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Abstract

Data security has come to be of utmost importance in the recent times. Several

encrypting file systems have been designed to solve the problem of providing data

security in a secure and transparent manner. TransCrypt is such an encrypting file

system, which is implemented in kernel space, has an advanced key management

scheme and is designed to be deployable in an enterprise scenario. It uses per-file

cryptographic keys for flexible sharing and does not include even the superuser in its

trust model.

Earlier, TransCrypt was implemented on the Linux kernel (version 2.6). In the

implementation, several modifications were made to the existing kernel to embed the

TransCrypt functionality. Such modifications also changed the file I/O behaviour in

the kernel, in order to add a cryptographic layer to perform encryption and decryption

on the file data. The kernel thus modified had several limitations with respect to

functionality, maintainability and performance.

In this thesis, we propose a new cryptographic layer for the TransCrypt file

system. This layer is implemented as a kernel module and does not modify any exist-

ing kernel code. The module uses the device-mapper infrastructure provided by the

Linux kernel. The new layer addresses several limitations of the earlier implementa-

tion, and is robust and stable. Performance gains of over 90% were observed in read

and write operations on large files with the new implementation. The design and im-

plementation details of the new cryptographic layer and performance measurements

are discussed in this work.
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Chapter 1

Introduction

1.1 Motivation

In the recent times, data storage has become increasingly common and more afford-

able. Archiving important data on storage mediums like USB disks and file servers

is a very common usage scenario among desktop and corporate users. Data security

is therefore of utmost importance, especially against data thefts, which impose risks

of losing significant personal and organisational data [1, 2]. There is an acute need

for a storage solution which uses strong cryptographic methods to protect data.

An encrypting file system provides the much needed solution to the problem

of data protection. There are several encrypting file systems (see section 1.2) which

provide security by encrypting and decrypting data transparent to a user. Although

the different encrypting file systems address the problem of data security in different

ways, a combination of features such as per-file encryption, flexible key-sharing and

exclusion of superuser from the trust model makes the file system more secure and
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customizable. TransCrypt [3] file system was created on the basis of these features to

provide a very strong solution to the problem of securing data in a user transparent

manner.

TransCrypt is an enterprise-class, kernel-space encrypting file system for the

Linux [4] operating system, which incorporates an advanced key management scheme

to provide a high grade of security, while remaining transparent and easily usable.

The initial implementation of TransCrypt [5, 6] was carried out as modifications

to the ext3 [7] file system on Linux. Userspace packages specific to the ext3 file

system were also modified. The Linux kernel code undergoes changes periodically

as new features and bug fixes are added to subsequent releases. Since a significant

part of the TransCrypt file system includes modifications to existing Linux kernel

code, changes to the code need to be tracked and updated for every kernel upgrade.

Dependency due to modifications to the existing kernel code implies a constraint on

the usage of TransCrypt over only the ext3 file system. The need was felt for a

improved TransCrypt file system which is independent of the modifications to the

underlying native file system code. This had the potential to exploit the advantages

of various other underlying file systems.

Desirable characteristics of an encrypting file system include performance and

ease of use, apart from a high grade of security. If a user perceives the read and write

operations to be slow on a TransCrypt file system compared to that on a normal

filesystem, then a potential wide scale deployment of the encrypted filesystem would

be hard to implement. The earlier implementation of TransCrypt was based on the

modifications in the file I/O functionality in the kernel. It had several performace and

maintenance related limitations. A need was felt to improve on the performance of

TransCrypt file system, as well as to improve maintainability of the code by developing
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an efficient encryption layer as a kernel module instead of incorporating modifications

to the kernel code.

The changes to TransCrypt file system design proposed in this thesis address

the maintainability and read/write performance issues. The new design attempts

to enhance the user experience while reading and writing files on TransCrypt, while

striving towards a layered architecture of the implementation, which is independent

from the underlying file system. Such a design would then be able to exploit the

advantages of other file system implementations.

1.2 Related Work

The solutions to provide data security in the form of cryptographic file systems in

the kernelspace are primarily based on two approaches. Volume encryption and File

system level encryption. In volume encryption approach, the data written to the

storage device mounted as a volume is encrypted as a whole. A single cryptographic

key is used to encrypt both data and metadata of all the files over the entire storage

device. Example implementation of volume encryption includes dm-crypt [8] and

FileVault [9]. File system level encryption approach is used to encrypt file system

objects (files, directories and metadata), rather than the storage device as a whole.

Different keys are used in this approach for different file system objects. eCryptFS

[10], CFS [11] and EncFS [12] are some implementations that use the file system

encryption approach.

dm-crypt and eCryptFS are two contrasting implementations which are in-

cluded in the Linux kernel. dm-crypt uses the volume encryption approach, whereas
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eCryptFS uses the file system encryption approach. The pros and cons of both these

approaches, along with a short introduction to their working, are detailed below.

1.2.1 dm-crypt

dm-crypt is an encryption target (plugin) based on the device-mapper infrastructure

included in recent Linux kernels. Device-mapper [13] is an infrastructure which can

be used to create layers of virtual block devices over the real block devices to achieve

striping, mirroring, etc. dm-crypt encrypts the data that is read from or written

to the real block devices by transparently encrypting via the virtual device. It uses

the native Linux CryptoAPI interface to carry out cryptographic operations. The

usage scenario for dm-crypt is simple. A new virtual block device is created over

the real block device which holds the file system to be mounted. While creating the

virtual block device, a cryptographic key, along with the cipher to be used and the IV

generation mode is specified. The file system on real block device is then mounted on

the virtual block device. Thus, read and write operations on the file system intended

for the real block device go through the virtual block device, where data is read from

the real device and decrypted before returning the control to the applications and

it is encrypted before writing to the real device. The cryptographic operations are

carried out using the cryptographic information passed during the initialization of

the virtual block device.

The data is encrypted at the generic block layer (explained in section 2.1.3) and

just before the data for write operation is submitted to the I/O scheduler for further

processing. This ensures a fast performance due to low overhead of I/O processing.

The dm-crypt implementation also comes with some drawbacks, which are listed as
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below.

• All the data that is written to the disk underneath (including metadata) is

encrypted.

• It lacks an advanced key management scheme due to the usage of just a single

key for the whole volume.

• Flexibility in file sharing is compromised.

• Incremental backups are hard to implement.

• Superuser is a trusted entity in the trust model for dm-crypt.

These limitations of dm-crypt restrict its use to a smaller segment of users,

rather than it being used in large corporates where file sharing and incremental back-

ups happen regularly. Though there is an effort [14] to introduce sharing of dm-crypt

partitions, lack of a fine grained access is still a problem that is unsolved.

