Sachet - A distributed real-time network based
intrusion detection system

A Thesis Submitted
in Partial Fulfillment of the Requirements
for the Degree of

Master of Technology

by
Sachin Goel

to the

Department of Computer Science & Engineering
Indian Institute of Technology, Kanpur

June, 2004

Certificate

This is to certify that the work contained in the thesis entitled “Sachet - A

distributed real-time network based intrusion detection system”, by Sachin Goel, has

been carried out under our supervision and that this work has not been submitted

elsewhere for a degree.

June, 2004

(Dr. Dheeraj Sanghi)

Department of Computer Science &
Engineering,

Indian Institute of Technology,

Kanpur.

(Dr. Deepak Gupta)

Department of Computer Science &
Engineering,

Indian Institute of Technology,

Kanpur.

Abstract

While the increased inter-connectivity of the computer networks has brought
a lot of benefits to the people, it also rendered networked systems vulnerable to
malicious attacks from the hackers. The failure of intrusion prevention techniques to
adequately secure computer systems has led to the growth of the Intrusion Detection
System. In this thesis, we have designed and implemented a distributed, network-
based intrusion detection system -Sachet. The Sachet word is a hindi word which
means - Alert. The system uses an existing open source network based misuse
detection system - snort. We have built upon snort to develop a heterogeneous,
scalable, distributed IDS that is completely controllable from a central location.
Sachet comprises of multiple agents that use snort for misuse detection, a central
server that stores all alerts and controls the agents, and a console for monitoring
and viewing the activities of entire Sachet system by the system administrator. The
agents and server communicates using a Sachet protocol that ensures reliability,
mutual authentication, confidentiality, integrity and provides tolerance from agent

and server crashes.

Acknowledgments

I would like to express my deep gratitude to my thesis supervisors Dr. Dheeraj
Sanghi and Dr. Deepak Gupta for their guidance and invaluable suggestions through-
out the year of this thesis. It was their enthusiasm, motivation and guidance that
saw the timely completion of this thesis. I would also like to thank my other team
member involved with the development of Sachet - JVR Murthy for his cooperation
and support throughout the year. We really had a great time together. I am also
thankful to members of Prabhu Goel Research Centre for all their cheerful support.
It was a great time working in Prabhu Goel Research Centre as it is equipped with
all the facilities the researcher can dreamt of. Finally I would like to thank my

parents for their blessings, support and encouragement.

Contents

1 Introduction

1.1 What is an Intrusion Detection System?
1.2 Desirable characteristics of an intrusion detection system
1.3 Scope of Thesis
1.4 Organization of the Report

2 Related Work

2.1 IDES . . .
2.2 DIDS
2.3 AAFID
2.4 BlackICE/ICEcap v v v v it it e

3 Architecture of SACHET

3.1 SACHET: Architectural Goals
3.2 SACHET: Architecture
3.3 The SACHET protocol
3.3.1 General Packet Structure
3.3.2 Reliability
3.3.3 Authentication0 L.
3.34 Commands
3.3.5 Alerts
3.3.6 Graceful Degradation
3.4 The SACHET Server-Console Protocol

ii

4 Implementation of the SACHET
4.1 The Server e
4.2 The Agent e
4.3 The Console
4.4 Addition of New Signatures
4.5 Maintenance of Alertid
4.6 Public Key Management
4.7 Private Key Storage Lo

5 Conclusion and Future Work

A Formats of Messages in Sachet Protocol
A.1 Authentication Messages
A.2 Data Messages

B Formats of Messages in Sachet server-console Protocol
B.1 Authentication Message
B.2 Command Messages
B.3 Request Messageso

iii

28
28
29
31
32
33
33
34

40

42
43
43

List of Tables

A.1 Messages exchanged during authentication phase 43
A.2 Message excahnges for Key-reset command 44
A.3 Messages for enabling signatures 44
A.4 Messages for disabling signatures 44
A.5 Messages for adding new signature 45
A.6 Messages for enabling signature files 45
A.7 Messages for disabling signature files 45
A.8 Messages for starting misuse detector 46
A.9 Messages for stopping misuse detector. 46
A.10 Messages for probing the agent 46
A.11 Messages for sending alerts to the server 47
A.12 Messages for sending only packets to the server 47
A.13 Messages for the failure of the Misuse Detector 48
A.14 Messages for probing the server 48
B.1 Messages for authenticating the user 50
B.2 Messages for changing the password 50
B.3 Messages for adding new agento 51
B.4 Messages for deleting the agent 51
B.5 Messages for enabling signatures 51
B.6 Messages for disabling signatures 52
B.7 Messages for enabling signature files 000 52
B.8 Messages for disabling signature files 52
B.9 Messages for starting misuse detector 53
B.10 Messages for stopping misuse detector. 53

iv

B.11 Messages for adding a new signature to all agents .

B.12 Message for requesting information about the agent

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Al

B.1

Architecture of SACHET 14
Packet Structure of SACHETProtocol 17
Key Reset Implementation 20
Server crashes but has not been restarted 22
Server crashes and recovers quickly 0. 23
Agent crashes but has not recoveredo 24
Agent crashes and recovers quicklyo 25
Packet Structure of SACHET server-console protocol 26
State diagram of the server (with respect to a specific agent) 29
State diagram of the agent 31
Top-Level agent screen of Console 35
Agent screen of Console oL 36
Alert Reporting screen of Console 37
Screen depicting list of attack signatures in Console 38
Template for creating new attack signature in Console 39
Packet Structure of SACHETProtocol 42
Packet Structure of SACHET server-console protocol 49

vi

Chapter 1
Introduction

The widespread proliferation of computer networks has resulted in the increase of
attacks on information systems. These attacks are used for illegaly gaining access to
unauthorized information, misuse of information or to reduce the availiability of the
information to authorized users. This results in huge financial losses to companies
besides losing their goodwill to customers as their informative services are severely
disrupted. These attacks are increasing at a staggering rate and so is their com-
plexity. Thus there is a need for complete protection of organizational computing
resources which is driving the attention of people towards intrusion prevention and

detection systems.

We can effectively protect the computer systems, if we use three fundamental
techniques against intrusions: prevention, detection and response. Earlier, intrusion
prevention was widely considered as a complete and sufficient protection against the
intrusions. Such preventive measures include user authentication (using passwords
or biometrics), fencing around the network using firewalls, very tight access control
mechanisms, avoiding programming errors etc. But, unfortunately these measures
are not sufficient in adequately protecting the computer system due to many reasons.
There will always be unknown programming flaws, design and architectural weak-
nesses in application programs, protocols and operating systems which can always

be exploited by the attacker. The abuse of privileges by insiders (usually disgruntled

employees) to gain unauthorized access, the failure of firewall to prevent many at-
tacks such as dictionary attacks and probes, the cracking of paswords are some of the
other reasons that make preventive measures insufficient to protect computer sys-
tems. Hence, intrusion prevention is not a complete solution. If there are inveitable
attacks on a system, we would like to detect them as soon as possible (preferably in
real time) and take appropriate action. Moreover it should be possible to trace an
attack to its source, and assess the extent of damage. The capability that provides
these special features is known as intrusion detection. Intrusion detection tools are
not preventive devices but they should be used as a second line of defense. Hence,

they complement the protective mechanisms to improve system security.

1.1 What is an Intrusion Detection System?

An intrusion is defined as “any set of actions that attempt to compromise the in-
tegrity, confidentiality, or availability of a computer resource” [6]. The definition
disregards the success or failure of those actions, so it corresponds to attacks against
the computer systems. Accordingly, intrusion detection is defined as “the problem
of identifying actions that attempts to compromise the integrity, confidentiality, or
availability of a computer resource” [6]. Hence, an intrusion detection system (IDS)
is a piece of software that monitors a computer system to detect any intrusions, and

alerts a designated authority.

Intrusion Detection systems can be classified in several ways. Depending on the
source of data, the intrusion detection systems are categorized into host-based or
network-based systems. The network-based intrusion detection systems process the
data that originates on the network, such as TCP/IP traffic. Malformed packets,
packet flooding, probes are some of the attacks which can be detected by such sys-
tems. The host-based intrusion detection systems analyzes the data that originates
on computers (hosts), such as application and operating system event logs, system
call traces. Such systems are effective for insider threats. Abuse of privileges by
insiders, accesses of critical data are some of the attacks which can be detected by

these systems.

Intrusion detection systems can also be classified, depending on the detection
model used, into misuse or anomaly detection models. Misuse detection systems look
for well-defined patterns of known attacks. The known attacks are represented as
patterns or signatures. Misuse Detection is therefore, simply a problem of matching
patterns of attack in the given source of data. Such systems detect patterns of
known attacks quite accurately and efficiently, and generate very few false alarms.
The limitation of misuse detection is that it cannot detect novel, unknown attacks
or variations of known attacks. In addition, misuse detection requires the nature of
attacks to be well understood. This implies that human experts must work on the
analysis and representation of attacks, which is usually time consuming and error
prone. Anomaly detection is based on the normal behavior of the subject (e.g., a
user, program or a system). Any action that significantly deviates from the normal
behavior is considered as intrusive. Such systems build a statistical or machine
learning model of normal behavior of the subject. The model is basically a list of
metrics or patterns that capture the normal profile. The system flags an intrusion
if any observed metrics or patterns of given behavior significantly deviate from the
model. Such systems can detect previously unknown patterns of attacks but usually
generate many false positives (normal behavior classified as intrusive). Another
common problem is that since a subject’s normal behavior is modeled on the basis
of the audit data over the period of normal operation and if undiscovered intrusive

activities occur during this period, they will be consider as normal activities.

Intrusion detection systems can also be classified by their mode of operation:
real-time or off-line. A real-time IDS monitors the system continuously and reports
intrusions as soon as they are detected. Such systems can substantially reduce
the damage to the system, if the system administrator can be notified as early
as possible. Moreover, there is a great chance of stopping the attack currently in
progress and catching the intruder as intruder would not get much time to delete his
trail (e.g., by erasing logs). An off-line IDS inspects system logs at periodic intervals
and then discovers any suspicious activity that was recorded. Such systems are very
effective in corelating attacks that span multiple hosts, slow probing attacks that

span over hours and days, and for forensic analysis. An offline IDS typically reduces

system overhead but gives much less timely notification of intrusions.

