
Peer-to-Peer File Sharing Across
Private Networks Using Proxy Servers

by

Shruti Dube

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

May 2008

Peer-to-Peer File Sharing Across
Private Networks Using Proxy Servers

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by

Shruti Dube

(Y3167337)

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

May 2008

Acknowledgment

The area of Computer Networks had me fascinated ever since its first introduction to

us in our fifth semester, leaving me with a wish to learn more about this field and thus

inspiring me to do several courses and projects in the same. I would like to express

my sincere gratitude to Dr. Dheeraj Sanghi for initiating and furthering my interest in

the subject through his instruction in the three courses which I have credited under his

guidance. I am also extremely grateful for the advice, innovative suggestions, supervi-

sion I have received from him as my thesis guide at every stage of problem formulation,

background research, system design and implementation. Advice such as, appreciating

the all-encompassing view of every technology or project and not getting weighed down

by a biased positive perspective shall stay with me for long times to come. For all such

insights, I would like to whole heartedly thank Sir.

I look upto my parents in admiration for all the efforts they have put in for my edu-

cation. I wish to express my deep indebtedness to them for their support throughout

my academics and extra curricular activities. I am also very thankful to my brother

for his constant belief which urges me on in the wake of difficulties.

To this institute, my home for the past five years which has helped me gain knowledge,

think inquisitively and given me immense opportunities to grow and mature as a better

person, no words can express my gratitude. I hope I shall prove worthy of and true to

the teachings of my parents, teachers, school and institute.

Shruti Dube

iii

Abstract

The Internet today is commonly used as a medium to share large size multimedia

content. This sharing is carried out, a number of times, through the Peer to Peer

sharing architecture rather than the conventional server-client model. The paucity

of network addresses in the Internet has led to the emergence of private and global

networks. Because the identity of peers in a private network remains hidden behind

their global endpoint, P2P applications cannot run between two peers in separate

private networks. Techniques such as hole-punching require the use of a centralized

entity which serves as a bottleneck to the P2P application.

We have proposed a hierarchical P2P network of private and global networks. Here, the

lower tier is formed by the peers in each private network, while the upper tier is formed

by the global endpoints (called proxies) of each of these private networks. We have

designed a new file sharing protocol, FTPNP, between these proxies which preserves

the identities of the actual endpoints of the file transfer, present in separate private

networks. We have also created a Credit Management System in order to ensure fairness

and incentive to share in the designed hierarchical P2P system. We have implemented

all the above proposed features and tested them to ensure the preservation of the

essential features of a P2P network.

iv

Contents

1 Introduction 1

1.1 Peer to Peer Content Distribution Networks (P2P CDN) 1

1.2 Characteristic features of P2P CDNs 3

1.3 BitTorrent: P2P file sharing protocol 4

1.4 Private and Global Networks . 6

1.5 An Overview of the Thesis . 8

1.6 Organization of the Thesis . 8

2 Literature Survey 10

2.1 Hierarchical Networks . 10

2.1.1 Unstructured P2P Networks . 11

2.1.2 Structured P2P Networks . 13

2.2 Hole Punching: Overcoming NATs . 14

2.3 Motivation . 16

3 Proposed Model: Usage of Proxies 18

3.1 Challenges . 18

3.2 System Model Assumptions and Configuration 19

3.3 System Design and Architecture . 20

3.3.1 Private P2P network . 20

3.3.1.1 BitTorrent Clients . 20

3.3.1.2 BitTorrent Tracker . 21

3.4 Global P2P Network of Proxies . 23

v

3.4.1 Peers . 23

3.4.2 FTPNP - File Transfer Protocol for Network of Proxies 23

3.4.2.1 Packet Architecture of FTPNP 25

3.4.2.2 Communication Protocol Specification 26

3.5 Credit Management System . 32

3.5.1 Design Issues . 32

3.5.2 Components of the Credit Management System 34

3.6 Working of the Hierarchical P2P Network 36

3.6.1 File Sharing . 36

3.6.2 File Download . 38

3.6.2.1 Requested file is in the same private network 38

3.6.2.2 Requested file is in another private network 38

3.7 Components of the proxy . 42

3.8 Features of the Hierarchical P2P Network 44

4 Implementation and Results 46

4.1 Private P2P Network . 46

4.2 Global P2P Network of Proxies . 47

4.3 File Transfer across two Private Networks 48

4.3.1 Setup Topology . 48

4.3.2 Test Details . 48

4.4 Credit Management System . 49

4.4.1 Test Details . 49

4.4.2 Results and Inferences . 50

4.4.2.1 Single Peer Case . 50

4.4.2.2 Two Peer Case . 51

5 Conclusion and Future Work 60

vi

List of Figures

1.1 Server-client architecture and Content Distribution Network 2

1.2 The Peer to Peer (P2P) architecture 3

1.3 Working of the BitTorrent protocol . 6

1.4 The global and private IP address domains 7

3.1 The proposed hierarchical P2P network comprising private networks and

proxies . 21

3.2 High level overview of the steps in the FTPNP 24

3.3 Fields in a FTPNP packet . 25

3.4 Sequence of control and data messages in FTPNP 27

3.5 Algorithm to share a file . 37

3.6 (a)The structure of the Credit Records at each Proxy. (b)The updation

of credit records when file transfer occurs between two proxies 41

3.7 Downloading a file not present in the same private network 42

3.8 Components of the proxy . 43

4.1 Experimental testbed . 48

4.2 Download time for the desired file vs. size of content shared 51

4.3 Download time for the desired file vs. size of content shared 52

4.4 Dependence of the time to download a file on the size of the content

shared . 54

4.5 Dependence of the time to download a file on the size of the content

shared . 55

vii

4.6 Dependence of the time to download a file on the size of the content

shared . 56

4.7 Dependence of the time to download a file on the size of the content

shared . 57

4.8 Dependence of the time to download a file on the size of the content

shared . 58

4.9 Dependence of the time to download a file on the size of the content

shared . 59

viii

Chapter 1

Introduction

1.1 Peer to Peer Content Distribution Networks

(P2P CDN)

The Internet can be looked upon as a medium to disseminate information. Distribution

of large size multimedia content has become commonplace today. The original stereo-

type of content distribution was the server-client architecture, wherein a dedicated

server furnished the required content to all requesting clients. However such a system

faces a bottleneck from the constraints of available upload bandwidth and resources

at the server and is thus incapable of scaling up to serve a large number of clients.

This problem of sharing content with a large number of clients was solved through two

main techniques. One was through the use of large-scale commercial content distribu-

tion services (see figure 1.1), example Akamai [1], which mirror customers’ content

to be published on various servers and employ sophisticated algorithms to locate the

mirroring server from which content is transferred to the requesting client. The second

method, peer to peer content distribution, entails the formation of a network topology

in which there is no defined server-client architecture and each node (or peer) in the

topology has the capability of acting as the source, transferring agent or requester of

content.

Commercial CDNs are generally used by customers who wish to publish high-quality

1

Figure 1.1: Server-client architecture and Content Distribution Network

content which is provided to the downloading clients with several Quality-of-Service

features. Downloading clients are thus often charged for the content they have down-

loaded. The fundamental premise of P2P networks (see Figure 1.2) is the concept of

sharing of content and resources amongst all participants of the network. Hence, as the

number of peers increases, the resources available to the system increase too and thus

such a system is fundamentally scalable. Though some variations exist, P2P networks

are characterized by the absence of a central server and the peers are capable of joining

or leaving the network at any time without any centralized control. The P2P CDNs

are consequently self-organizing, dynamic and scalable networks. In our work, we shall

focus on such P2P CDNs.

2

Figure 1.2: The Peer to Peer (P2P) architecture

1.2 Characteristic features of P2P CDNs

In this section we enumerate some desired features in any P2P system.

• Authenticity and privacy: It must be ascertained that unauthorized peers are

not able to make changes to the content shared or substitute forged content in

place of the correct content to be shared. The system must have mechanisms in

place to ensure that only authorized peers are entitled to access available content.

Several systems impose restrictions on the type of content being shared.

• system stability: The topology of a P2P system changes continuously as peers

join and leave. The system should remain stable and continue to provide services

at all times. Though the topology of the system is subject to change, the peers

which are a part of the system at any given time should remain unperturbed by

the dynamics and their functioning should continue as normal.

• performance: This is defined in terms of the duration between the request and

3

the final receipt of the desired content. Similarly, the time to complete other

requests like searching, uploading, browsing for content on the system are also

taken into account.

• scalability: The system’s performance is not expected to degrade even in the

wake of an increase in the number of peers or the volume of the content shared.

The increased number of peers in the network should imply an increase in the

number of resources available to the system.

• fairness: The performance of the system as experienced by a peer should be

contingent with the utility of the peer to the system. Neither should a peer get

any undeserved advantage (e.g. disproportionately large share of the bandwidth)

nor should a peer be unfairly penalized (due to scarcity of resources or hogging

of the bandwidth by another peer). The system should be able to identify “free-

riders” who scarcely contribute their resources to the network, but utilize the

resources shared by other peers.

• incentive to share: Sharing is the fundamental requirement of a P2P network.

