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Abstra
tDue to the widespread proliferation of 
omputer networks, atta
ks on 
omputer sys-tems are in
reasing day by day. Preventive measures 
an stop these atta
ks to someextent, but they are not very e�e
tive due to various reasons. This lead to the devel-opment of intrusion dete
tion as a se
ond line of defense. Intrusion dete
tion systemstry to identify atta
ks or intrusions by analyzing network data (network-based sys-tems) or operating system and appli
ation logs (host-based systems), possibly inreal-time. These systems either sear
h for patterns of well known atta
ks in thedata (misuse dete
tion) or try to �nd abnormalities in the data by �rst 
onstru
tingthe normal pro�le of the system under observation and then dete
ting deviationsfrom this pro�le (anomaly dete
tion). Anomaly dete
tion is important due to theinability of misuse dete
tion te
hniques in dete
ting unknown atta
ks.In this thesis, we des
ribe the design and implementation of an anomaly dete
tions
heme for Sa
het - A distributed, realtime, network-based intrusion dete
tion sys-tem developed by us. In this s
heme, the normal pro�le is 
onstru
ted using learningte
hniques and stream handling te
hniques, from features extra
ted for ea
h 
onne
-tion in the network tra�
. Stream handling te
hniques are employed be
ause theproblem of 
onstru
ting normal pro�le from feature ve
tors falls in the data stream
lass of problems. Several learning and stream handling te
hniques were tested ona ben
hmark data set and the best performing te
hniques were implemented in Sa-
het. The �nal system was tested on a ben
hmark dataset 
ontaining over 58 typesof atta
ks.
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Chapter 1Introdu
tionIn the last few years there has been a tremendous in
rease in 
onne
tivity betweensystems whi
h has brought about limitless possibilities and opportunities. Unfortu-nately, se
urity related problems have also in
reased at the same rate. Computersystems are be
oming in
reasingly vulnerable to atta
ks. These atta
ks or intru-sions, based on �aws in operating system or appli
ation programs, usually read ormodify 
on�dential information or render the system useless. Formally, an intrusionis de�ned as any a
tivity that violates the 
on�dentiality, integrity or availability ofthe system.Intrusion prevention is more desirable, but it 
annot be fully a
hieved due toseveral reasons like unknown bugs in software, vast base of installed systems, abuseby insiders and human negligen
e. Many times it is di�
ult to have good a

ess
ontrol while simultaneously making the system user friendly. Atta
ks are inevitable,but even after the atta
k has o

urred, it is important to determine that the atta
khas happened, assess the extent of damage and tra
k down the atta
ker. This helpsin preventing future atta
ks. Due to these reasons, a dete
tion system as a se
ondline of defen
e is always desirable.Intrusion dete
tion systems (IDS) 
an be 
lassi�ed in two ways. The �rst oneis based on the sour
e of data being analyzed by the system. If the data is fromoperating system logs and appli
ation logs, it is 
alled a `host based' dete
tionsystem; if the data is from network tra�
, it is 
alled a `network based' dete
tion1



system. Ea
h method has its own advantages and disadvantages. For example, anatta
k by a lo
al user 
annot be dete
ted by a network based system, but a denialof servi
e atta
k 
an be dete
ted more e�
iently by a network based system. Thusea
h method is more e�
ient in dete
ting a parti
ular 
lass of atta
ks than theother.The other 
lassi�
ation is based on the dete
tion method being used irrespe
tiveof the sour
e of data. The main types in this 
lassi�
ation are misuse dete
tionsystems and anomaly dete
tion systems. In misuse dete
tion, well known intrusionsare represented by signatures. Ea
h signature is a pattern of a
tivity whi
h 
orre-sponds to the intrusion it represents. A dete
tion system using su
h signatures is
alled a `signature based' or a `misuse dete
tion' system. These dete
tion systemssear
h for patterns of intrusions in the data being analyzed. Thus misuse dete
tionis basi
ally a pattern mat
hing pro
ess. Misuse dete
tion systems are a

urate andhave a low false alarm rate, but they 
annot dete
t unknown intrusions.Anomaly dete
tion systems assume that intrusions are anomalies or deviationsfrom normal system a
tivity. These dete
tion systems try to 
apture the normalbehaviour of the system (also 
alled the normal pro�le), and then dete
t deviationsfrom this normal behaviour. If this deviation is greater than a threshold, an alert israised. Anomaly dete
tion systems 
an dete
t unknown intrusions, but they have ahigh false alarm rate. There is generally a trade-o� between dete
tion rate and falsealarm rate.Several IDSs have been developed in the publi
 and private domains using avariety of te
hniques and with varying features. Commer
ial IDSs mostly use sig-nature based dete
tion te
hniques. The features o�ered by them in
lude s
alability,real-time dete
tion and a user friendly interfa
e. Open sour
e IDSs employ eithermisuse dete
tion or anomaly dete
tion or both. They o�er features like s
alabilityand real-time dete
tion. For example, Snort [4℄, an open sour
e IDS, employs misusedete
tion and is 
apable of doing real-time dete
tion. Publi
 domain resear
h IDSsgenerally employ novel dete
tion te
hniques. For example, ADAM [6℄ uses datamining te
hniques and IDES [17℄ uses statisti
al te
hniques.Looking at the intrusion dete
tion �eld from a resear
h perspe
tive, the resear
h2



in misuse dete
tion is fo
used mainly on writing signatures whi
h en
ompass allpossible variations of an atta
k without mat
hing normal a
tivity, and on developinge�
ient methods of pattern mat
hing. In anomaly dete
tion, the main fo
us is on�nding methods for representing the normal pro�le, sele
tion of features used for
onstru
ting the pro�le and determining threshold levels so that most intrusions aredete
ted while false alarms are minimized. In an overall system perspe
tive, thefo
us of 
urrent resear
h is on developing hybrid systems, i.e systems that are bothnetwork based and host based or that employ both anomaly dete
tion and misusedete
tion.1.1 Problem statement and Approa
hIn this thesis, we des
ribe the design and implementation of a network based, real-time anomaly dete
tion s
heme for the Sa
het IDS. Sa
het is a network based, real-time, hybrid intrusion dete
tion system developed at IIT Kanpur. Sa
het employsboth misuse dete
tion and anomaly dete
tion; hen
e it has the bene�ts of boththe te
hniques, i.e. the a

ura
y of misuse dete
tion systems in dete
ting knownatta
ks, and the ability of anomaly dete
tion systems in dete
ting unknown atta
ks.The Sa
het IDS has agent based ar
hite
ture with a 
entral server. The dete
tionis 
arried out at ea
h agent and the results are aggregated at the server. Thear
hite
ture is explained in more detail in Chapter 3. In the remaining part of thisse
tion, we des
ribe the main issues involved in the thesis, followed by our approa
h.The main task in anomaly dete
tion is to 
onstru
t the normal pro�le of thesystem under observation. This pro�le should adapt to the 
hanges in the systemover time. It should also be small enough so that real-time dete
tion is possible.The pro�le is generally 
onstru
ted from a set of measures or features extra
ted fromthe data being analyzed. In this 
ase, the features are extra
ted from the networkpa
kets sni�ed at appropriate points in the network being monitored. One of themain issues here is feature extra
tion in real-time.The 
onstru
tion of pro�le from feature ve
tors follows the data stream model;we have a 
ontinuous stream of feature ve
tors and the pro�le at any point should3