Lastly, intrusion detection systems can be categorized based on their architecture.
The most common IDS architectures are: centralized, hierarchical or distributed
systems. In centralized IDS, the data may be collected from various sources (hosts
or networks) but is sent to a centralized location where it is analyzed. Such systems
limit the system scalability as it could become bottleneck on increasing number of
sources and also represent a single point of vulnerability. In hierarchical IDS, some
of the data collected from multiple hosts or a single host is passed up through the
layers and is analyzed to varying degree at each level. In Distributed IDS, the data
is collected and analyzed across the entire network being monitored and results are
then sent to a centralized location. Such systems are scalable and not subject to a

single point of failure.

1.2 Desirable characteristics of an intrusion detec-

tion system

Crosbie and Spafford [3] define the following desirable characteristics of an intrusion

detection systems:

e [t must run continually with minimal human supervision.

e [t must be fault tolerant by being able to recover from accidental system

crashes and re-initializations.

e [t must resist subversion. The intrusion detection system must be able to

monitor itself and detect if it has been attacked or modified by an attacker.

e [t must impose a minimal overhead on the system where it is running, to avoid

interfering with the system’s normal operation.

e [t must be scalable to monitor a large number of hosts while providing results

accurately and without degradation of performance.

e It must provide graceful degradation of service. The failure of any component

of the intrusion detection system should not immediately fail the entire system.

e It must allow dynamic reconfiguration, allowing the system administrator to
make changes in it’s configuration without restarting the whole intrusion de-

tection system.

While building a new intrusion detection system, these above characteristics of
IDS should always be kept in mind. It would not be easy to include all the charac-

teristics as there will always exist some trade-offs between these characteristics.

1.3 Scope of Thesis

In this thesis we describe the design and implementation of a distributed, network
based intrusion detection system - sachet. The sachet is a hindi word which means
- alert. The system uses an existing open source network based misuse detection
system - snort [17]. We have built upon snort to develop a full-fledged scalable,
distributed, gracefully degrading IDS that is completely controllable from a central
location. SACHET comprises of the following components: multiple sachet agents
that use snort for misuse detection, a central sachet server that stores all alerts and
controls the agents, and a sachet console that interacts with the server to provide a
centralized control facility and alert information to the network administrator. The
sachet server communicates with the agents using a protocol that provides mutual
authentication, confidentiality, and integrity of all messages, and toleration of server

and agent crashes.

1.4 Organization of the Report

In Chapter 2, we briefly review some existing intrusion detection systems.Chapter
3 describes the overall architecture of Project IDS. Chapter 4 deals with the imple-
mentation details related to the Project IDS. Chapter 5 concludes our work with

the limitations and future work.

Chapter 2

Related Work

A lot of work has been done in the field of intrusion detection systems. Denning
proposed a first intrusion detection model [4] which was based on anomaly detection.
The paper presented the idea that model of the behavior of a particular individual
could be constructed by the intrusion detection system, and that subsequent be-
havior of that individual could be compared against the model. Intrusion detection
could then be performed by identifying behavior that deviated sufficiently from the
normal. Several models based on the use of statistics, time-series, and other methods
were mentioned. Another important idea introduced by Denning was that intrusion

detection could be performed in real-time, or near real-time.

In the area of host-based intrusion detection there has been substantial work us-
ing different methods for analyzing data generated by the host. One of the first
host-based intrusion detection systems implemented was IDES [5], which used sta-
tistical detection engine based on Dennings anomaly detection model [4]. The other
host-based system is Haystack [12| and its successor Stalker [13] which perform
off-line misuse detection using a centralized monitoring station. Many real-time,
centralized host based intrusion detection systems have also been developed such as
the Next-generation Intrusion Detection Expert System (NIDES) [1],and the Com-
puter Misuse Detection System (CMDS) [9] . Due to problems with centralized
approach, some distributed host-based systems were also developed. Centralization

can severely limit the scalability of the system, and introduces a single point of

failure. Distributed host based intrusion detection systems avoid these problems.
The Cooperating Security Monitor (CSM) [22] and Autonomous Agents for Intru-
sion Detection [23] are examples of such systems. Commercially-available real-time
host-based systems include SecureCom [21], Intruder Alert (ITA) [16] and Symantec
Host IDS [15].

The area of network-based intrusion detection has also seen a good amount of
work. One of the first implemented network-based intrusion detection system was
the Network Security Monitor (NSM) [7] that was designed to capture TCP/IP
packets and detect anomalous activity in a heterogeneous network. NSM used both
statistical models and rule-based detection to detect anomolous network connec-
tions. Graph based Intrusion Detection System (GrIDS) [2] is one of the example
of distributed network based intrusion detection systems. Distributed Intrusion De-
tection System (DIDS) [14] is distributed hybrid system i.e. both host-based and
network-based intrusion detection system. Commercially available network based
systems includes BlackICE [19], Network Flight Recorder [11] and Cisco IDS [18].

Dragon [8] and Realsecure [20] are both commercially available hybrid systems.

The following sections briefly describe some of the intrusion detection systems.

They include both host-based and network-based systems.

2.1 IDES

The Intrusion Detection Expert System (IDES) [5] is one of the earliest intrusion
detection systems. It is a host-based real-time system that performs anomaly de-
tection. It is based on Dorothy statistical anomaly model [4]. The basic motivation
behind IDES is that users behave in a consistent manner from time to time when
performing their activities on a computer system, and that the manner in which
they behave can be described by calculating various statistics for the users behav-
ior. A users current behavior can then be compared to his or her normal profile
and deviations can be flagged as possible intrusions. IDES monitors three types of

subjects: users, remote hosts, and target systems. In total, 36 different parameters,

7

called measures, are monitored for the subjects, 25 for users, 6 for remote hosts, and
5 for target systems. For example, some of the measures that the system monitors
for a user are: CPU usage, command usage, and network activity. These measures
are kept in a real valued vector as summarized statistics for the session. These sta-
tistical profiles are typically updated to reflect new user behavior once a day, after
the original profile has been “aged”. This aging process ensures that newer behavior

plays a larger part in the detection of anomalies than older behavior.

The anomaly detection is performed by processing each new audit record as it
enters the system, and verified against the known profile for the subject. IDES also
compares each session against known profiles when the session completes. In case
the user is a new user, not yet known to the system, IDES uses a default profile, to
start the monitoring of that user. When an anomaly is detected, IDES reports the
measures that contributed the most to the classification and the site security officer
can make a judgment regarding validity of the reported anomaly. IDES also has a
GUI that provides the user (site security officer) with plots of anomaly data and
text based reports explaining the anomalous activity. The IDES project eventually

evolved into the Next-Generation Intrusion Detection Expert System, NIDES [1].

2.2 DIDS

The Distributed Intrusion Detection System (DIDS) [14] was developed at the Uni-
versity of Calofornia, Davis. It is a distributed, real-time hybrid intrusion detec-
tion system. DIDS monitors a heterogeneous network of computers and combines
distributed monitoring and data reduction with centralized data analysis. DIDS
correlates information about individual monitored users using the notion of Net-
work Identifier (NID) concept, where each user is tracked as (s)he moves across the

network.

The components of DIDS are the DIDS director, a single host monitor per host,

and a single LAN monitor for each LAN segment in the monitored network. On

each host, a host monitor collects and analyzes audit records from the host’s oper-
ating system. The detected intrusion events are subsequently communicated to the
director for further analysis. The host monitor also tracks user sessions and reports
anomalous behavior to the director. Haystack [12], a host based intrusion detection
system, can be easily integrated into DIDS to perform the functionalities of the
host monitor. The LAN monitor observes all the network traffic on its segment of
LAN and monitors host-to-host communications, services used, and the volume of
trafficc. The LAN monitor reports to the DIDS director if it finds any suspicious
activity in connections or in traffic pattern. The Network Security Monitor (NSM)
[7] is typically used as the LAN monitor. The DIDS director consists of three major
components: the communication manager, an expert system and the user interface.
The communication manager is responsible for collecting the data sent to it from
host and LAN monitors. It communicates this data to the expert system for futher
processing. The expert system is responsible for evaluating and reporting on the
security state of the monitored system to the System administrator. The user inter-
face allows the System administrator to administer and configure the entire DIDS

system.

2.3 AAFID

Autonomous Agents for Intrusion Detection (AAFID) [23], developed at Purdue
University’s Coast Laboratory is a distributed, host-based, real-time intrusion de-
tection system. It basically addresses the shortcomings of those IDS architectures
that are normally built around a single monolith that does most of data collection
and processing. Hence, the architecture of AAFID is based on multiple indepen-
dent entities working collectively. These entities are called Autonomous agents. The
architecture uses the agents as the lowest-level elements for data collection and anal-
ysis, and employs a hierarchial structure to allow for scalability. AAFID consists of

three main components: agents, transceivers, and monitors.

An agent is an independently-running entity that monitors host events for sus-

picious events, and reports such events to the appropriate transceiver. Each host

can contain any number of agents and all the agents in a host report their findings
to a single transceiver. The agents and the corresponding transceiver runs on the
same host. The agent does not have the authority to directly generate an alarm on
the occurence of any suspicious events. Moreover, agents do not communicate with

each other in the AAFID architecture.

Transceivers are per-host entities that oversee the operation of all the agents
running on their respective hosts. A transceiver has the ability to start and stop
execution of any agent, and to send configuration commands to the agents. It may
also perform data reduction on the data received from the agents. Finally, the

transceiver reports its results to one or more monitors.

Monitors are the highest-level entities in the AAFID architecture. Each monitor
oversees the operation of several transceivers. It receives the reduced information
from all the transceivers it controls and thus can do higher-level correlation and
detect events that involve several hosts. Monitors can be organized in a hierarchical
fashion such that a monitor may in turn report to higher-level monitor. Also, a
transceiver may report to more than one monitor to provide redundancy and re-
sistance to the failure of one of the monitors. Monitors communicate with a user

interface that acts as the access point for the whole AAFID system.