The performance of such a network bears heavily on the willingness of the par-

ticipating peers to share content and resources. Thus to ensure the successful

working of a P2P networks, there should be a natural incentive to share. Better

quality of service features to peers who prove their utility (peers who share more

content and contribute more resources) to other peers, are common incentives

given to peers in a P2P network.

1.3 BitTorrent: P2P file sharing protocol

In this section, we will review basic concepts of the BitTorrent protocol[2], a widely-

used P2P content sharing protocol. The content to be shared is broken into blocks of a

fixed size and these chunks of data are then downloaded from different peers which have

the desired file. These chunks are assembled in their correct order by the requesting

4

peer. The requested file thus reaches the peer who had initiated the request for the

same. The main elements of BitTorrent are:

• Torrents : For every file that is to be shared using BitTorrent, a corresponding

torrent file is required to be made. Also referred to as torrent files, torrents are

very small sized files which contain hashed information about the file’s content,

and name, length of the file to be shared, number of blocks of data and the size

of each block in which the file’s contents are to broken and shared. These files

also contain the URL of the tracker (see below).

• Tracker : Every BitTorrent network has a unique machine called the tracker.

It is the centralized entity which keeps a record of the peers sharing a partic-

ular content and is responsible for coordinating the download of a desired file

from several peers which are sharing that content. There are several web-based

tracker software available, e.g. Torrent Bits [5] which can be run at the tracker.

The tracker software allows peers to register with the tracker, login into their

account, browse for shared content, download content and upload torrent files.

Some tracker software provide additional functionalities like RSS feeds, discussion

forums, personal message boards.

• BitTorrent Client : This is a software which runs at each peer in the P2P system

and it helps share and download content from other peers. Bitspirit, U-torrent

are some popular BitTorrent client software.

• Uploading content : When a peer wishes to share content with other peers, it

creates a torrent file [3] containing the URL of the unique tracker in the system.

It then uploads this torrent file on the tracker and shares this file for the P2P

network using its BitTorrent client software. This sharing is called seeding of

content. Once a file is seeded, it becomes available to other peers for download.

• Downloading content : When a peer wishes to download content from the P2P

network, it searches for it on the tracker. If the search is successful, the peer

downloads the torrent file for the same. This torrent file is then opened with the

5

BitTorrent client software. Since the torrent file contains the URL of the tracker,

the BitTorrent client software contacts the tracker using this URL. The tracker

has a list of peers who are sharing the requested content. Since the requested

content is broken into blocks of fixed size for sharing, different peers send different

blocks of data to the requesting peer. The tracker coordinates and decides the

blocks to be obtained from different peers. These blocks when assembled by the

BitTorrent client complete the file download.

Figure 1.3: Working of the BitTorrent protocol

BitTorrent (see Figure 1.3) thus does not adhere strictly to the requirements of a

true P2P system and has the feature of centralized control to a certain extent. However

the centralized control is only a coordinating agent; the content is shared not from a

single server, but from the interaction and exchange of data blocks between several

peers.

1.4 Private and Global Networks

In the initial architecture of the Internet, each machine had its own globally routable,

unique IP address. But the address space in the Internet is limited and it is no longer

6

possible to assign each machine in the network with a global IP address. In order to

combat this paucity of available addresses, private networks emerged (see Figure 1.4).

In a private network, all machines have a local IP address. Since the IP addresses of

such machines are local to the private network and they do not have a globally known

address, each machine is capable of receiving messages from machines internal to the

private network alone. Private networks have a publicly addressable entry point into

the global network called the end point of the private network. Since this end point

machine has a global IP, it can be located by other machines in the Internet with a

global IP. The machines internal to the private network are also able to send messages

to machines with global IP addresses. The end point of the private network performs

NAT (Network Address translation) and for a message sent by any internal machine to

a global machine, the source of the message always appears to be a fixed IP address and

port, irrespective of the private address of the machine that originated the message. In

general, most NATs disallow any messages from the outside network to reach a private

network machine.

The standard networking applications such as web browsing, email, FTP etc have

Figure 1.4: The global and private IP address domains

been made to work on such an architecture through NATs and proxies. However, peer

7

to peer applications cannot ordinarily run across two such private networks. Even if

the two peers are made to communicate by making some changes at the entry point

of each private network, a P2P connection can still not be established across the two

peers. This happens because due to address translation at the end point of the private

networks, the identity of each individual peer is lost. Any machine in a particular

private network always appears to be associated with the same IP global address and

port number. Thus the uniqueness of the end-points of the P2P connection is lost and

P2P applications cannot be run across a system of two private networks.

1.5 An Overview of the Thesis

In our work, we provide a novel solution, using “proxies”, which allows P2P applications

to run across different private networks. Peers internal to a private network, which

hitherto appeared associated with a common identity to any external machine in the

global network, now have a unique identification even outside their private network.

Due to this new capability, Quality of Service features, which will depend on the past

performance of the individual peer alone and not the collective performance of all

peers in an internal network (as used to happen traditionally), were introduced. The

proposed scheme creates a hierarchical P2P network which has the essential properties

of fairness, incentive to share and scalability. Further, we have implemented our scheme

on a test network and we have examined the effectiveness of the Quality of Service

features of this system through experiments.

1.6 Organization of the Thesis

The organization of the thesis is as follows: In Chapter 2, we describe different P2P

networks, including hierarchical networks, which have been proposed in the past, the

approach and problems associated with the process of “Hole Punching” as a means of

communicating across peers in different private networks and the motivation for our

work. In Chapter 3, we discuss the proposed model of using proxies in building a hier-

8

archical network comprising the two tier architecture of private and global networks.

It also lays out implementation details of the model and explains the working of the

incentive mechanism in this proposed system. Chapter 4 elucidates the test bed con-

figuration details, the sample runs done on the system and an analysis of the results

obtained. Finally in Chapter 5 we present our conclusions and provide directions for

future work.

9

Chapter 2

Literature Survey

2.1 Hierarchical Networks

In this section we will review different types of peer to peer systems and the major

issues of research in each architecture.

P2P networks can broadly be classified as unstructured and structured P2P networks.

In the former, there is random placement of data on peers. Such networks grow or-

ganically as peers join in and there is no fixed or decided overlay which is adhered

to. In the latter, there is a fixed structure and overlay network in which data place-

ment occurs according to targeted hashing mechanisms. Since P2P systems result in

aggregation of resources from several unconnected machines, this accumulation paves

the way for formation of a formidable repository of resources which can be utilized for

specialized purposes. For example, the idle CPU power of each peer, in a medium-

sized P2P network, if utilized well, can result in the development of a system with

sophisticated computational capabilities. Since the peers in the network are not aware

of the complete topology of the network that they are a part of, locating peers with

the desired content efficiently becomes difficult. The method used traditionally is that

of message flooding or the aid from a centralized lookup server [7], [8], [9]. Thus a

common research area in all P2P systems is the issue of scalability. We shall explore

different existing P2P architectures both in the structured and unstructured domain

10

and describe the extensions made to these networks in order to make them scalable.

2.1.1 Unstructured P2P Networks

On the basis of the mechanism used to locate the peer from which desired data can be

downloaded efficiently and the method used to then download the same, we can divide

unstructured P2P networks with a flat architecture into the following broad categories:-

• Napster : Napster [10] is a P2P network which was built in order to share music

pieces among different peers in the network. There is a centralized indexing server

which keeps a record of the content uploaded and the location of the peers which

have downloaded the content. Whenever a peer wishes to download content, it

contacts the central server, obtains the list of peers which have a copy of the

content, ascertains the peer closest to itself and downloads data from it. Since

Napster’s working depends critically on the centralized server, scalability is a

serious problem for it.

• Gnutella: Gnutella [9] differs from Napster in the fact that there is no centralized

indexing server in the former. The peers broadcast query messages to their

neighboring peers to find if they have a copy of the desired content. In order to

prevent flooding of the network with query messages, a scoped broadcast of these

messages is done. A time to live (TTL) value is attached with them and hence

only neighboring peers which are atmost a few hops away receive these queries.

If the recipient of such a query has the desired content, it returns a reply to the

requesting peer, using the reverse path of the incoming message query. Once a

peer with the desired content has been located, a direct transfer of the content

takes place between the two peers. Though it appears that scalability should not

be a problem for such a network with distributed control and limited flooding,

[11], [12], [13] show that Gnutella does not scale well due to broadcast queries.

• Freenet : In this P2P network there is no centralized control and the peers locate

data based on content-routing. All the content stored in the Freenet [14] is

11

associated with a unique key field, which is the hash of the content. Each node in

the Freenet network maintains a content routing table, which contains a mapping

from the file keys to the peers in the network, where the file is assumed to be

present. In addition to this content routing table, each peer also has a local

data store where data which it wishes to share is stored. When fresh content

enters Freenet, the uniqueness of the file key is ascertained and then the content

is stored at all the peers which were in the path of the initial query to insert new

data into the network. In order to search for a file, a peer searches for its file key

in its content-routing table. A request to find the file is then sent to the peer

associated with the closest lexicographic entry to the searched file key. This is

a cumbersome and time-consuming process and this depth-first search technique

of Freenet is not ideal for scalability purposes.