apture the information in the stream up to that point. If possible, the pro�le
onstru
tion method should give more weight to newer data when 
ompared witholder data. Sin
e the amount of network data is generally very large, any methodused to 
onstru
t the pro�le 
annot obviously take the entire data seen in the streamso far, as input. Hen
e, e�
iently dealing with the data stream is also a major issuehere. Older data in the stream has to be dis
arded periodi
ally, but the informationin the dis
arded data has to be retained to some extent. Stream handling te
hniqueshave to be employed for this purpose. Finally, the dete
tion te
hnique has to beimplemented in Sa
het so that it requires minimal human intervention.Our approa
h is as follows: the pro�le is learned from feature ve
tors using unsu-pervised learning (
lustering) te
hniques. The features used for learning the pro�leare extra
ted for ea
h 
onne
tion in real-time, from the header and payload partsof network pa
kets sni�ed at various points in the network. Features 
orrespondingto the payload part of the pa
ket are extra
ted only for 
ommonly used appli
ationlayer proto
ols. These features are then aggregated at a single lo
ation, the Sa-
het learning agent, and the pro�le of the entire network is learned o�ine. Streamhandling te
hniques are used to deal with the 
ontinuous stream of feature ve
tors.These te
hniques 
an be viewed as wrappers around the learning te
hniques. They
onstru
t a synopsis of the stream seen so far, with the possible option that newerdata is given more weight in this synopsis. Learning is then applied on this synopsisand the resulting pro�le is distributed to the dete
tion points where deviations aredete
ted and alerts are raised.Two di�erent unsupervised learning te
hniques, support ve
tor 
lustering [7℄ anda modi�ed k-means te
hnique [14℄ were 
onsidered for learning the pro�le. To handlethe feature ve
tor stream, three di�erent te
hniques, Divide-and-
onquer te
hniqueof 
lustering over data streams [15℄, reservoir sampling [25℄ and bootstrapping [16℄,were 
onsidered. The �ve valid 
ombinations (a 
lustering te
hnique and a streamhandling te
hnique) resulting from the above were tested on a ben
hmark data set.The 
ombination that gave best results was implemented in the Sa
het IDS. Theimplemented anomaly dete
tion s
heme was then tested on a ben
hmark data setof size 20GB, whi
h 
ontains over 50 atta
ks of various types.4



1.2 Organization of reportChapter 2 presents a brief overview of some of the te
hniques applied to anomalydete
tion and des
ribes a few anomaly dete
tion systems. Chapter 3 presents thear
hite
ture of Sa
het and its 
omponents. Chapter 4 presents the results of evalu-ation of various learning te
hniques on the ben
hmark dataset. The results in this
hapter form a justi�
ation for the 
hoi
e of the methods used in the system. Chap-ter 5 des
ribes the design and implementation of the anomaly dete
tion system inSa
het. Chapter 6 presents the results of testing the system using the ben
hmarkdataset. Chapter 7 presents 
on
lusions and future work.

5



Chapter 2Related workIn this 
hapter we present a brief review of the literature relevant to this thesis. Wedes
ribe some of the te
hniques proposed for anomaly dete
tion and a few a
tuallyimplemented anomaly dete
tion systems. We review some data mining te
hniquesin se
tion 2.1 and some ma
hine learning te
hniques in se
tion 2.2. In se
tion 2.3,we review some stream handling te
hniques and their properties. Finally, in se
tion2.4, we look at some a
tually implemented anomaly dete
tion systems.2.1 Datamining te
hiniquesData mining refers to the pro
ess of automati
ally extra
ting models from largestores of data [27℄. Data mining te
hniques have been applied for both misuse andanomaly dete
tion and for feature sele
tion. In anomaly dete
tion normal usagepatterns are mined from audit data. In misuse dete
tion en
oded atta
k patternsare mined from audit data to dete
t intrusions. Thus, data mining te
hniques viewintrusion dete
tion as a data analysis pro
ess.Data mining te
hniques like asso
iation rules [24℄, frequent episodes [20℄ and theRIPPER [9℄ algorithm are widely used for intrusion dete
tion. Asso
iation rulesare used to derive multi-feature 
orrelations from a database table. Formally, anasso
iation rule is an expression of the form X� > Y; 
onfiden
e; support, where Xand Y are subsets of the feature set, support is the per
entage of re
ords in the table6



that 
ontain both X and Y and 
on�den
e is the ratio of support to the number ofre
ords that 
ontain only X [24℄. Asso
iation rules �nd intra-audit re
ord patterns.On the other hand, frequent episodes, whi
h are sets of events that o

ur togetherin a spe
i�ed time window [20℄, are used to �nd inter-audit re
ord patterns. Thelast of the above mentioned algorithms, RIPPER [9℄, is a rule learning algorithm.It generates a set of if-then rules using whi
h one 
an 
lassify test data.A framework for 
onstru
ting features and dete
tion models using data miningte
hniques is proposed in [27℄. The main idea is to use data mining te
hniques toidentify useful patterns of user and program behaviour and use these patterns fordete
ting anomalies and known intrusions. As an example, RIPPER 
an be appliedon normal and abnormal sendmail system 
all tra
es and the rules generated 
an beused to 
lassify new tra
es as normal or abnormal. The problem of identifying usefulfeatures is also addressed in [27℄. Asso
iation rules and frequent episode te
hniquesare used to dis
over inter-audit and intra-audit re
ord patterns. These patterns helpthe user in sele
ting relevant features.2.2 Ma
hine Learning Te
hiniquesLearning algorithms generally try to 
onstru
t a 
lassi�er using training data, andlater apply this 
lassi�er on test data. Two forms of learning, supervised learning andunsupervised learning, are generally applied for intrusion dete
tion. In supervisedlearning, a 
ost metri
 or label is provided for ea
h training pattern by a tea
her.The goal here is to redu
e the total 
ost for all training patterns. In unsupervisedlearning or 
lustering, the algorithm tries to form `natural groupings' or 
lusters ofthe input patterns without the involvement of a tea
her.Among supervised learning te
hniques, neural networks have been widely usedfor intrusion dete
tion [22℄, and re
ently support ve
tor ma
hines have also beenused [21℄. Neural networks are 
onstru
ted from an inter
onne
ted set of units
alled neurons. Ea
h neuron takes a number of real-valued inputs and produ
es asingle output. Arti�
ial neural networks are inspired from the biologi
al learningsystem whi
h is built of a 
omplex web of inter
onne
ted neurons. On the other7



hand, support ve
tors ma
hines (SVMs) are derived from the statisti
al learningtheory. SVMs are binary 
lassi�ers; they try to 
onstru
t an optimum hyperplaneafter transforming the training points from the input spa
e to a higher dimensionalfeature spa
e. The optimality 
riterion for 
onstru
ting the hyperplane is to max-imize the margin of separation of the hyperplane from the two 
lasses of trainingpoints. Intrusion dete
tion using neural networks and support ve
tor ma
hines wasdes
ribed in [21℄. Using supervised learning te
hniques is not very pra
ti
al for in-trusion dete
tion be
ause these te
hniques require both normal and atta
k data; butin pra
ti
e, it is di�
ult to get real atta
k data.Unsupervised learning te
hniques have also been applied to intrusion dete
tion.The most popular unsupervised learning method is the k-means 
lustering algorithm.The main goal of the algorithm is to 
hoose k 
enters in the input spa
e so thatthe sum of the distan
es of the training points from their nearest 
luster 
enteris minimized. But the drawba
k of this algorithm is that the value of k has to bede
ided beforehand, whi
h is di�
ult as k depends on the data. Many modi�
ationsof this algorithm have been proposed to over
ome this drawba
k. Y-means [14℄ is onesu
h algorithm whi
h tries to bring out the a
tual number of 
lusters in the datagiven as input. A 
lustering te
hnique based on the SVMs, 
alledsupport ve
tor
lustering, was proposed re
ently [7℄. It tries to 
onstru
t a sphere of minimalradius in the feature spa
e that en
loses all the training points.2.3 Stream Pro
essing Te
hniquesA data stream is a massive sequen
e of elements arriving at a rapid rate. Thegeneral data stream 
omputation model 
ontains a data stream, a stream pro
essingengine and a synopsis in memory, along with the requirements that ea
h re
ord
an be a

essed only a �nite number of times, the memory for storing synopsis islimited and the pro
essing required to maintain the synopsis must be low. Datapro
essing in network monitoring appli
ations generally follow this model be
ausethese appli
ations generate large streams of data.
8