1.2.2 eCryptFS

eCryptFS [10] is a kernelspace cryptographic file system for Linux based on Cryptfs

[15]. It is implemented as a stacked file system [16] which can be layered over an

already mounted filesystem. ecryptFS positions itself between the VFS layer and the

underlying file system layer. Thus, all the I/O to the file system is channeled through

eCryptFS, where the data is encrypted or decrypted for write and read operations

and is handed over to the lower file system. The native kernel CryptoAPI is used for

all cryptographic operations.
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A randomly generated cryptographic key is used to carry out encryption on

the file for every file residing on eCryptFS. This key is stored on the disk in an

encrypted format by contacting a userspace daemon to obtain the key-encryption

parameters. The advanced key management scheme employed by eCryptFS is one

of the distinguishing features suitable for an enterprise wide deployment of the file

system. It provides a fine grain access control and flexibility to share encrypted files

with individual users.

A seperate cache is maintained by eCryptFS for pages and file system meta-

data. Managing this infrastructure is an overhead on the performance of the file

system. Further, eCryptFS addresses a very narrow threat model in which the supe-

ruser and the userspace are both trusted entities.

1.3 TransCrypt in a Nutshell

An overview of the TransCrypt architecture is illustrated in figure 1.1. The Trans-

Crypt file system design considers the kernel to be the only trusted entity in the sys-

tem. Hence, a major part of TransCrypt is implemented inside the kernel. Userspace

utilities are required for certain key management tasks as described in the work by

Abhijith Bagri [6].

When a user creates a file on the TransCrypt file system, a random file en-

cryption key (FEK) is generated. The FEK is further encrypted with a special key

known as the file system key (FSK), which is provided by the system administrator at

the file system creation time. The so-formed blinded FEK is then further encrypted

with the user’s public key, which is obtained in the form of an X.509 [17] certificate
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Figure 1.1: TransCrypt Architecture

through the transcryptd daemon. This blinded FEK encrypted with the public key

of a user forms a “token” for the user, and is stored along with the file’s metadata.

When an existing file is opened for reading or writing, the token is sent to

transcryptd which forwards it to transcrypt-auth (auth server), which is an inter-

face to the user’s private key store (PKS). The PKS is a secure device that can store

the user’s private key and implement operations using the private key. The PKS can

be a smart card or a secure USB key. The token is then decrypted using the user’s

private key, and the blinded FEK is sent back to the kernel. The kernel decrypts the

blinded FEK using FSK which is known only to the kernel, and stores the key for

subsequent reads and writes on the file in the kernel.

During file read and write operations, the key for file is obtained from the

kernel keyring infrastructure (see section 3.1.2). The cryptographic operations in

the kernel are carried out by utilising the native kernel CryptoAPI [18]. A seperate
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communication module in the kernel implemented using the Netlink [19] interface is

used to interface with the userspace utilities.

When a user, say A, wants to grant access to another user B for a particular

file, the token for user A is authenticated with the PKS and the blinded FEK is

obtained. This is encrypted with user B’s public key obtained via transcryptd and

a new token for user B is created and stored along with user A’s token in the metadata

of the file.

An unauthorised user will not be able to decrypt the token and obtain the

FEK, since the blinded FEK is encrypted with the user’s public key. The private key

is available only with the original user. Blinding the FEK with FSK ensures that FEK

is not leaked while in transit from kernel to userspace and back. Thus TransCrypt

guarantees that only genuine, authorised users can access a file and no other user (even

with superuser privileges) can deduce FEK for the file. A more detailed explanation

of the TransCrypt components and the modifications to the kernel code is provided

later in chapter 3.

1.4 Scope of this Work

TransCrypt’s initial implementation involved modifications to the Linux kernel code.

A major part of the modification included changing the file I/O behaviour to force

encryption at a layer closer to the page cache. This implied a lower performance for

read/write operations and a diversion from the optimised page cache behaviour in

the kernel for I/O.

This thesis discusses the original design and implementation of the TransCrypt
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filesystem in detail. It outlines the shortcomings of the earlier design of the encryp-

tion layer that resulted in read and write performance overheads. A new design of

the encryption layer for TransCrypt utilizing the device-mapper (DM) infrastructure

of the newer Linux kernels is presented in this thesis. The advantages of using the

DM infrastructure is discussed. Implementation details of the new design are pro-

vided. Performance tests conducted on the new implementation against the earlier

implementation, along with unencrypted file systems are plotted and the results are

analysed. An attempt to make TransCrypt more maintainable by modularizing the

encryption layer is presented in this work.

1.5 Organization of the Thesis

The rest of the thesis is organised in the following manner. In chapter 2, some essential

kernel concepts and layers required for the understanding of the TransCrypt design in

the Linux kernel are introduced. Also, the modifications made at the respective layers

for TransCrypt are indicated in brief. In chapter 3, the TransCrypt architecture,

along with its components involved, and the modifications to file I/O to plug in

the cryptographic layer at the page cache are discussed in detail. In chapter 4,

the advantages of using the device-mapper layer for plugging in the cryptographic

operations for TransCrypt are described. The design and implementation details of

the new device-mapper target for TransCrypt are also provided. In chapter 5, the

details of the performance tests conducted with the new implementation are provided.

The results are compared with the earlier implementation. As a conclusion, notes on

the future work is provided in chapter 6.
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Chapter 2

Background

Certain components of the Linux kernel were modified while implementing Trans-

Crypt file system. In this chapter, we provide a brief introduction to the relevant

components of the kernel. We also describe the device-mapper infrastructure, which

is used by the new implementation of TransCrypt.

2.1 File I/O in the Kernel

The Linux kernel components can be differentiated into layers based on their func-

tionality. Figure 2.1 illustrates such layers in the kernel involved in file I/O.

2.1.1 Virtual File System

The Virtual File System (VFS) is a subsystem of the Linux kernel which is positioned

on the top of all other file system components. It groups the common functionality
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Figure 2.1: Kernel Components along the file I/O path [20]

amongst the underlying file systems and provides a common system call interface

to the userspace. By providing a common interface, the VFS creates an abstraction

layer over different file systems and provides a unified way of reading and writing files,

creating directories etc. without having to know the file system specific interface.

The VFS stores information describing a particular file system in a superblock

data structure. It keeps track of the files that are currently open through the file and

inode data structures. The file structure is used to represent an open file for a process

on the file system. It is a data structure local to the process. The inode structure

represents the metadata of the file in memory. Additionally a dentry structure is used

to cache the mapping between recently accessed file system paths and corresponding

inodes, and hence speed up the file look up process.

The VFS also stores pointers to functions which operate on the VFS data
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structures. When the file system is mounted, the VFS function pointers are popu-

lated with file system specific implementations. For example, the file structure has

file operations structure, which contains pointers to file system specific read and

write routines. When an ext3 file system is mounted, ext3 specific read and write

functions are assigned to the file operations interface, which is shared by all the

file structures across the mounted file system. During a read or a write operation

on a file, the control is transferred to the file system specific read or write imple-

mentations using these function pointers.

2.1.2 Page Cache

Accessing data from disk is very slow compared to the access from physical memory.

However, data access patterns tend to show spatial and temporal locality. Therefore,

storing the disk data in physical memory is beneficial. It improves the file system

performance by reducing the number of disk accesses.