To combat these scalability issues, a hierarchical network has been proposed [15], which

combined some of the techniques from the three architectures mentioned above for fast

content location and content transfer. This network uses content hierarchy for routing

of request and reply messages. This method of locating a peer with the desired content

is better than the request broadcast mechanism which results in flooding. All content

is associated with a content vector and a comparison of two content vectors yields

information about how similar or different the associated contents are. Utilizing the

distances between these content vectors, content clustering trees can be formed. For

each such content cluster, a content search tree is developed. Hierarchical content

routing is then done based on the location of these content search trees in the P2P

network. When the query is routed to the root of the content search tree, further

routing decisions are based on the routing scheme of the particular content search

tree. Once the desired content is found at a node, a reply is sent back to the root

of the content search tree and then back to the node that had initiated the search.

As a fallout of this technique, adaptive schemes for content placement at the nodes of

the system were developed. These schemes allow the replication of popularly accessed

content nodes in different clusters, migration of content nodes to a region which is the

most frequent requester of that content and the development of shortcut links between

12

content nodes and the nodes creating heavy traffic on those content nodes.

The focus of research is thus on:

1. ensuring scalability to thousands and millions of nodes

2. content allocation reflecting load usage and locality

3. appropriate cluster formation with similar content vectors getting grouped to-

gether, and

4. efficient routing capabilities based on hierarchical, content-dependent routing.

2.1.2 Structured P2P Networks

In structured P2P networks, the topological properties of the overlay network and the

addressing mechanism help to build the system in which exchange of content can take

place via different protocols. Several such networks have been proposed in the past,

such as Chord [16], Pastry [19], CAN [18] etc. The emphasis of the research is on making

the lookup services efficient. All these protocols make use of the Distributed Hash Tables

(DHTs) for the semantic-free, content-driven routing. Each peer is associated with a

peerID (usually the hash of the IP address) and each data content is associated with

a KeyID (usually the hash of the content). Each peer stores information about peers

in the network which have KeyIDs close to the KeyID of the content they possess. A

likelihood function determines the structure of the P2P overlay network. This function

is used by the routing algorithm to acquire information stored at different nodes about

adjacent peers. In order to locate desired content, the requesting peer looks up the

node whose keyID is closest to the required content, thus propagating the request till

the desired content is finally found. This structured method of answering queries is an

efficient way of locating content.

In order to introduce the feature of scalability into these structured P2P networks with

flat DHT designs, hierarchical networks with a two-tier architecture using DHTs were

proposed [20]. In this system, peers are organized into several groups which have their

own autonomous intra-group overlay network and lookup service. These groups form

13

an overlay network as well. Thus a two-level hierarchy is formed between the peers. In

order to search for a desired content, the search is broken down into two levels, first

task involved is ascertaining the group to which the desired keyID belongs and then

using the routing mechanism of the ascertained group, the desired content is found.

The authors in [20] have implemented the proposed hierarchical network for a two tier

architecture, wherein the top-level uses Chord [16] as the overlay network. They have

proved that the use of hierarchical networks reduces the expected number of hops as

compared to a flat-design of Chord.

Some other hierarchical networks have been proposed in order to address the scalability

issue. The authors in [21] propose a hybrid hierarchical P2P network which combines

DHT and flooding in an aim to increase scalability, efficiency and stability.

The focus of research in structured hierarchical network is on:

1. discovering information about the topology of the overlay network,

2. using distributed hash tables for efficient content driven routing,

3. combining search techniques with DHT (e.g., content driven routing or flooding)

for building faster look-up service, and

4. ensuring system stability along with reduced time for routing in comparison to

the time for the same in a flat network.

2.2 Hole Punching: Overcoming NATs

The limited size of the address space in the Internet and the need to enforce security

measures restricting access to machines internal to a network resulted in the develop-

ment of private and global networks. The Internet can now be visualized as a number

of private networks interconnected together on the global network through their re-

spective Network Address Translators (NATs). These NATs, allow machines internal

to a network to send messages to the known globally addressable machines (by assign-

ing a common global IP, common port for all outgoing connections from their private

14

network). But they usually restrict any incoming traffic from external machines to the

private network. Given this, if one wishes to communicate across two private networks,

it does not seem possible. However, in [22] the authors have detailed hole punching as

a technique for NAT traversal which shall allow machines in separate private networks

to communicate with each other. Thus P2P applications can run in a global network

of private networks using this support. There are several ways in which hole punching

can be implemented. The common feature of all these methods is that they require

support from an external server to which all peers in both the private networks can

establish connections.

• Relaying : Consider two machines A and B in separate private networks and an

external server S, whose global IP address is known to both A and B. They send

outgoing messages to S. Thus the NAT in their respective private network knows

about the existence of an external server S. Now when S sends a reply to the A

and B, the NATs in their respective private networks allow the messages to be

sent to A and B. Thus both these machines are able to establish connections with

the external server S. In order to send messages from A to B, a direct connection

is not permitted by the NATs of their respective private networks. A sends a

message to S and S then relays this message to B. B follows a similar process

for communicating with A. This method though reliable and robust, is most

inefficient, since all messages between any two peers are required to go through a

fixed server. This makes the external server a bottleneck and the system is thus

inefficient.

• Using a Rendezvous Server : In order to eliminate the problems in the previous

method, rendezvous servers (R) were employed to implement hole punching. The

machines A and B are assumed to have already established sessions with the ren-

dezvous server R. When a machine in the private network contacts the rendezvous

server, R registers the machines public endpoint (IP address and the port from

which R observes the packet to be coming from) and the private endpoint (actual

internal IP address and port mentioned in the fields in the incoming packet from

the peer). A and B separately register with R, which maintains the list of their

15

public and private endpoints. When A approaches R in order to send a message

to B, R sends the private and public endpoints of B to A and also the private and

public endpoints of A to B. A and B then send messages to both the private and

the public endpoints of the other peer. They then receive a reply from one of the

two endpoints of the other peer and thus a connection can now be established

using the endpoint of the peer which responded.

Though this allows peers in different private networks to communicate with each other,

it can happen only with the aid of an external central server. Thus this design is not

scalable and is inefficient if there are a large number of requests generated by the peers

for communication with different peers in another private network.

2.3 Motivation

Say, we have some private P2P networks who wish to collaborate the content which

peers in each private network are sharing. Each of these private networks has an end-

point, which is globally addressable. To the outside world, since the endpoint is the

representative of all the peers in the internal network, they are often referred to as

Proxies. For example, say, all the IITs, which have their own internal private P2P

networks, decide to allow content distribution and sharing of files across their private

networks. In such a prospective network, the proxies in each private network will be

aware of the addresses of other globally accessible proxies in such an arrangement.

Peers internal to a private network would share content among them and would con-

tact peers of other networks only if search in their own private network did not result

in locating the required content. Thus this would be a hierarchical network wherein,

the peers internal to the private P2P networks form the lower tier of the hierarchy and

the top level would be a P2P network between the proxies of the respective private

networks.

Till now in hierarchical P2P networks which have been proposed, the focus has been on

ensuring scalability, placement of data at nodes, defining an efficient overlay network

structure and routing mechanisms. However, such P2P networks cannot be used to

16

solve the problem in the scenario above where the focus is on ensuring communica-

tion between members present in two different private networks (which was hitherto

assumed possible in the hierarchical networks which have been proposed) and not on

defining the network overlay (which has already been defined), routing algorithms, con-

tent placement (which is also predefined) and scalability. In order to solve the problem

of communication between peers in separate private networks, using hole-punching may

seem like a possible solution. However, in doing so, there would be a centralized entity

through which all the messages would have to pass through. Control messages, because

of their small size, may still be handled, however such a network cannot sustain the

transfer of large media files between two private networks. Thus we were motivated

to build a hierarchical P2P network which could help us solve this problem and allow

files to be transferred between peers located in different private networks.

There is another application where our proposed system will find application, namely,

content distribution for mobile phones. With India alone expecting to reach 500 million

subscribers by end of 2010, the number of mobile phones is on an unprecedented rise.

These mobile phones now come with sophisticated functionality, such as GPRS, Java

Runtime Environment, video and audio recording and playback etc. Due to the large

number of these mobile phones, assigning each handset an individual IP address is an

impossible task in the wake of the constraints on the size of the IP address space. In

order to resolve this problem, the mobile phones are given private IP addresses and

they appear to possess a single global IP address to all mobile phones in other Mobile

Service Provider networks. Our model can be used by those mobile phone users who

wish to share multimedia content with other mobile phone users. The large storage

capacity possessing servers set up by the mobile service providers, act as a proxy for

all mobile phones using their service. Thus we can build an analogous P2P content

sharing mechanism for mobile phones using proxy servers set up by the mobile service

providers.

17

Chapter 3

Proposed Model: Usage of Proxies

3.1 Challenges

There were several challenges which we faced while designing a solution for this prob-

lem. Some of the major design challenges were:-

• We wish to build a generic architecture so that if some private networks come

together to form such a hierarchical network, changes have to be made only at

the respective proxies of the private networks. The individual peers of the private

networks may well be oblivious of the existence of such a collaboration with other

private networks. Thus there should be no change required to be made at the

individuals members of the private networks.

