9℄. The design and implementation ofappliation layer �lter for Hyper Text Transfer Protool (HTTP) and File TransferProtool (FTP) has been disussed in Referene [12℄. The design and implementa-tion of text string searh in MIME-Enoded data has been disussed in Referene [1℄.The design and implementation of appliation layer �lter for the Remote Authenti-ation Dial In User Servie (RADIUS) Protool has been disussed in Referene [8℄.1.2 Need for Gigabit Sni�ersIn the past few deades, use of omputer networks for information exhange hasinreased rapidly. Also the number of users and the amount of information beingtransferred aross the network have inreased proportionately. With this surgingdemand for data, the bandwidth at the network bakbones and Internet ServieProviders has also inreased. Bandwidth growth has been explosive in the Loal areanetworks also, propelled by the availability and deployment of Gigabit Ethernet.With this inrease in bandwidth, a need for sni�ers, that an monitor tra� atsuh high speeds, arises. A simple sni�er that aptures all the data �owing arossthe network and dumps it to the disk soon �lls up the entire disk espeially if plaedon a busy segment of the network. Moreover, it would be desirable to gather data�owing aross the network so that the privay of individuals who are aessing datathrough the network is not ompromised. Thus it is neessary to �lter on-line thedata using various riteria. Filtering pakets using omplex riteria at very highspeeds results in paket drops as pakets arrive muh faster at the interfae ardthan they are handled by the sni�er. One the bu�ers get �lled, pakets will bedropped at various levels starting from appliation to interfae ard. Thus there isa need for fast sni�ers that an monitor tra� at high speeds based on omplex setof riteria without dropping any pakets.Several ommerial sni�ers exist that laim to handle gigabit tra�. Sni�erPortable [15℄ by Network Assoiates and Unispeed Netlogger [17℄ are two suh tools4

developed for Windows. Referene [3℄ desribes ring sokets, that an be used toimprove the passive paket apture performane in Linux. nProbe/nFlow [11℄ isreently released for Linux that uses the tehnology desribed in Referene [3℄ tohandle near gigabit sni�ng. It provides aounting and performane informationof a network by storing samples of tra� information in a standard �ow format.Sni�ng at gigabit speed on Linux is still not a matured tehnology.In this work we have developed Gigabit PikPaket, a new version of PikPaketthat an e�etively use multiproessor mahines, luster of mahines and their om-bination to monitor gigabit tra�. Instead of just providing performane and a-ounting information of a network, Gigabit PikPaket an reonstrut the wholeonnetion of interest without sari�ing the features provided in the original Pik-Paket.1.3 Organization of the ReportThis thesis fouses in detail on Gigabit PikPaket, a Network Monitoring Tool thatan handle one gigabit per seond tra�. Chapter 2 desribes the high level arhi-teture and design of the original PikPaket. Chapter 3 desribes the design aspetsof Gigabit PikPaket. Chapter 4 desribes in detail various implementation issuesand optimizations used in Gigabit PikPaket. Chapter 5 desribes testing setupand performane results. The �nal hapter onludes the thesis with suggestions forfuture work.

5

Chapter 2PikPaket: Arhiteture and DesignThis hapter disusses the arhiteture and design of PikPaket. First, the arhi-teture of PikPaket and its various omponents are desribed. Then design ofeah omponent is desribed brie�y. Detailed design and implementation details aredisussed in Referene [9℄.2.1 ArhiteturePikPaket an be viewed as an aggregate of four omponents ideally deployed onfour di�erent mahines. These omponents are1. PikPaket Con�guration File Generator is a JAVA GUI deployed on a Win-dows/Linux mahine. It is used to speify the riteria for apturing the pak-ets. The riteria spei�ed by the user are stored in a on�guration �le.2. PikPaket Filter, deployed on a Linux mahine, uses the on�guration �leas input, �lters and stores the pakets that math the spei�ed riteria. Fil-tering is done based on riteria orresponding to IP addresses, port numbers,appliation layer protool parameters and ontent present in the appliationpayload.3. PikPaket PostProessor, deployed on a Linux mahine, proesses the paketsstored o�ine and retrieves the meta information from them.6

4. PikPaket Data Viewer is a GUI deployed on a Windows mahine. It readsthe meta information generated by the PostProessor and displays it to theuser.An arhitetural view of PikPaket is shown in Figure 2.1 where these ompo-nents are shown in retangles.
Conf files

PickPacket Configuration
File Generator GUI

PickPacket Filter PickPacket Data Viewer
GUI

PickPacket Post-Processor

GUI filesDump files

NETWORKFigure 2.1: Arhiteture of PikPaket
2.2 DesignThis setion brie�y desribes the design of eah omponent of PikPaket.2.2.1 The PikPaket Con�guration File GeneratorThe PikPaket Con�guration File Generator is a Java based graphial user interfae(GUI) that is used for speifying the rules for apturing the pakets. These rulesare saved in on�guration �le that is used as input for PikPaket �lter. This �le isa text �le with HTML like tags. A sample on�guration �le is given in Appendix A.This �le has four setions: 7

1. The �rst setion ontains spei�ations of the output �les that are reatedby the PikPaket Filter for storing aptured pakets. There is no restritionon the number of output �les. The last �le an have a size of �0� meaningpotentially in�nite size. A feature in the on�guration �le is the support fordi�erent output �le managers. This feature would be useful if aptured paketshave to be stored in formats other than the default pap [18℄ style format.2. The seond setion ontains riteria for �ltering pakets based on soure anddestination IP addresses, transport layer protool, and soure and destina-tion port numbers. The appliation layer protool that handles pakets thatmath the spei�ed riteria is also indiated. This information is required fordemultiplexing pakets to the orret appliation layer protool �lter.3. The third setion spei�es the maximum number of simultaneous onnetionsthat an be monitored for any appliation. This is used for memory alloa-tion. The default value set by the on�guration �le generator is 500 for eahappliation protool. A very large value may ause the system to run outof memory, and thus behave unpreditably. A small value may ause someonnetions to be missed.4. The fourth setion omprises of multiple subsetions, eah of whih ontainsriteria orresponding to an appliation layer protool. Based on these rite-ria the appliation layer data ontent of the pakets are analyzed. Filteringriteria for SMTP, HTTP, FTP and Telnet protools an be spei�ed in thesesubsetions. An appliation layer protool subsetion also spei�es the modeof operation of the �lter (�PEN� or �FULL�) for the protool. In PEN mode,paket data till and inluding the transport layer protool header is savedwhereas in FULL mode, the entire paket is saved.2.2.2 PikPaket FilterPikPaket Filter reads pakets from the network and proesses them to �nd if theymath any of the riteria spei�ed by the user. If a math ours, the paket is8

saved onto the disk for further analysis. This setion brie�y desribes the design ofthe PikPaket Filter.The PikPaket �lter an �lter pakets at three levels.1. Filtering based on network parameters (IP addresses, port numbers, et).2. Filtering based on appliation layer protool spei� riteria (hostnames, email-ids, et).3. Filtering based on ontent present in the appliation payload.The �rst level of �ltering has been made very e�ient through the use of in-kernel�lters [10℄, as only paket whih mathes the network level riteria are opied fromkernel spae to user spae. Sine the ontent of appliation an be best deipheredby the appliation itself, the seond and third levels of �ltering are ombined.
Application Layer FilterBasic Filter

Application Specific
Criteria and text strings

Criteria based on Network
Parameters

PacketPacket PacketFigure 2.2: Filtering LevelsFigure 2.2 illustrates the various levels of �ltering. Basi �lter reads paketsfrom the network and �lters them based on the network parameters spei�ed in theon�guration �le. It passes only those pakets that satisfy the riteria to the nextlevel. Appliation level �lter further �lters the pakets reeived from basi �lterbased on appliation spei� riteria.Sine it would be onvenient to have a separate �lter for eah appliation layerprotool, appliation level �ltering is split into multiple �lters � one for eah proto-ol. This design has the advantage that it is easy to enhane the �lter by addingnew appliation layer �lters. A demultiplexer is provided between basi �lter and9

appliation level �lters. It deides whih appliation �lter should reeive the paketfor further proessing based on its own set of riteria.Appliation spei� �ltering redues to text searh in the appliation layer dataontent of the pakets. In ase of ommuniation over onnetion oriented protool,this text searh handles situations where the desired text is split aross two or morepakets before being transmitted on the network. It also handles the ase wherepakets are reeived out of sequene. TCP Connetion Manager is present betweendemultiplexer and appliation layer �lters to �nd whether a paket is out of order.It is designed in suh a way that it will handle only those onnetions that are ofinterest to the appliation layer �lter. Appliation layer �lter an alert it so as tomaintain the sequene information for a onnetion.