2.4 BlackICE/ICEcap

BlackICE and ICEcap [19] are products from Network ICE that together perform
network intrusion detection. BlackICE is the software agent that gathers the network
traffic locally on each host and ICEcap is the console. BlackICE can work in both
promiscuous mode and network mode and can do packet reassembly. BlackICE can

also act as a personal firewall by blocking packets from threatening networks.

ICEcap is the central console that allows consolidation of alerts and centralized

configuration. Using ICECap, one can deploy BlackICE at the critical points of

10

an enterprise network. BlackICE also has a feature called BackTrace that gathers

information on hostile machines by launching NetBIOS and DNS reverse queries.

11

Chapter 3
Architecture of SACHET

In this chapter, we describe the architecture of SACHET. SACHET is responsible
for passively monitoring the network and detecting known attacks in real-time. Tt
generates alerts when it detects attacks. These alerts are then sent to common
central location where they are stored in the database. System Administrator can

view these alerts through Graphical User Interface and take further action.

3.1 SACHET: Architectural Goals

SACHET has a client-server architecture consisting of a central monitoring station
(the server) and agents that monitor hosts or network segments. It is a network-
based intrusion detection system designed to be used in a distributed network envi-

ronment. Following are the design goals of the SACHET system.

Distributed architecture Multiple monitoring agents can be deployed at different

penetration points in an organization or enterprise network.

Centralized control The central monitoring station (server) can independently
control and manage each agent. It can stop/start each agent, change the
configuration policies like enabling/disabling of specific attack signatures, etc.,

at each agent.

Secure and reliable communication Agents and the server communication such

12

as alerts should be authenticated, encrypted and checked for integrity. The

information should not be lost, and should arrive in order.

Centralized storage Alerts generated from multiple agents are stored at a central
location, usually in a database. Centralized storage of alerts facilitates co-

relating alerts to detect distributed attacks.

User Interface A Graphical user interface (GUI) should be provided to monitor
and view state of all components of SACHET. It forms the most important
tool for the system administrator as it provides a clear picture of the complete

system.

Heterogeneous environment The system should be independent of operating

system. Agent and server should work on most common operating systems.

Scalability The system should be scalable, to accommodate deployment of a large
number of agents at several penetration points in an organization. This should

not compromise performance and accuracy.

Graceful Degradation Failure of any component should not cause failure of the

whole system. Some reduction in functionality is acceptable.

3.2 SACHET: Architecture

The overall architecture of SACHET is shown in Figure 3.1. The figure shows
the essential components of the architecture: SACHET agents, SACHET server and
SACHET console. The agent further comprises of two components - misuse detector
and the control module. SACHET system can be distributed over any number of
hosts or sub-networks in a network. An agent monitors a host or a network segment
for attack events in the network traffic that is incoming to the host or on network
segment. The misuse detector analyses the network packets for patterns of attacks
and generates alerts, and forwards it to the control module through UDP commu-
nication on localhost. The Control module subsequently sends all the generated

alerts to the server over secure and encrypted communication channel. The Control

13

Console

Figure 3.1: Architecture of SACHET

module starts and controls the misuse detector. It periodically monitors health of
both the server and the misuse detector and takes appropriate action if any of the
components fails. The agents and the server communicate to each other using the
SACHET protocol. The protocol provides reliability, mutual authentication, confi-
dentiality, and integrity of all messages. The server aggregates alerts from multiple
agents and stores them in a log in a database. The server oversees the working of
the agents and controls them by issuing commands to them. It also accepts requests
and instructions from the console. The console is a graphical user interface provided

to user to configure, control and manage SACHET. The console provides powerful

14

display capability to view alert information and detailed information of each agent.
The console also provides capability of creating new signatures and then commu-
nicating them to all agents. A console has to authenticate to the server before
establishing communication with it. Communication between the console and the
server is provided using SACHET Server Console (SSC) protocol which has been

described later in the chapter.

In the following sections we discuss the two communicating protocols: SACHET
protocol between the agent and the server, and SSC protocol between the server

and the console.

3.3 The SACHET protocol

SACHET protocol is used for communication between the server and agents. It is
designed to primarily address the issues of security and scalability. If we do not use
security features of the Protocol, the whole system could be attacked and rendered

ineffective. Possible attacks on the system could be:

e Deception attack An attacker may pose as a valid agent and send false alerts
to the server. This corrupts our history of attacks. Similarly, it may also pose
as the server and try to stop the misuse detector on some machine so that

attacks are not detected.

e Usurpation attack The packets containing valid alerts may be modified while

they are in transit from a agent to the server.

e Disruption attack Communication protocol used may also be subject to
denial-of-service attacks in which an attacker makes it impossible or difficult

for messages to get delivered.

In view of above problems the SACHET protocol should serve the following pur-

poses:

15

Reliability For reason given later in the section, we cannot implement protocol over
TCP. Since UDP does not provide reliability in data-delivery, the SACHET
protocol must recover from data that is damaged, lost, duplicated or delivered

out of order.

Connection Security SACHET Protocol should provide privacy and data integrity
between two communicating peers to prevent eavesdropping, tampering or
message forgery. It can be achieved using symmetric cryptography for data
encryption and providing message integrity check using message digest func-
tions. This security service acts as upper layer in the protocol and works over

the first layer (reliability service) that is discussed above.

Mutual Authentication There should be an initial handshake protocol which
permit Two communicating host can authenticate each other and negotiate
on shared cryptographic key. Mutual Authentication should be implemented

in such a way so as to provide both entity and key authentication.

Graceful Degradation To provide graceful degradation capability such that SA-

CHET should be able to tolerate from agent and server crashes.

One may note that protocol cannot be implemented over TCP, since then server will
have to open TCP sockets for maintaining connections with agents. This situation
limits scalability on SACHET because the operating system puts a limit on the
number of sockets that can be created and hence a limit on the number of agents

that can be deployed.

3.3.1 General Packet Structure

The SACHET protocol packet format is shown in Figure 3.2. The ‘EncryptionType’
field is used to indicate the encryption method used for encrypting the packet. It has
three different values which indicate that packet is either encrypted with public key
or with symmetric key or not at all encrypted. ‘EncryptionType’ field contains fixed
values and packets which do not have any of this values are just discarded without

any further processing. The ‘PacketID’ field contains a number that identifies each

16

Bytes 2 2 2 2 2 variable 128 or 16

E/ncrypti on Packet ID Agent ID DatalLength | Messagetype Data Hash
pe
) L . . Encrypted with sender’s
Not encrypted Encrypted with receiver’s public key or session key private key or session key.
\] 1

Figure 3.2: Packet Structure of SACHETProtocol

unique packet sent or received and can be used for detecting duplicates. Fach agent
is recognized by the fixed and unique number called agent ID. The ‘AgentID’ field
contains the agent ID of the agent which sent the packet. AgentID value of the
server is zero so as to distinguish it from the agents. The ‘Data Length’ field gives
the length of the data portion of the packet in bytes. The maximum length is the
maximum amount of data that can be sent by an UDP packet minus the sum of
the sizes of all other fields. The ‘Message type’ field describes the type of message
such as if it is an alert, probe, command message etc. The ‘data’ field contains the
value associated with the Message type. For example, the authentication messages
contain random numbers in their ‘Data’ field. The data is encrypted with public
key during authentication phase and afterwards with the session key. The ‘Hash’
field contains the encrypted hash (MD5) for the entire packet. It provides packet
integrity and ensures that packet has not been modified or damaged while on its
way. The hash is encrypted with private key during authentication and with session
key after authentication phase. Here session key refers to shared secret key that is
exchanged during the authentication phase. Please refer to Appendix A for complete

description of message formats.

3.3.2 Reliability

The SACHET protocol is based on the ‘Stop and Wait’ protocol in which the sender
sends one packet and then waits for an acknowledgement before sending the next
packet. It starts a timer whenever it sends the packet. If the sender does not receive

the acknowledgement within the time out period, it retransmits the packet. If the

17

packet is not acknowledged even after the transmitting it for MAXRETRYCOUNT
of times, then the packet is discarded, and the application is informed. Each packet
is identified by the unique packet id assigned by the sender. This needed to detect
duplicate packets. The sender maintains a variable ‘RTT’ which is the current
estimate of the round-trip time to the destination. The RTT is used to decide the
timeout period and is the exponential average of the time taken for the packets to be
acknowledged. In the SACHET protocol, every packet has a corresponding response
message. Hence, the response message acts as an acknowledgement for the packet.

On the receiving side, the receiver buffers the response message before sending
it. This is necessary in the event of receiving duplicate packets. The receiver judge
the duplicate or delayed packet by looking at the packet id of the incoming packet.
If the packet id of the incoming packet is same as the packet id of the buffered
response then the incoming packet is a duplicate packet. In that case, the receiver

retransmits the buffered response message.

3.3.3 Authentication

The Authentication mechanism of the SACHET protocol allows the client and server
to authenticate with each other and negotiate on symmetric cryptographic key be-
fore transmitting any application data. The mechanism provides entity and key
authentication, key confirmation, and key freshness guarantees for the agreed ses-

sion key.

Authentication algorithm: We have used RSA as the public key cryptography
algorithm. Each communicating host will have a pair of keys (public key and pri-
vate key). In this case the communicating hosts are: the agent and the server. The
authentication protocol is based on the challenge-response method. The authenti-

cation messages are as follows.

A—B:A
B —s A Py(R).
A—B: PA(Rl,Rg).

18

B — A : P(Ry,Kg,last _alert id).

A — B : Ack, some information to the server.

It is assumed that the agent and the server already know each other’s authentic
public key. ‘A’ is the Agent and ‘B’ is the server. Pg indicates encryption done with
the public key of sender S. Ry, Ry are random numbers and K is the session key.
The messages 2, 3 and 4 are signed with senders private key while acknowledgment
message carries hash encrypted with session key Kg. Message 1 is a plain-text

message and does not carry any hash.

The last_alert id contains the alert id of the last alert that the server had
received from the agent. Its need has been discussed in the next chapter. The
Acknowledgement message includes some other information relevant to the server

such as status of misuse detector, largest value of signature id, etc.