There are several stream pro
essing te
hniques available. One method of 
on-stru
ting the synopsis is by using sampling te
hniques like reservoir sampling [25℄and 
on
ise sampling [13℄. In reservoir sampling, a sample of a �xed size M is main-tained and new elements are added to the sample with a probability M=n, wheren is the total number of stream elements seen so far, by evi
ting random elementsfrom the sample. In 
on
ise sampling also, a sample is maintained, with dupli
atesstored as (value, 
ount) pairs. For ea
h new element, 
ount is in
remented if theelement is already present in the sample; otherwise the element is inserted into thesample with some probability.Clustering under the data stream model is des
ribed in [15℄. The approa
h isto divide the stream into disjoint windows, �nd k 
enters for ea
h window weightedby the number of points assigned to them, and �nally apply 
lustering on theseweighted 
enters to obtain the 
lustering of the entire stream.2.4 Anomaly dete
tion systemsIn this se
tion we des
ribe four anomaly dete
tion systems that use four di�erentte
hniques for learning the normal pro�le of the system under observation.2.4.1 ADAMADAM (Audit Data Analysis and Mining) [6℄ uses several data mining te
hniquesto dis
over abnormal patterns in large amounts of data like network audit data. Itdis
overs frequent events in network tra�
 and uses them to build a pro�le of normalnetwork a
tivity. During dete
tion time it employs a sliding window method andwithin ea
h window it 
onsiders frequent events that do not appear in the pro�le asanomalous. The limitation of ADAM is that it 
annot dete
t stealthy atta
ks whi
h
ause a relatively small number of events within a short period of time.
9



2.4.2 NNIDIn [22℄, a method of applying neural networks for intrusion dete
tion is proposed.It is based on the idea that every user leaves a `print' when using the system and aneural network 
an be used to learn this print and identify ea
h user. If the behaviourof a user does not mat
h this print then an alert for a possible intrusion is raised.The system is 
alled NNID (Neural Network Intrusion Dete
tor). It is an o�ineanomaly dete
tion system whi
h uses a ba
k-propagation neural network to identifyusers based on the distribution of 
ommands used by them. It assumes that di�erentusers exhibit di�erent behaviours based on their needs. The set of 
ommands andtheir frequen
ies form the print of the user. The model is implemented in a UNIXenvironment where the audit logs for ea
h user are 
olle
ted for a period of severaldays. Command distribution ve
tors are extra
ted from these logs and the networkis trained to identify the print of ea
h user. The network is then used to identify theuser for ea
h new 
ommand ve
tor and if the suggestion is di�erent from the a
tualuser or if the network does not have a 
lear suggestion then an anomaly is signaled.2.4.3 IDES Statisti
al Anomaly Dete
torThe IDES statisti
al anomaly dete
tor is part of the SRI International's host-basedreal-time intrusion dete
tion expert system [17℄. It is based on the general anomalydete
tion model proposed in [12℄. It observes behaviour on a 
omputer system andadaptively learns what is normal for users and groups. It also raises alert for apotential intrusion if the observed behaviour deviates signi�
antly from expe
tedbehaviour. It uses multivariate methods to learn normal behaviour.IDES maintains a statisti
al knowledge base 
onsisting of normal pro�les of sub-je
ts. The de�nition of a pro�le, as given in [17℄, is �a des
ription of a subje
t'sbehaviour with respe
t to some intrusion-dete
tion measures". Pro�les are 
on-stru
ted from audit re
ords and 
onsist of statisti
s su
h as frequen
y tables, meansand 
o-varian
es. Ea
h audit re
ord is a ve
tor of intrusion-dete
tion variables 
or-responding to the measures re
orded in the pro�les. It 
an be represented by a pointin the n-dimensional spa
e. If this point is su�
iently far from the point de�ned10



by the values stored in the pro�le then it is 
onsidered anomalous. Thus the sys-tem takes into a

ount the values of individual variables as well as the 
orrelationbetween them.The statisti
al knowledge base is updated daily using the observed behaviour ofsubje
ts. The means, frequen
y tables and 
o-varian
es in the pro�le are multipliedby an exponential de
ay fa
tor periodi
ally. This ensures that re
ent behaviour isgiven more weight than old behaviour resulting in a 
hanging pro�le over time asthe behaviour of the subje
t 
hanges.The IDES statisti
al anomaly dete
tor uses a single point in n-dimensional spa
eto represent the pro�le. But generally, normal data itself is very diverse and a singlepoint 
annot represent the entire spe
trum of normal a
tivity.2.4.4 Defen
e using autonomous agentsIn [11℄, an ar
hite
ture is proposed in whi
h programs use geneti
 programmingto evolve and dete
t anomalies. These programs, 
alled autonomous agents, runindependently of ea
h other and of the jobs already on the system. The agentslearn normal and intrusive behaviour by observation and adapt to 
hanging pro�les.A prototype solution in whi
h the agents monitor the network tra�
 on a systemis des
ribed. In this solution the agents a

ess the network data through a wellde�ned set of primitives. They require the values of various �elds in the networkpa
ket headers and a variety of aggregate values su
h as average pa
ket size, inter-pa
ket arrival times et
.Ea
h agent 
an be represented as a parse tree for a simple language. Thislanguage allows the agent to inspe
t 
ontents of network pa
kets and a
t a

ordingly.Before the agents are deployed for dete
tion they are trained to identify intrusionsand minimize false positives. This involves human intera
tion with the agents viathe training module. The operator presents both normal and intrusive tra�
 to theagents and guides their learning through a feedba
k me
hanism. The agents usegeneti
 programming to a
tually learn.Many agents are evolved at the same time with ea
h agent monitoring a smallaspe
t of the overall network tra�
. The agents 
ooperate by 
ommuni
ating their11



suspi
ions among themselves. Ea
h agent makes a suspi
ion broad
ast wheneverit believes that the observed a
tivity is suspi
ious. As su

