
A Test bed for performane evaluation of loadbalaning strategies for Web Server Systems
A Thesis Submittedin Partial Ful�llment of the Requirementsfor the Degree ofMaster of Tehnology

byPuneet Agarwal

to theDepartment of Computer Siene & EngineeringIndian Institute of Tehnology, KanpurMay, 2001

Certi�ate
This is to ertify that the work ontained in the thesis entitled �A Test bedfor performane evaluation of load balaning strategies for Web Server Systems�, byPuneet Agarwal, has been arried out under our supervision and that this work hasnot been submitted elsewhere for a degree.May, 2001
(Dr. Dheeraj Sanghi)Department of Computer Siene &Engineering,Indian Institute of Tehnology,Kanpur.

(Dr. Pankaj Jalote)Department of Computer Siene &Engineering,Indian Institute of Tehnology,Kanpur.

AbstratMany large web sites get more than 100 million hits everyday. They need asalable web server system that an provide better performane to all the lientsthat may be in di�erent geographial regions. Higher delays and losses are ommonon WAN links. To provide a better servie to all the lients, it is natural to havefully repliated web server lusters in di�erent geographial regions. In suh anenvironment, one of the most important issue is that of server seletion (and loadbalaning). The lient's request should be direted to one of the servers in a waythat the response an be quik. We assume that web servers are funtionally homo-geneous, i.e. any one of them an serve any lient request. Another important pointis that this system should not require modi�ation of any lient side omponent orexisting standard protool.In this thesis, we have developed a test bed to emulate the world wide webenvironment and ompare di�erent shemes. A large number of systems have beenproposed to do this load balaning. We also propose a new sheme whih is basedon estimating the round trip time between the lient and various server lusters.The proposed sheme is shown (through emulation) to perform signi�antly betterthan many of the existing sheme.

AknowledgementI would like to thank my thesis supervisors, Dr. Pankaj Jalote and Dr. DheerajSanghi for their onstant enouragement and innovative ideas. I am very thankfulto them for allowing me to work freely in area of my interest, patiently listeningto all problems, providing me every possible help instantly despite their very busyshedule. Without their support and guidane at every stage of thesis, ompletingthis work would not have been possible for me. It has been a very enlightening andenjoyable experiene to work under them.I would also like to express my thanks towards the faulty members of ComputerSiene & Engineering department for imparting me invaluable knowledge and teh-nial skills. I would also like to thank tehnial sta� of department for providingsuh a nie working environment in the lab.I also thank all my friends who made my stay here a memorable one. Myall friends speially Saibal, Kingshuk, Sriram, Rajrup, Saugata, Ashish Saxena,Parthajit and Jyotirmoy were always enouraging and helpful to me.I have used or modi�ed many third party softwares and I would like to thankpersons involved in developing software and giving suggestions in ase of problems.I would like thank Andreas Gusta�son for helping me in modi�ation of BIND, IliaBaldine for divert sokets, Mark E. Carson for Nistnet software and Mindraft Infor Webstone.Above all, I am grateful to my parents for reahing at this stage in life, it weretheir blessings whih always gave me ourage to fae all hallenges and made mypath easier.
i

Contents
Aknowledgement i1 Introdution 11.1 Motivation . 11.2 Steps in HTTP request servie . 21.3 Outline . 32 Related Work 52.1 Relation with load balaning in distributed systems 52.2 Mehanisms for request distribution 72.2.1 Client-based approah . 82.2.2 DNS-based approah . 102.2.3 Dispather-based approah . 132.2.4 Server-based approah . 162.2.5 Anyast . 173 Proposed Arhiteture for Web Server System 193.1 Design goals . 193.2 System model . 203.3 Request distribution strategy . 213.4 Overview of arhiteture . 243.5 Algorithms . 263.5.1 Load balaning at DNS . 273.5.2 Load balaning at front node of eah luster 32ii

3.5.3 Support at eah server . 354 Test bed for Measuring Web Server System Performane 374.1 Design goals . 384.2 Assumptions . 384.3 Overview of test bed . 394.3.1 Software omponent at eah server 414.3.2 Software omponents at front node of eah luster 414.3.3 Software omponents at DNS 424.4 Request distribution mehanisms . 434.4.1 At DNS . 444.4.2 At Front nodes . 444.5 Experimental setup . 445 Results 485.1 Arhitetures emulated on test bed 495.1.1 Round robin seletion . 495.1.2 Random seletion . 505.1.3 Weighted apaity seletion 505.1.4 Nearest luster seletion . 525.2 Performane Comparison . 536 Conlusion and Future Extensions 586.1 Future Extensions . 59A Softwares Used 60A.1 Divert Soket Mehanism . 60A.2 Nistnet . 61A.3 Webstone . 61Bibliography 65
iii

List of Figures3.1 System Model . 213.2 Additional messages exhanged among omponents in DWSS 253.3 One way distributed IP paket rewriting mehanism 264.1 Blok diagram of Test bed . 404.2 Test bed used in Experiments . 475.1 Average response time with Round robin poliy used at DNS 505.2 Average response time with Random seletion poliy used at DNS . . 515.3 Average response time with dynami Weighted poliy used at DNS . . 525.4 Average response time with Nearest server seletion poliy used at DNS 535.5 Average response time (even load) with di�erent poliies used at DNS 545.6 Average response time (uneven load) with di�erent poliies used atDNS . 555.7 Maximum response time with di�erent poliies used at DNS 565.8 Connetion rate with di�erent poliies used at DNS 575.9 Total through put with di�erent poliies used at DNS 57

iv

Chapter 1Introdution
1.1 MotivationNumber of users aessing the Internet is inreasing quite rapidly and it is ommonto have more than 100 million hits a day for popular web sites. For example,netsape.om website reeives more than 120 million hits a day. The number ofusers is expeted to ontinue inreasing at a fast rate and hene any website thatis popular, faes the hallenge of serving very large number of lients with goodperformane. Full mirroring of web servers or repliation of web sites is one wayto deal with inreasing number of requests. Many tehniques exist for seletion ofnearest web server from the lient's point of view. Ideally, seletion of best servershould be done transparently without the intervention of the user.Many of the existing shemes do only load-balaning. These shemes assumethat the repliated site has all the web servers in one luster. This is alright formedium sized sites, but beyond a ertain amount of tra�, the onnetivity to thisone luster beomes a bottlenek. So large web sites have multiple lusters, and it isbest to have these lusters geographially distributed. This hanges the problem to�rst selet the nearest luster and then do load balaning within the servers of thatluster. Of ourse, if all servers in a luster are heavily loaded then another lustershould have been hosen. So the problem is more omplex in suh an environment.Designing suh system involves making deisions about how best server is seleted1

for a request suh that user reeives response of request in minimum time and howthis request is direted to that server. In most strategies, a server is seleted withouttaking into aount any system state information, e.g. random, round robin et.Some poliies use weighted apaity algorithms to diret more perentage of requeststo more apable servers. But few strategies selet a server based on the server stateand very few strategies take lient state information into aount. There is alwaysa tradeo� between the overhead due to olletion of system state information andperformane gain by use of available state information. If too muh state information(of server or lients) is olleted, it may result in high overheads for olletion ofinformation and performane gain may not be omparable to overheads. So wemust arefully ollet only that state information that might improve performaneof system as seen by lients but do not result in very high overheads.In this thesis, we have proposed a new sheme based on olleting informationabout the load on eah server as well as estimating round-trip time between lustersand those lients whih make large number of requests.To study the tradeo�s and impat of di�erent parameters on a web server system,a framework is required. The framework should enable evaluation and omparisonof performane of distributed web server systems. The framework should allow easyimplementation of any sheme and analyze the performane of web server systemwith new poliies.In this thesis, we have designed and implemented a test bed to provide suh aframework. We have also measured performane of few poliies implemented in thistest bed through emulation of world wide web senario.1.2 Steps in HTTP request servieBefore we disuss further, it is important to understand how a HTTP request isservied, so it is brie�y disussed here. A lient's request for desired objet isful�lled in following steps:� Domain name to IP address mapping : The domain name present in URLmust �rst be translated to an IP address. The lient software requests its loal2

resolver for it, if this mapping is not in its ahe. The resolver in turn returnsthe IP address for that domain name, that it may get from Intermediate nameservers (whih may have ahed this mapping) or from diretly from authorizedDNS for that domain name either reursively or iteratively. More details aboutDNS mehanism an be found in RFC 1034 [26℄ and RFC 1035 [27℄.� Request for objet to server with that IP address: Then lient softwaresends request for objet to server having that IP address. The server mayreturn requested objet diretly or it may rediret it to other server usingHTTP header options or feth the objet from other server and deliver tolient or may transparently forward the request to other server whih repliesdiretly to lient with address of forwarding server, et.Thus HTTP request servie path allows us to distribute requests at two levels,�rst at DNS at the time of resolution of domain name to server IP address, andthe other at server when request reahes at that server. Any system onsistingof multiple servers and some request distribution mehanism is termed DistributedWeb Server System (DWSS).Time taken for servie of any HTTP request submitted by lient depends on twomajor fators namely network onditions and server load. Even if there is a apableserver system present, but the onnetivity of lient in terms of delay, availablebandwidth or paket loss is not good, it will sees large delays. If server system issaturated with requests, time taken for servie is very large. So for keeping responsetime minimum, web server system should take into aount both the fators.1.3 OutlineIn hapter 2, we �rst present a brief survey of existing approahes for request dis-tribution mehanisms. In hapter 3, design goals for system, system model taken,approah used and algorithms for eah server side omponent of proposed arhite-ture are disussed.To evaluate the performane of proposed arhiteture and ompare it with otherexisting proposals, a �exible test bed was designed to emulate real Internet like3

senario in whih various arhitetures for Distributed Web Server System an beemulated with minimal e�orts. In hapter 4, design goals, overview and di�erentomponents of this test bed are desribed. In hapter 5, di�erent algorithms imple-mented on the test bed and measured performane are brie�y disussed and �nallythe performane results obtained for various shemes are ompared. In hapter 6,we �nally present onlusion and future extensions. In appendix, we give shortdesription of softwares used by us.