• Building an automated Proxy (globally addressable endpoint of a private net-

work) which shall act both as a peer for the P2P network in the private network

and also as a peer in the global network of the proxies. It should thus automatedly

decide its actions based on the network from which a message comes.

• The content in either P2P networks should be shared such that it conforms to

the P2P protocol followed in that particular network

• Any P2P network must ensure fairness, scalability, privacy, performance and an

incentive to share. For most of these to be guaranteed, the identity of the end-

18

points of the exchange must be known to the peers involved in the transaction.

However, in case of private networks, even through hole punching [22], the end-

points of a communication remain masked. Thus there is no way to know the

real end points of a communication. However, with our system design we shall

be able to ascertain the real end points of the communication.

In the following sections, we shall review the features of the proposed system in detail.

3.2 System Model Assumptions and Configuration

We shall first lay out the basic parameters which are assumed in our design and also

outline the configuration details of the system. Please note that some of these as-

sumptions are not critical to the design and have been mentioned only to describe our

work.

The system assumes that the following hold true for the hierarchical network:

• Gigabit LAN speeds are very common in today’s private networks. Since the time

to transfer content between two peers on a LAN is usually small on a Gigabit

LAN. P2P file sharing protocols like BitTorrent, even when employed on such

high speed LANs, have mechanisms in place to ensure that peers who share more

content receive a better quality of service in terms of faster downloads.

• Speeds in the upper-tier global P2P network are generally of the order of kilo-

bits per second. The time taken to transfer files in the global network is thus

the bottleneck for the system’s performance. Peers who share more useful con-

tent, downloaded by peers in another private network should get better rates of

download in the global network.

• The proxy servers have a large storage space and are capable of holding the

content being shared by peers in their private network

• Since the system’s architecture is a result of the conscious collaboration between

proxies of different private networks, a list of all the members in the top-tier of

this hierarchical network is available with all the proxies.

19

• In order to implement the system, it was important to choose a P2P network

for file sharing which would run in all private networks. Due to its popularity

of usage, robustness and ability to scale, BitTorrent [2] was chosen as the P2P

network running in each private network. But the design of the proxy provides

flexibility to integrate any other file sharing P2P protocol in future. Only a small

amount of customization code will need to be written.

3.3 System Design and Architecture

There are several components of the design architecture (see Figure 3.1), the primary

ones being, proxy, private network peers, global network of proxies, file sharing in the

private network and file sharing across the global network. We shall now look at each

component in further detail.

3.3.1 Private P2P network

All private networks in the hierarchical network system run the BitTorrent P2P file-

sharing protocol. As we had mentioned above, it is just a choice based on the popularity

of BitTorrent and it is possible to integrate other P2P systems as well. We shall now

examine how the basic components of the BitTorrent protocol are modified in order to

make them suitable for the hierarchical network setup.

3.3.1.1 BitTorrent Clients

One of the requirements of the system is that there will be no change in the working

of the peers in the private networks. In a BitTorrent P2P network, each peer runs

a BitTorrent client at its machine and registers itself as a member of the BitTorrent

network. In order to upload content, the peer creates a torrent for the content to be

shared (and the URL of the tracker for the private network). The peer then uploads

this torrent onto the tracker and also seeds the content through the BitTorrent client

software. In order to download content, the peer searches for the desired torrent file on

20

Figure 3.1: The proposed hierarchical P2P network comprising private networks and

proxies

the tracker, downloads it and opens it with the BitTorrent client software which helps

the peer to download the file. All these functions take place normally with the peer

being completely oblivious to the existence of other private networks.

3.3.1.2 BitTorrent Tracker

The proxy has a two-fold objective, the first is to act as the tracker for the internal

BitTorrent P2P systems and the second is to play the role of a peer in a P2P file sharing

network of globally addressable proxies. As a tracker, the proxy runs the BitTorrent

tracker software which contains support for users to register themselves as peers for

this P2P network, login to their accounts, browse for content shared by other peers in

the same network, download torrent files and use them to download desired content

and upload torrent files for content they wish to share. The tracker thus is a webserver

21

which maintains a database of peers registered with it and the torrents uploaded. It also

coordinates the download of desired content from different peers sharing the content.

These were some of the conventional tracker functions it performs. In addition to this,

the following functions also take place in different components of the proxy.

• Data Store: This component stores content which is downloaded by the tracker

in the proxy. The size of this storage is large and is capable of storing any content

being shared by peers in the private P2P network. This has been done so that the

proxy can share internal content with external networks without any significant

delay.

• Peer Emulator: By default, each tracker has a dummy user registered with it.

This dummy user plays the role of the administrator of the tracker. The tracker

in each of the private networks, apart from its specialized functions, also acts

as a peer in the private P2P network and it is capable of downloading content

directly from other peers in the system using BitTorrent. There is a BitTorrent

Client software which runs at the tracker as well. This functionality is used for

transferring content from peers in the private P2P network to the tracker alone.

The downloaded content is stored in the Data Store

• Advanced Upload Manager: This component of the tracker ensures that when

a peer uploads a torrent for sharing content, the torrent becomes visible to other

peers browsing for data and it also initiates the Peer Emulator functionality of

the tracker. Any torrent uploaded is automatically queued for download in the

BitTorrent client software which runs in the Peer Emulator component of the

tracker. The tracker coordinates the download of the content shared by the peer

to the Peer Emulator at the tracker. Thus the tracker always has the torrent and

a copy of the content being shared by a peer in the P2P private network.

• Auto Torrent Executor: This component of the tracker keeps checking peri-

odically to find if there are any new torrents in the Data Store which have not

been executed as yet by the Peer Emulator. When it locates any such torrent, it

22

inserts the torrent into the torrent database and the administrator of the tracker

is registered as the owner and uploader of this torrent. It then opens the torrent

using the Peer Emulator. Thus now the torrent is available for download to peers

in the private network.

• Torrent Manipulator: This component of the tracker requires a torrent as an

input, reads encoded information such as name of the file being shared, length

of the file, hashed information in the torrent and the tracker URL of the torrent.

It then decodes this information and manipulates this information read such

that the original tracker URL of the torrent is changed to the tracker URL of the

tracker running on the proxy. This stream is then encoded back and written back

into the torrent file. The torrent (which had a different tracker URL and hence

belonged to a different P2P network) now becomes a torrent in the current P2P

network whose tracker URL is that of the tracker in the proxy for the particular

P2P network. This torrent is then detected by the Auto Torrent Executor and

consequently added to the torrent database.

3.4 Global P2P Network of Proxies

We shall now examine the components of the top-tier or the global P2P network.

3.4.1 Peers

The proxy servers of the respective private networks form the peers of the top-tier

of the hierarchical P2P network. All these proxy servers have globally reachable IP

addresses. Each of these peers runs the customized P2P file transfer protocol for such

a network of proxies, FTPNP (described below).

3.4.2 FTPNP - File Transfer Protocol for Network of Proxies

This is the file transfer protocol used in the global P2P network of proxies. In case

a peer in a private network is unable to locate the desired content within its private

23

Figure 3.2: High level overview of the steps in the FTPNP

network, the proxy particular to that network tries to fetch the file from proxy servers of

other networks. Though the file transfer in the global P2P system takes place between

two proxy servers, we wish to know the real endpoints of this transaction i.e. though

the apparent endpoints of the file transfer are the two proxy servers, we wish to make

information about the requesting peer (in the first private network) and the content-

granting peer (in the other private network) available to both the proxy servers involved

in the transaction. No current P2P file transfer protocol allows us the capability of

ascertaining the participating peers behind proxy servers in private networks. Thus

we developed a new P2P file sharing protocol FTPNP to solve this challenge. Figure

24

3.2 gives a high level overview of this protocol for file transfer between the globally

addressable proxy servers. We shall now examine the details of this protocol

3.4.2.1 Packet Architecture of FTPNP

For communicating between peers, different types of messages are used. Some messages

are used to exchange control messages, while the others help to transfer content from

one peer to another. All these messages are encapsulated in UDP packets. The FTPNP

protocol message is the payload of the UDP packet. We shall examine the fields of

FTPNP’s message (see Figure 3.3).

Figure 3.3: Fields in a FTPNP packet

• Type: This field can hold two values, Protocol and Data. The former indicates

that the message is an asynchronous signaling control message from one peer to

another. The latter indicates that the message is being used to send a block of

data from one peer to another.

• Info: If the Type field of the packet is “Protocol”, Information can be “Find”,

“Available”, “Send”, “Now Sending” and “Successful Receive”. If the Type field

of the message is “Data”, Information can be either “Data” or “Torrent”. We

shall look into each one of these fields in detail below.

• Filename: This field is used to communicate between two peers the name of the

file which is being searched or exchanged between two peers.

• FP at Sending End: This field contains the position of the file pointer of the

file “filename” stored at the node sending the packet.

25

• FP at Opposite End: This field contains the position of the file pointer of the

file “filename” stored at the node which will receive this packet being sent (which

is also the node which had sent the previous packet).

• Length: If the Type field of this packet holds the value “Data”, then this field

gives the length of the data (in bytes) being sent in this packet. If the type of

the packet is “Protocol”, this field is inconsequential.

• Uploading Client: If search for the file “filename” yields a positive response

from the proxy of a particular private network, the username of the peer (as

registered with the tracker in the proxy) in the private network which was the

original uploader of the content is contained in this field.