essive agents analyzepa
ket data and make su
h broad
asts, the level of suspi
ion rises above a prede�nedthreshold and the system raises an alert, indi
ating a possible intrusion. The maindrawba
k of this system is that it requires manual intervention during the trainingphase.
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Chapter 3Ar
hite
ture of Sa
het IDSIn this 
hapter, we brie�y des
ribe the ar
hite
ture of the Sa
het IDS. We begin byintrodu
ing the 
omponents in the system and the intera
tions between them at ahigh level. In the subsequent se
tions, we brie�y des
ribe the 
omponents in thesystem, as they were before anomaly dete
tion was in
orporated in Sa
het. In the�nal se
tion of this 
hapter, we des
ribe the 
hanges made to the ar
hite
ture andthe 
omponents for in
orporating anomaly dete
tion into Sa
het.The ar
hite
ture of Sa
het is shown in Figure 3.1. The 
omponents in the system,as 
an be seen from the �gure, are multiple Sa
het agents, a Sa
het server and theSa
het 
onsole. The agents and the server 
ommuni
ate with ea
h other usingthe Sa
het proto
ol, whi
h provides authenti
ation, reliability, 
on�dentiality andintegrity.Sa
het agents are deployed at various points in the network, depending on itstopology. Their main task is to monitor the network for intrusions. The Sa
hetserver is deployed on a dedi
ated ma
hine and is responsible for 
ontrolling theagents, 
olle
ting data from agents and intera
ting with the Sa
het 
onsole. It usesa database to store 
on�guration information and alerts. The user intera
ts withand 
ontrols the system using the Sa
het 
onsole. Generally the server and the
onsole are installed on the same ma
hine.
13
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AgentAgentAgent

Learning agent Console
Server

Figure 3.1: Ar
hite
ture of Sa
het IDS3.1 The Sa
het Proto
olThe Sa
het proto
ol, used for 
ommuni
ation between agents and server, is imple-mented over UDP. It provides authenti
ation, en
ryption and reliability to the 
om-muni
ating parties. Authenti
ation is done using publi
 key 
ryptography method.The server maintains the publi
 keys of all the agents and similarly ea
h agentmaintains the publi
 key of the server. During authenti
ation, ea
h side proves theownership of its publi
 key to the other side using a 
hallenge-response me
hanism.After authenti
ation is 
ompleted in both dire
tions, the server sends a random se-
ret key to the 
orresponding agent. All the messages from this point are en
ryptedusing the se
ret key. This key is 
hanged periodi
ally.14



Encryption
type

Packet ID Agent ID Data Length Message type

Not encrypted

Data

Encrypted with receiver’s public key or session key
Encrypted with sender’s

 private key or session key.

Bytes      2                       2                          2                         2                       2                            variable                                  128 or 16

Hash

Figure 3.2: Message formatReliability is a
hieved using a
knowledgements, timeouts and retransmissions.Every message in the proto
ol is a
knowledged by the re
ipient. If the sender doesnot re
eive the a
knowledgement within a time period, either be
ause the pa
ket islost or be
ause the re
ipient is down, it retransmits the pa
ket. The retransmissionis done until either the sender gets an a
knowledgement or the retransmission 
ountex
eeds a threshold. In the later 
ase, the sender assumes that the other side isdown and goes into the initial unauthenti
ated state. The retransmission timeoutis updated using the round trip time of ea
h message.Every message in the proto
ol uses exa
tly one UDP pa
ket. The general messageformat is shown in �gure 3.2. Ea
h message has a header of size 10 bytes, divided into5 �elds of 2 bytes ea
h. The `en
ryption type' �eld is used to spe
ify the en
ryptionmethod, used for the 
urrent message, to the re
eiver. It takes one of three possiblevalues representing the following: en
ryption is not used, RSA en
ryption is usedor symmetri
 en
ryption is used. The `pa
ket id' �eld 
ontains a unique integer forea
h message with respe
t to the sender and is used to identify dupli
ates. The`agent id' �eld is used to identify the sender of the message. Ea
h agent is assigneda unique 2 byte non-zero integer for this purpose. The messages from server have0 in this �eld. The `data length' �eld gives the length of the data portion of thepa
ket in bytes. The `message type' �eld identi�es the message present in the 
urrentpa
ket. The data �eld is interpreted based on this value. The `hash' �eld 
ontainsthe en
rypted MD5 
he
ksum of the entire pa
ket. The size of this �eld is 128 bytesif RSA en
ryption is used and 16 bytes if 3-DES is used.
15



3.2 The Sa
het ServerThe Sa
het server is a 
onsole based appli
ation whi
h 
an run in the ba
kgroundas a daemon or servi
e. It does not have any user interfa
e but it 
an intera
twith other programs a
ting as user interfa
es. The main fun
tions of the server areas follows: the server a
ts as a 
entral point from whi
h the entire system 
an be
ontrolled by the administrator. The server aggregates data from agents and storesthis data in the database. The data re
eived from agents in
lude alerts generated forpossible intrusions. The server maintains information about agents in the databaseand retrieves it at the beginning of its exe
ution. It also 
ommuni
ates with theSa
het 
onsole using a simple request-response proto
ol in whi
h the 
onsole sendsa request for some information or a 
ommand from user and the server respondswith the appropriate information or result.3.3 The Sa
het AgentThe Sa
het agent is also a 
onsole based appli
ation whi
h 
an run in the ba
k-ground. It does not intera
t with the user; as the name indi
ates, it does work onbehalf of the server. It 
onsists of two main 
omponents: the 
ontrol agent andthe misuse dete
tor. These two 
omponents run as separate pro
esses on the targethost. The main fun
tions of the 
ontrol agent are 
ommuni
ating with the server,exe
uting 
ommands from server lo
ally and 
ontrolling the misuse dete
tor.The misuse dete
tor analyzes network pa
kets in real-time for �nding possibleintrusions. It has a database of atta
k signatures. It applies them on ea
h 
onne
tionand raises an alert on �nding a mat
h. Snort [4℄ is 
urrently used as the misusedete
tor in Sa
het. The agent 
an be deployed to monitor either an entire networksegment or a single host.3.4 The Sa
het ConsoleThe Sa
het 
onsole is a Java based GUI appli
ation using whi
h the administratorintera
ts with the system. It 
ommuni
ates with the server on a prede�ned port. It16



also intera
ts with the database for extra
ting information requested by the admin-istrator. The administrator uses the 
onsole to 
on�gure, monitor and 
ontrol thesystem from a 
entral lo
ation. For example, the administrator 
an add a new agentto the system using the 
onsole. The 
onsole presents important information aboutall the agents on a single s
reen and more detailed information about ea
h agent ona separate s
reen. It 
an also show alerts from all the agents simultaneously.3.5 In
orporating anomaly dete
tion in the Sa
hetAr
hite
tureIn this se
tion, we des
ribe the 
hanges made to the ar
hite
ture and 
omponentsof Sa
het to in
orporate anomaly dete
tion into Sa
het. The major 
hanges to thear
hite
ture are the addition of a learning agent to Sa
het and the in
lusion of ananomaly dete
tor at ea
h agent in the system.The anomaly dete
tor at an agent pro
esses network tra�
 and produ
es a 
om-pa
t representation 
alled feature ve
tor for ea
h 
onne
tion. Using this featureve
tor and the normal pro�le of the system, it generates an anomaly s
ore and de-te
ts deviations from the normal pro�le. It raises an alert if this deviation is morethan a threshold. The `
ontrol agent' 
omponent at the agent re
eives alerts andfeature ve
tors from the anomaly dete
tor and sends them to the server.The Sa
het server is modi�ed to re
eive both alerts and feature ve
tors fromagents; these alerts and feature ve
tors are stored in the database by the server.The server periodi
ally instru
ts the learning agent to learn the normal pro�le ofthe system. It 
olle
ts the normal pro�le from learning agent and distributes thispro�le to agents in the system.The Sa
het learning agent uses the same proto
ol des
ribed earlier for 
ommu-ni
ating with the server. The main task of the learning agent is to learn the normalpro�le of the system. It authenti
ates with the server like other agents, and waits for
ommands from server. Upon re
eiving the `start learning' 
ommand from server,it fet
hes the feature ve
tors from database and applies the learning algorithm onthis data. When the learning is 
ompleted, it sends the result or pro�le generated17