4

Chapter 2Related Work
2.1 Relation with load balaning in distributed sys-temsLoad balaning in distributed systems has been the subjet of researh for last fewdeades. The traditional load balaning problem deals with load unit migration fromone proessing element to another when load is light on some proessing elementsand heavy on some other proessing elements. It involves migration deision, i.e.whih load unit(s) should be migrated and then migration of load unit to othernodes.Both of these parts an be arried out either loally or globally. Load balaningan be lassi�ed aording to the deision base and migration spae [29℄. If migrationdeision is arried out aording to loal load situation and that of neighbors, it isalled loal deision base. If this deision is based on load ondition of subset ofthe whole network, then it is alled global deision base. Similarly if load unit ismigrated to diret neighbors, then it is alled loal migration spae, otherwise it isalled global migration spae. So aording to deision base and migration spae,four di�erent ategories of shemes emerge:� Loal Deision base Loal Migration Spae (LDLM)� Loal Deision base Global Migration Spae (LDGM)5

� Global Deision base Loal Migration Spae (GDLM)� Global Deision base Global Migration Spae (GDGM)A taxonomy for load balaning in distributed systems is presented in [10℄.However, these approahes for load balaning are not suitable for load balaningin the web ontext for several reasons. First, in the web ontext there are multi-ple points for load balaning (e.g. at the DNS or at the server) while traditionaltehniques assume a single point. Seondly, the ost fators are not homogeneous inweb and an vary a lot, while in traditional systems most servers are assumed to begenerally of similar apaity and apability. Thirdly, the jobs were assumed to beompute intensive and hene the fous was to distribute the ompute load. In theweb, on the other hand, the load is mostly I/O oriented where ahing plays a verysigni�ant role in performane and will impat the shemes. Even ost of migrationof load unit and granularity of load varies for di�erent points of load balaning. Dueto these, and other reasons, it is best to onsider the load balaning problem in theWeb as a new problem, whih requires di�erent approahes.In web ontext, whih server to selet has been mostly studied from lient pointof view, i.e. either lient side DNS or lient proxy or lients themselves deide whihserver to hoose. Usually, these entities send probes to multiple servers and seletbest server based on probe results or they take into aount previous history ofresponses sent by server. But these probes are usually not su�ient to auratelymeasure server load onditions, sine load on servers an hange easily with timeand usually these probes an not �nd urrent load on the servers and until all lientsuse suh softwares and there is o-operation with server side entities (it is howeververy di�ult to reah at ommon method aeptable to all), they will either inurtoo muh overhead or will not give muh better performane.Example of lient themselves seleting server is Netsape [15℄ or Java Appletrunning at lient to probe servers is [31℄. In sheme proposed by Bek and Moore[7℄ in their I2-DSI system, DNS resolver at lient side sends probes to server toselet server with minimum response time. In sheme proposed by Baentsh et al [6℄servers send information about other servers in hierarhy through extra http headersto lient side proxy and then lient side proxy selets server.6

There are various proximity metris onsidered for seletion for best server bylients. Crovella et al [14℄ ompare random server seletion, hop ount and round triptime based seletion and �nd that RTT has relatively higher orrelation with latenypereived by lient. Sayal et al [25℄ also inlude HTTP lateny (time measured bysending HTTP HEAD request) and all server polling in their study and �nd HTTPlateny has highest orrelation with atual server response time for other requestsand present refresh based algorithms for best server seletion at lient side.Client side approahes are not general, sine they assume modi�ation in lientside omponents, some approahes even modify protools. Thus these types ofapproahes an not improve performane for all the lients.Gwertzman et al [21℄ �rst pointed out the need of reating ahe server on otherside of USA when demand from that side inreases. Guyton et al [20℄ fous on hopount based metri and ost of olletion of information for server seletion.Server seletion at server side DNS is done based on geographial proximityapproximated using lient IP address or hop ount information obtained from routersin Ciso's Distributed diretor [11℄. Given that lients are distributed geographiallyfar apart, stati and relatively less ostlier metris like hop ount for proximityinformation are not found good in study by [14℄. Ammar et al [32℄,[17℄ propose loalanyast resolver that is near a large number of lients, to whih servers push theirperformane information and probing agent probes servers for path information.This proposal assumes use of anyasting domain name(ADN) and anyast resolvernear lients, whih one again laks general appliability.In next setion we present a brief survey of mehanisms used for distribution oflient requests.2.2 Mehanisms for request distributionCardelini et al [9℄ lassify web server arhitetures based on the entity whih dis-tributes the inoming requests among the servers in four lasses of methods. Someof the methods in eah ategory use feedbak based algorithms and some use non-feedbak algorithms as disussed in [1℄. So we an ategorize the request distribution7

mehanisms based on entity that routes the request as follows:� Client-based approah� DNS-based approah� Dispather-based approah� Server-based approah� AnyastLast mehanism, Anyasting does not involve any expliit routing by web serversystem, but is automatially done as part of IPv6 protool by internetworks [8℄.These mehanisms o�er transpareny at various levels: manual seletion o�ersno transpareny beause URLs are di�erent; Client and DNS-based mehanisms mayo�er URL level transpareny, i.e. URL is same but resolved IP addresses may bedi�erent; Dispather based approahes usually o�er IP address level transpareny,i.e. even resolved IP address is also same.Some mehanisms are geographially salable, i.e. luster of servers an be eitherin LAN or WAN. Some approahes are fault tolerant and highly available but othersare not. Some approahes require repliation of whole web-site, while others allowpartial repliation.2.2.1 Client-based approahIn this approah, lient side entity is responsible for seleting the server so no serverside proessing is required for seletion of server. The routing to replia is done bylient software (browser) or by lient-side DNS or proxy servers. So these shemesan be ategorized as follows:� Web lients : In this approah lients are aware of existene of repliasof same resoure on multiple servers and they hoose the replia themselves.Following are two shemes that utilize lient software for server seletion.8

1. Netsape's Approah : This approah is taken by Netsape Navigatorbrowsers [15℄. On aess to Netsape home page, browser generates a ran-dom number X between 1 and 32 and aesses http://homeX.netsape.om.Eah server an have multiple homeX aliases pointing to it so that lientsoftware need not to be modi�ed in ase more servers are deployed, justhanging aliases will su�e.This approah is not generally appliable as not all ompanies an on-trol lient software, it requires re-installation or hange of web lients ifnumber of aliases inrease. Also, it does not guarantee server availabilityand load balaning of servers beause if any server is down or overloaded(and the aliases has not been hanged), random seletion will still try toaess resoure from that server.2. Smart Clients : In sheme proposed by Yoshilakawa et al [31℄, a JavaApplet is run on the lient side, whenever user aesses the DistributedWeb Server System. This Applet knows all the IP addresses of serversin the System. Applet sends messages to probe node load, response timeand network delays, et., and selets the best node.This approah does not require lient software modi�ation and providessalability and availability, but downloading the Java Applet requires aTCP onnetion, and extra probe messages ause delay and inreasednetwork tra�. Also all lients might not be apable of running the JavaApplet.� Client's DNS resolver : This sheme is used by Bek and Moore [7℄ inI2-DSI system. In this sheme, lient's loal DNS resolver issues probes toservers instead of web lient and may hoose the server based on responsetime or previous aess performane reports from lient.This sheme requires ustomized DNS and lients must also be modi�ed forgiving reports. If the server address is ahed, then all requests in future willgo to the same server. So load balaning may not be ahieved. If ahing isrestrited by a lower TTL value, then we are putting additional load on DNSinfrastruture. 9

� Client Side Proxy : This sheme was proposed by Baentsh et al [6℄. Serversform a hierarhial struture and ontent repliated on eah server is somepart of URL name spae. Eah parent server in hierarhy propagates informa-tion about replias present on diret desendents in extra HTTP headers inresponse to request for resoure. Client-side proxy learns about replias andnext time request an go to server ontaining replia of resoure.This approah requires both server software and proxy modi�ation to giveinformation about replia and proess extra HTTP headers respetively.All these approahes require hange in lient side omponents, whih are notontrolled by the e-Commere ompany or the hosting ISP, So these approahessu�er from the problem of limited appliability.2.2.2 DNS-based approahIn this approah, server side authorized DNS maps domain name to IP address ofone of the nodes of the luster, based on various sheduling poliies. Seletion ofreplia ours at server side DNS so it does not su�er from appliability problem oflient-side mehanisms. But DNS has limited ontrol over requests reahing at serverbeause of ahing of IP address mapping at several levels viz., by lient softwares,loal DNS resolvers, intermediate name servers, et. Besides the mapping, a validityperiod for this URL to IP address mapping, known as Time-To-Live (TTL) is alsosupplied. After expiration of TTL period this mapping request is again forwardedto authorized DNS. Setting this value to very small or zero does not work beauseof existene of non ooperative intermediate name servers and lient level ahing.Also, it inreases network tra� and DNS itself an beome bottlenek.Several DNS based approahes are disussed in [9℄and [12℄. DNS based algorithmsan be lassi�ed on the basis of the sheduling algorithms used for server seletionand TTL values.
10

� Constant TTL algorithms : These are lassi�ed on the basis of the systemstate information used by DNS for server seletion. The system state informa-tion an inlude both lient and server state information, like load, loationet.1. System stateless algorithms : Most simple and �rst used algorithmof this type is round robin (DNS-RR). It was used by NCSA (NationalCenter for Superomputing Appliations) [24℄ to handle large tra� vol-ume using multiple servers. In this approah, primary DNS returns IPaddresses of servers in the round robin fashion.It su�ers from uneven load distribution and server overloading, sine largenumber of lient from same domain (using same proxy/gateway) are as-signed same server. Also, whole doument tree must be repliated onevery server or network �le system should be used.2. Server state based algorithms : A simple feedbak mehanism fromservers about their loads is very e�etive in avoiding server overloadingand not giving IP address of unavailable servers. The sheduling poliymight be to selet the least loaded server any time.This approah solves overloading problem to some extent yet ontrol overrequests is not good beause of ahing of IP addresses. Some implemen-tations try to solve this problem by reduing TTL value to zero but it isnot generally appliable and puts more load on DNS.3. Client state based algorithms : In this approah, two types of in-formation about lients, the typial load arriving to system from eahonneted domain (from same proxy/gateway) and the geographial prox-imity an be used by DNS for sheduling.Requests arriving from domains having higher request rate per TTL valuean be assigned to more apable server. Proximity information an beused to selet nearest server to minimize network tra�.One mode of Ciso Distributed Diretor [11℄ takes lient loation (ap-proximated from lient's IP address) and lient-server link lateny into11

aount to selet the server by ating as primary DNS.This approah also su�ers form same problem experiened by Server statebased algorithms.4. Server and Client state based algorithms : Ciso Distributed Di-retor takes server availability information along with lient proximityinformation into aount while making server seletion deision. Thesealgorithms an also use various other state estimates for server seletion.Suh algorithms give the best results.� Dynami TTL algorithms : These algorithms also hange TTL values whilemapping host name to address. These are of two types [12℄:1. Variable TTL algorithms : As server load inreases these algorithmstry to inrease DNS ontrol over request distribution by dereasing TTLvalues.2. Adaptive TTL algorithms : These algorithms take into aount thedomain request rate (number of requests from a domain in TTL timeperiod) and server apaities, for assigning TTL values. So a large TTLvalue an be assigned for a more apable server and less TTL value forthose mappings that have high domain request rate.These are most robust and e�etive in load balaning even in preseneof skewed loads and non-ooperative name servers, but these don't takegeographial information into aount.DNS based approahes are more suitable for stati repliation shemes and areless suitable for dynami repliation shemes beause hanging plae of repliatedobjet may require hange in mapping. In general these approahes su�er fromlimited ontrol over request problem due to ahing of resolved IP addresses atvarious levels.
12