Packet

Packet +
Connection
Information

IP addresses,
Transport

Layer Protocol
Options

Output File
Options

Configuration
File

Application
Layer Protocol

Specific
Criteria

Initialize

Filter Generator

IP addresses T
ransport layer Protocol O

ptions

Basic Filter

Demultiplexer

BPF Code Socket Connection
Manager

Packet

Packet

Application
Layer Filter

(A)

Application
Layer Filter

(Z)

Output File
Manager

Storage
Media

Packet +
Connection
Information

Packet

Packet

Packet

Packet

Application Layer Protocol
Specific Criteria

Output File
Options

Additional Filter
Parameters

Legend:
Data Flow
Control Flow
Components

Connection
Manager

Packet

Alerts

Alerts

Figure 2.3: The Basi Design of the PikPaket FilterFigure 2.3 shows the major modules in the PikPaket Filter. The module Initial-ize is used for initializations dependent on the on�guration �le. Another module,10

the Output File Manager, is responsible for dumping �ltered pakets to the disk.The Filter Generator module is used for generating the in-kernel BPF ode. Hooksare provided for hanging the BPF ode on-the-�y. Funtions that an generate the�lter ode based on hanged parameters an be alled by appliation level �lterssuh as FTP during �PASSIVE� mode of �le transfers. The Demultiplexer an alsoall the Output File Manager diretly so that the �lter an diretly dump paketswithout resorting to appliation layer protool based �ltering, if neessary. TheConnetion Manager an also diretly dump pakets to the disk. This is requiredwhen all riteria have mathed for a spei� onnetion and the onnetion is stillopen. More details of these omponents an be found in Referene [9℄.The output �le manager stores output �les in the pap [18℄ �le format. This �lestarts with a 24 byte pap �le header that ontains information related to version ofpap and the network from whih the �le was aptured. This is followed by zero ormore hunks of data. Every hunk has a paket header followed by the paket data.The paket header has three �elds � the length of the paket when it was read fromthe network, the length of the paket when it was saved and the time at whih thepaket was read from the network. The data stored in pap �le format an also beviewed using utilities like tpdump. This standard format also allow us to use othertools for analysis of aptured data.The PikPaket Filter ontains a text string searh library. This library is exten-sively used by appliation layer �lters in PikPaket. This library uses the Boyer-Moore [13℄ string-mathing algorithm for searhing text strings. This algorithm anbe used for both ase sensitive and ase insensitive searh for text strings in paketdata.2.2.3 The PikPaket Post-ProessorThe PikPaket PostProessor proesses the pakets stored by the �lter in a dump�leo�ine and separates the pakets based on transport layer and appliation layerinformation. The detailed desription of Post Proessor is given in Referene [9℄.The Post Proessor has three omponents � the Sorter, the Connetion Breaker,and the Meta Information Gatherer. These are shown in Figure 2.4.11

Sorter Connection Breaker

C1

C3

Cn

C2
Meta Information

Gatherer
Legend

Data Flow

Data Files

Module

Output File
Sorted

Output File

 Connection
Specific

Files

Meta−Information

Cn

C2

C1

C3

Figure 2.4: Post-Proessing DesignThe pakets present in the output �le may not be in the order they were transmit-ted on the network. Therefore the Sorter module is used to sort the pakets presentin the output �le generated by the paket �lter based on the time stamp valueorresponding to the time the pakets were read o� the network. The ConnetionBreakermodule reads the sorted output �le and retrieves the onnetion informationfrom the pakets belonging to a onnetion oriented protool and separates theminto di�erent �les. Internally onnetion breaking is aomplished by a TCP statemahine based proess. Pakets belonging to a onnetionless protool like UDPare separated based on the ommuniation tuple. The Meta Information GatheringModule reads these onnetion spei� �les and retrieves the meta-information ofevery onnetion. Eah appliation requires di�erent meta-information and paketsbelonging to a partiular appliation are proessed by meta-information gatheringmodules for that appliation. The meta-information of appliation layer protoolsinludes important �elds present in the data ontent suh as e-mail addresses forSMTP onnetions, usernames for FTP onnetions, URLs for HTTP, et. Themeta-information for di�erent appliation layer protools is stored separately.12

2.2.4 The PikPaket Data ViewerThe PikPaket Data Viewer is used for rendering the post-proessed information.This is a Visual Basi based GUI and runs on Windows. The hoie of this platformwas made for rapid prototyping and the rih API (Appliation Program Interfae)library that is provided in Windows for rendering ontent belonging to an applia-tion. The Data Viewer reads the meta-information �les and lists all onnetions byappliation type, soure and destination IP addresses, and other suh �elds based onthe meta-information that has been provided by the Post-Proessor. These onne-tions an be sorted and searhed based on these �elds. The Data Viewer also allowsexamining the details of a onnetion and an show the data for that onnetionthrough appropriate user agents ommonly found in the Windows environment suhas Outlook Express, Internet Explorer, et. The dialogue between ommuniatinghosts an also be seen in a dialogue box. User an also view the on�guration �leused by the paket �lter.

13

Chapter 3Design of Gigabit PikPaketPikPaket an �lter pakets based on network and TCP/UDP level riteria as wellas appliation level riteria for SMTP, FTP, HTTP and Telnet protools. PikPaketalso supports monitoring dialup users who are alloated dynami IP addresses bythe Internet Servie Provider with the RADIUS support inluded in it [8℄. Themajor earlier version of PikPaket was designed for operation at 100 Mbps. It annot handle pakets when they are reeived at a very high speed. When the paketsare arriving at a very high speed, PikPaket �lter that runs on-line should proessthe pakets fast enough in order to avoid dropping any paket. Analyzing the paketfor spei�ed riteria and storing the paket to a �le takes more time than the rate atwhih pakets arrive in gigabit networks. So, the PikPaket Filter starts droppingthe pakets. This problem an be takled by using a parallel arhiteture, where�ltering an be parallelized. But the urrent design does not support this featureand thus it does not sale to gigabit networks.Gigabit PikPaket is an enhaned version of PikPaket that indues parallelisminto the �ltering omponent of the PikPaket thus enabling it to monitor gigabittra�. This hapter disusses the design of this tool. Two mehanisms for ahievingparallelism are desribed in the rest of this hapter.
14

3.1 Multi-threaded DesignMulti-threaded and distributed omputing are gaining a wide popularity in the areaof high performane omputing. Availability of high speed omputer networks andsophistiated software environments are allow performing parallel/onurrent om-puting on ommodity hardware. Reently, threads have beome powerful entitiesto express parallelism on these shared memory multiproessors (SMP) systems. Ona multiproessor mahine, multiple threads may be distributed aross multiple pro-essors, whih an dramatially improve throughput. This is often the ase withpowerful multiproessor web servers, whih an distribute large numbers of userrequests aross CPUs in a program that alloates one thread per request. Thesefators have given an impetus for further popularity of multi-threading.In the past, high-performane multi-threading has been used only in super-omputing, real-time ontrol and multi-user server appliations for ahieving highthroughput. The idea of dividing a omputationally intensive program into multi-ple onurrent threads to speed up exeution on multiproessor omputers is wellestablished. However, this kind of high-performane multi-threading has made verylittle impat in mainstream business and personal omputing, or even in most areasof siene and engineering. The reason has been the rarity and high ost of multi-proessor omputer systems. With the advent of inexpensive multiproessor PCs,multi-threading is poised to play an important role in all areas of omputing.PikPaket �lter is the most ruial omponent of the PikPaket arhiteturethat monitors tra� on-line at a very high speed. To handle suh tra�, the �ltershould take deision about a paket as soon as possible. Thus, multi-threading isintrodued in the �lter omponent to enable it to use multiproessor support. Eventhough it is lear that multi-threading will improve the performane, it is not atrivial exerise to onvert PikPaket into a multi-threaded appliation.The PikPaket Filter an be parallelized in di�erent ways:1. We an have one thread for eah appliation layer protool and all the paketsorresponding to this appliation protool an be handled by this thread. Thismethod is easy to implement but is not e�ient when pakets belonging to oneappliation protool dominates the other appliation protools, whih is quite15