The page cache is used by the kernel to manage disk data cached in physical

memory. The unit of storage in the page cache is a page. Physical memory is divided

into pages, which are the basic unit of memory management. struct page is the

data structure used to describe attributes of a page in the physical memory. struct

page also contains the virtual memory address of the physical memory page. The

pages, apart from caching the data from the disk, also keep other data such as shared

memory between processes in the kernel. The type of data that is kept in a page is

indicated by an attribute in the corresponding struct page data structure.

The disk presents data in units of sectors. Managing data at the level of sectors

is an expensive operation, since it requires free space management in units of sectors.
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To avoid large data structure on the disk, file systems group contiguous sectors into

a file system block. A buffer is a portion of physical memory which represents a file

system block. The file system handles the mapping between disk blocks and buffers.

The data that the buffer points to the file system data block stored in a page points

to, is stored in a page. The size of a page is an integer multiple of the size of a buffer.

A page in the page cache can contain data from multiple buffers which are

contiguous on the disk. Buffers which are not contiguous on the disk, and buffers

representing metadata for a file, are stored in special pages called “buffer pages”.

The buffers are tracked in the kernel using a buffer head data structure. The

buffer head structure is shown below.

struct buffer_head {
struct page *b_page; /* page which has the buffer */
size_t b_size; /* size of the buffer */
char *b_data; /* start offset of the buffer */
......

};

Figure 2.1 illustrates the positioning of the page cache. It is located just below

the file system implementations, and just above the generic block layer. The page

cache can be accessed directly by the VFS layer (when a file is mmaped) or through

the upper file systems.

A user process views a file as a container for a stream of bytes. However, the

file may be spread across several non-contiguous locations on the disk. A read() or

write() operation on the file requested by an application as a stream of bytes may

result in requests for fragments of data. The fragments of data can be spread over

multiple file system blocks (buffers) and over multiple pages. If the data contained in

the pages is also contiguous on the disk, then the entire request can be represented
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by a single data structure. Such an aggregation is carried out in the kernel with the

help of a BIO (struct bio) data structure. The BIO is a data structure used by all

layers below the VFS to represent the I/O for a file. Additionally, a buffer head

data structure is used to track I/O completion on a BIO, from the layers above the

generic block layer.

During a file read or write operation, the VFS functions invoke the file system

specific read or write methods. The file system specific functions then call upon the

page cache functions. During a read() operation, when the pages mapped to the file

are accessed for the first time, page cache functions populate the pages with the data

from the disk. The disk data is brought in units of buffers from the disk to the pages

in the page cache. Subsequent read() requests for data are accessed via the page

cache.

If the data present in the pages is already synchronized with the disk, then the

data is returned back to the caller (system call). If the pages are not in sync with the

disk, then the corresponding file system methods are invoked to fill the page content

from the disk.

In the case of a write() operation, the pages containing data are marked dirty.

The dirty pages are traversed by a seperate kernel thread (pdflush) periodically and

written to the disk by calling the file system methods.

The file system methods group the pages containing contiguous data into a

single BIO and send the BIO to the lower layer for further processing. If the page

is a buffer page, then a seperate BIO is created for each buffer and handed over to

the lower layer. Seperate buffer heads are created to keep track of the state of each

buffer in a buffer page.
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Applications which implement their own caching mechanisms would take ad-

vantage of direct I/O to the block device. In the case of a direct I/O request, the

page cache is bypassed and the generic block layer is accessed directly.

2.1.3 Generic Block Layer

The generic block layer is a layer below the page cache, which handles I/O requests

for all block devices. It offers an abstract view of the block devices by providing

general data structures which describe “disks” and “disk partitions”.

In the earlier days, I/O requests by the applications were not as large as

they are in the recent times. Therefore, I/O requests for a portion of contiguous

virtual memory could be satisfied by contiguous physical memory. However, with

the increasing demand for larger I/O by applications such as databases etc., the

contiguous virtual memory was mapped to non-contiguous areas in physical memory.

Therefore, the file data could be scattered over multiple non-contiguous physical

locations in the memory, but still be contiguous on the disk. A data structure which

could represent file I/O contiguous on disk by gathering all the scattered pages in

physical memory was introduced in the recent kernel (version 2.6.9). This is achieved

by keeping an ordered list of physical pages known as scatter-gather list. A data

structure known as BIO is used to describe a signaler request of I/O and contains

the scatter-gather list.

The BIO structure is a lightweight container for block I/O. The structure with

some of its members is as shown below.
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struct bio {
sector_t bi_sector;
struct block_device *bi_bdev;
unsigned short bi_vcnt;
struct bio_vec *bi_io_vec;
bio_end_io_t *bi_end_io;
bio_destructor_t *bi_destructor;
....

};

It has a pointer bi bdev, which points to the block device involved in the I/O.

The device may be a representation of a partition on the disk or the disk itself, if

partitions are not used. bi sector is set to the initial sector number of the disk

block on this device corresponding to the I/O. bi end io represents a function which

is invoked after the completion of the I/O.

The scatter-gather mechanism to address the data memory is implemented in

a bio vec data structure. The BIO structure contains a pointer to the list of bio vec

structures in bi io vec. The bio vec structure is as shown below.

struct bio_vec {
struct page *bv_page;
unsigned int bv_len;
unsigned int bv_offset;

};

Each bio vec structure represents data which is contiguous on disk. It contains

a pointer to the page (bv page) which contains the data involved in the I/O. bv len

and bv offset represent the length of the data and the offset in the page where the

data begins respectively.

In the earlier kernels (versions before 2.4), the submit bh function was used

as the entry point to the block layer for all I/O. The buffer head structure was
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the data structure used to handle kernel input-output. In the current Linux kernel,

the buffer head structure is used to keep track of the state of the buffer within a

page and as a wrapper for BIO to maintain backward compability. BIO is the data

structure used for all I/O in the kernel.

Maintaining a BIO structure helps to keep track of the I/O in terms of pages,

rather than buffers. This new scheme of having the BIOs as containers for I/O in the

kernel has several advantages over the previous scheme (with buffers) as given below.

• BIOs are very lightweight and contain only as much information required to

represent a block I/O as needed.

• The new scheme can perform scatter-gather I/O, since the BIO contains pages

referring to different physical memory locations. Thus, the split I/O opera-

tions can be represented easily without having to maintain many bufferheads.

Further, scatter-gather DMA operations can also be supported.

• The BIO represents I/O for regular pages (page-cached) as well as direct I/O.

• The lower block drivers can place the data (after I/O completion) in a process’s

user memory directly. This avoids placing the data in a kernel buffer and then

transferring to the user memory.