2.2.3 Dispather-based approahThis approah gives full ontrol over lient requests to server side entity. In thisapproah, the DNS returns the address of a dispather that routes all the lientrequest to other servers in the luster. Thus it ats as a entralized sheduler atthe server side that ontrols all the lient request distribution. It presents single IPaddress to outside world, hene is muh more transparent. These mehanisms anbe ategorized as follows:� Paket single-rewriting by the dispather : In this approah, all pakets�rst reah dispather beause IP address of dispather is provided by DNS.All the servers in luster have di�erent private addresses visible within theluster. The dispather selets server in the luster using simple algorithmslike round robin et. and hanges the inoming paket's destination addresswith the private address of seleted servers in the luster. It also maintainsa list of soure IP addresses for ative onnetions and sends the reeivedpakets from eah TCP onnetion to the same server node. Further, nodesin the luster need to replae soure address in response pakets with the IPaddress of dispather.Although this solution maintains user transpareny, it requires hanges in thekernel of all the servers sine paket rewriting ours at TCP/IP level. Thissystem ombined with DNS-based solution for dispather, i.e primary DNSresolving host name to IP address of one of dispather for eah luster, ansale from LAN to WAN.� Paket double-rewriting by the dispather : This approah is similar tothe above sheme, exept that all address hanges are done by the entralizeddispather, not by nodes in luster. The dispather �rst hanges eah inomingIP paket's destination address to that of seleted server and sends it to theseleted server node in the luster. It also needs to modify the pakets on theway bak to the lient, i.e., now in response IP paket, it replaes the soure IPaddress of seleted server with its address. The algorithm for server seletionan be round robin, random, et. 13

Ciso loal diretor selets the server with least ative onnetions. Magirouter [4℄ uses a appliation level proess that interepts all pakets betweenlient and server and modi�es address and heksum �elds.This approah has advantage that it does not require modi�ation of all nodesin luster.� Paket forwarding by the dispather : This approah is desribed in [18℄.In this approah instead of IP paket rewriting dispather forwards pakets tonodes in luster using MAC address.IBM Network Dispather's LAN solution assumes that server nodes are on thesame LAN and share the same IP address but nodes have disabled ARP meh-anism, so all pakets reah to dispather. The dispather then forwards thesepakets to seleted servers using their MAC addresses on the LAN withoutmodifying its IP header. The sheduling poliy an be based on server loadand availability.This mehanism is transparent to both lient and server. No paket rewritingis required by dispather or servers as they share same IP address.IBM Network Dispather's WAN solution is based on dispather at two levels.Centralized �rst level dispather uses single-rewriting mehanism to forwardthe pakets to one of the seond level dispathers (on WAN) for eah luster,i.e. it replaes its IP address from pakets to that of seleted dispather(eahluster has its dispather). Seond level dispather (at eah luster) hangesits IP address in paket bak to that of �rst level dispather and forwards itto seleted server on LAN using MAC addresses. Seleted node responds withIP address of primary dispather as in the previous approah.� ONE-IP address : This approah is desribed in [16℄, multiple mahines inthe web server system have same seondary IP address. This seondary IPaddress is then publiized by DNS. It is of two types:1. routing-based dispathing : In this approah all pakets with ONE-IP address are direted to IP address dispather by the subnetwork router.14

The dispather selets the server by applying hash funtion on the lientIP address and then reroutes the pakets to seleted server using its pri-mary IP address. Sine hashing funtion is applied on lient IP address,all pakets from same lient reah to same server.2. broadast-based dispathing : In this approah subnetwork routerbroadasts the pakets having destination ONE-IP address to all serversin web server luster, the servers themselves ompute hash funtion onlient IP address to deide whether they are atual destination or not. Itauses more server overhead.Using simple hash funtion guarantees that same server will be seleted fora given IP address but at the same time it is also the weakest fator in dy-nami seletion of server for load balaning. By hanging hash funtion fault-tolerane an be ahieved. Still hash funtion on lient IP address is statiassignment of server to eah lient.� HTTP rediretion by DispatherIn this approah entralized dispather redirets the HTTP requests amongthe web server nodes by speifying appropriate status ode in response andindiating the seleted web server node address in its header. Dispathing anbe based on load on servers or loation.This approah is transparent to user as most browsers support it, but useran pereive little bit more delay. No paket rewriting is required in thisapproah but state information of the server, i.e. load, number of onnetionset. should be ommuniated to dispather in this ase.The Distributed Diretor [11℄ in seond mode uses estimate of lient serverproximity and node availability to selet the server and redirets the lient toseleted server. Its main disadvantage is dupliation of TCP onnetions andhene inreased delay in response.
15

2.2.4 Server-based approahThis approah allows two-level dispathing, �rst by luster DNS and later eah servermay reassign a reeived request to one of the other server in the luster. This solvesthe problem of non-uniform load distribution of lient request and limited ontrolof DNS.� HTTP rediretion by ServerThe approah is used in SWEB [3℄. First request reahes to host in lus-ter using normal DNS resolution but it an further rediret request to otherserver. It does seond level dispathing through the rediretion mehanism ofthe HTTP protool. This rediretion may depend on the load of server or maybe done in a round robin fashion. The servers need to exhange status infor-mation periodially for taking rediretion deisions but this ost is negligiblewith respet to tra� generated by lient requests. Its main disadvantage isdupliation of TCP onnetions and hene inreased delay in response.� Paket Forwarding by ServerIn this approah, �rst level sheduling is done using round robin DNS meha-nism, the seond level dispathing is done by paket rewriting mehanism thatis transparent to users. So �rst request reahes to any node in luster, if thatnode �gures out that other node is better for serving this request, node usesMAC address to reroute the paket to seleted sever.It does not require HTTP request rediretion hene it is better in terms oflateny time. The server seletion an be stateless i.e. based on hash funtionor based on load information on servers. If loading information is used forrerouting, server need to exhange load information among themselves. Alsothis sheme an work with both LAN and WAN based solution.� Akamai's ApproahAkamai's approah [2℄ is very di�erent. In their approah, URLs of objetsembedded in HTML page, like images, Java Applets, multimedia omponentset., are modi�ed by proprietary software Launher running at server, to the16

URLs of the objets available at any Akamai server nearest to lient. It islaimed that these embedded objets omprise nearly 70% of typial pagein overall bytes. A map of urrent Internet tra� onditions, the loads ofall Akamai servers worldwide, and the loations of Internet users is built forseletion of server. This map is updated one per seond. While makingseletion of server, it is made sure that no server is overloaded and number ofservers ontaining replia is proportional to number of requests for the objet.This approah is very useful when page ontains large multimedia objets.It requires protool for getting information about other servers distributedgeographially, and lient loation. It sales geographially well but it alsorequires pages to be modi�ed aording to the lient loation.2.2.5 AnyastIn IPv6, an anyast servie [8℄ will be supported. This servie assumes that thesame IP address is assigned to a set of hosts, and IP router has path to its losesthost in routing table. Thus di�erent IP routers have paths to di�erent hosts withthe same IP address.This approah automatially selets the losest host, thus load distribution ausesno overhead. But it also implies almost stati repliation sine hanges in routingtable take time. Whih an be solved in future through Ative Networks, in whihsimple program injeted by appliation an be exeuted at routers.These mehanism have their relative pros and ons. Client side approah doesnot require any server side proessing but su�ers from limited appliability problem.DNS based approahes su�ers from problem of limited ontrol over lient requestdue to ahing and non-ooperative name servers. They provide oarse level ontrolover lient request but these approahes do not su�er from single point of failureproblem whih is present in Dispather based approahes. Dispather based ap-proahes give �ner level ontrol over lient request. Paket forwarding approahesare most suitable for LAN based solutions and an sale to WAN solution. Serverbased approahes o�er �ne grain ontrol and do not su�er from single point of failure17

problem but rediretion auses inrease in lateny period.Our fous is on a general sheme that an be fully implemented at server sideand an be very easily deployed with urrently used infrastruture and standardprotools. Hene we do not onsider lient side approahes and do not assumeexistene of any support or speial omponent or modi�ed protool running at lientside. We onsider whole server arhiteture for olletion of metris required forseletion of server, role of eah entity and method of request distribution.

18

Chapter 3Proposed Arhiteture for WebServer SystemIn this hapter we disuss design goals for system arhiteture, system model usedand algorithms at eah server side entity.3.1 Design goalsA Distributed Web Server System (DWSS) onsists of a large number of servers withsome mehanism to distribute the inoming lient requests among those servers. Wehave the following design goals for the DWSS arhiteture:� Components used should be ompatible with urrent protool and networkelements, i.e. they an be deployed in urrent infrastruture and protoolsuite very easily.� It should not require hange of omponents at lient side or omponents onwhih website administrator has no ontrol, i.e. hange in only server sideomponents is allowed.� System should be geographially salable, i.e. more servers in lusters an beadded when needed in LAN environment and besides that more lusters (thatmay be geographially far apart) an be added in web server system on WAN.19

� System should give better performane in terms of lateny pereived at lientside, i.e. time lag between request submission by user and ontent reahing atlient side software should be minimized.� System should be user transparent, i.e. single virtual interfae to aess websiteshould be provided at the URL level, request should be direted to appropriateserver automatially by web server system.� System should be fault tolerant, i.e. system should ontinue working (maybe with degraded performane) even if some servers or lusters fail or takeno�-line.� System should avoid overloading of any server, i.e. requests beyond apaityof any server should not reah to it, sine it may result in rashing of servers.� System should not inur too muh additional overhead for its funtioning, interms of omputation required or network tra� generated.3.2 System modelOur system model taken by us is shown in Figure 3.1. Di�erent steps in HTTPrequest servie are shown in this �gure. Client software �rst asks its loal resolverfor IP address of web server, if loal resolver or intermediate resolvers do not havethis mapping or TTL has expired, this request reahes to server side authorized DNSin step 1 and DNS replies with IP address of front node of one of several luster(seleted aording to algorithm, whih we disuss later) in step 1.1. In step 2,lient software or some entity on behalf of lient (lient proxy or gateway) sendsrequest to front node of that luster using obtained IP address in step 1. Front nodedeides whih server in the luster should serve the request (algorithm for seletionis desribed later) and request is forwarded to that server by front node in step 3.Finally, in step 4, seleted server replies with request objet on behalf of front node.We have hosen luster based model beause it reates additional level for systemstate information olletion and gives full ontrol over dispathing of eah HTTP20