• Requesting Client: This field contains the username of the peer (as registered

with the tracker in the proxy) in the private network, which had initiated the

search of the file “filename”.

• Byte Data Array: If the Type field of the message is “Data”, then this field

contains the data or content being sent. The content is sent in the form of a byte

data array. When properly parsed, this packet yields the data which was sent.

3.4.2.2 Communication Protocol Specification

There are two main kinds of messages exchanged: control messages to acquire informa-

tion about the desired content and data messages to transfer content desired by a peer.

Figure 3.4 shows the sequence of messages. We shall examine each of these message

types in detail:-

1. Type=Protocol We shall now look into different values which the field “Info”

in the packet structure takes

• Info=Find : This message is sent by a proxy B (see Figure 3.1) when it

wishes to ask other proxy servers to search for the content whose name is

given by the field “filename”. This message is initiated only when search

26

Figure 3.4: Sequence of control and data messages in FTPNP

for the content yielded negative results in B’s private network. The values

in the fields of the packet are:

Packet Field Value

Type Protocol

Info Find

Filename name of the content being searched

FP at Sending End “0”

FP at Opposite End “” (redundant field)

Length “0” (redundant field)

Uploading Client “” (redundant field)

Requesting Client username of requesting peer in B’s network

Byte Data Array “” (redundant field)

27

• Info=Available: If a proxy A, has content of the same filename (uploaded

by a peer in its private network) as that being searched by another proxy B

(which had sent a packet with “Info” field’s value as “Find” and Filename

field’s value containing the name of the content to be searched), it sends

back a packet to proxy B a packet whose “Info” field has the value “Avail-

able”. The values in the fields of the packet are:

Packet Field Value

Type Protocol

Info Available

Filename name of the content being searched, found

FP at Sending End Size of the file at A

FP at Opposite End “0”

Length “0” (redundant field)

Uploading Client username of desired content’s uploader in A’s network

Requesting Client username of requesting peer in B’s network

Byte Data Array “” (redundant field)

• Info=Send : When proxy B gets a packet whose “Info” field value is “Avail-

able” from another proxy A, proxy B sends another packet to proxy A in

which the “Info” field value is “Send”. The proxy B keeps sending more

packets to proxy A in which the “Info” field value is “Send” and the value

of the “FP at Sending End” field is updated each time to represent the po-

sition of the file pointer in the currently downloaded file. The values in the

fields of the packet are:

28

Packet Field Value

Type Protocol

Info Send

Filename name of the content being searched

FP at Sending End current length of searched content at proxy B

FP at Opposite End “FP at Sending End” field’s value in the previous packet

Length “0” (redundant field)

Uploading Client username of desired content’s uploader in A’s network

Requesting Client username of requesting peer in B’s network

Byte Data Array “” (redundant field)

• Info=Now Sending : When proxy A gets a packet whose “Info” field value is

“Send” from another proxy B, proxy A sends another packet to proxy B in

which the “Info” field value is “Now Sending”. This indicates an acknowl-

edgment about the receipt of the request to send. Proxy A then starts to

send data blocks to proxy B. The values in the fields of the packet are:

Packet Field Value

Type Protocol

Info Now Sending

Filename name of the content being searched

FP at Sending End current length of searched content at proxy A

FP at Opposite End value of “FP at Sending End” field in the previous packet

Length “0” (redundant field)

Uploading Client username of content’s uploader in A’s network

Requesting Client username of requesting peer in B’s network

Byte Data Array “” (redundant field)

• Info=Successful Receive: When proxy B gets a packet whose “Type” field

value is “Data”, “Info” field value is “Data” or “Torrent” from another

proxy A, proxy B sends a packet to proxy A in which the “Type” field value

is “Protocol”, “Info” field value is “Successful Receive”. This indicates an

29

acknowledgment about the receipt of data sent by proxy A to proxy B. The

values in the fields of the packet are:

Packet Field Value

Type Protocol

Info Successful Receive

Filename name of the content being searched

FP at Sending End current length of searched content at proxy B

FP at Opposite End value of “FP at Sending End” field in the previous packet

Length “0” (redundant field)

Uploading Client username of desired content’s uploader in A’s network

Requesting Client username of requesting peer in B’s network

Byte Data Array “” (redundant field)

2. Type=Data We shall now look into different values which the field “Info” in

the packet structure takes

• Info=Data: When proxy A sends a packet whose “Type” field value is “Pro-

tocol”, “Info” field value is “Now Sending” it also sends another packet to

proxy B in which the “Type” field value is “Data”, “Info” field value is

“Data”. The proxy A takes note of the value in the field “FP at Sending

End” which indicates the length of the downloaded content (content file

name is “filename”) at proxy B. A decides the block size of data to be sent

to B (see block size decision function in Section 3.4.2.3 below). A then cre-

ates a byte data array of length equal to the blocksize and reads data from

the file, “filename” starting at the position indicated by the value of the

field “FP at Sending End” (in the packet which was sent by proxy B) of

length equal to the block size. This data is then read into the byte-array.

The values in the fields of the packet are:

30

Packet Field Value

Type Data

Info Data

Filename name of the content being searched

FP at Sending End current length of searched content at proxy A

FP at Opposite End “FP at Sending End” field’s value in the previous packet

Length block size

Uploading Client username of desired content’s uploader in A’s network

Requesting Client username of requesting peer in B’s network

Byte Data Array byte-array of content read from “filename”

When this message is received by proxy B, it reads the contents of the

packet and extracts the byte-array of content. It checks if the incoming

data is newer than the data already written in the file “filename”. It then

writes into the file “filename” this byte-array of data starting from the cur-

rent end of the file position.

• Info=Torrent : When proxy A sends a packet whose “Type” field value is

“Data”, “Info” field value is “Data” it also sends another packet to proxy

B in which the “Type” field value is “Data”, “Info” field value is “Torrent”,

provided the value of the field “FP at Opposite End” in the data packet

sent by proxy A is “0”. This message is used to send across the torrent file

(whose tracker URL is the IP address of the proxy A) for the content being

searched for. Thus proxy A creates a byte-array of size equal to the size of

the torrent file (usually not more than a few kilobytes in size) and sends it

in this packet. In this packet The values in the fields of the packet are:

31

Packet Field Value

Type Data

Info Torrent

Filename name of the content being searched

FP at Sending End current length of searched content at proxy A

FP at Opposite End “0”

Length block size

Uploading Client username of desired content’s uploader in A’s network

Requesting Client username of requesting peer in B’s network

Byte Data Array byte-array containing data read from ”filename.torrent”

When this message is received by proxy B, it reads the contents of the

packet and extracts the byte-array of content. It then writes into the file

“filename.torrent” this f of data starting from the current end of the file

position.

3.5 Credit Management System

All P2P systems must have an incentive to share, i.e. a P2P system must guarantee

better performance to those peers who share more useful content than others. In order

to introduce any Quality of Service features based on the amount of data exchanged

between peers, there should be book keeping of the bytes sent and received by each

peer.

This component of the proxy in each private network helps to achieve the above stated

goal. We shall now look at some of key design issues of this credit management system.

3.5.1 Design Issues

As stated earlier in the assumptions of the entire system (see Section 3.2) the speed of

the transfer of content in the private networks is very high and the bottleneck to the

performance of content transfer between two peers is the speed of the transfer of data in

the top-tier global network. In this light, it was natural to think of a credit management

32

system for the top tier of the hierarchical network comprising proxy servers. However,

if we were to build such a credit management system in which the rate of transfer of

content would depend on the performance of the proxy servers in sharing frequently

downloaded content, consider the following scenarios:

• Let there be a peer, peer1 in a private network pvtA, who shares a lot of useful

content downloaded by not only people in pvtA, but also by several peers in other

private networks. However, all the other peers in pvtA are free riders and share no

useful content in pvtA or to other peers in different private networks. As a result

of this, the overall utility of proxyA, the proxy of pvtA, as perceived by other

proxy servers in the global P2P network will be very less. Hence poor Quality of

Service shall be provided to proxyA in terms of low rates of transfer of content.

Hence when any peer, peer1 included, searches for data which is unavailable in

pvtA network, data will be fetched from proxy servers of other private networks

at very low rates of transfer. Thus in this scheme of credit management, peers

who are sharing a lot of useful content may get unduly penalized and thus the

fairness of the P2P system stands compromised.

• Conversely, consider a peer, peer1 in a private network pvtA, which is a free-rider

and does not share any content either with peers. However, the other peers in

pvtA are all conscientious peers who share lots of useful content downloaded by

peers in pvtA and also by proxy servers of other private networks. As a result of

this, the overall utility of proxyA, the proxy of pvtA, as perceived by other proxy

servers in the global P2P network will be very high. Hence excellent Quality of

Service shall be provided to proxyA in terms of high rates of transfer of content.

Hence when any peer, peer1 included, searches for data which is unavailable in

pvtA network, data will be fetched from proxy servers of other private networks at

very high rates of transfer. Thus in this scheme of credit management, free-riding

peers, who happen to be present in a P2P network where there are benevolent

peers sharing a lot of content, get undue benefits of better data transfer rates

and thus the fairness of the P2P system is again compromised.