During a read or write operation in the kernel, BIOs are created in the page

cache to represent groups of aggregated contiguous disk data. These BIOs are handed

over to the generic block layer by the page cache routines. Every block device driver

has a request queue in which requests (which consists of a set of BIOs) are queued

for further processing by the I/O scheduler. Upon entry to the generic block layer,

the BIO is placed in a request queue of the block device driver. The block device
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driver then invokes a strategy routine on the request queue and sorts the BIO requests

accordingly. The strategy routine implements the disk scheduling algorithm as needed

by the device. The requests are then processed in the sorted order by the disk

controller. Once the disk controller completes an I/O operation, it notifies the block

layer by raising an interrupt. The BIO’s completion handler is invoked. This notifies

the upper layers of the completion of I/O. Thus, the file I/O cycle is completed.

2.2 Device Mapper

Device Mapper (DM) [13] is a virtual block device driver which provides an infras-

tructure to filter I/O for block devices. It provides a platform for filter drivers (also

known as targets) to map a BIO to multiple block devices, or to modify the BIO while

it is in transit in the kernel. A few example targets include the software RAID imple-

mentations, Logical Volume Management [21] (LVM2) and disk encryption target [8]

(dm-crypt).

2.2.1 Overview

Figure 2.2 shows the position of the device mapper layer in the kernel I/O architecture.

It is positioned between the generic block layer and the I/O scheduler. Since DM

itself is a block device driver, it registers the functions to handle block I/O with the

generic block layer. These functions transform the received BIOs and pass them to

corresponding functions from the target device drivers for further processing.

The DM block device driver exports a set of ioctl methods which are used by a

userspace program (dmsetup, explained in section 2.2.2). dmsetup creates a mapping
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Figure 2.2: The Device Mapper Layer

between the sectors of the virtual block device and the sectors of the real block device.

When this mapping is created, a data structure (mapping device) is generated, which

stores all the information about the target and the underlying block drivers. The

information regarding the underlying block drivers is stored in a configuration table

in the kernel memory.

When the generic block layer receives a BIO for an I/O, the BIO is plugged

into the request queue of the DM block driver. The DM driver now processes the

BIO as follows.

1. The BIO is cloned and the end-of-I/O completion handler for the cloned BIO

is set to that of DM’s end-of-I/O handler.

2. The targets for the BIO are looked up in the list of targets, and the cloned BIO

is handed over to the appropriate target implementation.
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3. The target implementation processes the cloned BIO and modifies the data

contained by the BIO.

4. The target driver directs the BIO towards the underlying block device that was

mapped by the DM layer earlier, sets an appropriate end of I/O handler for

the BIO and invokes the entry method generic make request() for the device

driver.

5. Upon completion of the I/O request by the device driver, the cloned BIO’s

end-of-I/O handler invokes DM block driver’s end-of-I/O handler, which then

notifies the upper layers about the completion of I/O.

The above process is depicted in figure 2.3. The transformation (cloning) of

BIOs at the DM driver might sometimes involve splitting BIOs and cloning, because

a single mapping can be created to span multiple devices, which can have different

hardware geometries [21]. When the mapping is removed after completing all the

operations on the block device, the information stored about the target in the DM

driver and the target module are also removed from the kernel.

2.2.2 dmsetup

dmsetup [22] is a userspace utility, which manages the virtual devices that use the

device-mapper driver. A table specifying the target mapping for the virtual device

is used while creating the device. This table maps each sector of the underlying

device to the virtual device. The table is then handed over to the DM driver in the

kernel, by issuing appropriate ioctl commands to create the device. In this way,

the DM driver, and eventually the target, will have knowledge of the disk geometry
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Figure 2.3: Device Mapper driver in action
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needed to create the mapping, prior to starting the operations on the block device.

dmsetup can also be used to safely pass arbitrary parameters to the target. For

example, the cryptographic keys in case of targets performing encryption on data.

The cryptographic key used to encrypt data can be stored in the target’s private

memory for further usage.

An example usage of dmsetup is as follows.

bash# dmsetup create device_name table
creates a virtual device
where device_name = transcrypt (creates /dev/mapper/transcrypt )

table = <start sector> <sector count> <target type> <arguments>

bash# dmsetup ls
lists all the mappings.

bash# dmsetup remove device_name
removes a mapping already created.
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Chapter 3

TransCrypt Implementation

TransCrypt was originally implemented on the Linux kernel (version 2.6.11). It was

later ported to kernel version 2.6.23. Modifications were carried out on the existing

kernel components and userspace utilities during the implementation of TransCrypt.

We describe the TransCrypt architecture that existed on the kernel version 2.6.23 in

this chapter.

3.1 In-Kernel Architecture

TransCrypt is an encrypting file system implemented in the kernel space. Kernel is

the only trusted component in the trust model of TransCrypt design which does not

include even the superuser. Hence, the in-kernel architecture of TransCrypt plays a

prominent part in the design of a secure encrypting file system.

Figure 3.1 illustrates the basic interaction between the kernel components

that include TransCrypt to achieve permission checks, key storage and cryptographic
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Figure 3.1: TransCrypt modifications in the kernel

operations. The kernel components modified in the earlier implementation of Trans-

Crypt [5, 6] included the VFS, page cache and the ext3 file system. These modifi-

cations and other related components introduced during TransCrypt implementation

are presented below.

3.1.1 VFS Modifications

The VFS layer was modified to include changes for TransCrypt. The modifications

included changing in-kernel and on-disk data structures for POSIX ACL [23] entries to

include two new fields – certid and token. These fields were specified in the extended

ACL of a file for a user. Since the usual behaviour of the POSIX ACL does not

include the creation of extended ACLs by default, the VFS layer was modified to

create extended ACLs on files. Further, changes to the VFS also accounted for the

removal of groups and other permission checks, since the tokens in the TransCrypt

file system are only user-specific.
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3.1.2 Keyring

The kernel provides an infrastructure to store cryptographic keys in memory and

search through them. These keys are subjected to access checks and are always

available by keeping in unswappable kernel memory. TransCrypt utilizes this infras-

tructure to create a new container for its cryptographic keys, while the file system is

mounted.

In the kernel, a struct key data structure is used to store a key. Every key

has a “description”, using which it can be searched. A keyring is a special type of

key which contains a list of keys. Keyrings implement their own methods of handling

the keys in this list including addition and removal of the keys.

A new TransCrypt keyring which acts as a container for TransCrypt related

cryptographic keys was created as part of the implementation. When a file is opened

for the first time on a TransCrypt file system, the FEK is retrieved, and stored in

the TransCrypt keyring. The corresponding “description” of the key refers to the

inode (i.e. the inode on which the operation is being carried out) the file. During the

subsequent read and write operations to the file the FEK is obtained by searching

the TransCrypt keyring for the key based on the file’s inode. During an addition of

the key, if the keyring is found to be full, the space is created for the key by searching

and removing the unused keys. For this purpose a reference count is kept with the

keys which is incremented at the time of open and decremented at the time of close.

This process of removal of keys in the key ring is known as key reaping.
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3.1.3 CryptoAPI

The in-kernel CryptoAPI [18] interface provides a generic infrastructure to use several

cryptographic algorithms for carrying out symmetric cryptography and generating

cryptographic hashes. TransCrypt uses this infrastructure to carry out encryption

and decryption of file data stored in the page cache. Cryptographic keys used for this

purpose are obtained from the TransCrypt keyring infrastructure.