ommon in pratie. In that ase, work load will not be uniformly distributedaross all the threads. In real life, HTTP tra� is more than the ombinedtra� of all the other appliation protools.2. We an reate �xed number of threads and alloate pakets to threads inround-robin manner or using any other load balaning algorithm. In thisase, pakets belonging to the same onnetion may be handled by di�erentthreads. In that ase, we need to protet onnetion spei� data struturesand appliation level information stored for a onnetion from rae ondition.We an use loks to ahieve this, but this is not an e�ient design as thesedata strutures are used so often in �lter that e�ieny ahieved by usingmultiple threads will be ompromised by the ontention for loks.3. We an use another method where one thread is reated for eah new onne-tion that handles all the pakets belonging to this onnetion and destroyedwhen the onnetion is losed. In this method thread management overheadand ontext swithes will be signi�ant and nullify the advantage of usingmulti-threading.As all these methods have some bottleneks, we use a di�erent approah wherea �xed number of threads are reated and instead of distributing individual paketsamong these threads, di�erent onnetions are distributed among them in the desiredratio. All pakets belonging to a partiular onnetion will always be handled by thesame thread. This design ahieves load balaning at a muh �ner level than approah1 above, as pakets are distributed based on onnetions rather than on appliationlayer protool. Also it solves the ontention problem of approah 2 as we need notprotet all the onnetion spei� data strutures from rae ondition, beause eahonnetion is always handled by the same thread. Problems in approah 3 will notbe present here as we use a �xed and small number of threads. Ideally this numbershould be equal to the number of proessors on this mahine for ahieving the bestperformane.We use a hash funtion on four tuple (Soure IP Address, Destination IP Address,Soure Port and Destination Port) to distribute pakets among multiple threads in16

the desired manner. Four tuple is hosen for alulating hash funtion beause allpakets belonging to a onnetion have the same four tuple. We ategorize threadsin our model into two di�erent types based on the task that they perform. Theyare reading threads and proessing threads. A reading thread reads pakets fromthe network and handles it or enqueues it for other thread to handle based on thehash funtion. A proessing thread on the other hand does not read any paket butproesses pakets that are read by other threads. Eah proessing thread maintainsa bu�er alled pending queue in whih pakets are inserted by the reading threadson hash index math. As paket reading time is lesser than paket handling time,generally we require fewer reading threads ompared to proessing threads. We anuse all reading threads and no proessing threads if the load is to be shared equallyamong all the threads.The Psuedoode for reading thread follows.reading_thread{ while(1){ read a paket from the network;searh dynami demultiplexer table for entry;if(entry found){ thread_index = thread index present in the entry;insert into pending queue of target thread whoseindex range mathes thread_index;if target thread is a proessing thread and itspending queue was empty before insertion thensend signal to that thread;ontinue;} 17

searh stati demultiplexer table for entry;if(entry found){ thread_index = hash(four tuple);insert into pending queue of target thread whoseindex range mathes thread_index;if target thread is a proessing thread and itspending queue was empty before insertion thensend signal to that thread;ontinue;}else disard paket;while(pending queue is non-empty){ remove paket from pending queue;proess_paket();}}} Pakets after being opied from the network are heked against the riteriabased on the appliation layer data ontent present in them. For this the paket�lter determines to whih appliation layer protool the paket belongs and passesit to the respetive �ltering module. In other words pakets are demultiplexed onthe basis of the appliation layer protool they belong to. We use demultiplexertables for maintaining this information. Eah table ontains tuples representing thebasi riteria spei�ed in the on�guration �le. The paket is sent to the appropriateonnetion manager and appliation �lter based on the information in these tuples.18

There an be a situation where an appliation might require addition of newtuples in the demultiplexer table apart from the tuples orresponding to the basiriteria spei�ed in the on�guration �le. An example of suh a situation is passiveFTP. In a passive �le transfer, the FTP lient ontats the server on the standardFTP ommand port and issues a PASV ommand. The FTP server replies withits own IP address and a port to whih the lient is supposed to onnet for dataonnetion. This port when sent from the server is a non-standard port and heneannot be determined beforehand. For monitoring suh onnetions, the in-kernelBPF ode i.e., the BPF ode, needs to be modi�ed.For this purpose the demultiplexer maintains its tables in two separate parts,a stati table and a dynami table. The stati table ontains information aboutthe basi riteria spei�ed in the on�guration �le. Whenever an appliation layerprotool �lter desires a modi�ation in the BPF ode, it adds a new entry into thedynami demultiplexer table and removes the existing BPF ode from the kernel.On reading a paket from the network, a reading thread �rst searhes in thedynami demultiplexer table for an entry orresponding to this paket. If an entryis found, paket is inserted in the pending queue of the appropriate thread. If anentry for this paket is not found in the dynami demultiplexer table, the statidemultiplexer table is searhed. If an entry is found in this table, paket is insertedin the pending queue of the appropriate thread whose index is alulated by applyinghash funtion on the four tuple of this paket. After inserting paket in pendingqueue of the other thread, the target thread is signaled if it is a proessing threadand its pending queue was empty before this insertion. Signal is not sent for otherreading threads and proessing threads with non empty pending queues as they willeventually hek their pending queues and proess this paket. If the entry is notfound even in the stati table then this paket is disarded. Now if pending queue ofurrent thread is non empty, pakets are dequeued and proessed until it beomesempty.Dynami demultiplexer entries use di�erent thread index for paket handlingthan the one alulated by applying hash funtion on four tuple of the paket. InFTP, ontrol and data onnetions share the same data strutures throughout the19

appliation �lter proessing. To avoid ontention here, FTP ontrol and data on-netions are handled by the same thread. When an FTP ontrol onnetion is beinghandled, FTP �lter adds an entry in the dynami demultiplexer table orrespond-ing to the FTP data onnetion. Index of the thread handling ontrol onnetionis added in the dynami demultiplexer table along with the basi riteria informa-tion. This index is later used to deliver the data onnetion to the same thread thathandled the ontrol onnetion.The Psuedoode for proessing thread follows.proessing_thread(){ while(1){ if(pending queue is empty){ wait for signal;On reeiving a signal ontinue;}else{ remove paket from pending queue;proess_paket();}}} A proessing thread waits for signal on �nding that its pending queue is empty.If the queue is not empty, it removes a paket from the queue and proesses it. Afterproessing, it will again hek for any pakets in the pending queue. On reeiving asignal in the waiting state, it heks for pakets in pending queue.This model gives �ne ontrol over dividing the load among di�erent threads in thedesired ratio. Also, it is salable for any number and type of proessors. Fine tuning20

of ratios, number and type of threads is required to ahieve maximum performanefor given hardware.3.2 Distributed DesignDistributed omputing solves a large problem by dividing it into small problems,solving them at many omputers and �nally ombining the partial solutions intoa solution for the original problem. Reent distributed omputing projets havebeen designed to use the omputers of hundreds of thousands of volunteers all overthe world onneted through Internet for solving many omputationally intensiveproblems. Distributed omputing an be e�etively used to get the most out ofmultiomputer systems in solving omputationally intensive problems. MPI/PVMis used for message passing between di�erent omputers.This tehnique is used in Gigabit PikPaket to e�etively use the power ofmulti-omputer systems in monitoring gigabit tra�. This setion desribes twovariations of our design in using distributed omputing.3.2.1 Hub based approahIn this approah, multiple mahines run the monitoring tool in parallel and om-putation overhead is distributed among these mahines in a desired ratio. We donot need any message passing between these mahines. We an either use singlethreaded or multi-threaded PikPaket at eah mahine. At eah mahine, only asubset of the inoming pakets are handled and the remaining pakets are disarded.A hash funtion alulated on the four tuple (Soure IP Address, Destination IP Ad-dress, Soure Port, Destination Port) of the paket is used to �nd this subset. Hashfuntion is hosen in suh a way that all pakets belonging to a onnetion are han-dled by the same mahine and a paket is not disarded by all the mahines. Hashindex generated by the hash funtion lies in the index range of one and only onemahine. Figure 3.1 shows the arhiteture of hub based approah.For handling FTP and RADIUS protools, some deviations from the originaldesign are required. In Passive FTP, four tuple of the data onnetion is known21