B Session Key Management

The shared secret key that is negotiated during the authentication phase is also called
session key because it is valid only for that session till the agent re-authenticates
itself. Every time agent authenticates with server it gets a new session key. If
the session lasts for a very long time, then there is a need of changing the session
key periodically. It is important because an attacker can otherwise accumulate
large amount of encrypted data, making it easier to crack the session key used for
communication. We change session key after 1 hour of session or if more than 200
MB of data has been exchanged. The server keeps track of the above parameters

for each agent and initiates a key reset after the expiry of the current session key.

The server initiates a ‘key reset’ command to the agent. This message also contains
the new key to be used and is encrypted using the existing key. The server will not
send any other commands to the agent until it receives a reply for this message from
the agent. Also, if at this point of time, it receives any message from the agent

encrypted with key used previously, it will discard that message. The agent, on

19

Server Agent

Initiates the key reset and K
wait until it receives Y Resey
key reset ok.

NS

Send response and then
)] discard the old key.
Discard this alert message

sinceit is encrypted with Encrypt previous aert
old key. » o rest o message with this
K new key
Lo
Rencrypt the buffered reponse 3 P
with new key and discard the =)
old key.
Accept the dert.

Now all communication continue
with this new key.

Figure 3.3: Key Reset Implementation

receiving the key reset command, sends a ‘key reset ok’ reply which also contains
the new key encrypted with previous session key. The agent also discards the existing
key and starts using the new key for further communication with the server. If the
agent had previously sent any packet to the server, encrypted with the old key for
which acknowledgement has not yet been received, it encrypts that packet again
with the new key, and sends it to the server. The server, on receiving ‘key reset
ok’ message, immediately discards the existing key and starts using new key. The

following procedure is shown in figure 3.3.

3.3.4 Commands

Command messages are sent by the server for controlling and configuring agents.
The commands to a agent include: starting/stopping misuse detector, enabling/disabling
attack signatures, adding/deleting attack signatures, requesting a list of attack sig-

natures, ‘key reset’ for changing key, etc. The agent acts on these commands and

20

replies to the server along with the status of command execution, i.e., success or
failure, and if possible , the reason for success or failure. For detailed format of

command and reply messages, please see the Appendix A.

3.3.5 Alerts

Alerts describe the network attacks detected by misuse detector by analyzing the
network-traffic. An alert is first generated by the misuse detector and contains
information like type of attack, attack description, signature id of attack signature
that matches with this attack, timestamp, source and destination IP address, and
port numbers. The misuse detector passes alert to the agent which assigns a unique
alert id to each alert. These alerts are subsequently sent to the server by the
agent. Usually many alerts are communicated in a single packet along with their
alert ids for efficiency. The server accepts all alerts and sends reply back to the
agent containing list of alert ids received and logs these alerts to the database.

Refer Appendix A for packet format of alert messages.

3.3.6 Graceful Degradation

The SACHET protocol helps in providing a graceful degradation service to SACHET.
If any component crashes or restarts, it should not disable the entire system, nor
should it bring the system to an inconsistent state. We will discuss some scenarios

now that illustrate how system detects failures and recovers from them.

g Server crashes

When a agent starts, it sends probe messages to find out the state of the server. If
the server is alive, the agent receives probe reply message ‘SERVER ALIVE’ from
the server. Only when the agent receives a reply to its probe message, it starts the
authentication process with the server. After successful authentication, the agent
stops probe packets to the server. Now, it may happen that server crashes or restarts

after the authentication phase. This may give rise the following two scenarios:

21

SachetAgent

=
3
3

Retransmit the packet.

Retransmission of packets
QCCUr'S 0N sucessive
timeouts.

After retransmitting the packet
max_retry_count of times,
agent assumes that the server
has crashed and change its

cooo0
=

state to UNAUTHENTICATED.

m

o Alerts,

Alerts, o -

SachetServer

Server Crashes

\/\ Server Restarts.

Agent starts authentication 4

Agent now starts sending probe Pr
messages to Server periodically. k
Server repliesto probe packet

SERVER_ALIVE that | am alive now.

A UT"LR’EQU EsT
Server accept AUTH_REQUEST

and starts the authentication procedure.

Figure 3.4: Server crashes but has not been restarted

e Server crashes but has not been restarted The agent, initially, will have
not know that the server has crashed. The agent will continue to send alerts to
the server assuming that the server is alive, and wait for an acknowledgement.
The agent will not receive any response to the alert packet, and will retransmit
the packet again. It will retransmit the packet MAXRETRYCOUNT number
of times and then save the packet for future transmission, and change its state
to unauthenticated. Then, it will start sending periodic probe messages to the
server until it receives reply from the server. After receiving reply, it will again

start authentication process with the server. This scenario is shown in Figure
3.4.

Server crashes and recovers quickly The agent will continue to send alerts
to the server since it does not know about the server failure. When the server

recovers, it assumes every agent to be in unauthenticated state. The server will

22

continue to discard alert packets received from an agent until the agent authen-
ticates with it. The Agent will retransmit alert packet MAXRETRYCOUNT
number of times and it will change its state to unauthenticated. The agent
will start sending probes to the server. It will receive reply from the server
immediately and hence will start the authentication process. This scenario is

shown in Figure 3.5.

SachetAgent SachetServer

j Server Crashes
A/erts
, V\ Server Restarts.
it themmeout maintains state = UNAUTHENT|CATED
Retransmit the packet. Al for all Agents. Henceit ignores all
. erts, packets from this Agent tintil it
Retransmission of packets authenticates with Server.
QCCUr'S 0N sucessive - _ Alerts |

timeouts

: A[efts_ . Noreply from the server.

After retransmitting the packet
max_retry _count of times, agent
assumes that server has crashed
and change its state to

UNAUTHENTICATED.

Agent starts sending probe Pr,
packets periodicaly. Obe.

+ Server replies to probe packet

SERVER ALIVE that | am alive now.

Agent starts the authentication AUTH
~REQu
Process now. N Server accept AUTH_REQUEST
and starts%eh% authent‘l'catic()gn procedure.

Figure 3.5: Server crashes and recovers quickly

In both scenarios, alerts received from the misuse detector will be buffered in the
agent’s memory. There is a limit to the size of memory buffer and currently it can
store a maximum of 10000 alerts. As soon as the server recovers, the agent will send

all these alerts.

B Agent crashes

The server periodically sends probe messages to all authenticated agents to know

about their state. Here the probe messages are encrypted with session key specific

23

to that agent. Here also we are assuming that the failure takes place after the

authentication is complete. It does not matter whether the server is waiting for a

reply of a probe messages or a command message. The situation is similar for both

message types.

SachetAgent

state= AUTHENTICATED

Agent Crashes. %

probe .
[
s on key):

No Reply.

Agent restarts

Agent sends authentication
request packet after the
probe packet.

SachetServer

maintains state = AUTHENTICATED
for Agent.

Timeout.

Retransmission of packet occurs.
[J

|o Retransmissions continues after

succesive timeouts.

After Server transmits probe request
max_retry_count of times, it assumes
Agent crashes and modifiesits

state = UNAUTHENTICATED.

Server acceptsthe AUTH_REQUEST
and starts the authentication process.

Figure 3.6: Agent crashes but has not recovered

e Agent crashes but has not recovered If the server does not receive reply

to a probe or command message from an agent, it retransmits the message.
Even after retransmitting the message for MAXRETRYCOUNT number of

times, if the server does not get a reply, it assumes that the agent has failed

and hence changes the state of this agent to unauthenticated. This scenario is

shown in Figure 3.6.

e Agent agent crashes and recovers quickly When the agent recovers, it is

in unauthenticated state, and does not know the previous session key. There-

fore it cannot reply or acknowledge server messages. It will start the authenti-

cation phase. It may happen that while the server is retransmitting messages,

24

SachetAgent SachetServer

state= AUTHENTICATED maintains state = AUTHENTICATED for SachetAgent.
[]
Agent Crashes. probe sonkey)- .
ed with (]
(e'l'\c‘\/p .
Timeout.
Retransmission of packet occurs.
probe A p
[]
. Retransmissions continues after

succesive timeouts.
Agent recovers

state = UNAUTHENTICATED

Agent send authentication
request packet after the

probe packet. Server rejects AUTH_REQUEST message as

it maintains authenticated state of Agent.

Agent reject these probe
packets as it does not know

session key . After Server transmits probe request
e . . max_retry_count of times, it assumes A_Igﬁnt
Retransmissions continuesf e crashes and modifiesits state = UNAUTHENTICATED.
of authentication packet .

after succesive timeouts.

Agent again sends AUTH
aiithentication request ~REQUEST Server accepts AUTH_REQUEST
packet after the probe packet. \ packet and starts the authentication

procedure.

Figure 3.7: Agent crashes and recovers quickly

it receives a packet from the agent, which has recovered quickly, requesting
the server to authenticate it. The server rejects authentication request from
an agent if that agent is already in authenticated state so as to avoid denial of
service attacks. In this case also the server rejects authentication request from
the agent since it does not know that agent had failed. The server only comes
to know about failure of the agent when it does not get reply for probe or
command message until it has retransmitted a message MAXRETRYCOUNT
number of times. Finally, it recognizes authentication request message from

the agent and starts the authentication procedure. This scenario is shown in
Figure 3.7.

The server finally displays the status of the agent in main screen of the console. If

an agent is not alive for a long time, the administrator can take appropriate action.

25

B Misuse Detector crashes

The Misuse Detector is started by the control module as its child process during
startup. Hence Misuse Detector runs as a separate process but is controlled by the
control module. The control module periodically checks whether it is running or
not. If control module finds that the misuse detector has failed, it first tries to
restart it. If it fails to restart the misuse detector it immediately sends a message
‘MISUSE _DETECTOR _FAILED’ message to the server. The server communicates
the status of the misuse detector to the console which displays it on the agent screen.

The system administrator can then take appropriate action.