The TransCrypt file system performs all cryptographic operations in the ker-

nel. Therefore, the cryptoAPI was extended to include the asymmetric crypto-

graphic operations (in particular, encryption and signature verification). The ex-

tended CryptoAPI is used by the token creation and modification logic in TransCrypt.

The modifications also included the support for RSA [24] operations, and parsing and

verification of X.509 certificates [17] by porting X.509 module from XySSL [25] library

to the kernel.

3.1.4 ext3 Modifications

The ext3 file system is a popular file system native to Linux. The implementation

of the ext3 file system was modified to meet the needs of TransCrypt. Modifications

to the ext3 code included changing the ext3 super block structure to accommo-

date the cryptographic hash of the file system key (FSK) and related parameters for

Password Based Key Derivation Function [26] (PBKDF2). Other TransCrypt specific

cryptographic parameters such as algorithms used for bulk and key encryption were

also stored in the super block while creating the file system. The in-kernel and on-

disk superblock structures were synchronized with the addition of new fields to hold

TransCrypt specific data.
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The file system behaviour was modified to check for the existence of Trans-

Crypt volume. This was achieved by incorporating a flag in the ext3 super block

structure at the time of mounting the file system. All other TransCrypt modified

layers in kernel could verify whether a file belonged to the TransCrypt file system or

not by checking the presence of this flag and taking appropriate action. In this way,

a TransCrypt specific behaviour was introduced in the kernel components.

Token creation during ACL initialization was also added to the set of changes

in the ext3 file system code. The cryptographic operations involving the tokens were

handled through the TransCrypt modified CryptoAPI.

3.1.5 Page Cache

The cryptographic layer for TransCrypt performs encryption and decryption of file

data inside the kernel. A strategic point to place this layer would have been in the

VFS functions, just before transferring data between kernelspace and userspace. The

file data would have to be encrypted and decrypted for every read or write operation

in this design approach. Hence, the approach was discarded in favour of a design,

where the cryptographic layer is placed just below the page cache. This design would

help in storing data in plaintext in the page cache at all times and was efficient in

terms of I/O performance.

During a file I/O, contiguous data spread over different physical memory lo-

cations, are aggregated into a single BIO. This BIO is submitted to the generic block

layer for further processing. In the case of a page containing buffers, seperate BIOs

are created for each buffer and seperate bufferheads are used to keep track of the

buffers. The function submit bh() is used to pass the buffers to the generic block
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layer.

This normal behaviour in the page cache is modified in the TransCrypt im-

plementation. Data belonging to the TransCrypt file system, irrespective of being

contiguous or not, is treated as data belonging to a buffer. This data is split into

blocks, each the size of a buffer, and submitted to the generic block layer in seperate

BIOs. All the TransCrypt data passes through the submit bh() function.

The cryptographic operations on file data were implemented in submit bh()

function in the modified TransCrypt implementation. Encryption and decryption

in this function was implemented for buffer sized data. The cryptographic context

for encryption/decryption, which is a structure used to describe the cryptographic

operation parameters such as the key, encryption cipher, etc. in the kernel, was

obtained from the TransCrypt keyring for the particular file.

Data being written to the disk was encrypted in-place before submitting to

the lower layers. Data read from the disk, was decrypted before handing the control

back to the upper layers. In order to keep the page cache populated with plaintext

data, the in-place encryption was followed by a decryption for every write operation.

These modifications changed the optimized file I/O behaviour in page cache.

Even though this approach for file data encryption worked, there was a penalty on

the performance because of the changes in the page cache and in-place encryption.

3.1.6 Kernel-Userspace Communication

A TransCrypt enabled kernel communicates with the userspace in order to retrieve

user certificates and to perform token decryption. To enable this communication
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a framework was designed as part of the TransCrypt implementation [27]. This

framework used Netlink [28] sockets to communicate with the userspace daemon

(transcryptd).

Every time a file is created or opened on the TransCrypt file system, the

kernel requests transcryptd for the certificate of the user and establishes a secure

communication channel to the private key store interface to decrypt the token for the

user. Requests for certificates and token decryption follow a secure communication

protocol [6] and are sent over the netlink socket to the userspace.

A queue is maintained for the requests sent by the kernel. When the response

for a request is received, the corresponding process which issued the request is woken

up and the entry for the request is removed from the queue. This communication

infrastructure is scalable during authentication of multiple processes opening multiple

files on TransCrypt.

3.2 Userspace Components

TransCrypt has a set of userspace utilities which aid in the cryptographic key manage-

ment of the file system. Some existing utilities were modified to support TransCrypt

operations. Also, some new utilities were introduced.

3.2.1 libacl Modifications

POSIX ACLs for a file are manipulated using userspace utilities such as setfacl,

getfacl and chacl. TransCrypt uses ACL utilities to handle the tokens for a par-
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ticular file. These utilities internally depend on the libacl [29] library for their

functioning.

The userspace utilities read the existing ACL entries and modify them, before

writing them back to the disk. Since the in-kernel ACL structures are modified to

contain TransCrypt specific information, the library (libacl) which handles the ACL

manipulation in userspace, is also modified. This modification is required in order to

synchronize the way the ACL structures are interpreted by the kernel and userspace.

3.2.2 e2fsprogs Modifications

e2fsprogs [30] is a suite of userspace utilities, which are used to create and maintain

ext2 and ext3 file systems. The modifications in the ext3 file system code in the

kernel required corresponding changes to the userspace utilities in order to synchronize

the data structures used by the kernel and userspace.

mkfs.ext3 is the utility in e2fsprogs suite which is used to create ext3 file

system on a volume. The modifications in the TransCrypt implementation included

changing the mkfs.ext3 utility to embed a set of TransCrypt related parameters such

as cryptographic hash of FSK, bulk and key encryption algorithms. This TransCrypt

specific information is used to authenticate the file system mounting process. The

changes also included modifications in the superblock data structure of the file system

to indicate the presence of a TransCrypt volume.
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3.2.3 Utilities

Userspace utilities which aid in the creation and mounting of the file system are

implemented for TransCrypt. These utilities also include certain scripts which help

a user in managing the certificates for TransCrypt. Private keys of the users can be

managed using these helper scripts.

Amongst these utilities, mkfs.transcrypt and mount.transcrypt are the

most prominent ones. mkfs.transcrypt is implemented as a wrapper over the

mkfs.ext3 utility. The user is prompted for a passphrase by mkfs.transcrypt while

creating the file system. A cryptographic key (FSK), based on PBKDF2 [26], is gen-

erated using the passphrase provided. The modified mkfs.ext3 is then invoked under

the hood by mkfs.transcrypt with the cryptographic hash and PBKDF2 parame-

ters.

mount.transcrypt is implemented as a wrapper over the mount utility for

mounting TransCrypt partitions. It is used to prompt the user for a passphrase,

convert the passphrase to a cryptographic key (FSK) and hand the key to the kernel.
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3.2.4 Daemons

TransCrypt provides two userspace daemons which aid the kernel in managing the

tokens and handling the certificates of the user. transcryptd is a daemon imple-

mented in userspace which helps the kernel in handling the certificates, whereas

transcrypt-auth is another daemon in userspace which acts as a private key store

(PKS) interface to the user’s private key.

transcryptd communicates with the kernel using the netlink communication

infrastructure. It handles requests for certificates from the kernel. It also forwards

requests from the kernel to transcrypt-auth and the response back to the kernel.