PickPacket Filter PickPacket Filter PickPacket Filter PickPacket Filter

HUB

Monitoring PortGigabit Switch

ABCD

ABCD ABCD ABCDABCD

Figure 3.1: The Arhiteture of Hub based approahonly at the time of handling ontrol onnetion. FTP �lter dynamially hanges theBPF ode and reompiles it to prevent in kernel �ltering of data onnetion paketsby Linux Soket Filter. It also adds an entry in the dynami demultiplexer tablefor the new data onnetion. The BPF ode and dynami demultiplexer entries arehanged only on the mahine where orresponding FTP ontrol onnetion is beinghandled. Thus FTP data pakets reah the appliation layer, without being �lteredout by the BPF �lter, only on this mahine and they should be handled by thismahine without �ltering based on the hash funtion. Beause of these reasons,FTP should be handled with speial are to prevent hash funtion from disardingdata onnetion pakets on the mahine where ontrol onnetion is being monitored.In RADIUS protool, authentiation and aounting pakets are the ontrolpakets that will instantiate new onnetions. All the pakets orresponding to aRADIUS ontrol onnetion should be handled by the same mahine as we maintainstate information orresponding to the ontrol pakets reeived. But these paketsmay be having di�erent four tuples as authentiation and aounting servers run on22

di�erent ports and possibly on di�erent mahines. Thus RADIUS ontrol paketsshould be exempted from hash funtion and speial are should be taken while han-dling them. Similar to FTP, RADIUS ontrol pakets add entries in demultiplexertable and reompile BPF ode to enable monitoring of RADIUS instantiated on-netions. So, pakets belonging to RADIUS instantiated onnetions will reah theappliation layer only on the mahine where RADIUS ontrol onnetion is handled.Thus, RADIUS data pakets should not be disarded on this mahine based on hashfuntion and they should be handled similar to FTP data pakets.To solve the above problems, FTP data pakets and RADIUS pakets should behandled before disarding them based on hash funtion. Figure 3.2 shows the data�ow diagram of Gigabit PikPaket with speial are for FTP and RADIUS.Every UDP paket is �rst heked for whether it is a RADIUS paket. If it isa RADIUS paket, it is handled without alulating hash funtion. Thus, RADIUSontrol pakets are handled by all the mahines and BPF Filter on every mahine ishanged to aept pakets belonging to RADIUS instantiated onnetions. Dynamidemultiplexer table is divided into FTP and RADIUS demultiplexer tables to avoidsearhing RADIUS entries of demultiplexer on every mahine for all the reeivedpakets. On reeiving a TCP paket, FTP demultiplexer table is searhed for anentry orresponding to this paket. If an entry is found, this paket is handledwithout disarding based on hash funtion. Otherwise RADIUS demultiplexer tableand stati demultiplexer table are searhed in order for an entry orresponding tothis paket. If it is found in any of these tables, it is handled normally and disardedotherwise. With this approah, RADIUS instantiated onnetions are distributedamong all the mahines based on the same hash funtion.3.2.2 Splitter based approahEven though hub based approah improves the performane of PikPaket to someextent, it is still limited by the kernel level overhead as all pakets are handled bythe kernel on every mahine. The Hub based approah distributes the appliationlevel overhead but not the kernel level overhead. In this setion, we disuss anotherapproah where kernel level paket overhead an also be distributed.23

Start

Read Packet

 Is TCP
 Packet?

 Is UDP
Packet?

Drop Packet

Process Packet

Is RADIUS pkt?

 Calculate Hash

 If Hash
match occurs?A

A

in RADIUS demultiplexer
 table

 If entry found

 If entry found
in FTP demultiplexer
 table

 If entry found

 table
in Static demultiplexer

Yes

No

Yes Yes

No

No

No

No

No

No

Yes

Yes

Yes

YesFigure 3.2: Paket handling in Hub based approah
24

PickPacket Filter PickPacket Filter PickPacket Filter PickPacket Filter

Monitoring PortGigabit Switch

SPLITTER

A B C D

ABCD

Figure 3.3: The Arhiteture of Splitter based approahLoad balaning swithes an be used to split the tra� to be monitored amongmultiple mahines in suh a way that all pakets belonging to a onnetion are sentto the same mahine. Figure 3.3 shows the arhiteture of splitter based approah.IDS load balaners are available [16℄ that an split tra� based on round robin andweighted least onnetions algorithms. We an use the arhiteture shown in the�gure, where a load balaning swith will divide the tra� to be monitored amongmultiple mahines running PikPaket. By this approah kernel level overhead isalso distributed. This approah is salable to very high speed networks.This approah has the disadvantage that FTP and RADIUS an not be handled.As we have already seen, a simple hash funtion that disards all the pakets that donot math the hash index is not enough for handling FTP and RADIUS protools.Speial are need to be taken to handle FTP ontrol and data onnetions at thesame mahine. Similarly RADIUS ontrol and data pakets should be handled bythe same thread. A general load balaning swith may not handle these variations.A ustomized splitter an be built with speial are to handle these protools.25

Various approahes for parallelizing the �lter omponent of Gigabit PikPakethave been disussed in this hapter. Multi-threaded approah e�etively uses thepower of multiproessor mahines to distribute the appliation load among multipleproessors. It allows binding a thread to a partiular proessor and ontrolling theload on various threads for ahieving the best performane. The Hub-based ap-proah distributes the appliation load among multiple mahines in a desired ratioand thus improves the performane of �lter. It is used when multiple mahines areavailable for monitoring the tra�. Multi-threaded and hub-based approahes anbe used together when multiple multiproessor mahines are available. Both theseapproahes distribute the appliation load but not the kernel load among multipleproessing units. So, they are useful when omplex riteria are used for �ltering,where appliation overhead is more than kernel overhead. In both these approahes,as all pakets are handled at the kernel level, kernel limitation in handling max-imum tra� speed limits the maximum speed that an be monitored by GigabitPikPaket.In the splitter based approah, kernel level paket handling is also distributedamong multiple mahines. So, Gigabit PikPaket with this approah is not limitedby the kernel limitation in handling high speed tra�. The only limitation of thisapproah is that hardware splitter needs to be ustomized to support FTP andRADIUS protools.Current implementation of Gigabit PikPaket inludes support for all threeapproahes. By hanging the on�guration spei�ation, any ombination of theseapproahes an be obtained. Uniproessor version an be obtained by setting numberof threads and hash index to one.