33

The above problems arise because there is a difference between the real end points of

a transaction (peers in different P2P private networks) and the points for which the

incentive mechanism is being applied (proxy servers of private networks). Hence, our

credit management must take into account the real end-points of any transaction. This

way, the rate of transfer of data will be governed by the past sharing behavior of the

individual peers and thus there will be fairness along with an incentive to share.

Let us now examine the components of the Credit Management System:

3.5.2 Components of the Credit Management System

The three components of the credit management system are:-

1. Credit Records: Each proxy maintains two vectors, the first vector, (Vec Recv),

for holding information on the amount of data received from other private net-

works and the other vector, (Vec Sent), for holding information on the amount

of data sent to other private networks. Each Vector contains hash tables. There

is one hash table for each private P2P network. For each of such hash tables

(representing a private network), the keys contain names of peers in the pri-

vate network. Say there are three private networks, pvtA, pvtB and pvtC which

have proxyA, proxyB and proxyC as their respective proxy servers. Say peerA 1,

peerA 2 are peers in pvtA; peerB 1, peerB 1 are peers in pvtB ; peerC 1, peerC 2

are peers in pvtC. Then proxyA contains

• Vec Recv, which in turn contains two hash tables, one each for pvtB and

pvtC - hashTableB, hashTableC. hashTableB contains peerB 1, peerB 2 as

its keys while hashTableC contains peerC 1, peerC 2 as its keys. The values

for these keys denote the number of bytes of data received from that peer.

For example, for the key peerC 1 in hashTableC contains the number of

bytes of data, proxyA has received from peerC 1 peer in the pvtC.

• Vec Sent, which in turn contains two hash tables, one each for pvtB and

pvtC - hashTableB, hashTableC. hashTableB contains peerB 1, peerB 2 as

its keys while hashTableC contains peerC 1, peerC 2 as its keys. The values

34

for these keys denote the number of bytes of data sent to that peer. For

example, for the key peerC 1 in hashTableC contains the number of bytes

of data, proxyA has sent to peerC 1 peer in the pvtC.

Thus these Credit Records contain all the information about the number of bytes

of data received from and sent to, for each peer in different private networks.

2. Credit Manager: This component of the proxy is called whenever the proxy

receives content from another proxy or when this proxy sends content to some

other proxy.

• If proxyA receives bytesC 1 bytes of data from peerC 1, the Credit Manager

adds bytesC 1 to the current value corresponding to the key, peerC 1 of the

hash table, hashTableC in the vector (Vec Recv) of proxyA.

• If proxyA sends bytesC 1 bytes of data to peerC 1, the Credit Manager adds

bytesC 1 to the current value corresponding to the key, peerC 1 of the hash

table, hashTableC in the vector (Vec Sent) of proxyA.

3. Block Size Decision Function: The credit system is implemented through

this component of the proxy. Data is transferred from one peer to another in the

form of byte arrays of a certain length. The credit system is implemented as a

simple prototype where the length of the byte-array in a single “Data” packet is

contingent on the performance of the peer to whom the data is being sent. Say

peer2, a member of the private network, pvtB whose proxy is proxyB wishes to

download content which is not available in pvtB. ProxyA has that content. In

such a situation, the following happens:

• There is a fixed blocksize (base bs) of data which is the smallest length of

the byte-array pushed altruistically even to free-riders.

• Each proxy calculates the utility ratio of peers belonging to other private

networks, which have shared content with it. This utility ratio determines

the quality of service the peer requesting for data shall receive and it depends

35

on the sharing history of the peer requesting for data with the proxy. In this

situation, peer2 is requesting for data from ProxyA. The quality of service

(measured in terms of the download rate) depends on the size of the content

ProxyA has received from peer2 in the past. The utility ratio is calculated

as:

utility ratio =
numberofbytesreceivedbyProxyAfrompeer2

totalnumberofbytesreceivedbyProxyA
(3.1)

• There is a maximum incentive blocksize (incentive bs), a part of which is

added to the base blocksize depending upon the utility ratio of the peer in

the past.

• The block size of data to be sent, (final blocksize), is calculated as

final blocksize = base bs + incentive bs ∗ utility ratio (3.2)

This function ensures that peers who share more data get better performance

because they get a larger size of the byte-array of content in every “Data” packet.

3.6 Working of the Hierarchical P2P Network

We shall now give an overview of the two main components of the working of the

Hierarchical P2P Network, namely, file sharing and file download.

3.6.1 File Sharing

Say a peer peer1, in a private network pvtA whose proxy is proxyA, wishes to share a

file fileA with other peers in pvtA. Following are the steps involved in the sharing (see

Figure 3.5):

• peer1 creates a torrent file torrentA for fileA with proxyA as the tracker URL.

• peer1 logs into the tracker at proxyA and uses the web interface to upload torrentA

onto the tracker.

36

Figure 3.5: Algorithm to share a file

• peer1 then opens the torrent file with the BitTorrent Client software on its ma-

chine and starts seeding the torrent.

• The Advanced Upload Manager (see section 3.3.1.2) of the tracker at proxyA

comes into action. It makes torrentA available for download to all registered

peers. It inserts torrentA in the database of torrents and enlists peer1 as the

uploader of this content. This Advanced Upload Manager then, using the Peer

Emulator functionality of the tracker at proxyA, runs torrentA on the BitTorrent

37

client software at the tracker and using BitTorrent downloads the file from peer1

onto proxyA’s Data Store.

. Thus when a peer uploads a torrent file onto its private network’s tracker, the tracker

opens the uploaded torrent using its BitTorrent Client software and downloads the file

itself. The torrent becomes visible to other peers in the private network and the shared

file becomes downloadable.

3.6.2 File Download

There are two situations which need to be considered in case of downloading files:

3.6.2.1 Requested file is in the same private network

Consider a private network pvtA in which there are two peers, peer1 and peer2. Peer2

shares a file, fileA using the method described in Section 3.4.1 above. Peer1 wishes to

download fileA.

• peer1 searches for fileA’s torrent on the tracker in the proxy proxyA.

• The search is successful and it returns the torrent, torrentA which had been

uploaded by peer2.

• peer1 downloads torrentA and opens it using its BitTorrent Client software which

contacts the tracker in proxyA.

• The tracker then coordinates the download of fileA from peer2 to peer1.

3.6.2.2 Requested file is in another private network

Say there are three private networks pvtA, pvtB and pvtC whose proxy servers are

proxyA, proxyB and proxyC respectively. These proxy servers form a global network.

Say peer1 belongs to pvtA and peer2 belongs to pvtB. Peer1 is sharing a file, fileA with

all peers in its private network, pvtA and has uploaded torrentA (torrent file for fileA)

on the tracker in proxyA. Peer2 in pvtB wishes to download the file fileA but no peer

in pvtB is sharing fileA. No peer in pvtC is sharing fileA.

38

• peer2 searches for the torrent for fileA on the tracker in proxyB. Since no peer in

pvtB is sharing fileA, this search yields negative results.

• Since search for content in the private network was unsuccessful, the top tier of

the hierarchical P2P network comes into play and now the content is searched

for in the global P2P network of proxy servers pvtA, pvtB and pvtC.

• Proxy pvtB sends a Protocol packet each to other peers in the global P2P

network (pvtA and pvtC) asking them to “Find” fileA for peer2.

• Each of the proxy servers, proxyA and proxyC checks in their “Data Store” in

order to find fileA.

• ProxyC does not have the required file and so it does not respond back to the

“Find” query.

• Since peer1 had shared fileA in the private networkpvtA, the “Data Store” of

proxyA contains fileA and torrentA (torrent file for fileA).

• ProxyA sends a Protocol packet back to proxyB saying that fileA is “Available”

with it as fileA had been shared by peer1 in the private network pvtA.

• ProxyB then sends another Protocol packet to proxyA and asks the latter to

“Send” data from fileA starting from file pointer position at zero.

• ProxyA then sends another Protocol packet to ProxyB informing the latter that

it is “Now Sending” data from fileA, which had been uploaded by peer1 in

pvtA, starting from file pointer position at zero for peer2 in pvtB.

• Thus both proxyA and proxyB know that transfer of data is occurring from peer1

(belonging to pvtA) peer2 (belonging to pvtB).

• proxyA then uses the “block size decision function”to calculate the “block-

size” of the data to be sent to proxyB. It also updates its “Credits Record”

using the “Credit Manager”.

39

• ProxyA then sends a “Data” packet to proxyB containing “Data” from fileA

starting from file pointer position at zero. This data is sent in the form of a

“byte data array” whose length is given by the “blocksize” determined above.

• ProxyB too updates its “Credits Record” using the “Credit Manager”.

• ProxyA then sends another “Data” packet to proxyB containing data from

the“Torrent” file of fileA, torrentA stored in the “byte data array”.

• ProxyB then sends another Protocol packet to ProxyA informing the latter of the

“Successful Receive” of data from fileA starting from file pointer position

at zero.

• ProxyB continues to repeatedly send “Protocol” packets to proxyA, asking the

latter to “Send” data from fileA starting from “file pointer position” equal to

the length of fileA downloaded at proxyB.