Figure 3.1: System Modelonnetion. Besides, our assumption is that lients are geographially distributedin distant parts of world and ompany an plae eah luster at strategi loationnear its ustomers, where they an serve ustomers better. This model also allowswebsite administrator to hange number of servers in any luster as well as hangethe number and loation of lusters easily.This model allows us to ollet �ner level information about eah server at theluster level and aggregated information about eah luster an be passed to en-tity(DNS in our ase) requiring this state information for making request distribu-tion deisions at oarser level.3.3 Request distribution strategyOur aim is to assign eah lient request to the best server suh that lient experienesminimum lateny between HTTP request and reeption of requested objet.21

First level deision an be taken by DNS itself, DNS an resolve IP address ofluster whih an give better servie to this lient. Parameters a�eting delay inservie of HTTP request are load at seleted server (and hene luster) and pathharateristis between lient and server. So to take this deision, DNS shouldhave reent luster state information and proximity of lient with lusters. DNShas information about lient IP address and luster IP addresses. Sine lustersare under ontrol of website administrator, they an provide any state informationrequired by DNS. Sine only server side omponents an be modi�ed, they willhave to gather the proximity information themselves. There are various metris tomeasure proximity between the lient and lusters. Some metris are:� Geographial distane between luster and lient� Network distane in hops between luster and lient� Round trip time (RTT) between luster and lient� Available bandwidth on path between luster and lient� Response time of any prior web doument feth� Lateny of any prior web doument fethGeographial distane is signi�ant only when time taken for transmission ofrequested objet and propagation delay on wire are omparable, i.e. propagationdelay is also signi�ant. Propagation delay is signi�ant for very large distanes evenat speed of light (an be 100s of milliseonds). But transmission media used for longdistanes (usually optial �ber) has very low delays and if satellite ommuniationis used for even loal onnetions, geographial distanes may not orrespond toatual delays on network. Nevertheless, it results in lesser tra� on long distanelines and usually orresponds to lower delays in pratie. Geographial distane anbe approximated by IP address of lient if suh database is available. Aording toRFC 1466 [19℄ di�erent IP address ranges were alloated to di�erent geographialregions to keep routing tables shorter. Using higher 8 bits of IP address only,geographial region of lient an be approximated.22

Network distane in hops is also a good metri and an be obtained from routers.But it does not take into aount bandwidth available in path, urrent tra� on thepath between luster and server. In short, available bandwidth for transfer on pathand delays in eah hop are not taken into aount. It is usually a stati measure ofproximity, sine as found by Paxon [28℄ that 68% routes on the Internet are stablefor at least a week and 87% routes on Internet are stable for at least six hours. Also,studies by Crovella et al [14℄ have found that the hop ount has very low orrelation(0.16) with response time (measured at lient side). So it does not seem very goodmetri to use.Round trip time is another metri that an give better and relatively auratedelay experiened in path and to some extent, a lower RTT indiates higher availablebandwidth. However, it is very dynami in nature, it hanges quikly over relativelyshort period of time. It has muh more variation for di�erent lusters omparedto hop ount, it gives better path information between lient and luster. On thedownside, it is relatively ostlier to measure and requires more frequent refreshes.Measuring bandwidth, by using tools like pathhar [22℄ or even using other moree�ient urrent tehniques [23℄, generates lots of additional network tra� and takeslong time, so use of this metri is not pratial.Last two metris an be used only after a number of lusters are tried (whihresult in degraded performane for lient) and a huge database is maintained. Still,load on lusters an hange over time and older information may not predit goodluster. These metris are really useful for lient side server seletion only.After omparing these metris for lient-luster proximity, we onlude that RTTis the best metri to use for getting path information. It requires periodi refresh andis relatively ostlier to measure (ompared to hop ount or geographial information)but it provides urrent and better network harateristis information. So we shouldtry to limit overheads in measuring it. Crovella et al [14℄ found in their study thatwhen used at lient side it resulted in less than 1% additional network tra� and gavevery good results when three ping messages were used to measure RTT information.To further minimize overhead, instead of all lusters measuring RTT for eahlient, we propose to do the measurement only for a small subset of lients with23

very high request rate. Arlitt et al [5℄ �nd out that 75% of total HTTP requests toany server ome from 10% of networks. So if we ollet information about only veryhigh request rate generating lients, we an use that information for all lients onthe same network. We an further limit number of lusters whih should measureRTT based on geographial information (approximated by use of lient IP address)and having less load to ertain maximum number(say at most 3).In our approah, eah server gives state information to front node in the lusterand this aggregated state information is used for assigning requests within the lusterand is propagated to DNS in aggregated form to make oarse grain (per lient IPbased) request assignment to luster. More details an be found in setion 3.6. Wegather this proximity information one high request rate is reported by luster toDNS, so it does not delay reply from DNS, however �rst reply for even those lientsis based on geographial proximity information approximated using IP addresses (itis used for all lients, who either do not generate large number of requests or queryDNS �rst time after long interval).3.4 Overview of arhitetureWeb server system onsists of many lusters distributed geographially all over theworld plaed at strategi loations, similarly lients are also in di�erent geographialregions. Thus it enables us to take into aount variation of request rate from eahgeographi region.Our approah is to dynamially distribute requests based on urrent systemstate information. All servers in luster report state information to front nodeand front node uses this information to distribute individual lient requests (eahTCP onnetion) oming to luster among servers in luster intelligently. Frontnode reports aggregated luster load information to DNS like a single node of highapaity. Whih one again uses this information to resolve IP address of a lusterfor queries from lient to provide them better servie in terms of pereived delay.Colleting only server state information is not su�ient, servers also ollet numberof requests oming from eah IP address and send to front node whih aggregates24

Figure 3.2: Additional messages exhanged among omponents in DWSSthis information and reports IP addresses of lients having very high request rateto DNS. It has been found that more than 75% requests an ome from 10% ofnetworks. Using request rate information, DNS asks few lusters to ollet lusterto lient proximity information only for those lients. Cluster to lient proximity isfound by sending ICMP Eho request messages to lients. Additional messages sentamong entities are shown in Figure 3.2.For lient request distribution inside eah luster, IP paket forwarding by hang-ing destination IP address of request pakets only an be used as shown in Figure 3.3.Every IP paket that reahes at front node for HTTP onnetion is diverted at IPlayer before delivery to TCP layer. A program running at the front node seletsserver for this lient based on lient IP address and server load information, addressof seleted server is �lled in destination address �eld of IP paket and paket isre-injeted bak on network, so it reahes the seleted server. At server this paketis one again diverted and destination address is set bak to IP address of front node25

Dest: Server IP

IP Packet

(Private local
 IP address)

 using divert socket at application layer
One way IP packet forwarding by Front node

Front Node Server

IP Packet

(Change dest (Rewrite dest

 Reply to client
 directly with
 aliased cluster
 IP address

Dest: Cluster IP

From Client

to server IP) to Cluster IP)

Figure 3.3: One way distributed IP paket rewriting mehanismand is re-injeted in TCP/IP stak of server node. Eah server has seondary IPaddress (ARP disabled) same as IP address of front node, so HTTP server aeptsthis paket and response pakets diretly go to lient from seleted server withoutdoing any additional modi�ation or delay. This results in additional delay of aboutone milliseond for eah inoming paket, if servers and front node are on same LAN.Sine this paket forwarding an be done at appliation layer, it was hosen for emu-lation, however in atual system, paket forwarding inside kernel using MAC addressan be done or dediated hardware an be used for more e�ient dispathing.3.5 AlgorithmsLoad balaning is done at two plaes in path of HTTP request servie, �rst atthe DNS level and seondly at the front node of luster. DNS tries to balaneload on lusters by providing IP address of appropriate luster's front node. Whenrequest reahes the front node, it balanes load amongst the servers in that luster.In exeptional ases when luster is overloaded (due to uneven request rate fromlients and ahing of DNS entries), HTTP requests an be redireted to other26

lightly loaded luster(s).Within eah luster, every server periodially sends its load information to frontnode, whih sends aggregated load information about luster to DNS. This loadinformation transfer an take plae aperiodially too if load ondition hanges sud-denly at any omponent, say any server beomes overloaded.A number of system state information parameters are olleted by eah server,for example, system load averages, system and user pu utilization, free RAM, Bu�erRAM, number of disk aesses, free swap, number of proesses, number of requestsserved in last 64 seonds and number of bytes transferred in last 64 seonds. Usingaverage number of onnetions sent (dispathed and urrently ative) to partiularserver in past prede�ned time interval and its load ondition in that time interval (auser de�ned funtion depending on bottleneks present) apaity of eah server, i.e.average number of onnetions it an serve without signi�ant inrease in responsetime is dynamially estimated and updated with every load update from server byfront node. Similarly every front node aggregates load information of every serverand informs available free apaity of whole luster to DNS periodially.We desribe algorithm below at eah omponent (DNS, front node and serversin eah luster).3.5.1 Load balaning at DNSIn response to query from lient for resolving domain name, DNS returns IP addressof server. All requests are sent to server having that IP address for time periodalled Time to live (TTL). After expiration of TTL, query is one again sent toDNS. Sine within TTL period all requests from that lient (or its gateway) are sentto the same server, if number of request generated by that lient are higher thanothers it an reate load skew. Aim should be to assign lients having high requestrates to servers having higher apaity. Again TTL value should be small beauseload skew is reated by these lients.For getting request rate (number of requests in unit period), servers (or frontnodes of lusters) should send this information periodially to DNS. We distinguishbetween lients based on their request rates. Servers send information of request27

rate only when lient request rate is higher than a threshold. DNS instruts fewpossibly nearest lusters (having remaining apaity higher than request rate) to getround trip delay to lient.For lients having high request rate, we maintain information about their requestrate, list of few andidate servers(say 3) having enough remaining apaity at timeof RTT probe with RTT, time stamp of last RTT probe.Proedure revmsgs is proedure responsible for reeiving messages of di�erenttypes and dispathing these messages to appropriate handler funtions dependingon type of message, pseudo ode below shows main messages reeived :proedure revmsgs{Input: Soket for reeiving messagesOutput: Noneread message from soket and determine type of messageswith(message type){ase load_info:/* Message from front nodes about load information on eah luster */all update_loadbreak;ase request_rate:/* Message from front nodes about request rate of lients */all update_requestratebreak;ase ip_request:/* Message from DNS for preferred IP address of lient */all resolve_ipbreak;ase rtt_reply:/* Message from front nodes about RTTs between luster and lients */28

all update_rttsbreak;} Proedure update_request_rate is alled when front node sends this request rateinformation to DNS.proedure update_request_rate{Input: Client IP addresses, request rateOutput: Nonefor eah IP address of lient (or its gateway) {if(no request rate available for this IP)add request rate reord for this lient with urrent time stampelseupdate request reord for this lient with urrent time stampif(no andidate server in list or time stamp of probe is too old)send_probes_for_rtt(Client IP)}update average request rate information.} If no request rate information about a lient IP is reeived for few periods ofrequest update then that entry is deleted.Proedure send_probes_for_rtt adds IP address of lient for sending probe formeasuring rtt to list of new nearest and not overloaded lusters.proedure send_probes_for_rtt{Input : IP address of lient to probe29