26

Chapter 4Implementation of GigabitPikPaketThis hapter disusses the implementation details of Gigabit PikPaket. First theenhanements made to on�guration �le generator are desribed. Then the imple-mentation of �lter and hanges for postproessing are desribed brie�y.4.1 Con�guration File GeneratorThe on�guration �le generator of PikPaket is enhaned so that users an alsospeify the riteria for multi-threading and hash funtion alulation. For multi-threaded approah, on�guration �le should ontain thread-spei� information suhas load on eah thread, type of thread, its proessor binding and pending queuelength. Load on eah thread an be varied by user to redue the load on a threadrunning on a proessor that performs kernel level paket handling. Threads an bebound to proessors to prevent unneessary ontext swithes that result in unpre-ditable overheads. The pending queue length of eah thread needs to be ontrolledfor best performane. A very high value will ause the system to run out of memory,whereas a very small value may ause dropping of pakets at the pending queue.For the hub-based approah, hash index values need to be spei�ed in the on-�guration �le. Users should be able to ontrol the load on various mahines and27

threads in any ratio. We use the total hash index to represent the total load on thesystem and hash start and end values for eah mahine represent the hash indexrange of the urrent mahine. If the hash value alulated by the hash funtion fallsin the hash range of a mahine, then it will handle the paket.A new setion is added in the on�guration �le before the appliation level riteriasetions alled thread_info. This setion ontains information about hash_index,num_threads, hash_start_value, hash_end_value and subsetions ontaining in-formation spei� to eah thread. Hash_index is the value of total load that is beingshared by all threads on all the mahines, num_threads is the number of threads thatare going to be reated on this mahine, hash_start_value and hash_end_valuespeify the range of hash index for this mahine. A subsetion is reated for eahthread that ontains information about type of thread, load on this thread, proessorbinding and length of the pending queue. Appendix A shows a sample on�guration�le for Gigabit PikPaket.A panel alled Thread Manager Panel is added in the Con�guration File Gener-ator GUI for speifying the new riteria. Figure 4.1 shows the new GUI sreen forspeifying the riteria added in Gigabit PikPaket.Aording to the spei�ations in Figure 4.1, this is one mahine in the lusterthat takes half of the total load as its hash range is half of the total hash value.Two threads are reated where one thread is a reading thread binded to proessor0 that reads all the pakets but proesses only 25% of them and the other thread isa proessing thread binded to proessor 1 that handles 75% of the pakets read byreading thread with a pending queue length of 1000 pakets.4.2 FilterThis setion disusses the implementation details of various design methodologies ex-plored in the previous hapter. Some optimizations in the �lter omponent and dig-ital signature implementation for proteting dump�le's integrity are also desribedbrie�y.
28

Add

Modify

Remove

SMTP FTP Telnet HTTP OTHER File Manager Thread Manager

 Thread Manager

Total Hash Value:

Hash End Value:

Hash Start Value:

3

8

0

Reading 0 1 1

Processing 1 3 1000

 Thread Type Processor Binding Load Pending Queue Length

Figure 4.1: Con�guration File Generator: Thread Manager Tab
29

4.2.1 Multi-threaded ImplementationWe used standard POSIX thread library on Linux for reation and managementof threads. The Filter reads thread-spei� information from the on�guration �leand reates as many threads as spei�ed in the on�guration �le. It starts readingpakets from the network only after all the threads are properly initialized. Eahthread uses a struture alled thread_spei�_data for maintaining thread spei�information suh as pending queue pointers and information about urrent paketbeing handled by this thread.As we have multiple threads running simultaneously and sharing some globaldata strutures, we need to protet these data strutures from rae onditions. De-multiplexer tables, tp ative and free lists, appliation level free lists are some globaldata strutures shared by all threads that need to be proteted from simultaneousaess by multiple threads. Eah thread spends very little time exeuting the ode inritial setions involving these data strutures as the ritial setions are small andeah thread is ideally sheduled on its own proessor. So, we use spinloks for pro-teting these ritial setions rather than bloking loks. Non-bloking read/writeloks are also implemented on top of basi spinloks for proteting data strutureslike dynami demultiplexer, where reads are frequent and writes are rare.4.2.2 Clustered ImplementationIn lustered implementation, tra� should be distributed among all the mahinesrunning PikPaket in the desired ratio and all pakets belonging to the same onne-tion should always be handled by the same mahine. The hash funtion is alulatedon the four tuple (Soure IP Address, Destination IP Address, Soure Port, Desti-nation Port) of eah paket as all pakets belonging to a onnetion have the samefour tuple. As it is possible to have di�erent mahines with di�erent power, we needto divide the load between these mahines any desired ratio. For providing this,we used hash index range for eah mahine and thread instead of single hash indexvalue. Hash value is alulated as sum of all the items in four tuple modulo totalhash index range of all the mahines. Only that mahine whose hash range inludesthis value aepts this paket, while all the other mahines disard it exept for some30

variations in FTP and RADIUS. This method distributes all the onnetions in thedesired ratio as the hash is alulated on onnetion information basis.4.2.3 Signature for Dump�lesFor providing authentiity and integrity to dump�les, a digital signature is generatedfor eah dump�le generated by the �lter. A message digest is a speial number thatis e�etively a hash ode produed by a funtion that is very di�ult to reverse. Adigital signature is a message digest enrypted with someone's private key to ertifythe ontents. This proess of enryption is alled signing. This digital signature anlater be derypted using a publily known key to verify that it is signed with thisprivate key.The most ommon digital signature in use today is the ombination of the MD5message digest and the RSA enryption. We used this ombination to generatedigital signature for all the dump�les generated by �lter. Inremental MD5 is usedto generate message digest when eah paket is stored to dump�le and the messagedigest is �nally enrypted while losing dump�le. Private key is input to the �lterproess by a safe medium suh as a removable disk.The digital signatures thus generated for dump�les are sent to the postproessorwhere veri�ation of message digests is done. Digital signature is derypted usinga publi key, that is known to the world, to generate the message digest. Messagedigest of the dump�le is alulated now and it is ompared with the deryptedmessage digest. If a mismath ours between them, it means that the dump�le hasbeen hanged before postproessing and thus its integrity is lost. This mehanismof digital signatures thus protets the integrity of dump�les.4.2.4 Optimization of FilterFilter an be optimized by using memory mapped I/O on sokets for reading pakets.This will redue the paket reading time by eliminating a memory opy from kernelspae to user spae. A ring bu�er of memory is alloated and attahed to theraw soket and the soket is on�gured so that kernel will use this ring bu�er for31

reading pakets into memory for this soket. The same bu�er is shared by kernel andappliation for proessing the paket. After proessing the paket, appliation setsa �ag in this paket indiating that this memory spae an be reused by kernel. Theappliation should proess the pakets fast enough to prevent kernel from droppingpakets due to lak of empty frames in the ring bu�er. As mmap saves a memoryopy for all the pakets reahing the appliation layer, it redues the overall kernellevel paket handling overhead by a major fator.Latest Ethernet drivers ompiled with NAPI support are used in mahines run-ning PikPaket for better performane. NAPI is a devie polling tehnology intro-dued from Linux 2.4.20 that ontrols the interrupt rate by polling the devie forpakets at regular intervals thus improving the performane of operating system inhandling high tra� rate. NAPI redues the kernel overhead in handling interruptsby polling for interrupts at regular intervals rather than devie sending an interruptafter reeiving pakets. When large number of pakets have been reeived, multiplepakets an be handled in a single poll in an e�ient manner. Kernel level pakethandling overhead is redued a lot by using this tehnique as the time spent inhandling interrupts for eah paket is not present here.Another optimization is to prevent the sni�ed pakets from reahing the TCP/IPstak of the mahine running Gigabit PikPaket as the sni�ed pakets are notdestined for appliations running on this mahine. This further redues the load onkernel level paket handling as expensive operations like IP heksum alulationand routing table lookup are eliminated by not allowing a paket from reahingTCP/IP stak on the mahine. This an be aomplished using a kernel modulethat ats as an IP_PRE_ROUTING_HOOK in the Linux kernel.4.3 PikPaket PostProessorPikPaket PostProessor has been hanged to postproess multiple dump�les gen-erated by various mahines in Gigabit PikPaket. A new program is added topostproessor before the sorter module that will verify the integrity of individualdump�les and onatenate them into a single dump�le. This single dump�le is32

given to sorter program for further postproessing. For veri�ation of signature, werealulate message digest for eah dump�le using MD5 and ompare this messagedigest with the one obtained by derypting the signature for this dump�le usingpubli key. If both the message digests do not math, then the post proessingstops, giving an error message. Otherwise, it heks all the dump�les for integrityand �nally onatenates all of them into a single dump�le. While onatenating, 24byte pap header is removed from all the dump�les exept the �rst one. If the papoutput �les are generated using di�erent versions of the pap library, then an errormessage is generated and the dump�les should be postproessed separately.