• Each time proxyA receives a request to “Send”, it sends a “Now Sending” packet

followed by a “Data” packet. The “byte data array” contains data from fileA of

length determined by the “block size decision function”. Data is read from fileA

from file pointer position given by the length of the fileA downloaded currently

at proxyB.

• After each transfer of data, the “Credit Manager” at each of the proxy servers,

updates the “Credits Record” for their particular proxy (See Figure 3.6).

• ProxyB continues to ask for more data from proxyA until finally, when the length

of fileA at proxyB stops to increase. Thus now fileA and its torrent file, torrentA

are present at the “Data Store” of proxyB.

• torrentA at proxyB is the same torrent file which had been uploaded at proxyA,

and hence the tracker URL of torrentA is the URL of proxyA. Hence, this torrent

cannot uploaded directly at the tracker in proxyB. To resolve this the “Torrent

Manipulator” component of the tracker is called. This changes the tracker

40

Figure 3.6: (a)The structure of the Credit Records at each Proxy. (b)The updation of

credit records when file transfer occurs between two proxies

URL originally present in torrentA to the URL of proxyB, inserts torrentA into

the torrent database and uploads the new modified torrentA on the tracker.

• Hence, through the “Peer Emulator” and the “Auto Torrent Executor”

components of the tracker, the administrator (dummy user registered at the

tracker) is able to seed fileA in its BitTorrent client software.

• Now when peer2 (or any other peer) in the private network pvtB searches for a

torrent file for fileA on the tracker, it is able to find it and download fileA using

the process described in Section 3.4.2.1.

41

Figure 3.7: Downloading a file not present in the same private network

Thus in this Hierarchical Network, desired content is searched for first, in the private

P2P network and if the search yields negative results, an attempt is made to acquire

content from another private network using the top-tier global P2P network of proxy

servers (see Figure 3.7).

3.7 Components of the proxy

The proxy (see Figure 3.8) thus consists of the following major components:

1. Tracker - for the private P2P network : This component of the proxy acts

42

Figure 3.8: Components of the proxy

as the BitTorrent tracker for the corresponding private P2P network (described

in Section 3.3.1.2).

2. Globally Addressable proxy - Interface for the global P2P network:

This component of the proxy interacts with other globally addressable proxy

servers and runs the FTPNP protocol (described in Section 3.3.2.2)

3. Credit Management System - middle layer interacting with both 1,2

above: This component helps ensure fairness and incentive to share for the

hierarchical P2P network (described in Section 3.4).

43

3.8 Features of the Hierarchical P2P Network

Let us examine how the quintessential features of any P2P system are preserved by

our proposed P2P network:

• Privacy : Each of the internal P2P networks have privacy built into them as

an essential feature on account of they being P2P systems. The hierarchical

P2P network’s privacy feature comes as a fallout of the above. Only peers in

the private network which are authorized (via a login authentication) can access

content at the tracker which was acquired through file transfer in the top-tier P2P

network. Thus privacy is ensured in both the tiers of the hierarchical network

• System stability : Here again, this feature is already guaranteed by the BitTor-

rent P2P network in each of the private networks. Since the top tier is formed

through the cooperation of proxy servers of different private networks, whenever

any new proxy (of a new private P2P network) wants to join the existing global

network of proxies, this information is propagated to all existing proxy servers,

who then update the list of proxy servers which they have. If a proxy breaks

down unexpectedly, peers will continue to send messages to it, however since no

reply will come from it, the other proxy servers will assume that it does not have

the desired content to be downloaded. In this way system stability is ensured

even in the wake of new joins or unexpected departures to either of the private

or global networks.

• Performance: The performance of the hierarchical network is perceived differ-

ently by different peers depending on their own performance as a peer in a P2P

network. Those peers who share more content which is downloaded by other

peers and prove their utility to the system are given a better performance by the

system.

• Scalability : This hierarchical network is highly scalable, as even if there are 10,000

nodes in the hierarchical system, if the configuration is 10 private networks (each

of about 1000 peers) joining together the system can be broken into two major

44

P2P systems, one with 1000 nodes and the other with 10 nodes. Since the private

P2P network was already capable of handling all queries from the 1000 peers

registered with it, all P2P networks in the lower tier are scalable. The upper tier

involves a single representative from each private P2P network and is scalable for

a reasonable number of peers.

• Fairness : Due to the Credit Management System the Hierarchical network pro-

vides better performance to peers who contribute more content to the P2P net-

work and no peer is allowed to use more than its legalized share of bandwidth.

• Incentive To Share: Since those peers who contribute more useful content (con-

tent which is downloaded frequently) to their peers are offered better rates of

download due to the Credit Management System. Thus there is an incentive to

share for all peers in the Hierarchical P2P Network.

45

Chapter 4

Implementation and Results

We shall now elaborate on the implementation of the proposed system.

4.1 Private P2P Network

Let us first examine the implementation details of the components of the private P2P

network:

• BitTorrent clients : Each of the machines designated as a peer for a private P2P

network ran a BitTorrent software like U-Torrent or BitSpirit on their machines.

When such a BitTorrent software runs on a client, the client uses it to down-

load some files and seed the others which it had shared. This software uses the

tracker information given in the torrent to contact the tracker which in turn helps

coordinate the download of data.

• BitTorrent Tracker : Each of the machines designated as a proxy for a private

network must run a BitTorrent Tracker. For this purpose, Appserv 2.5.9 [4],

a combination of Apache 2.2.4, PHP 5.2.3, MySQL 5.0.45 and phpMyAdmin-

2.10.2, is installed on each server to provide web server support, php and MySQL

support. On this web server, tracker code of TorrentBits [5] is placed. This

provides an easy interface to the BitTorrent clients to upload torrents, browse

46

for content and download torrents. We shall now examine the manner in which

each component of the tracker was implemented

1. Data Store: Secondary storage area of the machine designated as tracker

2. Peer Emulator: An instance of the U-Torrent BitTorrent client software

runs on the tracker machine.

3. Advanced Upload Manager: Due to the settings made to the U-Torrent

client running at the tracker all the content is stored directly into the “Data

Store” of the tracker too. Since the torrent uploaded is run using the U-

Torrent software, it results in the download of the file at the Data Store.

Hence the tracker contains both the content and its torrent file.

4. Auto Torrent Executor: Settings are done in the U-Torrent client soft-

ware to ensure that all torrent files present in the Data Store are loaded

onto the “Peer Emulator”.

5. Torrent Manipulator: This is implemented as a PHP extension to the

existing TorrentBits code.

• File Transfer Protocol in the Private Network : BitTorrent is utilized as the file

transfer protocol for the private network

4.2 Global P2P Network of Proxies

The following are the requirements for setting up the proxy servers-

1. These machines must have a list of all other proxy servers (which contains their

contactable IP Addresses and Port Numbers) in the global network.

2. Each of these machines has a configuration file which lists out the IP Address of

the proxy and the port number at which it listens for messages from other proxy

servers.

3. A different port number is used when a proxy wishes to look for data in the global

network.

47

4.3 File Transfer across two Private Networks

4.3.1 Setup Topology

• The test involved proxy servers, proxyA and proxyB, which belonged to private

networks pvtA and pvtB respectively.

• These proxy servers run trackers. The tracker on proxyA has adminA as its

dummy user. The tracker on proxyB has adminB as its dummy user.

• peer1A and peer2A are members of pvtA and are registered with the tracker in

proxyA. Peer1B and Peer2B are members of pvtB and are registered with tracker

in proxyB. Figure 4.1 shows the testbed configuration.

Figure 4.1: Experimental testbed

4.3.2 Test Details

• peer1A uploads file1.torrent at the tracker in proxyA.

48

• peer1A then seeds the file using its BitTorrent Client Software.

• file1.torrent thus becomes an active torrent on the tracker, in proxyA, visible to

peers in pvtA.

• peer2B in pvtB, searches for file1’s torrent on the tracker in pvtB. The search

yields a negative result and peer2B is asked to search again at a later time.

• After some time, peer2B in pvtB, searches for file1’s torrent on the tracker in

pvtB. The search yields a positive result and peer2B downloads file1’s torrent.

• peer2B opens the torrent in its BitTorrent Client Software and downloads file1.

4.4 Credit Management System

4.4.1 Test Details

The setup topology (see Figure 4.1) is the same as that in section 4.3.

• peer1A uploads file1A.torrent, file2A.torrent, file3A.torrent, file4A.torrent, file5A.torrent

at the tracker in proxyA.

• peer1A then seeds each of these files using its BitTorrent Client Software.

• All the torrents then become active on the tracker, in proxyA, visible to peers in

pvtA.

• peer2A does not upload any torrents

• peer1B in pvtB, searches for file1A’s torrent on the tracker in pvtB. The search

yields a negative result and peer1B is asked to search again at a later time.

• After some time, peer1B in pvtB, searches for file1A’s torrent on the tracker in

pvtB. The search yields a positive result and peer1B downloads file1A’s torrent.

• peer1B opens the torrent in its BitTorrent Client Software and downloads file1A.

49

• Similarly peer1B downloads each of file2A, file3A, file4A and file5A

• peer1B uploads file1B.torrent (torrent of file1B) at the tracker in proxyB.