3.4 The SACHET Server-Console Protocol

The SACHET Server-Console (SSC) protocol is mainly designed for local commu-
nication between the server and the console. The console can control and manage
the sachet server only through this protocol. The console must authenticate to the
server before issuing any instructions or requests. This protocol is implemented over
TCP so that the console need not authenticate every time to server before sending
any instruction or request to it. The server and console should be installed on the
same host and the server must accept connection requests from the console from
the localhost only. After accepting a connection from the console, the server first
checks for the user name and password received from the console, and verifies it.
If verification fails it immediately terminates the connection, otherwise it is ready
to accept packets from the console. The SACHET server-console protocol packet

format is shown as below:

2 bytes 2 bytes Variable

Packet Length Message Type Data Vaue

Figure 3.8: Packet Structure of SACHET server-console protocol

26

The ‘Packet Length’ is the size of the complete packet in bytes. The ‘Mes-
sage Type’ indicates the type of packet. The packet can be either a command-
message/request-message /response-message. The ‘Value’ field contains the mean-
ingful data that is communicated and is specific to the message type. For detailed
description of the message types and the format of the SACHET Server-Console

protocol, packets, please refer to Appendix B.

27

Chapter 4

Implementation of the SACHET

In this chapter we discusses issues in the implementation of the SACHET system.
The SACHET system has been implemented on three major platforms: Linux, Win-
dows 2000 and Solaris. The server and agent are implemented in C language while
the console is implemented using Java.

In section 4.1, 4.2 and 4.3 we briefly describe the functionality of the server,
agent and console respectively. In rest of the chapter we discuss issues in the imple-

mentation of SACHET Protocol.

4.1 The Server

The server is a central command authority for controlling and managing multiple
agents which are deployed at critical points of an enterprise network. It is the nerve
centre of the intrusion detection system that allows consolidation of alerts from
multiple agents and stores these alerts in the database. It usually runs in background
as a daemon or service and is installed on a dedicated machine. The server does
not have its own user interface and hence cannot directly interact with the user.
But it can be accessed through various other interfaces: web interface, command
line interface or graphical user interface. We have implemented GUI console for
controlling the server, although the other two interfaces can be easily incorporated

into it. The server communicates with the console, which is a separated process,

28

using a simple request-response protocol in which the console sends a request for
some information and the server responds by providing appropriate information or
result. The user (system administrator) needs to authenticate himself to server
before using the interface. The server periodically monitors the health of each agent
and reports it to the console. It maintains information about agents in a database
and retrieves it at the beginning of its execution. The server maintains the state of

each agent and follows the state engine as shown below:

(Agent response did not match).

Recelves AUTH_REQUEST / Receives AGENT_RESPONSE /

Sends SERVER_CHALLENGE Sends SERVER_RESPONSE
UN?}’T[HBIE";E%ATED = ISERVER_CHAL_SENT = SERVER_RES SENT
niti €)

TIME_OUT TIME_OUT

Recelves AGENT_ACK

Receives ALERT_MSG or PACKET_MSG/

Sends ALERT_MSG_OK or PACKET_MSG_OK AUTHENTICATED
Instructions from console / RESPONSE from the agent /
Sends COMMANDS to agent. Reply sent to the console
TIME_OUT

COMMAND_SENT

Receives ALERT_MSG or PACKET_MSG /
Sends ALERT MSG OK or PACKET MSG OK

Figure 4.1: State diagram of the server (with respect to a specific agent)

4.2 The Agent

The agent passively monitors either the entire network traffic on a LAN segment,
or only the network traffic received by a host. It reports any suspicious activity as
alerts to the server over a secure channel using the protocol. It is a console based
application which can run in background and does not interact with the user. It

needs to authenticate itself before it can communicate with the server. After it has

29

been authenticated, it sends all the alerts generated by it to the server and accepts
commands from the server and execute them locally. The agent comprises of two
sub-components: Misuse detector and control module. These sub-components run
as separate processes on the target host.

The misuse Detector runs as a child process of the control module. The misuse
detector monitors the network-traffic, searches for pre-defined patterns or signatures
of misuse and generates alerts. Then it passes on the alert and the corresponding
packet (that triggered the alerts), to the control module. In this project we have

used snort as the misuse detector.

Snort is an open-source network intrusion detection system, capable of performing
real-time traffic analysis and packet logging on IP networks. It features rule-based
logging and can perform protocol analysis and content searching/matching in order
to detect variety of attacks and probes, such as stealth port scans, CGI attacks,
SMB probes, OS fingerprinting attempts etc. Snort has a Plugin architecture that
facilitates in extending its detection and reporting subsystems. It provides the
facility of writing output modules which utilizes this plugin architecture and allow
Snort to be much more flexible in the formatting and presentation of output to its
users. The output modules are run when the alert or logging subsystems of Snort
are called. Multiple output plugins may be specified in the Snort Configuration file.
When multiple plugins of the same type (log, alert) are specified, they are stacked
and called in sequence when an event occurs. Output modules are loaded at runtime
and specified as a rule in Snort Configuration file. In our case, we have written an
output module which communicates alerts and packets generated by snort to the
control agent through a UDP socket.

The control module controls the Snort process by sending it appropriate signals.
For example, SIGHUP signal is sent for restarting snort. Hence, Snort can be
stopped/started /restarted as desired by the control module. The control module
also periodically monitors the Snort and report its status to the server. The state

diagram of the agent is as shown below:

30

(Server response did not match).

Sends SERVER_PROBE
Receives SERVER_ALIVE / Receives SERVER_CHALLENGE /
Sends AUTH_REQUEST Sends AGENT_RESPONSE
UNAUTHENTICATED PROBE_SENT AUTH_REQ SENT AGENT_RES_SENT
(Initial State) 4 ‘
TIME_OUT TIME_OUT TIME_OUT
Receives SERVER_RESPONSE /
Sends AGENT_ACK
Receives COMMANDS /
Sends RESPONSE. UTHENTICATED r
(Response receive from server) (Messages sent to Server)

TIME_OUT
— ‘ MESSAGE_SENT

Figure 4.2: State diagram of the agent

4.3 The Console

The console provides a GUI to the system administrator for controlling the entire
system. It forms the most important operational component from the point of view
of the system administrator since one can monitor and view the activities of entire
SACHET IDS using this GUI. More importantly, it is used to present the information
in such a manner such that it can be used in the context of surveillance and decision
support of the system. For example, the system administrator, by viewing the
number of alerts generated at each penetration point, can find out which hosts are
mainly targeted by attackers. Then system administrator can decide to take certain
actions such as increasing the surveillance on those systems, or reconfiguring the
router or firewall to block all incoming data from the TP address of the machine that

caused Snort to generate alerts.

The console interacts with the server using the SACHET server-console (SSC)
Protocol. On behalf of the system administrator, it instructs the server to issue
commands (disabling/enabling of signatures or classes of signatures, adding new
signatures etc.) to the agent and report responses. It provides the means to add

and delete agents without disrupting the server. Moreover, the console periodically

31

requests the server to provide information about the entire system. The console and
server should be run on the same host and system administrator needs to authenti-

cate with the server before interacting with it.

The console shows the status information of each agent in a grid as a top-level
screen. Figure 4.3 shows the top-level screen. The screen focuses on displaying the
basic information about agents, such as condition of the agent (alive or dead), agent-
id, TP address of agent, etc. Double clicking any agent shows the advanced agent
screen (Figure 4.4). This screen provides detailed information about agent such as
the alerts generated with their descriptions, last time the agent authenticated with
the server, list of classes of signatures that are enabled etc. This screen also facilitates
the system administrator to configure the agent. The console also has an alert
reporting screen (Figure 4.5) which displays the alerts received from all the agents.
The system administrator can select the time period (in days and hours) to view
the alerts that were generated during this period. By default, the screen displays
alerts generated in the last 30 minutes. The console retrieves alert information from
the database.

The console can also display the list of all attack signatures (Figure 4.6), used by
the misuse detector for detecting network attacks, with their complete description
(signature id, functionality of the attack, class of attack it belongs to, its references
and URL links). It retrieves all this information from the database. The most
significant capability of console is that of allowing creation of new attack signatures
via a template and sending it to all the agents through the server. Figure 4.7 shows

the template for creating new signatures.

4.4 Addition of New Signatures

The console allows the system administrator to create new attack signatures through
a template. These special user-created signatures are assigned signature-ids starting
from 2,00,000 onwards. This restriction is imposed by Snort itself to distinguish

standard signatures from the user created ones. The server and the agent maintain

32

a variable for storing the largest signature-id among all the user-created signatures.
This is to ensure that all all the agents have consistent information about these new
signatures and must add these signatures to the database of the misuse detector. At
any given time, it is possible that the server is not communicating with all the agents.
Therefore, when the signature is created, the server will not be able to propagate this
new signature information to those agents which are currently not authenticated to
the server. When any of these agents start up, it sends its maximum signature-id to
the server in the acknowledgement message of the authentication phase. The server
compares its maximum signature-id to that of agent. If there is any difference it
sends the remaining user-created signatures to the agent.

On receiving new signatures from the server, the agent adds them to a particular

file, which only stores new signatures for misuse detector, and restarts the snort.

4.5 Maintenance of Alert id

The server stores alert-id of the last alert it received from the agent in the database.
It maintains last alert-ids of all the agents and retrieves this information when it
starts up. This helps in maintaining the information about alerts consistent in the
event of agent or the server failure. When the server restarts, it uses the last alert-id
of the particular agent to accept only those alerts having theirs ids greater than the
last alert-id of this agent. This allows the server to discard alerts. The server sends
this last alert-id to the agent when it authenticates with the server. When the agent
restarts, it accepts this last alert-id from the server so that it can assign alert-ids to

the new alerts it receives from the misuse detector.

4.6 Public Key Management

As mentioned earlier, the SACHET protocol assumes that both communicating hosts
have authentic copies of each other’s public key. Therefore, the server needs to
maintain public keys of all agents. Also, an agent should know the public key of the

server. Regarding the server acquiring the public key of the agent, we have adopted

33

the following approach. During the installation of the agent, a public and private
key pair for the agent is generated. The public key is then manually transferred
(through CD, for example) by system administrator to the machine where the server
is running. Through the console we add detailed information of that particular agent
(Agent id, public key, IP address) to the database and inform the server about the

new agent. Thus the server stores the public key of each agent in the database.