Output: Noneselet few lusters nearest (approximated using IP address) to lient havingremaining apaity > request rate of lientfor eah luster in above listadd lient IP for sending request for rtt probes for this lusterupdate probe timestamp for lient with urrent time} Atual message ontaining Client IP addresses is sent to eah luster periodiallyafter every �xed interval or su�ient number of lients are already queued.Proedure update_rtts is exeuted when message from luster front node aboutinformation of round trip time between them and lient is reeived.proedure update_rtts{Input: Cluster IP, Client IP, rtt, number of suessful rtt probesOutput: Noneif(number of andidate servers is less for Client IP)add_andidate(Client IP,Cluster IP,rtt,num probes)else if(any andidate server has higher rtt in andidate server listor had less number of suessful probes)update_andidate(Client IP,Cluster IP, rtt, num probes)} add_andidate and update_andidate keep a list of rtt reords in asendingorder of round trip time and number of suessful rtt probes for given lient IP.Proedure update_load is exeuted when message from front node of any lusterabout load information is reeived. 30

proedure update_load{Input: IP address of luster's front node, apaity, loadOutput: Nonefind reord for nodeupdate load information of lusterupdate available free apaity of luster and whole system} Finally lients request for host name to IP address resolution.proedure resolve_ip{Input: IP address of lient (or its gateway, i.e. firewall et.) and domain nameOutput: IP address of front node of lusterif (information about lient request rate is available){if(probe time stamp is too old)send_probes_for_rtt(lient IP)find list of lusters sorted on previously probed rtt to lientfor eah luster in list in asending order of rttif(available apaity of luster > request rate of lient){redue available apaity of luster by lient request ratereturn(Cluster IP address);}/* If all servers probed are overloaded */send_probes_for_rtt(lient IP)}else{ set request_rate to average request rate of all lients.find list of nearest lusters sorted on nearness approximated by IP address31

for eah luster in list in asending order of proximityif(available apaity of luster > request rate of lient){redue available apaity of luster by lient request ratereturn(Cluster IP address);}}/* If no luster is yet seleted, all servers are overloaded */selet luster in proportion to free apaityreturn(Cluster IP address)}3.5.2 Load balaning at front node of eah lusterFirst front node ollets information about request rates from eah lient IP, thenperiodially it sends request rate information of only those lients whih have highrequest rate to DNS.Similar to DNS, front node also reeives di�erent types of messages and invokesappropriate message handler based on type of message, main messages are serverload information and lient request rate from eah servers in luster, request formeasuring RTT to lient from DNS and it also selets server in luster for eah newTCP onnetion from lient and rewrites destination address of IP pakets omingfrom lients with seleted address.Eah server periodially (at large intervals of order of minute) sends request rateinformation of lients in terms of number of requests by that lient. On reeipt ofrequest rate update message, reeive_request_rate proedure is invoked.proedure reeive_request_rate{Input: Client IP addresses, requestsOutput: Nonefor eah Client IP addressupdate_request_rate(Client IP,number of requests)32

update global request rate information} update_request_rate reates new reord or �nds reord for given lient IP andaggregates request rate information about eah lient.Periodially luster sends aggregated request rate information of lients whihgenerate high number of requests than average lient.proedure send_request_rate{Input: Client IP and their request ratesOutput: None (sends this info to DNS)alulate Threshold based on average request ratefor eah Client IP having request rate > Threshold{add Client IP and request rate in queueif(queue is full)send queued request rate information of lients to DNS}send queued request rate information of lients to DNS} Front node reeives detailed load information from eah server periodially. Usingaverage number of onnetions sent to it in that prede�ned interval and obtainedload information from server, front node estimates number of onnetions server anserve, i.e. apaity of server. This estimate is updated with every load update fromserver.proedure reeive_server_load{Input: Server IP address, load 33

Output: Nonefind reord for server using IP address and update server loadestimate and update number of onnetion server an serveupdate luster's load information and available apaity} Cluster sends aggregated load information periodially to server or when loadondition hanges signi�antly.When DNS requests for measuring RTT between lient and Cluster, followingproedure is exeuted.proedure reeive_probe_for_rtt{Input: Client IP addressesOutput: Nonefor eah Client IP address in listsend predefined number of eho requests to lient periodially} Clients reply with Eho reply for eah eho request, RTT is measured and av-eraged. Average RTT along with number of suessful probes are sent to DNSperiodially.Finally it forwards requests to servers in luster in proportion to remaining a-paity of eah server,proedure forward_request{Input: IP pakets from lients for HTTP requestOutput: IP pakets with destination address of seleted serverif(onnetion already exists for this lient IP and port){34

if(paket is fin)move this onnetion reord to a list where it will be reyled after fewminutesupdate time stamp for this onnetionwrite IP address of server in destination field and re injet on network}else if(paket is syn){selet servers in proportion to their remaining apaityreate new onnetion reord with urrent time stampwrite IP address of server in destination field and re-injet on network} else drop this paketif(load on eah server > apaity and least loaded luster list not empty)rediret request to other lusters in proportion to their free apaity} All the onnetion reords for onnetion on whih there was no paket trans-mitted from soure for a long time are also freed periodially.3.5.3 Support at eah serverEah server sends its load information to front node periodially or when its loadondition hanges signi�antly.proedure send_server_load{Input: Current loadOutput: Sends load information to front nodeget urrent load information from system35

send_load_to_front_node(load)} Eah server also sends lient request rates to front node periodially however atlonger interval (order of minute).proedure send_request_rate{Input: Client IP and their request ratesOutput: None (sends this info to front node)read html aess log file and aggregate number of requests from eah lientsend_request_rate_to_frontnode(Client IP, request rate)} Also eah server has seondary aliased IP address same as front node's IP addressso when paket is reeived using other IP address, this paket should be re-injetedbak in protool stak with hanged destination IP address of front node.proedure hange_destination_address{Input: Inoming IP pakets for HTTP onnetionOutput: IP pakets with hanged destination addressfor eah inoming IP paket for HTTP onnetionrewrite destination address to IP address of front node(and seondary IP)and re-injet it bak in TCP/IP stak} Thus IP pakets reeived by front node are forwarded to server using loal privateIP address of server and then server rewrites dest address bak to luster IP addressand to tp layer it seems that this paket ame with destination address of aliasedseondary IP address diretly. 36

Chapter 4Test bed for Measuring Web ServerSystem PerformaneWe needed a framework for studying tradeo�s and impat of di�erent parameterson a web server system, this framework was required to test performane of Dis-tributed Web Server System proposed by us and ompare its performane with otherarhitetures proposed earlier e.g., round robin, random, weighted et.To ompare various poliies for request distribution at server side, we designedand implemented a test bed whih tries to emulate real network senarios and followsall steps in HTTP request servie. In fat, all standard omponents used in theInternet are used in this test bed, for example, BIND (Berkeley Internet DomainName Server) is used for DNS and Apahe web servers. We have used Webstone [30℄for generating HTTP requests. We have modeled WAN delays and bursty paketlosses whih are ommon on Internet links. All mahines used are Pentium PCsrunning Linux operating System.In this hapter, we �rst desribe design goals, and then disuss our assumptions.After a brief overview of the test bed, we desribe request distribution mehanismsused at the front node and DNS. Lastly we desribe various omponents of the testbed.
37

4.1 Design goalsThe test bed was designed to failitate easy measurement of various parameters ofweb server performane like average response time for requests and the throughputof Web Server system. While setting up the test bed following goals were kept inmind:1. The test bed should emulate real Internet senario in the lab environment. Itshould use standard omponents and follow standard protools used in Inter-net.2. Test bed should be general enough so that di�erent poliies for request dis-tribution at front node and DNS an be easily inorporated in this test bed.Thus it should make omparison of di�erent shemes very easy.3. The test bed should be �exible enough to modify only seleted omponentswithout needing many hanges in other omponents.4. Servers should pass their state information to front node and front nodesshould pass luster state information to DNS so that various dynami poliiesbased on system state information for request distribution an be implementedand ompared easily.5. Design of test bed should be suh that it does not onstrain or �x the numberof servers, lusters and lients to be used in the test bed.6. It should only fous on distributed web sever system implementation and weshould be free to use standard benhmarking software like "Webstone" fortesting the performane of system.4.2 AssumptionsSine test bed was reated for emulation of Internet environment in lab, we madethe following assumptions: 38

1. In IP paket forwarding mehanism, it was assumed that eah IP paket willontain TCP header, i.e., IP pakets are not fragmented. In Linux, higherlayers indeed use maximum transfer unit information so that pakets do notneed fragmentation and reassembly in LAN environment.2. To avoid any entral entity like router from beoming bottlenek, paket lossesand delays in one diretion are introdued by front node when pakets reahto web servers and by lients themselves when pakets arrive from servers forthem.3. We have implemented one way distributed paket rewriting for request dis-tribution at front nodes and all servers have to rewrite inoming IP paketsfor HTTP onnetions. We assume that overhead of rewriting inoming IPpakets for re-injetion in TCP/IP stak with aliased seondary IP address isnegligible.4.3 Overview of test bedDi�erent steps for measuring performane of distributed web server system areshown in Figure 4.1. Load generator (any third party benhmark program) runson nodes at lient side and generates HTTP requests to distributed web server sys-tem. Distributed web server system is part of test bed and its omponents aremodi�ed orresponding to load balaning strategy used in web server system. Ad-ditional software omponents running at these nodes ollet statistial information,whih is olleted and proessed. After proessing this statistial data, performaneis analyzed and results are presented.Web server system in test bed uses the same general hierarhial struture shownin Figure 3.1. This model allows one to emulate behavior of multiple networksin di�erent geographial regions. Single server an be used instead of one lusterontaining front node and multiple servers, so this test bed allows us to emulateluster based as well as independent server based arhitetures or web server systemsontaining mixture of both. 39

Figure 4.1: Blok diagram of Test bedWeb server system onsists of many lusters distributed geographially all overthe world plaed at strategi loations in possibly di�erent time zones. Similarlylient domains modeled by multiple lient proesses on one or more lients also aredivided in di�erent geographial regions. Thus it enables us to take into aountvariation of di�erent parameters like delay, loss, request rate et. from eah geo-graphial region.Sine we have tried to emulate real Internet like system and used standard om-ponents and protools, we expet to use same test bed for measuring performaneof almost every load balaning web server system with minimal modi�ation insome omponents orresponding to mehanism used in the system. Below we brie�ydesribe software omponents that run on di�erent omponents of test bed
40