• peer1B also uploads file2B.torrent (torrent of file2B) at the tracker in proxyB,

where file1B and file 2B are of the same lengths.

• peer1A in pvtA, searches for file1B’s torrent on the tracker in pvtA. The search

yields a negative result but on searching later, peer1A finds the torrent and

downloads the file. The time taken for the download is noted.

• peer2A in pvtA, searches for file2B’s torrent on the tracker in pvtA. The search

yields a negative result but on searching later, peer2A finds the torrent and

downloads the file. The time taken for the download is noted.

4.4.2 Results and Inferences

4.4.2.1 Single Peer Case

Say peer1B, has downloaded a file from peer2A. Say peer1A, another machine in the

private network whose global endpoint is proxyA, wishes to download a file from proxyB.

The download time of the file will depend on the size of the content shared. The

time will be maximum when the peer1A has shared no data with proxyB. The time to

download the file decreases as the size of content shared by peer1A to proxyB increases.

The results are shown in Figure 4.2 and Figure 4.3. Each point reflects an average

of 20 runs of the experiment and the points were connected by a smooth line for

better understanding of the results. We did two sets of experiments. In one set of

experiments peer1Adownloads a 1 MB file from proxyB. In another set of experiments,

peer1Adownloads a 10 MB file from proxyB. In both sets of experiments, the download

is repeated after increasing the content shared by peer1A. We have experimented with

0, 2, 4, 6, 8 and 10MB content sharing.

It can be easily seen that sharing content helps in better quality-of-service, though

after a certain amount of sharing, the incremental improvement is little.

50

Figure 4.2: Download time for the desired file vs. size of content shared

4.4.2.2 Two Peer Case

• Consider that the two peers, peer1A and peer2A, share different sizes of content

with proxyB. Then, the rates at which they download a desired file from proxyB

will be contingent on the size of their contribution to proxyB. We performed

several experiments with different share ratios of the two peers and noted the

51

Figure 4.3: Download time for the desired file vs. size of content shared

time to download the files for both in peers in all of the cases. The results

are shown in Figure 4.4, Figure 4.5, Figure 4.6 and Figure 4.7. Each point

reflects an average of 20 runs of the experiment and the points were connected

by a smooth line for better understanding of the results. We did four sets of

experiments. In the first set of experiments Peer1A has shared 40 MB of data

and peer2A has shared 5 MB content with proxyB. They then download 1 MB,

52

10MB and 100 MB files from proxyB. In the second set of experiments Peer1A

has shared 16 MB of data and peer2A has shared 4 MB content with proxyB.

They then download 1 MB, 10MB and 100 MB files from proxyB. In the third set

of experiments Peer1A has shared 10 MB of data and peer2A has shared 5 MB

content with proxyB. In the fourth set of experiments Peer1A and peer2A have

both shared 10 MB content with proxyB. They then download 1 MB, 10MB and

100 MB files from proxyB.

It can be seen that the peer who has shared a larger ratio of the total content

downloaded by proxyB receives a faster download rate. If we compare Figure 4.4

and Figure 4.6, we find that the difference between download times goes for the

two peers is higher when the ratio of sharing is 8:1 (40 MB: 5 MB) than when

the ratio is 2:1 (10 MB: 5 MB). Hence, for peers with a greater share at a proxy,

file download rates from that proxy will be higher.

• In order to simulate the file downloads for real-life scenarios, where there is a

lot of congestion in the network, we ran Iperf [6] between proxyA, proxyB to

create traffic in the global network. We then did two sets of experiments. The

results are shown in Figure 4.8 and Figure 4.9. Each point reflects an average

of 20 runs of the experiment and the points were connected by a smooth line for

better understanding of the results. In the first set of experiments Peer1A has

shared 16 MB of data and peer2A has shared 4 MB content with proxyB. They

then download 1 MB, 10MB and 100 MB files from proxyB. In the second set

of experiments Peer1A has shared 10 MB of data and peer2A has shared 5 MB

content with proxyB. They then download 1 MB, 10MB and 100 MB files from

proxyB.

In this scenario as well, it can be seen that the peer which has shared a larger

ratio of the total content downloaded by proxyB receives a faster download rate.

53

Figure 4.4: Dependence of the time to download a file on the size of the content shared

54

Figure 4.5: Dependence of the time to download a file on the size of the content shared

55

Figure 4.6: Dependence of the time to download a file on the size of the content shared

56

Figure 4.7: Dependence of the time to download a file on the size of the content shared

57

Figure 4.8: Dependence of the time to download a file on the size of the content shared

58

Figure 4.9: Dependence of the time to download a file on the size of the content shared

59

Chapter 5

Conclusion and Future Work

We have identified the need of building a hierarchical P2P network in a scenario where

there are several private networks who are ready to collaborate and share content with

each other. The proposed hierarchical P2P network has a simple, robust architecture

which preserves and maintains the essential properties of any P2P network, namely,

privacy, performance, system stability, scalability, fairness and an incentive to share.

We have created the architecture of the “proxy”, as a representative of the private P2P

network, in the top tier global P2P network. We have also designed FTPNP, a P2P file

transfer protocol for the network of proxies, which enables the proxy servers to ascertain

the real endpoints of a file transfer. We have introduced a Credit Management system,

which utilizes this ability of FTPNP and provides better quality-of-service to peers who

share useful content, frequently downloaded by their peers. We have implemented our

complete design and created working Proxy Servers for our test network. The results we

have obtained confirm that peers who share more content with peers in other private

networks receive better rates of download. Our work may also be useful for mobile

phone users (analogous to peers in a private network, whose proxy server is the global

server set up by the Mobile Subscription Providers) who wish to share content with

other mobile phone users subscribing to either the same or different mobile service

providers.

Our work can be extended to include advanced incentive mechanisms in the Credit

60

Management System , in order to ensure greater willingness to share content, from

the peers. Extensive testing of our hierarchical network on a larger testbed with a

large number of (several tens of) private networks can be used to further ascertain the

robustness of the system for real-time scenarios.

61

Bibliography

[1] http://www.akamai.com/

[2] http://www.dessent.net/btfaq/

[3] http://www.softpedia.com/get/Internet/File-Sharing/MakeTorrent.shtml

[4] http://www.appservnetwork.com/

[5] http://www.torrentbits.ro/index.php

[6] http://dast.nlanr.net/Projects/Iperf/

[7] Napster Messages: http://opennap.sourceforge.net/napster.txt

[8] Freenet Protocol 1.0 Specification: http://freenetproject.org/index.php?page=protocol

[9] The Gnutella Protocol Specification v0.4 :http://dss.clip2.com/GnutellaProtocol04.pdf

[10] Napster Homepage, http://www.napster.com/

[11] Why Gnutella Cant Scale, http://www.darkridge.com/ jpr5/

[12] Sripanidkulchai, K., The Popularity of Gnutella Queries and Its Implications on

Scalability: http://www.cs.cmu.edu/ kunwadee/research/p2p/paper.html

[13] Jovanovic, M., Scalability Issues in Large Peer-to-Peer Networks - A

Case Study of Gnutella, University of Cininnati Technical Report 2001:

http://www.ececs.uc.edu/ mjovanov/Research/paper.html

62

[14] I. Clarke,O. Sandberg, B. Wiley and T.W. Hong, “Freenet: A Distributed Anony-

mous Information Storage and Retrieval System” , Chapter in Designing Privacy

Enhancing Technologies , ICSI Workshop on Design Issues in Anonymity and

Unobservability, Inc., 2000.

[15] H.T. Kung and W. Chun-Hsin, “Hierarchical Peer-to-Peer Network” , Institute

of Information Science Taiwan: Technical Report, vol. 2, no. 15, pp. 21-25, Apr.

2001.

[16] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, “Chord:

A scalable peer-to-peer lookup service for internet applications”, Proceedings of

SIGCOMM Conference on Applications, technologies, architectures, and proto-

cols for computer communications, pp. 149-160, Aug. 2001.

[17] S. Agarwal, S. Dube, “Gossip Based Streaming with Incentives for Peer Collab-

oration”, Eighth IEEE International Symposium on Multimedia (ISM’06), Inc.,

2006.

[18] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “A scalable content-

addressable network”, Proceedings of ACM SIGCOMM Computer Communi-

cation Review, vol. 31, no. 4, pp. 161-172, Oct. 2001.

[19] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems”, Proceedings of IFIP/ACM Interna-

tional Conference on Distributed Systems Platforms (Middleware), pp. 329-350,

Nov. 2001.

[20] Erice, E.W. Biersack, P.A. Felber, K.W. Ross and G. Urvoy-Keller. “Hierarchical

Peer-to-peer Systems”, Proceedings of ACM/IFIP International Conference on

Parallel and Distributed Computing (Euro-Par), pp. 1230-1239, Aug. 2003.

[21] Z. Peng, Z. Duan, J. Qi, Y. Cao and E. Lv, “HP2P: A Hybrid Hierarchical P2P

Network”, First International Conference on the Digital Society (ICDS 2007),

pp. 18-26, Jan. 2007.

63

[22] B. Ford, D. Kegel and P. Srisuresh, “Peer-to-peer communication across network

address translators”, Proceedings of the USENIX Technical Conference, pp. 13-

13, Apr. 2005.

64