A agent can acquire the public key of the server either in a similar manner as
described above, or it can simply send a plain-text UDP message to the server
requesting for its public key. All of this will happen during the installation of agent.
Note though, that the latter method is not very secure.

4.7 Private Key Storage

A common problem is any subsystem that uses cryptography is the secure storage
of private keys. In the SACHET system, the server and the agents need to store
their respective private RSA keys. Storing the private key unencrypted on disk is
clearly insecure because if anyone is able to gain access to these keys then (s)he can
corrupt the entire intrusion detection system by introducing false agent or server in
the system. However the alternative of encrypting it with the key derived from a
passphrase implies user intervention at system startup time. In our implementation,
therefore, the use of a passphrase to encrypt the private key is optional, in both the
server and the agent. If a passphrase is used, the private key is encrypted using
3DES with the MD5 checksum of the passphrase as the key.

34

NOT_ALIVE
INOT_ALIVE

f RUNMING
t 17 ALIVE RUNMING
clusterd)) NOT_ALIVE }

RUNNING

Figure 4.3: Top-Level agent screen of Console

35

Consolegui

Randorm nurmber sent by age
Randarm nurmber sent by agent di

Figure 4.4: Agent screen of Console

36

eI

(Console Sighatures Agents Settings
Alerts |
-Options for viewing the dlerts—

View the Blerts of last : "|? |pays |12 |Hours

Agentld Alertld TimeStamp Rule Sid Alert Message
Bi9/04 11:16 PM WEB-CGl auktion.cgi access

Bi9i04 11:16 P WEB-ATTACKS lsof command attermpt

B/9/04 11:16 PM WEB-ATTACKS nmap command attermpt

Bi9/04 11:16 PM WEB-C Gl siteUserMod.cgi access

Bi9i04 11:16 P WEB-ATTACKS ¥ application to rermote host atternpt
B/9/04 11:16 PM WEB-CGl stony.pl arhitrary file read attermpt

Bi9/04 11:16 PM WEB-C Gl AlienForm af cgi directory traversal atternpt
Bi9i04 11:16 P WEB-CGl auktion.cgi access

B/9/04 11:16 PM WEB-ATTACKS nmap command attermpt

Bi9/04 11:16 PM WEB-C Gl siteUserMod.cgi access

Bi9i04 11:16 P WEB-CGl stony.pl arhitrary file read atternpt

B/9/04 11:16 PM WEB-ATTACKS |sof command attempt

Bi9/04 11:16 PM WEB-C Gl AlienForm af cgi directory traversal atternpt
Bi9i04 11:16 P WEB-ATTACKS ¥ application to rermote host atternpt
BI11104 267 Al WEB-ATTACKS |sof command attempt

Bi11/04 2:57 AM WEB-C Gl AlienForm af cgi directory traversal atternpt
Bi11i04 257 Al WEB-ATTACKS nmap command atternpt

BI11104 267 Al WEB-CGl stony.pl arhitrary file read attermpt

B 0i04 12:35 AM WEB-ATTACKS nmap command atternpt

B 0004 12:35 A WEB-CGl cgimail access

(G004 12:35 AM WEB-CGl stony.pl arhitrary file read attermpt
(BM10/0412:35 AM WEB-CGl auktion.cgi access

|Brand 11:12 Fh WWEB-CG| AlienForm af cai directory traversal atternpt
BI04 11:12 P WEB-CGl auktion.cgi access

B/9/04 11:12 PM WEB- Gl story.pl arhitrary file read atternpt

Bi9i04 11:16 P WEB-ATTACKS lsof command attermpt

BI11104 2:58 Al WEB-CGl caimail access

Bi9/04 11:16 PM WEB-CGl auktion.cgi access

Bi9i04 11:16 P WEB-ATTACKS lsof command attermpt

[TR = R Y O U)

k| = | = L |

Figure 4.5: Alert Reporting screen of Console

37

& Consolegui

Cansule Slgnatures ngems Settmgs

=18ix

s | Signatures | Alerts |
Rule Id| Rule Description | Class Mame | Class Description Class Priotity Feferences
304 |attermpted-admin Atternpted Administrator Privileg... |1 http S secunty'focus comib|df235_:'

(|EXPLOIT scocalserver overflow
| PLOIT delegate proxy overflow
Ser\reradmm

204

3oy _:E}(PLOIT CHAT IRC t0p|c overﬂow

308 |[EXPLOIT NextFTF' cl|ent averflow

309 _:EXPLOIT snn’rt Dverﬂow)

Mo | PLOITXSB wmdows MalIMax o\ter‘ﬂow
311 [EXPLOIT netscape 4 7 unsucessful overflow
312 |EXPLOIT ntpokx Dverﬂow atlempt

IR

314 _:DNS EXPLOIT named t5|g overﬂow attempt
314 'EXPLOIT %88 linux mountd o\rerﬂow

HE | PLOIT ¥B6 linw mountd over‘ﬂow

37 _:EXPLOIT x86 I|nux mountd overﬂow

accqtmt enumeration aﬁem_pt
search query

FTP forward

|FTP rhosts

|FTP WD ~root atternpt
|FTP CEL averflow atternpt
|FTP adm scan

|FTPiss stan

|FTP passwhont B
_:FTP asswd retreval attempt
|FTP 58 stan

i

rpted-admin
mpted admin

::atterhpted user

mpted-user

|atternpted-admin

|atternpted- admm

_:unsuccessful user
atternptec-acimin

mhpteckadmin

::gtter'npted adrmin

rnpted- admm
mpted- admin

[attempted-admin

rpted-recon

|atternpted-recan

mpted-recon

::attempted recon)
|suspicious-fi flename det.
|suspicious-fi filenarne-det
Ibad-unknawn
|atternpted-admin

rmatlon Leak B
rmatmn Leak

_fAttempted Demal ofServlce

Aternpted Infarmation Leak

Attenpted Infarmation Leak

Attempted Information Leak
ftermpted Information Leak

__F'otennally Bad Tratﬂc

ey pury
175

gy

suspicious filenarme was dete. .
uspicious flename was dete..

ey

ey ey

ey g ey

. comfinfo/DS 3307

[¥

Add signature to the database

Figure 4.6: Screen depicting list of attack signatures in Console

38

b B i signatreDidlog
Sighatures ~List Rule Headers
Ruleid [— :
103 | BACKDOOR subseven 22 Rule Action falert | -
104 |BACKDOOR - Dagger_1.4.)
105 Rule Protocol _Jtcp | vl
106 |BACKDOOR ACKcmdC tro) b
107 BACKDOOR subhseven DE N " 5
108 BACKDOOR QAZ \Warm I Source IP Addresses |$EXTERNML_NET | ’wl
108 BACKDOOR nethus active '
110 |BACKDOOR nethus get_infc:'- Goiitee Bhrt -{amr | 'l
115 |BACKDOOR nethus active :
117 :
118 Destination IP Addresses |SHOME_NET |~
118 |BACKDOOR Doly 2.0 acce: :
120 |BACKDOOR Infectar 1.6 Se ;
121 |BACKDOOR Infector 1.6 Cl DestinationPort any [=]
141 |BACKDOOR Hackattack 1.0
144 FTP ADNWwOrm fip login atte Directional '|<> | vl
145 |BACKDOOR GirlFriendacet : :
146 BACKDOOR MetSphere ac — N
147 |BACKDOOR GateCrasher | [CPUENS field
152 |BACKDOOR BackConstruc o —’_) : S
153 BACKOOOR DonaldDick 1| ContentType: reference v'|_l22|Jntt_ent: Jhttp:n\v\-ww.sans.org | _AddtoList
155 |BACKDOOR MetSphere 1. e -~
157 |BACKDDOR BackGanstrug | LISt the option ic@_seq
168 |BACKDOOR BackConstruc. ﬂ?c. i
159 |BACKDOOR MetMetro File | [SE7 26w aresp. —
160 |BACKDOOR NetMetro Inco | (g4 2000000 content list
161 |BACKDOOR Matrix 2.0 Clie | [.
162 |BACKDOOR Matrix 2.0 Sen
163 |BACKDOOR WinCrash 1.0
183 |BACKDOOR SIGNATURE -
184 BACKDOOR Q access
185 |BACKDOOR CDK
195 |BACKDOOR DeepThroat 3 =
208 BACKDOOR Phasefero St

209 BACKDOOR wiOwi0 atten Submit | Delete content I Exit
210 BACKDOOR atternpt s E : -

=181

Clags Description

activity

activity

activity

activity

toark Trojan wias detected

activity

activity

activity

activity

activity

activity

activity

activity

activity

activity

ternpted login using & suspiciousg

activity

activity

activity

activity

activity

activity

activity

activity

activity

activity

activity

activity

activity

activity

activity

activity

activity

activity

pted Administrator Privilege Gai

pted Adrministrator Privilege Gai

|attempted Administratar Privilege Gai

211 |BACKDOOR MISC r00t attempt lattemptad-admin

docl Ml inicte oo Do

w1 i._
[¥]

Add signature to the database

Figure 4.7: Template for creating new attack signature in Console

39

Chapter 5
Conclusion and Future Work

We have designed and implemented a distributed architecture for Intrusion De-
tection System called Sachet, that employs independent entities called agents for
performing monitoring and analysis of network traffic at various penetration points
of the organization. Each agent uses Snort as the misuse detector to detect attacks
and report these attacks to a centralized server where they are stored in database for
further analysis. The agents communicate with the server using the Sachet Protocol
that provides reliability, mutual authentication, security and graceful degradation
feature. A GUI is provided as an interface for accessing by the system administrator
for monitoring the entire Sachet system.

This work can be extended in several ways mentioned below:

e [t is possible that the alerts generated across multiple agents are all related to
the same attack. Distributed Denial of Service attacks and stealth probes are
examples of such attacks. The facility should be provided to correlate alerts

from multiple agents to detect these type of attacks.

e The other issue is the large number of false positives generated by Snort.
This happens partly beacuse Snort does not reconstruct higher layers in the
protocol stack (such as HTTP, SMTP, etc.). For example, if a particular
exploit involves finding a certain string in the URL of an HT'TP GET request,
Snort will alert even if the string appears innocuously in the cookies that

accompany the GET request. Although, this contributes to its speed, false

40

alarms may overwhelm the system administrator giving them no opportunity

to focus on relatively few events of real interest.