4.3.1 Software omponent at eah serverSoftware running at eah server in luster ollets system state information likeload average (i.e. average number of proess ready to run in last 1, 5 and 15minutes), CPU and memory utilization, number of ative onnetions, number ofserver proesses running to handle lient requests (with Apahe server, the number ofproesses running to handle requests is automatially determined based on numberof requests).This software periodially obtains system load at short intervals (every 500 mse)and if load has hanged sine last update onsiderably, hange in load is propagatedto front node. Otherwise, if load does not hange appreiably, still load updateis sent every four seond (8 lok tiks of 500 mse) to front node as heart beatmessage to inform that it is still alive and update its load information. To maintainonsistent view of load information of all servers in luster, all servers send thisperiodi load update at approximately the same time to front node.Using web server aess log (whih is assumed to be in the standard Common-Log Format [13℄), number of requests from eah lient domain (IP address of lient)is determined and this information is propagated to front node. This information isolleted and sent periodially at larger intervals (128 tiks of 500 mse, i.e. every64 seonds).At every server, every inoming paket for HTTP onnetion is diverted fromTCP/IP stak and after hanging destination address bak to that of IP address offront node, it is re-injeted bak in TCP/IP stak. Now this paket is reeived byHTTP server, running at that server, as normal paket oming to it from interfaehaving IP address of front node.4.3.2 Software omponents at front node of eah lusterFront node is responsible for distributing requests oming to luster, it takes intoaount load on eah server and previous request rate of lient (if available), beforedispathing request to any server. We are using only inoming IP paket destinationIP address rewriting to dispath lient requests among servers in luster. So seletedserver depends on lient IP address (hene its previous request rate) and server41

load. We use IP �rewalling mehanism that in turn uses Berkeley paket �lterfaility inside the kernel at low level to �lter pakets oming for HTTP port andusing divert soket (that stops paket from going up in TCP/IP stak) pakets arereeived by appliation program, whih selets server and writes seleted server's IPaddress in destination address �eld and re-injets that paket bak in the network.Front node also reeives load updates (heart beat messages) and asynhronousalarm messages about overload and underload situations of server. It also reeiveslient request rate in the last 64 seonds from eah server and aggregates this infor-mation. Eah front node is in syn with DNS for alarm tiks. So all front nodes inthe system, reeive load updates at almost the same time, aggregate and send theaggregated load information to DNS. Thus DNS reeives latest and onsistent infor-mation about all lusters. Front nodes also send request rate information of lientshaving very high request rate (above the average request rate of lient domains) toDNS but this information an put more load on DNS so this information is sent indistributed manner by di�erent front nodes every 64 seonds.Separate optional appliation on front node also reeives requests from DNS tosend ICMP eho requests to selet lients. It sends ICMP eho request messages tothose lients and reports RTTs between lients and that luster. Sine only smallperentage of lients are sent ping messages, and lients whose reent RTT infor-mation is available are ontated only after a refresh time interval in our proposedarhiteture, load on the front node due to it is not expeted to be high. Thisresponsibility an be handed over to the least loaded server in luster easily.4.3.3 Software omponents at DNSDNS may use load information of eah luster, lient request rate and proximityinformation to resolve IP of any luster (i.e. IP of front node or shared seondary IPaddress of eah server in luster). Current implementation of domain name server(BIND-9.1) do not have any support for weighted apaity of IP resolution or anyother dynami poliy based on urrent load, et. It only supports random seletionof IP address for Address query when multiple IP addresses are present for singleserver as spei�ed in RFC 1034 [26℄ and RFC 1035 [27℄. We have extended BIND42

for this purpose.For seletion of desired IP address depending on lient IP address, we havereated a separate appliation that an run on the same DNS mahine or any othermahine. BIND has been modi�ed to send lient IP address to this appliation,whih selets luster IP address for that lient as per poliies implemented andBIND returns that IP address to lient. That appliation may selet IP addressof luster based on loads of server and proximity approximated by IP addresses oflusters and lients, if no real proximity information(e.g. RTT) is already availablefor any lient, e.g. if lient is sending request for the �rst time or after a long timewhen its information is deleted or the lient does not generate enough requests.Optionally, this appliation an send queries to front nodes for di�erent lients, itthen reeives and automatially updates RTT between lusters and lient.DNS reeives load updates periodially from eah luster. If load on luster isvery high or load information is not reeived, DNS may not resolve IP address ofthat luster further till load onditions return to moderate level on luster dependingon poliy used. DNS also reeives IP addresses of high request rate lients from eahluster at larger interval (eah luster sends this information every 64 seonds). Thisinformation an be used in di�erent poliies if desired, for example, in arhitetureproposed by us, DNS selets a subset of lusters (3 lusters at most) whih arenearer to lient (approximated using IP addresses) and are not overloaded. ThusDNS ollets lient IP addresses whom di�erent seleted lusters should ping tomeasure RTT. Requests to measure RTT to lients are sent by DNS to lusters.These lusters measure RTT to eah lient and return measured RTTs to DNS,DNS updates proximity information for eah lient in hash table and for next addressresolution reply to lient, this proximity information an be used.4.4 Request distribution mehanismsWe have implemented mehanisms for request distribution at two plaes, at DNSand at the front nodes.
43

4.4.1 At DNSAt DNS, using a separate appliation, whih runs along with modi�ed BIND server,desired luster IP address for di�erent lients an be seleted aording to desiredpoliy. We have already implemented four poliies : random, round robin, weightedand nearest server seletion (proposed by us). In our appliation, there is a methodselet_luster whih takes input lient IP address and selets luster as per poliyspei�ed. New poliies an be implemented very easily by modifying this method.All available information about lusters and lients having high request rate (ifpresent) is aessible easily using their IP addresses. Information about all lustersan also be obtained sequentially.4.4.2 At Front nodesAt front node, using our appliation eah new TCP onnetion from lients forHTTP request an be sheduled on desired server. Similar to DNS, we have im-plemented three poliies for server seletion at front node : random, round robin,weighted round robin (based on urrent load of servers). By modifying a methodalled selet_server whih takes lient IP address as input and returns server IPaddress to whih this new onnetion should be forwarded, sheduling poliies anbe easily hanged. Currently, distributed IP paket rewriting mehanism is used, soonly lient IP address and TCP port number of lient side an be used to determinewhih server to selet.All available information about servers and lient request rate information (forprede�ned time interval in past and average) is aessible easily using their IP ad-dresses. Information about all servers an also be obtained sequentially.4.5 Experimental setupWe have setup a test bed having 3 lusters on di�erent logial networks modelingthree di�erent geographial regions. Eah luster has one front node and two serversonneted to front node for that luster. Servers are on�gured to have aliased44

seondary IP address same as luster IP and have loal private IP address that isused for IP paket forwarding by the front node.We have used ten lients to generate requests to web server system. Clients werealso assigned IP addresses in suh a way that lients in same geographial regionhad higher order seven bits as mentioned in RFC 1466 [19℄ desribing guidelines formanagement of IP address spae. Using this RFC, we modeled three geographialregions for lusters - region1 as Europe (mahines had IP addresses in 194.*), re-gion2 as North Ameria (mahines had IP addresses in 198.*) and region3 as Pai�Rim (address with 202.*). Similarly three lients eah were present in region1 andregion2 and two lients in region3. We also had three more lients in other regionswhih represent mix of lient not falling in either of three regions. A DNS was alsosetup to resolve IP addresses of lusters. Atual test bed setup used for performingexperiments is shown in Figure 4.2.To model WAN e�ets, arti�ial delays and paket losses were introdued usingNistnet software. Half of delay (in spei�ed range) and losses ourred in one di-retion and half in the reverse diretion. Front nodes introdued delays and paketlosses for pakets transmitted by lients and lients introdued similar delays andlosses after reeiving pakets from servers but before giving it to the higher protoollayers.We have on�gured lower delays for IP pakets sent and reeived between lientsand servers in the same geographial region and relatively higher delays for paketsbetween lients and servers in di�erent geographial regions. These delays weregenerated randomly within spei�ed range (say, 10-50 ms round trip delay in thesame region and 50-250 ms delay aross the regions).Similarly we on�gured lower paket losses with higher orrelation between dropof pakets to model bursty lower paket losses in small distane links for links insame geographial region and higher paket losses with high orrelation betweensuessive paket drops for links aross di�erent geographial regions (e.g. 5% losswith .9 orrelation on links in same region and 10% loss with .85 orrelation on linksonneting di�erent regions).
45

More details about experiment are disussed in the next hapter ontaining re-sults.

46

Region2 (198.*.*.*) Region1 (194.*.*.*)

Region3 (202.*.*.*)

S S SS11 12 21 22

S S32

F

31

1 F

F

11C

2

3

C C C C

C C

C C C

12 13 21 22 23

31 32

654

Other Regions(192.*,196.*,206.*)

194.22.11.21 194.11.22.23 194.83.46.95

194.31.104.10

198.83.104.31 198.23.46.91 198.11.146.37

202.11.33.24 202.9.73.22

192.12.23.45 196.91.75.81 206.111.25.43

 Internet

198.91.84.32

202.47.93.23

C

DNS

Figure 4.2: Test bed used in Experiments
47

Chapter 5ResultsWe desribed the setup of test bed used for performing experiment in the last hap-ter. To generate load and measure performane we have used Webstone originallydeveloped by Silion Graphis and is now maintained by mindraft.om. This isstandard software used to benhmark ommerial web servers. Di�erent shemeswere tested with everything kept idential exept poliy for luster seletion at DNS.Webstone software's master proess ontrolling lients was run on one of lient PCs.Experiments were onduted by varying number of lient proesses from 20 to120 in steps of 10. Webstone tries to exeute roughly equal number of proessesat eah lient. To generate uneven distribution of requests, we wrote the ID ofsame lient mahines multiple times in its on�guration �le. These mahines thengenerated more load than others. When number of lient proesses were 20,40,..,120,lients in all geographial regions generated almost equal load (per lient load i.e.number of proesses running were still di�erent). When number of lient proesseswere 30,50,..,110 lients in region1 and region2 were running twie as many lientproesses as they were running with 10 less lient proesses (i.e. at 20,40...), whileother lients were still running same number of proesses, so load was highly uneven.We have run at least ten iterations of one minute duration eah for eah datapoint and taken average of them for plotting. Eah Webstone lient proesses madejust single query to DNS before sending requests to servers (lusters) and usedresolved mapping for whole testing period of one minute. So due to appliation48

level ahing by webstone lients, requests from same lient proess reahed to sameluster for one minute duration regardless of TTL value provided by DNS.5.1 Arhitetures emulated on test bedIn our experiments, we were unable to stress web server with heavy load due tolimited available RAM (32 MB) and lient mahines were not able to handle heavydata rate or run large number of webstone proesses. Due to paket delay software(whih was run as kernel module), when data rate was high, bu�ering large amountof data for delay period onsumed more RAM and generated very high interrupt rateand Linux kernel did not handle the situation graefully. Even kernel ompiled withoption "CPU is too slow to handle full bandwidth" did not make systems stablewhen the data rate was high. Due to these limitations, we ould not reate thesituations when queuing or proessing delays at server dominate network delays.We have emulated four poliies for luster seletion at DNS in our test bed andwe disuss the results obtained for those poliies below:5.1.1 Round robin seletionIn round robin sheme, DNS resolves address of �rst luster for �rst DNS query, ofseond luster for seond query and so on. After giving addresses of all servers, itstarts resolving address of �rst server again.Round robin seletion poliy is very popular DNS sheme. It is used to equallydistribute load on multiple servers of same apaity if it is assumed that all thelients generate same number of requests. But in pratie, many lients generatevery high or very low load thus resulting in load skew.Average response times as reported by webstone is plotted in Figure 5.1. It isquite lear that there is not muh variation in average response time as servers werenever bottlenek in servie of requests and their servie time did not hange muh.
49