by the algorithm to the server.The Sa
het 
onsole was modi�ed so that it gives information about the learningagent in a separate s
reen. The user 
an start the learning of pro�le at the learningagent from the 
onsole. Many new messages were added to the Sa
het proto
ol toimplement the new features of server and agent des
ribed above. Sin
e the serverhas to deal with learning agent also, many learning agent spe
i�
 messages were alsoadded to the proto
ol.
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Chapter 4Appli
ation of Learning Te
hniquesfor Anomaly Dete
tionIn this 
hapter, we des
ribe the learning and stream handling te
hniques 
onsideredfor implementing in the anomaly dete
tion s
heme, along with their appli
ation tointrusion dete
tion, and give the results of testing these te
hniques on a ben
hmarkdataset. We begin by giving a 
lassi�
ation of atta
ks that is used throughout thisreport for presenting results. In the se
ond se
tion, we brie�y des
ribe the featuresused for testing. We des
ribe some learning and stream handling te
hniques in thesubsequent se
tions, and in the last se
tion we present the results of our tests.4.1 Classi�
ation of atta
ksClassi�
ation of atta
ks into groups that share 
ommon properties will make thepresentation and analysis of results easier. The 
lassi�
ation given here was orig-inally presented in [26℄. It is based on the level of a

ess of the atta
ker and thetransitions thereof. In this taxonomy, there are four levels of a

ess an atta
ker 
anhave. They are remote a

ess, lo
al a

ess, superuser a

ess and physi
al a

ess.In remote a

ess, the atta
ker 
an send network pa
kets to the vi
tim ma
hine buthe does not have an a

ount on that ma
hine. In lo
al a

ess, the atta
ker has an
19



a

ount on the vi
tim ma
hine and in superuser a

ess, the atta
ker has root privi-leges on the vi
tim ma
hine. In ea
h 
lass the atta
ker either performs some a
tionat a parti
ular level or tries to obtain a higher level of a

ess. The four 
lasses inthis 
lassi�
ation are explained below.4.1.1 Denial of Servi
e Atta
ksIn a denial of servi
e atta
k (DoS) the atta
ker tries to render a resour
e or systemfeature unusable by legitimate users by making it too busy with false requests. Thereare di�erent kinds of denial of servi
e atta
ks. Some atta
ks try to exploit bugs innetwork software and proto
ol sta
k by sending malformed pa
kets. Others sendvalid requests at a very fast rate so that the vi
tim ma
hine 
annot handle them.Remote a

ess is generally su�
ient to perform DoS atta
ks. Examples of DoSatta
ks are ba
k, ping of death, smurf, neptune, teardrop et
. [2℄4.1.2 ProbesProbes do not 
ause any damage by themselves but they provide valuable informa-tion whi
h 
an be used later to laun
h an atta
k. Remote a

ess is su�
ient todo probing. The atta
ker tries to sear
h for valid IP addresses, servi
es running onea
h ma
hine or for known vulnerabilities. Examples of probes and probing toolsare ipsweep, ms
an, nmap, saint, satan et
. [2℄4.1.3 Remote to UserIn a remote to user atta
k, the atta
ker has remote a

ess to a system but not lo
ala

ess. He tries to exploit some vulnerability in the system to gain lo
al a

ess. Thevulnerabilities in
lude bu�er over�ows in network server software, weakly 
on�guredand mis
on�gured systems et
. Examples of remote to user atta
ks are di
tionaryatta
ks, guest login, ftpwrite, sshtrojan, httptunnel et
. [2℄
20



4.1.4 User to RootIn a user-to-root atta
k, the atta
ker has lo
al a

ess on a system and by exploitingsome vulnerability he gains superuser privileges on that system. The most 
ommonvulnerability is the bu�er over�ow vulnerability. Other vulnerabilities like bugsin management of temporary �les and ra
e 
onditions are also exploited in theseatta
ks. Examples in this 
lass are eje
t, loadmodule, 
asesen, anypw, yaga et
. [2℄4.2 FeaturesThe features used in the evaluation 
an be divided into four main 
ategories. Theyare general, time-based, host-based and 
ontent-based. The general 
ategory 
on-tains features like proto
ol, servi
e, number of sour
e bytes et
. Time-based featuresare derived features whi
h are extra
ted by 
onsidering 
onne
tions in a 2 se
ondtime window. Host-based features are extra
ted by 
onsidering the last 100 
onne
-tions to the same host. Content based features are extra
ted from the data portionof the pa
ket and require analysis of appli
ation layer proto
ols.4.2.1 General featuresDuration Length of the 
onne
tion in number of se
onds.Proto
ol Transport layer proto
ol of the pa
ket, su
h as TCP, UDP et
.Servi
e Network servi
e on the destination su
h as FTP, HTTP et
. This infor-mation 
an be obtained from destination port number. e.g, FTP, HTTP et
.Sour
e bytes Number of data bytes from sour
e to destination.Destination bytes Number of data bytes from destination to sour
e.Flag Status of the 
onne
tion. This feature indi
ates whether the 
onne
tion ishalf 
losed, fully 
losed and whether there are any errors in the 
onne
tion.land This value is 1 if the sour
e IP address or port number is equal to destinationIP address or port number. Otherwise it is 0.21



Wrong fragment Number of wrong fragments. A wrong fragment is an IP frag-ment whose length is not a multiple of 8.Urgent Number of pa
kets in whi
h the urgent �ag is set.4.2.2 Content-based featuresHot Number of hot indi
ators like a

ess to system dire
tories, 
reation and exe-
ution of programs et
.Number of failed logins Number of failed login attempts.Logged in 1 if the login is su

essful. 0 otherwise.Number of 
ompromised 
onditions Count of ��le path not found" error.Root shell 1 if root shell is obtained. 0 otherwise.Su attempted 1 if root a

ess is attempted. 0 otherwise.Num root Number of 
ommands typed as root.Num �le 
reations Number of �le 
reation operations.Num shells Number of shell prompts.Num a

ess �les Number of operations on a

ess 
ontrol �les.Num outbound 
ommands Number of outbound 
ommands in an FTP session.Is hot login 1 if the login belongs to the `hot' list; 0 otherwise.Is guest login 1 if the login is a guest login; 0 otherwise.
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4.2.3 Time-based featuresSome of the features in this and in the next 
ategory use the 
on
ept of SYN errorand REJ error. A 
onne
tion whi
h has less than 2 SYN pa
kets is said to have aSYN error. A 
onne
tion whi
h is reje
ted by setting the RST �ag is said to have aREJ error. All these features are extra
ted by 
onsidering 
onne
tions in a 2 se
ondtime window.Count Number of 
onne
tions to the same host as the 
urrent 
onne
tion.Serror rate Per
entage of 
onne
tions that have SYN errors.Rerror rate per
entage of 
onne
tions that have REJ errors.Same srv rate Per
entage of 
onne
tions to the same servi
e.Di� srv rate Per
entage of 
onne
tions to servi
es other than the 
urrent servi
e.Srv 
ount Number of 
onne
tions to the same servi
e as the 
urrent 
onne
tion.Srv serror rate Per
entage of 
onne
tions to the same servi
e as the 
urrent onehaving SYN errors.Srv rerror rate Per
entage of 
onne
tions to the same servi
e as the 
urrent onehaving REJ errors.Srv di� host rate Per
entage of 
onne
tions to hosts other than the 
urrent host.4.2.4 Host-based featuresThe features in this se
tion are extra
ted by 
onsidering past 100 
onne
tions to thesame host as the 
urrent host.Dst host 
ount Count of 
onne
tions having the same destination host as the
urrent one.Dst host srv 
ount Count of 
onne
tions having the same destination host andsame servi
e as the 
urrent one. 23