33

Chapter 5TestingIn this hapter we desribe the test setup used for testing Gigabit PikPaket. Theessential idea of these experiments was to determine the peak bandwidth at whihGigabit PikPaket monitors the network without dropping any paket. Perfor-mane is evaluated by speifying omplex set of appliation level riteria and varioustra� patterns were monitored with these riteria.5.1 Corretness TestingFuntional testing of Gigabit PikPaket was arried out by varying the number ofreading threads, handling threads and by testing all the ontrol paths of appliationlevel �lters with various riteria. E�et of multiple threads and usage of loks werethoroughly tested for orretness. For testing Gigabit PikPaket at high speedswith live tra�, a gigabit hub was required to sni� the pakets by putting theinterfae in promisuous mode. Due to unavailability of a gigabit hub, we hangedthe Linux kernel to set the destination MAC address of every outgoing paket tothe Ethernet broadast address. At the reeiver, we hanged the kernel to reeivethese MAC broadast pakets and send upto appliation layer without droppingthem. We used three mahines with 2.4 GHz CPU, 256 MB RAM running thehanged Linux kernel onneted through a gigabit swith as both lients and serversfor various appliation layer protools. Gigabit PikPaket was tested on two dual34

proessor Xeon mahines with 2.0 GHz CPU, 1.0 GB RAM and running the Linuxkernel 2.4.20-8smp onneted to the same swith as tra� generating mahines. Weused some sripts on all these tra� generating mahines to generate to generate alarge number of onnetions varying in number of pakets, duration of onnetion,speed, amount of data transferred and appliation protool. Gigabit PikPaket wassuessfully tested and it aptured all the pakets of interest.5.2 Performane TestingPerformane testing was arried out with a di�erent setup than the one used fororretness testing. Test setup used for orretness testing did not really simulatethe behaviour of a real network as only three mahines were generating all the tra�and they were limited in speed due to various problems. Also, it was not easy toontrol the speed of the generated tra� with this setup. We tried to ondut theexperiment on a real network where many users from di�erent mahines an bemonitored. But the maximum bandwidth at the busiest link available for us wasonly 50 Mbps. For monitoring high and ontrolled speeds, we stored these paketsoming at 50 Mbps to disk and later replayed them at desired speed by reading themfrom the disk. As one mahine was not able to replay the tra� at required speed,we used multiple mahines for replaying this data and evaluated the performane ofGigabit PikPaket.Various metris were used for evaluating the performane of Gigabit PikPaket.We used �ve di�erent on�guration �les whih overs all kinds of riteria spei�a-tion. They are1. normal_appl tests all possible ombinations of appliation level riteria spei-�ation with one riteria for eah ombination, but does not store any paketsto disk.2. normal_dump is similar to normal_appl and it also stores around 10% paketsto disk.3. dumpall stores every paket to disk.35

4. heavy_appl tests all possible ombinations of appliation level riteria spei�-ation with multiple (around 20) riteria for eah ombination, but does notstore any pakets to disk.5. heavy_dump inludes all riteria in heavy_appl and some extra riteria tostore around 10% of the read pakets.The �rst three on�guration �les put less load on Gigabit PikPaket when omparedto the last two on�guration �les.5.2.1 E�et of Multiple Threads/ProessorsPerformane of Gigabit PikPaket by varying the number of proessors were arriedout using a dual proessor Xeon mahine with hyper-threading. In all the tests,maximum bandwidth at whih Gigabit PikPaket handled all the pakets withoutany paket drop was measured. Table 5.1 shows the results obtained by varyingthe number of proessors. The number of reading threads and proessing threads,their proessor binding and load on eah thread are �ne tuned in eah ase to givethe maximum performane. The ase of four proessors was tested by using a dualproessor mahine with hyper-threading enabled.Maximum Speed Maximum Speed Maximum SpeedCon�guration File ahieved with ahieved with ahieved withone proessor two proessors four proessors(in Mbps) (in Mbps) (in Mbps)normal_appl 275 300 350normal_dump 250 275 325dumpall 150 250 325heavy_appl 125 200 260heavy_dump 100 180 250Table 5.1: E�et of number of Proessors on Gigabit PikPaket's performaneIt an be observed from the results that on inreasing the number of proes-sors, performane improved drastially in on�gurations with heavy load on Gigabit36

PikPaket, while there is only a slight improvement in on�gurations with less load.Adding more proessors did not improve performane muh in on�gurations withless load due to two reasons. We use multiple threads to distribute appliation over-head among multiple proessors when a single proessor annot handle the entiretra�. Here, as appliation load was not very high to be shared by multiple proes-sors, we did not see muh improvement in performane. The seond reason is thatUniproessor Linux kernel performs better than SMP Linux kernel in kernel levelpaket handling, as ontention resolution in latter kernel is very ostly. In on�gu-rations with heavy load, there was enough load to be shared by multiple proessorsand the improvement ahieved due to onurreny at the appliation level was muhmore than the overhead at kernel level. When we inreased number of proessorsfrom two to four, performane did not double as hyper-threading does not doublethe performane of proessors, but only improves it by around 30% to 50%.5.2.2 E�et of OptimizationsTable 5.2 shows the results obtained with multiple threads for the same on�guration�les and tra� patterns used in 5.1 but with optimized Gigabit PikPaket. NAPIfor devie polling, mmap to save a paket opy from kernel spae to user spaeand a kernel module to prevent TCP/IP stak proessing for eah paket are theoptimizations used here.Maximum Speed Maximum Speed Maximum SpeedCon�guration File ahieved after ahieved after ahieved afteroptimizations optimizations optimizationswith 1 proessor with 2 proessors with 4 proessors(in Mbps) (in Mbps) (in Mbps)normal_appl 325 325 400normal_dump 300 300 375dumpall 175 250 350heavy_appl 125 210 275heavy_dump 125 200 260Table 5.2: E�et of Optimizations on Gigabit PikPaket's performane37

NAPI redues the kernel overhead in handling interrupts by polling for inter-rupts at regular intervals rather than devie sending an interrupt after reeivingpakets. When a large number of pakets have been reeived, multiple pakets anbe handled in a single poll in an e�ient manner. Mmap saves a opy of paketfrom user spae to memory spae for eah paket reahing the appliation layer. Bypreventing a opy from kernel spae to user spae for all the pakets, kernel levelpaket handling overhead is redued a lot. As the sni�ed pakets are not destinedto reah the TCP/IP stak of the mahine running the sni�er, we an safely disardthem before they reah this level. This further redues the load on kernel levelpaket handling. As all the optimizations result in reduing the kernel overheadrather than appliation overhead, performane improvement is more in on�gura-tions with less appliation load. In on�gurations with heavy load, the ratio ofappliation overhead to kernel overhead in handling a paket is so high that thee�et of optimizations does not signi�antly improve the overall performane.5.2.3 E�et of Tra� PatternsWe tested Gigabit PikPaket with three di�erent kinds of tra� patterns to �ndthe e�et of tra� pattern on performane. d25, d50 and d100 are the three tra��les used in this experiment. 25% of the pakets in d25 belongs to the appliationprotools being monitored by Gigabit PikPaket, thus reah our sni�er withoutbeing �ltered by the in-kernel BPF �lter. Similarly d50 and d100 ontains 50%and 100% pakets respetively that reah the appliation level. Table 5.3 shows theresults obtained with di�erent tra� patterns with heavy_dump as on�guration�le.It an be observed from the table that lesser the load on Gigabit PikPaket,better the performane. In d25, as 75% of the total pakets are disarded at thekernel level, it gave the best possible results. As we used heavy_dump as the on�g-uration �le, paket handling time at the appliation layer was very high. Thus thedi�erene in performane between di�erent tra� patterns is quite high. A simpleon�guration �le like normal_appl will not show muh di�erene in performane be-tween di�erent tra� �les. In general, we will most often see the d50 tra� pattern.38