An encrypted session is established between transcrypt-auth and the kernel

through a series of protocol exchanges. transcrypt-auth acts as a PKS interface. It

handles the sessions that originate from within the kernel, decrypts the tokens and

returns back the decrypted tokens to the kernel through transcryptd. In the current

implementation, it reads the private keys of the users from a secure file store in the

userspace. There are plans to extend this to a secure private key store such as a smart

card in the near future.
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Chapter 4

A New Cryptographic Layer for

TransCrypt

TransCrypt[5, 6] was developed earlier as a simple and quick prototype implementa-

tion. Such a simple implementation had its own set of limitations.

The early prototype was based on modifications to the ext3 file system and to

the page cache in the kernel. The file I/O behaviour in the page cache was modified

in this implementation. But the modifications conflicted with several optimizations

in the original page cache. These optimizations were therefore not applied in the

case of files belonging to TransCrypt file system. Additionally, TransCrypt could not

support direct I/O operations, which are extensively used by applications such as

databases etc., as the page cache was bypassed for direct I/O operations.

The cryptographic layer in the earlier TransCrypt implementation was devel-

oped as a set of patches to the existing kernel code. As time progressed, it became

increasingly difficult to maintain the modifications for TransCrypt against the newer
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Figure 4.1: The new TransCrypt kernel

Linux kernels. Therefore, a new design for the cryptographic layer, which overcomes

the limitations posed by the earlier design is proposed in our work. The modified

design is based on the device-mapper 2.2 infrastructure of the Linux kernel. In our

design the cryptographic layer is implemented as a kernel module (dm-transcrypt)

to the DM infrastructure.

Parallel work by Arun Raghavan [31] moved the file system specific modifica-

tions which were implemented only for the ext3 file system to a more generic VFS

layer to make TransCrypt design independent of the file system. Figure 4.1 sketches

the new modifications in TransCrypt induced by our work, in contrast to the earlier

modifications (figure 3.1). As can be seen from the comparison, the proposed design

removes the dependency on the page cache, thus making the implementation more

clean and efficient.

The new design for the cryptographic layer for TransCrypt which is based on

the device-mapper infrastructure is described below.
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4.1 Design

The modifications in the earlier TransCrypt implementation affected the normal file

I/O behaviour, which was otherwise optimized. The decision to opt for the new cryp-

tographic layer has its roots in the advantages that the DM layer provided, compared

to the older TransCrypt implementation. These merits are listed below.

• The new cryptographic layer is in a kernel module and is separated from the

rest of the changes to the existing kernel. Any changes to the module could

be easily maintained against different kernel versions. This would increase the

maintainability of TransCrypt code.

• File I/O including direct I/O could be supported by the new cryptographic

layer, since different I/O paths in the kernel converge to the generic block layer

and DM infrastructure is placed under the generic block layer.

• The DM target can work on a set of large contiguous data, spread across mul-

tiple pages, as compared to smaller data blocks (buffers) in the earlier imple-

mentation. Therefore, the performance benefits of this functionality could be

exploited.

The device-mapper infrastructure provides the file data in transit from the

upper layers in the kernel to the target attached to a particular virtual block device.

The TransCrypt cryptographic target (dm-transcrypt) receives the data and modifies

the data by performing the encryption/decryption operations. Modified data is then

handed over to the lower layer for the I/O operation.

Since TransCrypt uses separate cryptographic key for each file, dm-transcrypt

needs to perform a look up for the right key to encrypt or decrypt data. The look
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up is achieved by querying the TransCrypt keyring for the cryptographic context

belonging to the file data. The cryptographic context for the data is set when the

data is received by the target. In-kernel CryptoAPI is used to perform the encryption

or decryption work, as required, using this cryptographic context.

When a volume with TransCrypt file system is mounted with encryption dis-

abled, the data read by the application from userspace is presented only in ciphertext.

Therefore, for such a case, dm-transcrypt uses the cryptographic context of a null

cipher algorithm, which does not perform any cryptographic operation on the file

data.

During a read operation, dm-transcrypt performs an in-place decryption

on the data after the I/O completion by the lower layers. In the case of a write

operation, data to be written to the disk is cloned into a set of pages maintained by the

target. The cloned data is encrypted by the cryptographic layer before submitting it to

the lower layer for I/O. After the encrypted data is written to the disk, dm-transcrypt

is notified about the I/O completion. The cloned data is then destroyed, while the

original request still contains plaintext data. The data is then returned back to the

upper layers. Thus, cloning data during a write operation saves an extra decryption,

as compared to an in-place encryption, which would need an extra decryption to

keep the data in the page cache as plaintext. Since the cryptographic operations are

expensive, a significant gain on performance is obtained as compared to the earlier

implementation.

The cryptographic operations on data is performed per page in dm-transcrypt.

In terms of performance, per-page encryption is better than per-buffer encryption as

was done in the earlier implementation. This is primarily because it results in fewer
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calls to the CryptoAPI.

4.2 Implementation

The new cryptographic layer for TransCrypt (dm-transcrypt) is implemented as a

target kernel module for the device mapper infrastructure on Linux kernel 2.6.24.

The dmsetup utility is used to create a virtual block device which maps to

one or more real block devices. The name of the target which uses this mapping

is specified while setting up the virtual block device. Any further operations are

performed on the virtual block device.

The dm-transcrypt module is loaded into the kernel, during dmsetup time.

Upon loading, it registers with the DM infrastructure to receive notifications of I/O

on the virtual block device to which the target is attached.

The device mapper driver, which forms the core component of the DM in-

frastructure, receives the I/O requests. The I/O requests are represented by a BIO

structure. The BIO structure represents a set of contiguous disk data spread over

multiple locations in physical memory. A layer in the kernel keeps track of a BIO that

passes through it, by cloning the BIO structure and setting the end-of-I/O handler

function in the BIO to point to the layer’s own function. A reference to the original

BIO is also embedded in the cloned BIO. In this way, when a lower layer calls the

end-of-I/O handler after processing the BIO, the upper layers can be notified of the

I/O completion.

The DM driver receives a BIO for each I/O request and clones the BIO struc-

ture. If the original BIO is meant for a virtual device on which the TransCrypt file
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system is mounted, then the cloned BIO (DM BIO) is handed over to dm-target.

The DM BIO is processed further in dm-target. The target’s implementation

is defined by three methods — constructor(), destructor() and map(). These

methods are registered with the DM driver, when the target is loaded in the kernel.

The implementation details of dm-transcrypt are given below.