Dst host same srv rate Per
entage of 
onne
tions having the same destinationhost and using the same servi
e.Dst host di� srv rate Per
entage of 
onne
tions to the same host as the 
urrentone and are to servi
es other than the 
urrent one.Dst host same sr
 port rate Per
entage of 
onne
tions to the 
urrent host hav-ing the same sour
e port.Dst host srv di� host rate Per
entage of 
onne
tions to the same servi
e as the
urrent one but 
oming from hosts others than the 
urrent one.Dst host serror rate Per
entage of 
onne
tions to the 
urrent host that have aSYN error.Dst host srv serror rate Per
entage of 
onne
tions to the 
urrent host and 
ur-rent servi
e that have an SYN error.Dst host rerror rate Per
entage of 
onne
tions to the 
urrent host that have aREJ error.Dst host srv rerror rate Per
entage of 
onne
tions to the 
urrent host and 
ur-rent servi
e that have an REJ error.4.3 Supervised LearningIn supervised learning, ea
h point in the training data has a 
lass label assigned toit, whi
h is used by the learning algorithm during the training phase. The learn-ing algorithm tries to 
onstru
t a model whi
h 
an 
lassify the training data asa

urately as possible. For example, in neural networks the model 
onsists of theweights on the paths 
onne
ting the neurons. These weights are adjusted duringthe training phase using the 
lass labels of the training data. Similarly in a supportve
tor ma
hine, whi
h is a binary 
lassi�er, the model 
onsists of a hyperplane sep-arating the two 
lasses. The position of hyperplane is adjusted in su
h a way thatthe margin of separation between this plane and the nearest data points of the two24




lasses on either side of this plane is maximized. Again, this optimization is 
arriedout using the 
lass labels of the training data set. Thus, these algorithms dependheavily on the labels of training data set and any error in this labeling will result inan ina

urate 
lassi�er.When these learning te
hniques are applied to intrusion dete
tion, they requirea

urately labeled atta
k and normal data during the training phase. But in anypra
ti
al IDS, it is not possible to a

urately label the data; some atta
ks are �aggedas normal (false negatives) and some normal 
onne
tions are �agged as atta
k (falsepositives). Generating training data manually is not a viable option be
ause theamount of network data is generally very large and the training has to be doneperiodi
ally to 
ope up with the 
hanging patterns of network a
tivity. Anotherimportant issue here is the relative size of normal and atta
k data in the trainingdata. Generally, normal data will be overwhelmingly large when 
ompared to atta
kdata. Sin
e supervised learning te
hniques try to redu
e the error in 
lassifyingtraining data, by the output 
lassi�er, if one of the input 
lasses has very fewpoints, the learning algorithm may ignore this 
lass. This is a big drawba
k inour 
ase be
ause if the atta
k data, whi
h is present in relatively small numbersgenerally, is ignored either partially or 
ompletely by the learning algorithm, thedete
tion rate will fall drasti
ally.While 
hoosing the learning algorithm for the anomaly dete
tion s
heme we
onsidered the following supervised learning te
hniques: support ve
tor ma
hines[10℄, supervised k-means algorithm [18℄ and soft linear ve
tor quantization [23℄. Butdue to the reasons mentioned above, we did not 
onsider these algorithms duringthe testing phase in whi
h di�erent learning algorithms were 
ompared (by testingthem on a ben
hmark dataset) to 
hoose the best one.4.4 Unsupervised LearningIn unsupervised learning algorithms, the training data does not need to be labeled.These algorithms try to bring out `natural groupings' or 
lusters from the trainingdata, by looking at how 
lose a point is from the rest of the points in the training25



data. The degree of 
loseness is determined by using a metri
; the most widely usedmetri
 is the Eu
lidean distan
e.Unsupervised learning 
an be e�e
tively applied to anomaly dete
tion. In anomalydete
tion, the main goal is to learn the pro�le of the system under observation andthen dete
t deviations from this observed pro�le. In the 
ase of a network basedIDS, the normal pro�le is learned from feature ve
tors extra
ted for normal 
onne
-tions. Unsupervised learning te
hniques do not have the drawba
ks of the supervisedlearning te
hniques mentioned above, when applied to intrusion dete
tion. Even inthis 
ase the de
ision regarding the normality of a 
onne
tion is made by the IDSand hen
e the training data, from whi
h normal pro�le is learnt, may not entirelybe normal. However, the algorithm tries to bring out the di�eren
es among theinput points, and hen
e we 
an always identify and dis
ard most of the atta
k data,so that the normal pro�le is learnt from mostly normal data. Our approa
h is todis
ard 2 per
ent of the training data on the grounds that it is possibly anomalous.The normal pro�le retains information from the rest of the 98 per
ent training data.We 
onsidered two unsupervised learning te
hniques for anomaly dete
tion. Theyare y-means [14℄ and support ve
tor 
lustering [7℄. We brie�y des
ribe these twote
hniques and their appli
ation to anomaly dete
tion in the following two subse
-tions.4.4.1 Y-means 
lusteringK-means is a popular 
lustering algorithm whi
h partitions the input data into kgroups based on a similarity metri
. Its main drawba
k is that the result dependson the value of k and �nding an optimal value of k is not easy. Many modi�
ationshave been proposed to k-means to over
ome this drawba
k. The y-means 
lusteringte
hnique [14℄ de�nes three operations for this purpose: empty 
luster removal,splitting and merging. Empty 
luster removal simply removes zero sized 
lusters.Splitting is used to break up 
lusters with a large number of outlier points intomultiple 
lusters. A 
luster has outliers if the point farthest from the 
luster 
enteris not within a radius of (mean + r * standard deviation), where mean and standarddeviation are 
al
ulated on the Eu
lidean distan
es of the points in the 
luster from26