GUT needs further improvement. It is because an attacker can directly target
the user interface. An attacker can deliberately generate large number of
spurious packets purely for the purpose of triggering the intrusion detection
system. In this way, she can overflow the console with alerts and prevent the
analyst from noticing some small number of more serious intrusions, which
represent the attacker attempting her true goal. Hence, the console needs to
be carefully designed to foil this decoy attack from succeeding. Omne of the
solution lies in providing multiple levels of alert views such as viewing of alerts

by categorization of attacks, source TP address etc.

There are some attacks which results in generation of very large number of
alerts by Snort. For exmple, Probes, Denial of Service attacks are such attacks.
One needs to apply some ‘Data Reduction’ techniques either at the agent or
at the server to reduce these large number of alerts, all of which refer to the

same attack, to a single alert that solely represent the attack.

41

Appendix A

Formats of Messages in Sachet

Protocol

In this appendix, we describe formats of the messages exchanged between the agent
and the server using the SACHET Protocol. The Messages can be of following type:
authentication, command, response, alert, probe. We have only shown the ‘Meesage
Type’ and ‘data’ field of the packet of various messages. The packet format of

SACHET Protocol is shown below:

Bytes 2 2 2 2 2 varigble 128 or 16
tEncrypti on Packet ID Agent ID DatalLength | Message type Data Hash
ype

) . . . Encrypted with sender’s
Not encrypted Encrypted with receiver’s public key or session key private key or session key.

Figure A.1: Packet Structure of SACHETProtocol

The ‘Encryption type’ field describe the properties of the packet and can attain
any of the four values. Only NO _HASH value can be used as in combination with

other values.
NO ENCRYPT The packet contains plain-text message and data.

NO_ HASH The hash has not been computed over the packet.

42

SYMMETRIC ENCRYPT The contents of the packet are encrypted with ses-

sion key using symmetric cipher algorithm.

RSA ENCRYPT The contents of the packet are encrypted with receiver’s public
key.

A.1 Authentication Messages

The following sequence of messages are exchanged during the authentication phase.

The first message is sent by the agent to the server to start the mutual authentication

mechanism.
Message Type (code) Data (bytes)
AUTH_REQUEST (20) Empty (0)
CONSOLE_CHALLENGE (21) Randl (16)
AGENT_ RESPONSE (22) Randl (16), Rand2(16)
CONSOLE _RESPONSE (23) Rand2 (16), Secret Key (14), last alert ID (2)
AGENT_ACK (24) Snort_status (2), Number of signatures enabled (4),
Max. signature id value (4)

Table A.1: Messages exchanged during authentication phase

Where Rand1l, Rand2 are 16 byte random numbers.

A.2 Data Messages

Data exchange takes place only after the success of authentication phase. Data
messages received before the completion of authentication phase are ignored by the
receiver. Data can be alerts from agent to console or commands from console to
agent. Every data message has two possible replies - one indicating success and the
other indicating failure.

Messages from the server to a agent include the following:

Key reset command: This command message tells the agent to use new session

key for further communication. The message exchanges are:

43

Message Type (code) | Data (bytes)
KEY RESET (30) New Key (14)
KEY RESET OK (518) | New Key (14)

Table A.2: Message excahnges for Key-reset command

Enabling and disabling signatures: Each standard signature has a unique
SID. Thus it is sufficient to just mention the SID in the message instead of the entire
signature. More than one SID can be mentioned in this message. The server expects
a reply from the agent which indicates either success or failure or that the signature

is already enabled or disabled. The message exchange sequence is shown below.

Message Type (code) Data (bytes)
ENABLE_SIGNATURE (31) SID (4), SID (4) ...
ENABLE SIGNATURE REPLY (502) | SID (4), reply code (2), SID (4), reply code (2) ...

Table A.3: Messages for enabling signatures

Where reply-code can be one of the following: ENABLE SIGNATURE OK
(503), ENABLE SIGNATURE FAILED (504), ENABLE SIGNATURE ALREADY(505).

Message Type (code) Data (bytes)
DISABLE_SIGNATURE (32) SID (4), SID (4) ...
DISABLE_SIGNATURE_ REPLY (506) | SID (4), reply code (2), SID (4), reply code (2) ...

Table A.4: Messages for disabling signatures

Where reply-code can be one of the following: DISABLE SIGNATURE OK
(507), DISABLE SIGNATURE_FAILED (508), DISABLE SIGNATURE ALREADY
(509).

Adding new signatures: Server can add new signatures to the misuse detector
engine of Snort. It assigns a new SID to the signature and sends the message to the

agent. The agent responds by indicating whether the command was successful or

44

not. The signature to be added is also present in the message. Many signatures can

be sent in a message. The following message exchange sequence takes place.

Message Type (code) Data (bytes)
ADD NEW_SIGNATURE (33) SID (4), Signature (String), SID (4), Signature (String),...
ADD_NEW_SIGNATURE_OK (510) SID (4), SID (4), SID (4),...

Table A.5: Messages for adding new signature

Where the signature is a NULL terminated string.

Enabling and disabling sigfiles: A sigfile houses a particular class of signa-
tures. Signatures are classified on type of attacks or vulnerabilities in services. For
eg. there are many different signatures for detecting Denial of service attacks. If
there is a need that a particular agent should detect particular class of attacks
rather than all attacks then this message specifies the list of sigfiles that should be
disabled /enabled on that agent. The sigfiles are represented as sequence of NULL

terminated string.

Message Type (code) Data (bytes)
ENABLE_SIGFILE (37) List of sigfiles each separated by NULL character...
ENABLE_SIGFILE_REDLY (524) | SIGFILE_1 (String), reply_code (2), SIGFILE_2 ...

Table A.6: Messages for enabling signature files

Where reply-code can be one of the following: ENABLE SIGFILE OK (525),
ENABLE SIGFILE FAILED (526), ENABLE SIGFILE ALREADY (527).

Message Type (code) Data (bytes)
DISABLE_SIGFILE (38) List of sigfiles each separated by NULL character...
DISABLE_SIGFILE REPLY (519) | SIGFILE 1 (String), reply _code (2), SIGFILE 2 ...

Table A.7: Messages for disabling signature files

45

Where reply _code can be one of the following: DISABLE SIGFILE OK (520),
DISABLE SIGFILE FAILED (521), DISABLE SIGFILE ALREADY (522).

Starting and stopping the misuse detector: Server can ask the agent to start
or stop the misuse detector. The start message also contains the options with which
the misuse detector program should be started. The reply to start contains any

error message generated if start fails.

Message Type (code) Data (bytes)
START DETECTOR (34) Options
START DETECTOR_OK (513) or | Message (String, if any)
START DETECTOR_FAILED (514) | Error Message (String)

Table A.8: Messages for starting misuse detector

Message Type (code) Data (bytes)
STOP_DETECTOR (35) Empty (0)
STOP_DETECTOR,_ OK (516) | Empty (0)

Table A.9: Messages for stopping misuse detector

Where ‘Options’ field depends on the misuse detector being used. We can also
include a message which indicates failure but generally stopping will not fail.
Heartbeat:The server periodically sends a probe to all the agents which are in
authenticated state. The agents should send a reply. The format of the probe and
reply are as follows. The periodicity of this probe is tunable.

Message Type (code) | Data (bytes)
AGENT PROBE (103) | Empty (0)
AGENT_ ALIVE (60d) | Empty (0)

Table A.10: Messages for probing the agent

46

Messages from Agent to the server include the following:

Alerts from agent to console: Each alert is associated with packets that gener-
ated the alert. Packets are sent along with the alert. It may not be possible to send
all packets in one UDP packet. So, two types of messages are required for sending
alerts and packets. In the first type the full alert is included along with as many
of its packets as possible. In the second type only the alert ID is included along
with the packets. Since packets can be of different lengths there is a length field
preceding each packet data. The alert itself contains the alert ID. If it is possible
to send more than one alert, then many alerts can be sent in a single message. The
message format is shown below.

Message containing alert and packets:

Message Type Data (bytes)
ALERT MSG (101) Alert Length (2), Alert (variable), Packet length (2), Packet (variable)...
ALERT_MSG_OK (601) Alert ID (4), Alert ID (4),...

Table A.11: Messages for sending alerts to the server

Message containing only packets:

Message Type (code) Data (bytes)
PACKET MSG (102) Alert ID (4), Packet length (2), Packet (variable)....
PACKET MSG_OK (602) Empty(0)

Table A.12: Messages for sending only packets to the server

Packet is in standard binary format. Alert has the following format. The number

in the parenthesis indicates the size in bytes.

Alert ID (4) | Signature ID(4) | Timestamp(4) | Priority(1) | Classification

| Alert message | Reference

Classification, Alert message and Reference are null terminated strings.

Misuse Detector Failure: The agent periodically monitors the health of the

47

misuse detector and report it to the server when requested by the server. While
monitoring the misuse detector, if the agent finds out that the misuse detector is
not running, then the agent first tries to start the misuse detector. If the agent fails
to start the misuse detector it reports this information immedialtely to the server

so that the concerned user can take appropriate action.

Message Type (code) Data (bytes)
MISUSE_DETECTOR_FAILED (104) Bmpty
MISUSE DETECTOR_FAILED REPLY (605) Empty

Table A.13: Messages for the failure of the Misuse Detector

Heartbeat: If the agent finds that the server is down it periodically sends a
probe to the server until the server is up again. The server has to reply to this

probe. The periodicity of this probe is tunable.

Message Type (code) | Data (bytes)
SERVER_PROBE (23) Empty (0)
SERVER_ALIVE (603) Empty (0)

Table A.14: Messages for probing the server

48

Appendix B

Formats of Messages in Sachet

server-console Protocol

In this appendix, we describe formats of the messages exchanged between the server
and the console using the SACHET server-console (SSC) protocol. All the messages
are initiated by the console, and the server only needs to responds them. The
Messages can be of following type: command, request and response. The packet

format of the SSC Protocol is shown below.