4.2.1 Constructor Method

The constructor() function of the target is invoked by the DM driver, when a

mapping is created between the virtual device and the real device through dmsetup.

It is used by the DM target to initialize any target specific data structures and

memory. In case of the target being TransCrypt, following actions take place in

dm-transcrypt when the constructor function is executed.

1. The arguments to the constructor function, which are passed through the dmsetup

utility, are parsed.

2. The cryptographic context for the null cipher is setup.

3. The information about the underlying device is stored in a target-specific struc-

ture.

4. Kernel memory is allocated for the set of pages that dm-transcrypt would need

while performing cryptographic operations.
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Figure 4.2: Target’s map() function in action

4.2.2 Map Method

The map() function in the DM target implements the entire BIO processing logic.

It is executed whenever a BIO is received by the DM driver from the generic block

layer. In case of the target being TransCrypt, the BIO is cloned in the map function

and is tracked by setting an end-of-I/O handler on the cloned BIO. The end-of-I/O

handler of the target embeds the decryption logic of data.

Figure 4.2 illustrates the various events in the DM layer and the target. The

flow of events inside the map() function can be distinguished based on the direction

of the I/O request - an incoming I/O for read operation and an outgoing I/O for

a write operation. The following actions take place during a read I/O request in

dm-transcrypt.
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1. The DM BIO is cloned. The cloned BIO (Target BIO) still refers to the original

pages in memory containing data.

2. The device information in the BIO is set to the underlying device.

3. The target BIO’s end-of-I/O handler is set to dm-transcrypt’s endio function.

4. The target BIO is then submitted to the I/O scheduler layer for further pro-

cessing. The I/O scheduler submits the BIO to the underlying device driver,

which performs the actual I/O from the disk.

5. After populating the disk data into the pages the BIO points to, the disk con-

troller driver signals the I/O completion by invoking the dm-transcrypt’s endio

function.

6. Data decryption is implemented in the endio function of dm-transcrypt. For

decryption purposes, the cryptographic context corresponding to the file data

is obtained by querying the TransCrypt keyring.

7. Data contained in every page in the scatter-gather list of the BIO is decrypted

using the kernel CryptoAPI.

8. After the data decryption, the target BIO structure is destroyed and the end-

of-I/O handler for the BIO received by the map function is triggered.1

9. The decrypted data in the BIO is passed to the upper layer, by the DM driver.

In a similar way, during the write operation data encryption is performed

through the DM layer. The flow of events during a write I/O request is as given

below.

1Note: The BIO structure is destroyed, but not the pages refered to by the BIO
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1. The DM BIO is cloned. Data in the pages of the scatter-gather list of the

incoming BIO are also cloned using a seperate pool of physical memory pages

managed by dm-transcrypt. The cloned BIO (Target BIO) refers to the cloned

data.

2. Per-page encryption is carried out in the map() function by obtaining the cryp-

tographic context for the file data from the TransCrypt keyring.

3. The target BIO’s end-of-I/O handler is set to dm-transcrypt’s endio function.

4. The target BIO is submitted to the I/O scheduler layer. The I/O scheduler

submits the BIO to the underlying device driver, which writes the data to the

underlying disk.

5. After populating the data represented by the BIO into the disk, the disk con-

troller driver signals the I/O completion by invoking the dm-transcrypt’s endio

function.

6. In the end-of-I/O handler, the encrypted pages represented by target BIO are

returned back to the page pool and the target BIO is destroyed.

7. The end-of-I/O handler for the DM BIO received by the map function is invoked

to signal the completion of I/O to the DM layer.

Thus, dm-transcrypt performs an encryption for every write request and

a decryption for every read request for a file in the TransCrypt file system. The

cryptographic keys are maintained separately for each file.
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4.2.3 Destructor Method

After all the operations on the virtual block device are completed, dmsetup is used

to remove the mapping between the virtual and the real block device. During this

stage, dm-transcrypt’s destructor function is invoked to perform the cleanup of

data privately managed by the target. The pages reserved by the cryptographic layer

and the null cipher are freed.

4.3 An Example Usage

The usage scenario of the TransCrypt file system has changed with the implementa-

tion of the new cryptographic layer based on device mapper. Even though it adds a

small component of indirection with respect to the block devices used, the benefits

of the new implementation far outweigh the minute usage mechanism. An example

TransCrypt file system creation and usage is as shown below.

(Create a virtual block device /dev/mapper/transcrypt and the mapping)
root@host# echo <start sector> <sector count> <target name> <real device> |\

dmsetup create transcrypt

(Create the TransCrypt file system on the virtual device with default parameters)
root@host# mkfs.transcrypt /dev/mapper/transcrypt

(Mount the created file system)
root@host# mount.transcrypt /dev/mapper/transcrypt <mountpoint>
Passphrase: XXXXXX

(Unmount the file system)
root@host# umount <mountpoint>

(Remove the virtual device and the mapping)
root@host# dmsetup remove transcrypt
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Chapter 5

Performance Evaluation

The wide-scale deployment of any cryptographic file system is heavily dependent

on how the users perceive the file system operations. Therefore, performance of a

cryptographic file system is as important as the level of security that it provides.

TransCrypt, being an enterprise-class cryptographic file system, demands the user

experience to be as smooth as that on a regular file system.

File reads and writes are the most frequent operations in a file system. The

performance of a cryptographic file system is therefore dependent on the speed of

read and write operations. The earlier prototype implementation of TransCrypt [5]

had severe limitations with respect to the performance of read and write operations.

Tests conducted during the implementation showed a performance degradation of

more than 250% when compared to a normal file system. Improvements were made

over the prototype implementation, as TransCrypt evolved to a mature and stable

state.

However, potential problems were identified even in this implementation which
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hindered the maintainability and performance of TransCrypt. A new cryptographic

layer based on device mapper (DM) was developed to ease the maintenance of the

TransCrypt code against newer versions of the Linux kernel. This effort also provided

performance benefits over the earlier implementation.

5.1 Experimental Setup

The cryptographic layer affects only the read and the write path of a file I/O. Thus,

it was desirable to measure the read and write performance of the recently modified

TransCrypt file system. Improvements in performance, if any, could be measured by

comparing the results against the earlier implementation.

In order to measure how the user experience is impacted by the implementation

of the new layer, it is desirable to compare the performance results with that of a

regular file system. Additionally, the overhead of the DM layer on top of the new

cryptographic layer could be quantified too.

Tests were conducted to obtain the read and write performance measure-

ments of TransCrypt file system with the new cryptographic layer. The performance

measurements were taken for the earlier implementation of TransCrypt in which the

cryptographic layer was implemented in the page cache. The same set of tests were

run on a regular file system (ext3) and on a TransCrypt file system mounted with

TransCrypt specific options disabled thus bypassing the cryptographic layer.