Maximum Speed Maximum Speed Maximum SpeedTra� Pattern �le ahieved with ahieved with ahieved with1 proessor 2 proessors 4 proessors(in Mbps) (in Mbps) (in Mbps)d25 225 300 425d50 125 200 260d100 80 140 180Table 5.3: E�et of tra� pattern on Gigabit PikPaket's performaneThus d50 is used in all the remaining tests.5.2.4 Performane of Hub Based ApproahPerformane of Gigabit PikPaket with hub based approah was measured usingXeon 2.0 GHz mahine running Uniproessor Linux 2.4.20-8. A single mahine wasused for this experiment. By varying the hash index from 1 to 16, load on thismahine was varied from 1 to 1/16 of the total load. By saling one mahine'sperformane upto 16, performane results for upto 16 mahines were alulated.Table 5.4 shows the results.Maximum Maximum Maximum Maximum MaximumCon�guration Speed Speed Speed Speed SpeedFile ahieved ahieved ahieved ahieved ahievedwith 1 with 2 with 4 with 8 with 16mahine mahines mahines mahines mahines(in Mbps) (in Mbps) (in Mbps) (in Mbps) (in Mbps)normal_appl 325 450 575 650 650normal_dump 300 375 450 575 600dumpall 175 500 600 650 650heavy_appl 125 225 400 500 600heavy_dump 125 225 400 500 600Table 5.4: E�et of number of mahines on hub based approah's performaneMultiple mahines in hub based approah performed better than equal number of39

proessors in multithreaded approah as the kernel overhead in resolving ontentionis not present here. After the number of mahines rossed ertain limit, there isa very limited or no performane gain. In hub based approah, multiple mahinesshare the appliation load but kernel load for handling all the pakets is presentin all the mahines. One we reah enough number of mahines for sharing theappliation load, it is the kernel overhead that prevents us from ahieving betterspeeds. Thus there is no performane improvement after ertain level.5.2.5 E�et of Paket SizesEven with a mixed approah of multithreading and hub based approah, we ouldnot handle 1Gbps speed tra� onstantly for all tra� patterns. We found thatkernel limitation in handling small pakets is the reason for this behaviour. Weused a simple paket ounting sni�er and evaluated the speed at whih it starteddropping the pakets for di�erent paket sizes. Table 5.5 shows the results obtained.Maximum Speed Maximum SpeedPaket Size ahieved with ahieved withpaket ounting Gigabitsni�er PikPaket(in Mbps) (in Mbps)64 200 150500 950 9501500 1000 1000Table 5.5: E�et of Paket size on sni�er's performaneTable shows that even an optimized paket ounter annot handle tra� speedabove 200 Mbps when paket size is 64 bytes. Referene [3℄ disusses similar resultsfor small sized pakets. With small sized pakets, number of pakets reeived at1Gbps speed is too high to be handled by the kernel. As kernel handles pakets ofdi�erent sizes in a similar manner, kernel level paket handling overhead is muhhigher in ase of small pakets. At the hardware level, individual bits are handledas signals and thus irrespetive of paket sizes, hardware an handle 1Gbps tra�.40

Thus we need to use a hardware splitter as desribed in the splitter based approahfor monitoring more than 1 Gbps speed with small pakets.5.2.6 Performane of Splitter Based ApproahDue to the unavailability of a hardware splitter, we obtained the results of theSplitter approah by extrapolating the results of Gigabit PikPaket. Performaneresults of four proessor ase were extrapolated to obtain the results in Table 5.6.Maximum Maximum MaximumCon�guration Speed Speed SpeedFile ahieved ahieved ahievedwith 1 with 2 with 4mahine mahines mahines(in Mbps) (in Mbps) (in Mbps)normal_appl 400 800 1600normal_dump 375 750 1500dumpall 350 700 1400heavy_appl 275 550 1100heavy_dump 260 520 1040Table 5.6: E�et of number of mahines on splitter based approah's performaneAssuming that the hardware splitter divides the load among mahines runningGigabit PikPaket in a uniform manner and it works �ne at gigabit speeds withoutdropping any pakets, we an obtain the results shown in the Table. As load balan-ing swithes handling Gigabit speed are available in the market, these performaneresults an be obtained using them.

41

Chapter 6ConlusionsThis report disusses the �ltering of pakets �owing aross the network based onomplex riteria involving appliation level protools SMTP, FTP, HTTP, Telnetand RADIUS instantiated onnetions at very high speeds by a network monitoringtool alled Gigabit PikPaket. Various approahes that improve the performaneof the monitoring tool by sharing the appliation proessing load among multipro-essor mahines and luster of mahines have been disussed. Several kernel andappliation level optimizations for enhaning the network monitoring tool are alsodisussed. Digital signature support has been added for proteting the integrity of�les that ontain pakets stored by the �lter.Several experiments have been onduted for evaluating the performane of Giga-bit PikPaket based on various metris suh as omplexity of the riteria spei�ed,tra� patterns and paket sizes. Results show that Gigabit PikPaket an mon-itor upto 1 Gbps tra� under very omplex riteria spei�ation for large paketsizes. In ase of pakets with small size, Gigabit PikPaket needs hardware splittersupport for handling 1 Gbps tra� due to inherent limitation of Linux kernel inhandling small pakets at that speed. When omplex �ltering riteria are spei�ed,support of multiproessors and/or multiple mahines an be e�etively used to sharethe appliation proessing overhead.
42

6.1 Further WorkWe observed that Gigabit PikPaket ould not monitor 1Gbps tra� for small sizedpakets without using speial hardware support like splitter. One possible way tosolve this problem is to use a hash funtion at the Network Interfae Card and disardpakets at the hardware level in the hub based approah thus relieving kernel fromhandling millions of small pakets. Cost-bene�t ratio of hardware splitter approahand NIC level hash funtion needs to be ompared. Gigabit PikPaket urrentlydoes not support PASV FTP and RADIUS protools in splitter based approah. Itan be extended to support these protools. One interesting researh work would beto look at the limitations of Linux kernel in handling small pakets at high speedsand propose an optimized solution to this problem.

43

Referenes[1℄ S. Prashant Aditya. �Pikpaket: Design and Implementation of theHTTP postproessor and MIME parser-deoder�, De 2002. BTP,Department of Computer Siene and Engineering, IIT Kanpur,http://www.se.iitk.a.in/researh/btp2003/98316.html.[2℄ Loris Degioanni, Fulvio Risso, and Piero Viano. �Windump�. http://netgroup-serv.polito.it/windump.[3℄ Lua Deri. �Improving Passive Paket Capture: Beyond Devie Polling�.http://lua.ntop.org/Ring.pdf.[4℄ Gerald Combs et al. �Ethereal�. Available at http://www.ethereal.om.[5℄ Robert Graham. �arnivore faq�. http://www.robertgraham.om/pubs/arnivore-faq.html.[6℄ �How Carnivore Works�. http://www.howstu�works.om/arnivore.htm.[7℄ Van Jaobson, Craig Leres, and Steven MCanne. �tpdump : A NetworkMonitoring and Paket Capturing Tool�. Available via anonymous FTP fromftp://ftp.ee.lbl.gov and www.tpdump.org.[8℄ Sanjay Kumar Jain. �Implementation of RADIUS Support in Pikpaket�. Mas-ter's thesis, Department of Computer Siene and Engineering, IIT Kanpur,Apr 2003. http://www.se.iitk.a.in/researh/mteh2001/Y111122.html.
44

[9℄ Neeraj Kapoor. �Design and Implementation of a Network Monitoring Tool�.Master's thesis, Department of Computer Siene and Engineering, IIT Kanpur,Apr 2002. http://www.se.iitk.a.in/researh/mteh2000/Y011111.html.[10℄ Steve MCanne and Van Jaobson. �The BSD Paket Filter: A New Arhite-ture for User-level Paket Capture�. In Proeedings of USENIX Winter Con-ferene, pages 259�269, San Diego, California, Jan 1993.[11℄ �nprobe n�ow�. http://www.ntop.org/nFlow/.[12℄ Brajesh Pande. �Design and Implementation of a Network Monitoring Tool�.Master's thesis, Department of Computer Siene and Engineering, IIT Kanpur,Sep 2002. http://www.se.iitk.a.in/researh/mteh2000/Y011104.html.[13℄ Boyer R. and J Moore. �A fast string searhing algorithm�. In Comm. ACM20, pages 762�772, 1977.[14℄ Stephen P. Smith, Henry Perrit Jr., Harold Krent, Stephen Menik, J. AllenCrider, Mengfen Shyong, and Larry L. Reynolds. �Independent Tehnial Re-view of the Carnivore System�. Tehnial report, IIT Researh Institute, Nov2000. http://www.usdoj.gov/jmd/publiations/arniv_entry.htm.[15℄ �Sni�er Portable by Network Assoiates�. http://www.networkassoiates.om/.[16℄ �TopLayer IDS load balaners�. http://www.toplayer.om.[17℄ �Unispeed Netlogger�. http://www.unispeed.om/.[18℄ Jaobson V., Leres C., and MCanne S. �pap - Paket Capture Library�, 2001.Unix man page.
45