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Round robin schemes at DNS

Round Robin(even Load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Round robin schemes at DNS

Round Robin(even Load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Round robin schemes at DNS

Round Robin(even Load)
Round Robin(uneven load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Round robin schemes at DNS

Round Robin(even Load)
Round Robin(uneven load)

Figure 5.1: Average response time with Round robin poliy used at DNS
5.1.2 Random seletionAs the name indiates, random poliy selets any luster randomly for eah querythus this poliy should also resolve IP address of eah luster equal number of timein the long duration. But as opposed to round robin, for very small duration IPaddress of one luster may be resolved many times more than that of others. This isthe poliy (however oupled with shu�ing of IP addresses) implemented in BIND.Average response times reported by webstone is plotted in Figure 5.2. Sineseletion of server was random, average response time measures also seems to haveno �xed pattern.5.1.3 Weighted apaity seletionIn weighted apaity seletion, eah luster is assigned either a stati weight mea-sured o�-line (for example server 2 is twie as powerful as server 1 and 3) or maydynamially report about free apaity of lusters to DNS. DNS returns IP address50

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for random selection schemes at DNS

Random (even load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for random selection schemes at DNS

Random (even load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for random selection schemes at DNS

Random (even load)
Random (uneven load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for random selection schemes at DNS

Random (even load)
Random (uneven load)

Figure 5.2: Average response time with Random seletion poliy used at DNSof partiular server in proportion to its weight or free apaity as reported by luster.We implemented dynami status reporting based weighted seletion. To return IPaddresses in proportion to their weight following algorithm is used:1. Generate running sum of weights assoiated with eah luster2. Generate random number between one and sum of weights3. Return luster having least running sum of weights and having running sumof weights greater than or equal to the generated random number.This algorithm is used for servers having di�erent apaity and if used withdynami apaity reporting, it an deal with load skew due to uneven request rateeasily.Average response times reported by webstone is plotted in Figure 5.3.
51

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Time for dynamic weighted selection schemes at DNS

Weighted (even load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Time for dynamic weighted selection schemes at DNS

Weighted (even load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Time for dynamic weighted selection schemes at DNS

Weighted (even load)
Weighted (uneven load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Time for dynamic weighted selection schemes at DNS

Weighted (even load)
Weighted (uneven load)

Figure 5.3: Average response time with dynami Weighted poliy used at DNS5.1.4 Nearest luster seletionThis is the sheme proposed by us. Here, DNS tries to send address of geographiallynearest luster to lient if that server is not overloaded. In our sheme, reord oflients generating heavy requests (muh more than average) is kept, so that theselients do not get IP address of server that is already loaded heavily. So if the requestfrom lient omes for the �rst time or it is not high request rate generating lient,DNS gives address of geographially nearest server with enough free apaity to serverequests. This geographial proximity is estimated using IP addresses of luster andlient, for better estimates, loal snapshot of whois database may be also queried.In our emulation, we have used high order IP address bits to ompare nearness oflients and servers. For giving better performane, we have made poliy adaptive.If lient generates heavy request rate, its request rate is reported by lusters andwe pro-atively request few possibly nearest lusters, having free enough apaity toserve the requests generated from lients, to measure round trip time between themand lient. RTT is de�nitely better but ostlier metri to get but this overhead is52

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Nearesr selection schemes at DNS

Nearest (even load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Nearesr selection schemes at DNS

Nearest (even load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Nearesr selection schemes at DNS

Nearest (even load)
Nearest (uneven load)

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times for Nearesr selection schemes at DNS

Nearest (even load)
Nearest (uneven load)

Figure 5.4: Average response time with Nearest server seletion poliy used at DNSvery small (less than 1% of tra� inrease if ping is done to all lients, as reportedby Crovella et al [14℄ in their study). Thus DNS gets better and muh more aurateproximity information between lusters and lient. Sine DNS gives IP address oflusters having enough free apaity, if there is no sudden variation in request patternof lients, no server should be overloaded in spite of load skew. RTT informationis refreshed after refresh time interval. Pseudo ode for the algorithm is given insetion 3.6.1.Average response times reported by Webstone is plotted in Figure 5.4. As seenin plot, one again variation is very small but average response time is muh betterthan the other three poliies.5.2 Performane ComparisonWe have plotted average response time with di�erent load distribution for di�erentpoliies in Figure 5.5 and Figure 5.6. As the plots show that under the network53

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with even load for different schemes at DNS

Round Robin

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with even load for different schemes at DNS

Round Robin
Random

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with even load for different schemes at DNS

Round Robin
Random

Weighted

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with even load for different schemes at DNS

Round Robin
Random

Weighted
Nearest

Figure 5.5: Average response time (even load) with di�erent poliies used at DNSonditions assumed by us, our RTT based nearest luster seletion approah out-performed other approahes by a good margin. While other approahes have averageresponse times in range of 1.5 seonds to 1.8 seonds, our approah gave averageresponse time in range of 0.92 seond to 0.96 seonds. Thus our results verify thatif the links onneting di�erent geographial regions have muh higher delay andhigher paket losses as ompared to links within same geographial region (whihis usually the ase), we an provide better response time to lients by taking intoaount the network onditions by using round trip time.We have also plotted maximum response time for any onnetion under di�erentpoliies, we one again see that our poliy performs better. These results wouldbe muh better if lients in other geographial regions had lesser delays and paketlosses with any of nearby luster (we had set up higher delays and high paket losseswith every luster). The results are plotted in Figure 5.7.Other two plots, average onnetion rate (number of onnetions/se) and serverthroughput are shown in Figure 5.8 and Figure 5.9 respetively. The large di�erenein onnetion rate and hene higher throughput is attributed to aggressive sequential54

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with uneven load for different schemes at DNS

Round Robin

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with uneven load for different schemes at DNS

Round Robin
Random

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with uneven load for different schemes at DNS

Round Robin
Random

Weighted

0

0.5

1

1.5

2

20 30 40 50 60 70 80 90 100 110 120

R
es

po
ns

e
T

im
e

Number of client processes

Response Times with uneven load for different schemes at DNS

Round Robin
Random

Weighted
Nearest

Figure 5.6: Average response time (uneven load) with di�erent poliies used at DNSonnetion poliy used byWebstone software, whih tries to send onnetion requestsas fast as possible if earlier requests are servied quikly. Almost similar responsetime for varying number of lient requests also shows that in our test bed requestswere distributed properly by all poliies in most ases and servers were not loadedenough.In our proposed system, more servers and lusters an be added easily withoutbringing down the system. Our system is also fault tolerant sine if any server inthe luster goes down, front node does not reeive system state information anddoes not send any new requests to that server. However, all onnetions alreadyestablished with that server are not graefully handled. Similarly, DNS did notresolve IP address of luster that went down, lients who were unable to onnet toresolved luster, try other luster IP addresses and onnet to other lusters. Thistime too, lients having already established onnetion with that luster get errorsbut no new onnetion afterwards is sheduled to luster until it omes up again.In short, we an onlude that our arhiteture saled well and our proposednearest luster seletion approah should give better results if network onditions55

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

Weighted

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

Weighted
Nearest

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

Weighted
Nearest

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

Weighted
Nearest

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

Weighted
Nearest

0

10

20

30

40

50

60

20 30 40 50 60 70 80 90 100 110 120

M
ax

im
um

 R
es

po
ns

e
T

im
e

Number of client processes

Max. Response Times for different schemes at DNS

Round Robin
Random

Weighted
Nearest

Figure 5.7: Maximum response time with di�erent poliies used at DNSfor aess within same geographial region are muh better than network onditionswhile aessing lusters in other geographial regions.

56

0

20

40

60

80

100

120

140

160

20 30 40 50 60 70 80 90 100 110 120

co
nn

ec
tio

ns
/s

ec

Number of client processes

Connection rates for different schemes at DNS

Round Robin
Random

Weighted
Nearest

0

20

40

60

80

100

120

140

160

20 30 40 50 60 70 80 90 100 110 120

co
nn

ec
tio

ns
/s

ec

Number of client processes

Connection rates for different schemes at DNS

Round Robin
Random

Weighted
Nearest

Figure 5.8: Connetion rate with di�erent poliies used at DNS

0

2

4

6

8

10

12

14

16

18

20 30 40 50 60 70 80 90 100 110 120

T
ot

al
 T

hr
ou

gh
 p

ut

Number of client processes

Through puts for different schemes at DNS

Round Robin
Random

Weighted
Nearest

0

2

4

6

8

10

12

14

16

18

20 30 40 50 60 70 80 90 100 110 120

T
ot

al
 T

hr
ou

gh
 p

ut

Number of client processes

Through puts for different schemes at DNS

Round Robin
Random

Weighted
Nearest

Figure 5.9: Total through put with di�erent poliies used at DNS57

Chapter 6Conlusion and Future ExtensionsWe designed and implemented a test bed for evaluation of load balaning strategiesfor distributed web server systems. This test bed is quite �exible and new poliiesan be ompared with already existing poliies very easily. This test bed will helpin understanding trade o�s and impat of di�erent parameters on a distributed webserver system.In our thesis, we proposed an adaptive and dynami poliy for server seletionand request distribution for a very large website. This DWSS an be deployed withurrent infrastruture and protools in use. This arhiteture is salable and faulttolerant too. In short, it meets all goals mentioned in design setion.We modi�ed IP paket forwarding method to rewrite only inoming IP paketsusing shared ommon IP pakets. This an be implemented totally at appliationlayer with divert soket and IP �rewalling support, sine pakets from lients aremuh shorter, even at appliation layer there is less overhead as ompared to rewrit-ing reply pakets whih was used in earlier proposed request distribution meha-nisms.From results obtained, we an onlude that our arhiteture will give betterresults when lients aessing a partiular site are spread in di�erent geographialregions and they are far away from eah other. Our arhiteture is geographi-ally salable as well as fault tolerant for new inoming requests. Our arhitetureahieved its main goal of minimizing response time pereived to lient.58

6.1 Future ExtensionsWe did not look at the other poliies for request distribution within eah luster.Besides it, we assumed that all the servers are apable of serving all the requests.Next step would be onsider partial repliation on di�erent servers within eahluster and ome up with a poliy at luster level to distribute di�erent requeststo di�erent servers to get advantage of ahing at eah server. Next step will beto support di�erent quality of servie to di�erent ustomers or to provide betterresponse time to lients requesting a subset of URL spae, for e.g. when they visitpages related to shopping at site.Our test bed an be further generalized to have swithing at di�erent layerof network, we have soure ode for symmetri and asymmetri spliing too. Ifsupport of swithing at higher layers is provided, poliies that make use of URL orappliation layer ontent to selet server an also be emulated on our test bed andan be evaluated easily.After integration of swithing at appliation level, support for partial and dy-nami repliation an also be added to make it more omprehensive test bed. Onerequest distribution poliies and repliation strategies are in same test bed, dynamirepliation poliies an be explored further whih are still not properly understoodand explored in distributed web server systems.