All the tests were conducted on a freshly booted system with a clear page cache,

in order to avoid the effects of caching. The tests were run on a machine having an

Intel Core 2 Duo CPU running at 2GHz with 2GB RAM. Separate volumes, formatted
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with ext3 file system having a file system block size of 4KB were used to conduct

the tests. On encrypted volumes, the AES block cipher with 128-bit keys were used.

The tests were followed by a sync operation to flush the buffers to the disk.

The benchmark suite consisted of simple scripts to conduct the experiments.

The dd utility was used by the scripts to read data from the appropriate input file

and write data to the output file. The time command was used to measure the time

elapsed in executing the scripts. This command reports the total time elapsed (in

seconds) and the time spent by the CPU in the kernel mode while executing the

specific process.

During an I/O on a large file, the time spent for read or write operations is

significantly more than the time spent for the open operation by the kernel. Therefore

the overheads due to open can be ignored. Thus, large file I/O gives an accurate

measure of the time spent by the kernel in performing reads and writes. Further,

work by Arun Raghavan [31] discusses the performance overheads caused by open

system call which includes the time spent in token acquisition and the networking

overhead.

The tests consisted of reading and writing a large file (512MB) in units of

16KB. Each test was repeated 10 times and the average of the readings was taken.

During the tests to measure the performance of only read operations, a randomly

generated file of size 512MB is read from the appropriate volume and written to

/dev/null. This ensures that the time spent in writing to the block device is minimized

and only the time taken for reading is prominent in the experiment. Similarly, in the

case of a performance measurement involving only write operations to a file, the input

file is chosen to be /dev/zero and the output file resides on the TransCrypt file system.
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Figure 5.1: File read performance - Total time

Reading from /dev/zero induces very minimal overhead, which can be safely ignored.

5.2 Results and Analysis

The times spent in performing the I/O during the tests are charted in figures 5.1

to 5.4, and the results are analysed separately for the read and write tests. In

the figures, bh-transcrypt denotes the earlier implementation of TransCrypt with

the cryptographic layer in the page cache. ext3 refers to a regular ext3 file system

without any TransCrypt modifications. dm-transcrypt is the new TransCrypt file

system with the DM cryptographic layer, whereas dm-noencrypt is a TransCrypt file

system mounted with encryption/decryption disabled. All measurements reported in

these figures are carried out Linux kernel version 2.6.24.
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Figure 5.2: File read performance - time spent in the kernel

5.2.1 read Performance

Figure 5.1 illustrates the total time spent in reading a file of size 512MB from the

different file systems. As expected, the ext3 file system shows the best performance

time for the read operation. dm-noencrypt performance is very close to the ext3.

The minute difference between the read times between ext3 and the dm-noencrypt

is attributed to the overhead induced by the DM layer in managing the BIOs. This

overhead is less than 1% and is negligible.

The decrease in performance of dm-transcrypt with respect to dm-noencrypt

is because of the overhead introduced in cloning the BIOs and decrypting the data.

dm-transcrypt is comparable in performance to the normal ext3 file system. For

a substantially large file, less than 2% decrease in the total read time is observed.

However, the earlier TransCrypt implementation performs very badly under the read

test. A 3% decrease in read time is noticed with respect to the normal file system.

The time spent by the CPU in the kernel mode in case of a read operation on
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Figure 5.3: File write performance - Total time

the different file systems is shown in figure 5.2. This graph gives a good estimate of

the actual time spent in doing the cryptographic work, whereas the total read time

includes a measure of the time spent in waiting for I/O.

In bh-transcrypt, most of the work is carried out in the kernel to maintain

the BIOs created by splitting the data into buffer sized chunks. A BIO is created and

tracked by a bufferhead for every data chunk so formed. The combined time spent

to create and track the data in the modified page cache layer results in a fairly large

penalty of read performance for bh-transcrypt. By comparing the performance of

dm-transcrypt and bh-transcrypt in the figure 5.2, we can see that the CPU spends

about half the time in the kernel for dm-transcrypt, when compared to the time in

the kernel for bh-transcrypt.
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Figure 5.4: File write performance - time spent in the kernel

5.2.2 write Performance

Figure 5.3 sketches the total time taken by the write tests including the time to flush

the data into the disk after performing encryption in various different file systems.

Figure 5.4 plots the time spent by the CPU in the kernel for the same tests.

The optimization in file I/O behaviour inside the kernel is well exploited by

the new implementation to provide a write speed which is very close to the normal

ext3 file system. This can be inferred from the total write time of dm-transcrypt

with respect to ext3 in figure 5.3. The performance penalty of bh-transcrypt is

very high, both in the read and the write operation.

The time spent by the CPU on performing a write operation in the case of

bh-transcrypt is twice as that of dm-transcrypt as shown in figure 5.4. The time

spent in creating and tracking several BIOs and bufferheads adds significantly to the

penalty incurred by bh-transcrypt in the case of a write operation. Additionally,

bh-transcrypt performs an encryption followed by a decryption for every write
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request.

In a similar way, the difference in the times spent in the kernel by the CPU for

a dm-noencrypt and dm-transcrypt write operations is negligibly smaller and can

be attributed to the encryption overhead.

Clearly, the new design of the cryptographic layer for TransCrypt is superior in

performance compared to the older implementations. Also, both the read and write

performance for dm-transcrypt are very close to the ext3 file system performance.
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Chapter 6

Conclusion

6.1 Summary

The ubiquitous use of computers for data storage has made data security a prime

necessity in several scenarios, in the recent times. The TransCrypt file system provides

a secure and efficient storage mechanism to address this need for data security at the

enterprise level.

In this work, the dependence of TransCrypt’s earlier implementation on the

page cache has been addressed. A new cryptographic layer based on the device

mapper infrastructure of the Linux kernel has been introduced. As a result of this,

the performance of the new TransCrypt file system has significantly improved and is

now comparable to the performance of a normal file system.

With this modularization, the cryptographic layer of TransCrypt can now be

maintained against future versions of the Linux kernel without any modifications to

the existing kernel code.
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6.2 Future Work

With the conclusion of this work and with the introduction of the new metadata

organization for TransCrypt [31], the TransCrypt implementation is at a relatively

stable and mature state with respect to its kernel architecture. TransCrypt can now

be deployed on individual hosts and servers with relative ease.

One limitation of the TransCrypt implementation is that the current model

requires the users to access the files by logging into the host. In this scenario, Trans-

Crypt could be extended to work over a network as a network file system. Addition-

ally, a clear solution to the primary problem of effectively securing TransCrypt data

against identity thefts, including access to the private key store of the user is yet to

be devised.

Another area which requires some attention is the handling of ACL entries

for groups and others. Currently these types of ACL entries are ignored by the

implementation, although standard UNIX semantics mandate their implementation.

Various potential solutions for handling the groups and other ACL entries could be

explored in more detail.

It is also desirable to add metadata encryption to further enhance the level of

security provided. Data and metadata integrity checks would help detect potential

intrusions earlier. A significant performance improvement for file creation and open

operations can be obtained by implementing caching of user certificates in the kernel.

Finally, transcrypt-auth’s functionality can be extended to support smart cards for

authentication.
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