Appendix AA Sample Con�guration File#This is a sample onfiguration file#Be very areful if you edit a onfiguration file manually# The syntax should be preserved# A hash(#) is used for omments# This file has several setions#Setions start and end with tags similar to HTML.#Tags within setions an start and end subsetions or an be tag-value pairs.#All the tags that are reognized appear in this file.# First Setion spifies the sizes and names of the dump files# The Seond Setion speifies the soure and destination IP ranges# the soure and destination ports, the protool and the appliation# that should handle these IPs and ports# The third setions speifies the number of onnetions to open simultaneously# for some appliations# The fourth setion speifies the thread speifi information and hash values.# The next setions desribe the appliation speifi# input riteria.# This file has a fixed format Careful!!#**************First Setion****************************<Output_File_Manager_Settings><Default_Output_File_manager_Settings>#number of speified filesNum_Of_Files=2#the full file name relative/absolute will doFile_Path=dump1.dump#the file size in MBFile_Size=12 46

File_Path=dump2.dump#the 0 file size means that file an be of max available size#only the last file an have File_Size=0.File_Size=0</Default_Output_File_manager_Settings></Output_File_Manager_Settings>#**************End First Setion*************************#**************Seond Setion****************************# The basi riteria here are for the Devie and# SrIP1:SrIP2:DestIP1:DestIP2:SrP1:SrP2:DestP1:DestP2:ProtoA:App# Should be read as For the range of sore IP from SrIP1 to SrIP2# For assoiated ports from SrP1 to SrP2# and For the range of desitnation IP from DestIP1 to DestIP2# For assoiated ports from DestP1 to DestP2# and FOR Protool ProtoA# monitor onnetions aording to Appliation App# Protools an be UDP or TCP# Appliations for TCP are# SMTP, FTP, HTTP, TELNET, RADIUS, TEXT, DUMP_FULL, DUMP_PEN# Appliations for UDP are# DUMP_FULL, DUMP_PEN# No further spes are required for DUMP kind of appliations.# Do not mix too many appliations for larity# Take are that IPs Ports and appliations do not onflit# Important: Some old NAS/RAS sends pakets assuming RADIUS Auth Server port# as 1645 and Aounting Server port as 1646. So for this type of RAS/NAS we# need to hange server port# in onfiguration file as mentioned in next two lines.# Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1645-1645:UDP:RADIUS# Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1646-1646:UDP:RADIUS<Basi_Criteria>DEVICE=eth0Num_Of_Criteria=10Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP:SMTPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:20-20:TCP:FTPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:21-21:TCP:FTPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:23-23:TCP:TELNETCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:80-80:TCP:HTTPCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:143-143:TCP:TEXTCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1024-65535:TCP:DUMP_FULL47

Criteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1024-65535:UDP:DUMP_FULLCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1812-1812:UDP:RADIUSCriteria=0.0.0.0-0.0.0.0:0.0.0.0-0.0.0.0:1024-65535:1813-1813:UDP:RADIUS</Basi_Criteria>#**********End Seond Setion****************************#**************Third Setion****************************# Has tunable number of onnetions that should be monitored# by some appliations of interest SIMULTANEOUSLY<NUM_CONNECTIONS>NUM_CONNECTIONS=5NUM_SMTP_CONNECTIONS=500NUM_FTP_CONNECTIONS=500NUM_HTTP_CONNECTIONS=500NUM_TELNET_CONNECTIONS=500NUM_RADIUS_CONNECTIONS=500</NUM_CONNECTIONS>#**********End Third Setion****************************#**************Fourth Setion****************************# Information regarding hash values and hash range for this# mahine are present here. Eah subsetion ontains information# about one thread. As many subsetions as the number of# threads to be reated are present in this setion.<THREAD_INFO>HASH_INDEX=8NUM_THREADS=2HASH_START_VALUE=0HASH_END_VALUE=3<Thread>Type=ProessingProessor=0Load=1Pending_Queue_Length=1000</Thread><Thread>Type=ReadingProessor=1Load=3Pending_Queue_Length=1000</Thread></THREAD_INFO> 48

#**********End Fourth Setion****************************#**************Appliation Speifi Speifiations******#If there are RADIUS Speifi riteria then those riteria omes first in this file#**************RADIUS Speifiations******<RADIUS_Configuration>Num_Of_Criteria=3Criteria=skjains:no:0.0.0.0-0.0.0.0:1024-65535:1-65535:TCP:DUMP_FULLCriteria=vijayg:no:0.0.0.0-0.0.0.0:1024-65535:25-25:TCP:SMTPCriteria=vijayg:no:0.0.0.0-0.0.0.0:1024-65535:23-23:TCP:TELNET</RADIUS_Configuration>#**************SMTP Speifiations******<SMTP_Configuration><SMTP_Criteria>NUM_of_Criteria=2<Searh_Email_ID>Num_of_email_id=1Case-Sensitive=yesE-mail_ID=skjains�se.iitk.a.in</Searh_Email_ID><Searh_Text_Strings>Num_of_Strings=1Case-Sensitive=yesString=book</Searh_Text_Strings><Searh_Email_ID>Num_of_email_id=2Case-Sensitive=yesE-mail_ID=skjains�iitk.a.inE-mail_ID=brajesh�hotmail.om</Searh_Email_ID><Searh_Text_Strings>Num_of_Strings=0</Searh_Text_Strings></SMTP_Criteria>Num_of_Stored_Pakets=750Mode_Of_Operation=full</SMTP_Configuration>#**********END SMTP Speifiations******#**********FTP Speifiations******49

<FTP_Configuration><FTP_Criteria>NUM_of_Criteria=1<Usernames>Num_Of_Usernames=2Case-Sensitive=noUsername=ankanandUsername=nmangal</Usernames><Filenames>Num_Of_Filenames=1Case-Sensitive=noFilename=test.txt</Filenames><Searh_Text_Strings>Num_Of_Strings=1Case-Sensitive=yesString=book seret</Searh_Text_Strings></FTP_Criteria>Num_of_Stored_Pakets=750Monitor_FTP_Data=yesMode_of_Operation=full</FTP_Configuration>#**********END FTP Speifiations******#*************HTTP Speifiations******<HTTP_Configuration><HTTP_Criteria>NUM_of_Criteria=1<Host>Num_Of_Hosts=1Case-Sensitive=noHOST=http://www.rediff.om</Host><Path>Num_Of_Paths=1Case-Sensitive=yesPATH=/riket</Path><Searh_Text_Strings> 50

Num_of_Strings=1Case-Sensitive=noString=neutral venu</Searh_Text_Strings></HTTP_Criteria><Port_List>Num_of_Ports=1HTTP_Server_Port=80</Port_List>Num_of_Stored_Pakets=750Mode_Of_Operation=full</HTTP_Configuration>#*********END HTTP Speifiations******#*********TELNET Speifiations******<TELNET_Configuration><Usernames>Num_of_Usernames=1Case-Sensitive=yesUsername=ankanand</Usernames>Mode_Of_Operation=full</TELNET_Configuration>#*****END TELNET Speifiations******#*********TEXT SEARCH Speifiations******#These have to be added manually<TEXT_Configuration><Searh_Text_Strings>Num_of_Strings=1Case-Sensitive=noString=timesofindia</Searh_Text_Strings>Mode_Of_Operation=pen</TEXT_Configuration>#*****END TEXT SEARCH Speifiations******#**********End Appliation Speifi Speifiations****
51