the 
enter, and r is an integer. For all the 
lusters with outliers, the farthest pointin the 
luster is taken as a new 
luster 
enter and the k-means algorithm is appliedagain. After ea
h iteration, empty 
lusters are removed and new 
lusters are addedby splitting 
lusters with outliers. This pro
ess is 
ontinued till outliers are notfound in any 
luster. In this 
lustering te
hnique the �nal number of 
lusters doesnot depend on the value of k.The output of this te
hnique is a set of points representing the 
luster 
enters.A threshold is 
al
ulated su
h that 98 per
ent of the training data points lie withinthis distan
e from their nearest 
luster 
enter. For 
lassifying the test patterns thedistan
e of the test pattern from the nearest 
luster 
enter is 
al
ulated and if thisdistan
e is greater that the threshold, the test pattern is 
lassi�ed as an atta
k.Otherwise it is 
lassi�ed as normal.4.4.2 Support Ve
tor ClusteringThe main idea in support ve
tor 
lustering [7℄ is to represent the normal data bya sphere of minimal radius in a higher dimensional spa
e using a non-linear kernel.Here input data points are mapped to a higher dimensional feature spa
e usinga Gaussian kernel, and a sphere with minimal radius en
losing all these points is
onstru
ted. When this sphere is mapped ba
k to the input spa
e, it separatesthe data into several 
omponents or 
lusters. As the width of the Gaussian kernelis de
reased, the number of 
lusters in
reases. The method allows outliers to bepresent by employing a soft margin in whi
h not all points are required to be withinthe sphere in the feature spa
e. The points that lie on the surfa
e of the sphere are
alled support ve
tors and the points that lie outside the sphere are 
alled boundedsupport ve
tors. In the input spa
e, the support ve
tors form 
ontours of 
lustersand the bounded support ve
tors form the outliers. The per
entage of outliers isdetermined by the value of the soft margin 
onstant C. If the value of C is 1 thenno outliers are present.In our 
ase, we stop after 
onstru
ting the sphere. This is be
ause, we wantonly a representation of the normal data i.e. the regions in the n-dimensional spa
e
ontaining the normal data, but not the exa
t 
lusters. Sin
e the sphere itself gives27



us this information (whether a point is inside any normal 
luster), we do not needto map it ba
k to the input spa
e and �nd the exa
t 
lusters. The normal pro�le isrepresented by the 
enter and the radius of this sphere, whi
h are in turn representedby the support ve
tors. We modi�ed LIBSVM [8℄, a library for support ve
torma
hines, to �nd this sphere. We used an RBF kernel with its width parameterset to 1=k, where k is the number of features. The soft margin 
onstant C is setto 1.0 whi
h means that outliers are not allowed. The radius is 
al
ulated so thatonly 98 per
ent of the training points are inside the sphere. During testing, the testpattern is mapped to the feature spa
e and its distan
e from the sphere 
enter is
al
ulated. If this distan
e is greater than the radius of the sphere, the test patternis 
onsidered anomalous.4.5 Stream Pro
essing Te
hniquesThe problem of 
onstru
tion of the normal pro�le from feature ve
tors falls in thestream pro
essing 
lass of problems, sin
e feature ve
tors form a data stream andthe pro�le at any point must 
apture the information in the stream up to thatpoint, with the possible option that newer data is given more weight than olderdata. Learning algorithms alone 
annot a
hieve this be
ause they 
annot work inan in
remental fashion and they 
annot handle very large amounts of input data (ifwe want to 
reate the pro�le from the entire stream). To over
ome this problemstream handling te
hniques are required. These te
hniques maintain a synopsis ofthe stream su
h that pro
essing the synopsis at any point is approximately the sameas pro
essing the entire stream up to that point. The major restri
tions on streampro
essing te
hniques are: ea
h stream element 
an be seen only a �nite number oftimes, the size of synopsis is limited and the time taken to maintain the synopsisshould be low. There are several stream pro
essing te
hniques available out of whi
hwe 
onsidered three te
hniques: a divide-and-
onquer te
hnique for 
lustering datastreams, reservoir sampling and bootstrapping. We brie�y des
ribe ea
h of thesete
hniques in the following subse
tions.
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4.5.1 Clustering Data StreamsA method for 
lustering under the data stream model was des
ribed in [15℄. Themain obje
tive in this method is to maintain a good 
lustering of the points observedso far, using small amounts of memory and time. A divide-and-
onquer approa
his used in whi
h the stream is divided into disjoint parts, ea
h part is 
lusteredseparately, and �nally, the 
luster 
enters obtained for individual parts are 
lusteredto obtain a 
lustering for the entire stream. While 
lustering the 
enters, they areweighted by the number of points asso
iated with them. This basi
 approa
h is thenextended so that it �ts under the data stream model. The main restri
tion here isthe spa
e required to store the intermediate 
luster 
enters. To a
hieve 
lustering ina limited spa
e, whenever the number of intermediate 
luster 
enters in the memoryrea
hes a threshold, they are 
lustered again to get mu
h fewer se
ond level 
luster
enters. In general, when the number of 
enters at level i rea
hes a threshold,they are 
lustered to obtain mu
h fewer 
luster 
enters at level i + 1. When the
lustering of points observed so far in the stream is needed, the 
enters at all levelsin the memory are 
lustered to obtain the �nal 
lustering.This method 
an be applied on all 
lustering algorithms that output 
luster
enters, i.e, on all k-means 
lass of algorithms. Sin
e the support ve
tor 
lusteringmethod does not give 
luster 
enters, this method for dealing with data streams
annot be applied along with support ve
tor 
lustering. It 
an be applied alongwith the y-means algorithm des
ribed in the previous se
tion, to generate the normalpro�le of the network tra�
. Whenever the pro�le needs to be updated, the mostre
ent points in the stream are �rst 
lustered to obtain 
enters and then these 
entersare merged along with the 
enters in the previous pro�le and 
lustered again to getthe new pro�le. Weighted 
lustering is done in all the 
ases.4.5.2 Reservoir SamplingA random sampling te
hnique for maintaining the synopsis in the data stream modelwas des
ribed in [25℄. This method, 
alled reservoir sampling, maintains a truerandom sample of the data seen so far in the stream, in a reservoir. All algorithmsthat maintain a true random sample of �xed size after pro
essing ea
h re
ord in29



the stream are 
alled reservoir algorithms. Initially, these algorithms put the �rstfew re
ords of the stream into the reservoir till the reservoir is full. After this, ea
hre
ord in the stream is 
onsidered for in
lusion into the reservoir, and if 
hosen, itrepla
es a randomly 
hosen sample from the reservoir.This stream handling method 
an be applied along with both the unsuper-vised learning te
hniques des
ribed above. The learning algorithm is applied onthe re
ords in the reservoir. The size of the reservoir is �xed beforehand dependingon the memory and pro
essing power of the host on whi
h learning is 
arried out.Whenever the pro�le needs to be generated/updated, a reservoir algorithm is ap-plied on the most re
ent data in the stream and the reservoir is updated �rst. Thelearning algorithm is then applied on the reservoir to get the new pro�le.4.5.3 BootstrappingBootstrapping is a te
hnique used to generate arti�
ial training data set from originaltraining data set [16℄. The bootstrap method has also been su

essfully applied forerror estimation and 1-NN 
lassi�er design [16℄. We use the bootstrap method inthe 
ontext of sampling and data redu
tion. The method of maintaining synopsisusing bootstrap samples is as follows: every time after the pro�le is generated, abootstrap sample of size n=2 is taken, where n is sum of the number of re
ords inthe 
urrent synopsis and the number of new re
ords observed in the stream. Thissample is set as the new synopsis. The pro�le is generated using the re
ords in thesynopsis and the most re
ent data from the stream.4.6 Experimental EvaluationAn anomaly dete
tion s
heme requires a learning te
hnique and a stream handlingte
hnique. To 
hoose the best 
ombination, the learning and stream handling te
h-niques des
ribed above were evaluated using a ben
hmark data set. Sin
e two learn-ing te
hniques and three stream handling te
hniques were 
onsidered, there are sixpossible 
ombinations out of whi
h �ve are valid. The method of 
lustering in datastreams 
annot be applied for support ve
tor 
lustering for the reasons mentioned30