59

Appendix ASoftwares UsedIn our test bed we used many third party softwares. In next setions, we brie�ydesribe few mehanisms, software and their use.A.1 Divert Soket MehanismFor request distribution at front nodes, we needed some mehanism to apture in-oming IP pakets for HTTP onnetions before reahing to TCP layer and rewritedestination address of IP pakets and re-injet them bak in the network withoutTCP layer knowing about them. Similarly, we needed mehanism to hange desti-nation IP address of inoming IP pakets for HTTP onnetion with loal privateaddress, rewrite their destination address and injet bak in protool stak to makeTCP layer believe that these pakets ame for aliased seondary IP address.We wanted to selet destination server address and rewrite all IP pakets at ap-pliation layer at front node. Divert soket provides us exatly same set of features.We used standard �rewalling mehanism (that uses high performane paket �lter-ing within Kernel after a setsoketopt all) to divert all IP paket with destinationTCP port 80 to divert soket port, where our appliation read them and modi�edthem. After modi�ation divert sokets provides options to re-injet pakets in loalTCP/IP stak or on network. At front node, pakets are re-injeted on network,while at servers pakets are allowed to pass up to higher protool layer in same60

mahine.Thus divert soket provided an easy mehanism for request distribution at frontnode within luster. However, divert soket requires pathing of kernel for divertsoket support.More details about divert sokets an be found at http://www.anr.mn.org/�divert/index.shtmlA.2 NistnetFor emulation of WAN harateristis in lab environment, we needed some softwareto introdue on�gurable delay and paket losses et in path of IP paket transfer.Nistnet software allows us to do the same. Nistnet software is now totally modu-lar (with release of version 2.0.10) whih does not require pathing of kernel, it isinstalled as loadable kernel module and using its ommand line interfae or GUIbased interfae, di�erent parameters like delay, paket loss, bandwidth et. an beset for all inoming IP pakets.More information about nistnet an be found at http://www.antd.nist.gov/nistnet/,it is free software from National Institute Of Standards and Tehnology.A.3 WebstoneFor benhmarking performane of web server system, we used Webstone. It is one ofmost popular and industry aepted free benhmark program. This software has twoparts, a master proess and multiple lient proesses whih may be rexeed on remotemahines. After establishing trust relationship between lients and master mahine,webstone rexes lient proess (as spei�ed in test bed on�guration �le) and lientproesses generate requests and report bak statistis to webstone. Webstone printsperformane results like number of onnetion/se., onnet time, response time,thruput of lient and servers, error level, Little's load fator et.More information aboutWebstone an be found at http://www.mindraft.om/webstone/.
61

Bibliography[1℄ Aggarwal, A., and Rabinovih, M. �Performane of Dynami RepliationShemes for the Internet hosting servie�. Teh. rep., AT&T Labs., Otober1998. http://www.researh.att.om/�misha/radar/tm-perf.ps.gz.[2℄ Akamai In. �How FreeFlow Works�.http://www.akamai.om/servie/howitworks.html.[3℄ Andersen, D., Yang, T., Holmedahl, V., and Ibarra, O. H. �SWEB:Towards a salable World Wide Web-server on multiomputers�. Pro. of 10thIEEE Int'l Symp. on Parallel Proessing, Honolulu (April 1996), 850�856.[4℄ Anderson, E., Patterson, D., and Brewer, E. �TheMagirouter: an appliation of fast paket interposing�.http://s.berkeley.edu/�eanders/projets/magirouter/osdi96-mr-submission.ps.[5℄ Arlitt, M. F., and Williamson, C. L. �Internet Web Servers: WorkloadCharaterization and Performane Impliations�. IEEE/ACM Transations onNetworking, Vol. 5, No. 5 (Otober 1997), 631�644.[6℄ Baentsh, M., Baum, L., and Molter, G. �Enhaning the Web's Infras-truture: From Cahing to Repliation�. Internet Computing Vol. 1. No. 2(Marh-April 1997), 18�27.
62

[7℄ Bek, M., and Moore, T. �The Internet-2 Distributed Stor-age Infrastruture projet: An arhiteture for Internet ontent han-nels�. 3rd Int'l WWW Cahing Workshop, Manhester, UK (June 1998).http://wwwahe.ja.net/events/workshop/18/mbek2.html.[8℄ C. Partidge, T. M. . W. M. �RFC 1546: Host anyasting servie�.[9℄ Cardelini, V., Colajanni, M., and Yu, P. S. �Dynami load balaning onweb server systems�. IEEE Internet Computing, vol 3, no 3 (May-June 1999),28�39.[10℄ CASAVANT, T. L., and KUHL, J. G. �A Taxonomy of Sheduling ingeneral-purpose Distributed Computing System�. IEEE Transations on Soft-ware Engineering, Vol. 14, No. 2 (February 1988), 141�153.[11℄ Ciso Systems In. �Distributed Diretor White Paper�.http://www.iso.om/warp/publi//iso/mkt/sale/distr/teh/d_wp.htm.[12℄ Colajanni, M., Yu, P. S., and Cardelini, V. �Dynami load balan-ing on geographially distributed heterogenous web servers�. IEEE 18th Int'lConferene on Distributed omputing systems (May 1998), 295�302.[13℄ The World Wide Web Consortium �The Common Log�leFormat�. http://www.w3.org/Daemon/User/Con�g/Logging.html#ommon-log�le-format.[14℄ Crovella, M. E., and Carter, R. L. �Dynami server seletion in the In-ternet�. Proeedings of the 3rd. IEEE Workshop on the Arhiteture and Imple-mentation of High Performane Communiation Subsystems (HPCS'95) (June1995). http://www.s.bu.edu/faulty/rovella/paper-arhive/hps95/paper-�nal.ps.[15℄ D. Mosedale, W. F., and MCool, R. �Lessons learned administeringNetsape's site�. Internet Computing Vol. 1 No. 2 (Marh-April 1997), 28�35.
63

[16℄ Damani, O., Chung, P., and Kintala, C. �ONE-IP: Tehniques for hostinga servie on a luster of mahines�. Proeedings of 41st IEEE Computing SoietyInt'l Conferene (February 1996), 85�92.[17℄ Ellen W. Zegura, Mostafa H. Ammar, Z. F., and Bhattaharjee,S. �Appliation-Layer Anyasting: A Server Seletion Arhiteture and use ina Repliated Servie�. IEEE/ACM Transations on Networking, Vol. 8, No. 4(August 2000), 455�466.[18℄ G.D.H. Hunt, G.S. Goldzsmit, R. K., and Mukherjee, R. �NetworkDispather: A onnetion router for salable internet servies�. Proeedings of7th Int'l World Wide Web Conferene (April 1998).[19℄ Gerih, E. �RFC 1466 - Guidelines for Management of IP address spae�.[20℄ Guyton, J., and Shwartz, M. �Loating nearby opies of repliated In-ternet servers�. Proeedings of SIGCOMM'95, Vol. 25, No. 4 (Otober 1995),288�298.[21℄ Gwertzman, J., and Seltzer, M. �The ase for geographial push-ahing�.Proeedings of 1995 Workshop on Hot Topis in Operating System (1995).[22℄ Jaobson, V. �A Tool to infer harateristis of Internet paths.�, April 1997.ftp://ftp.ee.lbl.gov/pathhar/.[23℄ Kelvin Lai, M. B. �Measuring Bandwidth'. Proeedings of IEEE INFO-COMM'99, NY (Marh 1999).[24℄ Kwan, T. T., MGrath, R. E., and Reed, D. A. �NCSA's World WideWeb server: Design and performane�. IEEE Computer, no. 11 (November1995), 68�74.[25℄ Mehmet Sayal, Yuri Breitbart, P. S., and Vingralek, R. �SeletionAlgorithms for Repliated Web Servers�. Proeedings of the Workshop on Inter-net Server Performane (1998). http://www.s.wis.edu/~ao/WISP98/�nal-versions/mehmet.ps. 64

[26℄ Mokapetris, P. � RFC 1034 : Domain Names - Conepts and Failities�,November 1987.[27℄ Mokapetris, P. �RFC 1035 : Domain Names - Implementation and Spei-�ation�, November 1987.[28℄ Paxon, V. �End-to-End Routing Behaviour in the Internet�. IEEE/ACMTransations on Networking, Vol. 5, No. 5 (Otober 1997), 601�615.[29℄ R. Luling, B. M., and Ramme, F. �A study on dynami load balaningalgorithms�. Teh. rep., Paderborn Center for Parallel Computing, Universityof Paderborn, Germany, June 1992.[30℄ Trent, G., and Sake, M. �WebSTONE: The FirstGeneration in HTTP Server Benhmarking�, February 1995.http://www.mindraft.om/webstone/paper.html.[31℄ Yoshilakawa, C., Chun, B., and Eastham, P. �Using smart lients tobuild salable servies�. Proeedings of Usenix 1997 (January 1997).[32℄ Zongming Fei, Samrat Bhattaharjee, E. W. Z., and Ammar,M. �A Novel Server Seletion Tehnique for improving the ResponseTime of a Repliated Servie�. IEEE INFOCOMM '98 Conferene (1998).http://www..gateh.edu/fa/Ellen.Zegura/papers/alas-inf98.ps.gz.

65