2 bytes 2 bytes Variable

Packet Length Message Type Data Vaue

Figure B.1: Packet Structure of SACHET server-console protocol

B.1 Authentication Message

This message contains the password to be verified by the server in order to establish
the correct identity of the user. This user will finally interact with the console and
hence control the server. This is the first message before any interaction takes place

between the console and the server. The message exchanges are as follows:

49

Message Type (code) Data (bytes)
I_AUTHENTICATE (2030) | password (16)
I_AUTH_SUCESS or (2031) | empty (0)

I _AUTH FAILED (2032)

Table B.1: Messages for authenticating the user

The password is not sent in the plain-text format. First, the message digest
(MD5) on the password is computed and then this hash value is sent to the server.

Hence the password is of 16 bytes of length.

Change Password Message It is always advisable to chnage password period-
ically. The old password should be provided alongwith the new password in the
message. The server accepts the new password only if the old password provided is

correct. The message exchanges are as follows:

Message Type (code) Data (bytes)
I _CHANGE_PASSWD (2037) old password (16), new password (16).
I_CHANGE_PASSWD_OK (2531) or
I OLDPWD _ INCORRECT (2532)

Table B.2: Messages for changing the password
In this case also the hash value of the passwords are being sent, not the plain-text.

B.2 Command Messages

‘Command messages’ are the commands to the particular agent, on behalf of the user
interacting with the console. These commands are sent to particular agent through
the server. ‘Command messages’ can also be commands to the server to receive the
information from the user and updates it on the database. The information can be
like adding/deleting of agents. The following are the types of commands issued by

the console.

20

Adding and Deleting Agent As the enterprise will keeps on growing, more
number of agents will be deployed at the startegic locations of the organization.
The information about new agents should be provided to the server so that it can
authenticate with the new agents and starts communicating with them. Suppose if
it has been decided to stop monitoring a particular host or network segment, then
this infromation should also be communicated to the server. The messages involved

are as follows:

Message Type (code) Data (bytes)
I ADD_ AGENT (2010) Agent id (2), Public key of Agent (String).
I _ADD AGENT OK (2522) or empty (0)
I_AGENTID INUSE (2525) or I_FAILED (2523)

Table B.3: Messages for adding new agent

Message Type (code) Data (bytes)
I DELETE AGENT (2011) Agent id (2).
I_DELETE_AGENT_OK (2526) or empty(0)
I _AGENT NOT_ FOUND (2527) or I FAILED (2523)

Table B.4: Messages for deleting the agent

Enabling or Disabling signatures This message directs the server to issue
command to the particular agent for enabling or disabling of certain signatures. Each
signature is known by its signature id. The message include the list of signature ids

separated by space. The message exchanges are as follows:

Message Type (code) Data (bytes)

I_ENABLE_SIGNATURES (2001) Agent id (2), SID (4), SID (4), SID (4) ...

I_ENABLE_SIGNATURES_REPLY (2512) | SID (4), reply_code(2), SID (4), reply_code (2) ...

Table B.5: Messages for enabling signatures

Where reply-code can be one of the following: ENABLE SIGNATURE OK

ol

(503), ENABLE _SIGNATURE_FAILED (504), ENABLE_SIGNATURE_ALREADY
(505).

Message Type (code) Data (bytes)
T DISABLE SIGNATURES (2002) Agent id (2), SID (4), SID (4), SID (4)
I_DISABLE_SIGNATURES_REPLY (2513) | SID (4), reply_code (2), SID (4), reply_code (2)....

Table B.6: Messages for disabling signatures

where reply-code can be one of the following: DISABLE SIGNATURE OK
(507), DISABLE SIGNATURE_FAILED (508), DISABLE SIGNATURE ALREADY
(509).

Enabling or Disabling signature files This message directs the server to
issue command to the particular agent for enabling or disabling of certain signature
files. The message may contain more than one signature files and each signature file

is separated by NULL terminated string.

Message Type (code) Data (bytes)
I ENABLE_SIGFILES (2004) Agent id (2), List of sigfiles each separated by NULL character..
I ENABLE_ SIGFILES REPLY (2515) | SIGFILE 1 (String), reply code (2), SIGFILE 2 (String)...

Table B.7: Messages for enabling signature files

Where reply-code can be one of the following: ENABLE SIGFILE OK (525),
ENABLE SIGFILE FAILED (526), ENABLE SIGFILE ALREADY (527).

Message Type (code) Data (bytes)
I DISABLE_SIGFILES (2005) Agent id (2), List of sigfiles each separated by NULL character...
I_DISABLE_SIGFILES_REPLY (2516) | SIGFILE_1 (String), reply_code (2), SIGFILE_2 (String)...

Table B.8: Messages for disabling signature files

Where reply code can be one of the following: DISABLE SIGFILE OK (520),
DISABLE SIGFILE FAILED (521), DISABLE SIGFILE ALREADY (522).

52

Starting or Stopping Misuse Detector This message instructs the server
to command the agent to stop its misuse detector. The message exchnages are as

follows:

Message Type (code) Data (bytes)
T START MISUSE DETECTOR (2008) Agent id (2).
I START MISUSE DETECTOR_REPLY (2519) | reply code (2).

Table B.9: Messages for starting misuse detector

Message Type (code) Data (bytes)
I_STOP_MISUSE_DETECTOR (2009) Agent id (2).
I_STOP_ MISUSE DETECTOR_REPLY (2520) | reply code (2).

Table B.10: Messages for stopping misuse detector

In both the cases, the reply _code can be any one of the following: I AGENT NOT _ FOUND
(2527), 1 _AGENT_ NOT_ALIVE (2528), 1 FAILED (2523).

Adding a new signature The console provides a simple template though which
the concerned user can create a new attack signature. This new signature is updated

to all the agents which are communicatig with the server.

Message Type (code) Data (bytes)
I_ADD_SIGNATURE (2003) Signature (string)
I_ADD_SIGNATURE_REPLY (2514) empty (0).

Table B.11: Messages for adding a new signature to all agents

B.3 Request Messages

Request messages are the request to the server for providing current information

about the entire sachet system to the user who is interacting with the console.

23

Basic information about agent This message is periodically sent to the server
to know about basic information about each agent. The server replies to this message
by processing the information present in its local data structures. The message

exchanges are as follows:

Message Type (code) Data (bytes)

I BASIC_INFO (2035) Agent id (2).

I BASIC INFO_ REPLY (2529) | Agent id (2), status of agent (1), status of misuse detector (1),
last authentication time of agent with server (4)
Number of signature files (2), IP Address (24).

Table B.12: Message for requesting information about the agent

54

Bibliography

[1]

2]

3]

[4]

[5]

[6]

7]

D. Anderson, T. Frivold, and A. Valdes. Next-generation intrusion-detection ex-
pert system (nides). Technical Report SRI-CSL-95-07, CSL, SRI International,
Computer Science Laboratory, May 1995.

S. Staniforn Chen, S. Cheung, and R. Crawford. Grids-a graph based intru-
sion detection system for large networks. In Proceedings of the 19th National

Information Systems Security Conference, 1996.

M. Crosbie and E. Spafford. Active defense of a computer system using au-
tonomous agents. Technical Report 95-008, COAST Group, Department of
Computer Science, Purdue University, Feb 1995.

D. Denning. An intrusion-detection model. IEEE Transactions on Software
Engineering SE-13, 2:222-232, February 1987.

Teresa F.Lunt, Ann Tamaru, Fred Gilham, and R. Jagannathan. A real-time
intrusion-detection expert system(ides). Technical Report Project 6784, CSL,
SRI International, Computer Science Laboratory, February 1992.

R. Heady, G. Luger, A. Maccabe, and M. Servilla. The architecture of a network
level intrusion detection system. Technical report, University of New Mexico,

Department of Computer Science, August 1990.

L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wolber. A
network security monitor. In Proceedings of the 1990 Symposium on Research
wn Security and Privacy, pages 296-303. IEEE Computer Security, May 1990.

95

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

Enterasys Networks. Enterasys dragon intrusion defense systems. http://www.

enterasys.com/products/ids.

P. Proctor. Audit reduction and misuse detection in hetrogeneous environments:
Framework and appications. In Proceedings of the 15th National Computer
Security Conference, pages 117-125, December 1994.

Paul E. Proctor. The practical intrusion detection handbook, 2001.

Network Flight Recorder. Nfr intrusion detection appliance. http://www.nfr.
com, 1996.

S. Smaha. Haystack: An intrusion detection system. In IEEFE Fourth Aerospace
Computer Security Application Conference. IEEE Computer Society Press, De-
cember 1988.

S. Smaha and J. Winslow. Misuse detection tools. Computer Security Journal
10, pages 39-49, 1994.

Steven R. Snapp, James Brentano, Gihan V. Dias, and Terrance L. Goan.
Dids(distributed intrusion detection system)- motivation, architecture, and an
early prototype. Technical report, Computer Security Laboratory, University
of California, 1999.

Symantec Enterprises Solutions. Symantec host ids. http:

//enterprisesecurity.symantec.com.

Symantec Enterprises Solutions. Symantec intruder alert. http://

enterprisesecurity.symantec.com.

Snort The Open Source Network Intrusion Detection System. http://www.

snort.org.

Cisco Systems. Cisco intrusion detection system. http://www.cisco.com/

warp/public/cc/pd/sqsw/sqidsz.

26

[19] Internet Security Systems. Blackice server protection 3.6. http://blackice.
iss.net/update_center/index.php.

[20] Internet Security Systems. Realsecure network 10/100. http://www.iss.net/

products_services/enterprise_protection/rsnetwork/s%ensor.php.
[21] Intrusion Systems. Securecom. http://www.intrusions.com.

[22] G. White and V. Pooch. Cooperating security managers: Distributed intrusion
detection systems. Computers and Security, Vol. 15(No. 5):441-450, 1996.

[23] D. Zamboni, J. Bala, J. Omar Garcia-Fernandez, D. Isacoff, and E. Sppafford.
An architecture for intrusion detection using autunomous agents. Technical
Report 98/05, COAST Laboratory, Purdue University, June 1998.

57