earlier. These �ve 
ombinations were tested on a ben
hmark data set and the 
om-bination that performed the best was 
onsidered for implementation in the Sa
hetsystem.4.6.1 Preparation of Datasets and Criteria for evaluationWe used the data provided in the 1999 KDD Cup [3℄, for testing the te
hniquesmentioned above. Ea
h point in this data 
orresponds to a network 
onne
tion and
ontains values of the 41 features des
ribed in Se
tion 4.2. This data itself wasobtained by extra
ting features from the 1998 DARPA IDS evaluation data.A sample of 1,50,000 feature ve
tors 
orresponding to normal 
onne
tions wastaken from the 1999 KDD 
up data. The data stream was simulated using thesefeature ve
tors. The pro�le was generated/updated every time after 25,000 featureve
tors were pro
essed. Thus, for ea
h 
ombination, the pro�le was generated sixtimes. The 
lassi�er obtained at the end was tested on three test datasets. Thetest datasets were prepared from KDD 
up data using strati�ed sampling. Strati�edsampling is a random sampling te
hnique in whi
h data points are �rst separatedinto mutually disjoint sets and then ea
h set is sampled separately. This methodis advantageous if the number of data points in ea
h 
lass vary drasti
ally. In theKDD 
up data some atta
k types have thousands of data points while some have asfew as two or three data points. Hen
e strati�ed sampling was used to 
reate thedatasets.Another important issue here is the normalization of data. Ea
h feature inthe data has its own range. Some features have very large ranges where as sometake only binary values. Hen
e all features will not have equal weight during thelearning pro
ess and features with bigger ranges exert greater in�uen
e than thosewith smaller ranges. To solve this problem data needs to be normalized. The z-s
orenormalization te
hnique, des
ribed below, was used for this purpose.Z-S
ore normalization: The mean (�) and the standard deviation (�) of thedata to be normalized are �rst 
al
ulated and the normalized instan
e is 
al
ulatedas follows, x0i = xi � �� (1)31



Training data is �rst normalized using this te
hnique and the mean and standarddeviation ve
tors are saved. Test data is then normalized using the saved mean andstandard deviation ve
tors.The evaluation 
riteria used for 
omparing the performan
es are dete
tion rateand false alarm rate. Dete
tion rate is equal to the number of intrusions dete
ted,divided by the total number of intrusions present in the data set. False alarm rateis equal to the number of normal 
onne
tions 
lassi�ed as intrusive by the algorithmdivided by the total number of normal 
onne
tions. The dete
tion rate should beas high as possible and the false alarm rate should be as low as possible. Apartfrom these 
riteria, the training time and the output size of the algorithm werealso 
onsidered. The training time is important as the pro�le has to be updatedperiodi
ally. The size of the result is important as real-time dete
tion is desired.4.6.2 ResultsThe results of applying the �ve valid 
ombinations on the ben
hmark data areshown in Table 4.1. The numbers given in this table are the averages of results overall three test datasets. Note that the results here indi
ate the performan
e of thestream handling te
hnique and learning algorithm together, rather than the learningalgorithm alone.When we 
ompare the dete
tion rates among atta
k 
lasses, all 
ombinations gavethe best results for probe 
lass of atta
ks, and performed fairly well for user-to-root(U2R) and DoS 
lass of atta
ks. The dete
tion rate was lowest for the remote-to-login (R2L) 
lass of atta
ks. The time-based and host-based features are designed forDoS and probe 
lass of atta
ks and the host-based features are designed for the R2Land U2R 
lass of atta
ks. The dete
tion rate for probes and DoS atta
ks is expe
tedto be high be
ause they are basi
ally network-based atta
ks. The dete
tion rate ofDoS atta
ks is lower than that of probes be
ause the atta
ks `ba
k' and `mailbomb',whi
h are present in large numbers in the test data, were not dete
ted by any ofthe methods. The dete
tion rate of U2R atta
ks, whi
h are inherently host-basedatta
ks, shows that the 
ontent-based feature 
apture the general patterns of theseatta
ks well enough. The low dete
tion rate of R2L atta
ks shows that the features32



Dete
tion rateCombination DoS Probe R2L U2R Total False Alarm RateBS-YM 59.14 99.21 57.07 90.35 72.46 2.19BS-SVC 69.58 98.05 51.01 78.68 75.76 2.88RS-YM 54.07 94.79 55.36 84.21 68.0 1.53RS-SVC 68.96 92.69 47.12 74.59 72.93 1.87DQ-YM 69.35 99.48 52.49 71.93 76.26 2.76BS - bootstrap te
hnique.RS - reservoir sampling.DQ - divide-and-
onquer method of 
lustering data streams.YM - y-means 
lustering.SVC - support ve
tor 
lustering.Table 4.1: Comparison of dete
tion rates and false alarm ratesused 
urrently do not 
apture these atta
ks properly and hen
e there is a need tode�ne more features appropriate to this 
lass of atta
ks.The performan
e of learning te
hniques alone 
an be 
ompared by �xing thestream handling te
hnique. Support ve
tor 
lustering performed better than y-means when applied along with both reservoir sampling and bootstrapping streamhandling te
hniques. This shows that the performan
e of these learning te
hniquesis independent of the stream handling te
hniques. Among the stream handling te
h-niques, the divide-and-
onquer method of 
lustering data streams performed the bestfollowed by bootstrapping and then the reservoir sampling. This 
an be observedby 
omparing the stream handling te
hniques for a given learning te
hnique.Another important 
riterion is the false alarm rate. From the table, it 
an beseen that the false alarm rate is lowest when the reservoir sampling te
hnique isapplied. Among the learning algorithms, the false alarm rate is lowest for y-means
lustering for a given stream handling te
hnique.In terms of dete
tion rate the best performing 
ombination is the stream 
lus-tering and y-means 
ombination, and hen
e it is the natural 
hoi
e for the anomalydete
tion s
heme. But the false alarm rate is a bit high for this 
ombination andalso for the se
ond best 
ombination. Sin
e false alarm rate is also an important
riterion, we may also 
hoose a 
ombination that performs fairly well with respe
t33



to both dete
tion rate and false alarm rate. From the table, it 
an be seen that thereservoir sampling and support ve
tor 
lustering 
ombination is exa
tly like this,i.e, it shows good dete
tion rate and low false alarm rate simultaneously.The other 
riteria 
onsidered are the training time and the pro�le size. Thetraining time of y-means algorithm is around 15 minutes for an input size of 25000and the training time of support ve
tor 
lustering is around 2 minutes for the samesize of data. If stream handling te
hniques are being used, then we 
an always �xthe size of the synopsis su
h that the training time is reasonable enough for a givenlearning te
hnique. The same is the 
ase with pro�le size also.We 
hose the reservoir sampling and support ve
tor 
lustering 
ombination forimplementation in the Sa
het system.
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Chapter 5Design and ImplementationIn this 
hapter we des
ribe the design and implementation of an anomaly dete
tions
heme in Sa
het. In Se
tion 5.1, we des
ribe the design, and in Se
tion 5.2, wedes
ribe feature extra
tion followed by the implementation of this s
heme at ea
hof the 
omponents in Sa
het.5.1 Design of the anomaly dete
tion s
heme in Sa-
hetAny anomaly dete
tion s
heme involves the 
onstru
tion of a normal pro�le. Sin
eSa
het is a network-based intrusion dete
tion system, the normal pro�le is 
on-stru
ted by observing patterns in network tra�
. More pre
isely, it is 
onstru
tedby using 
ertain metri
s or features extra
ted from network tra�
. Sin
e the mon-itoring points in Sa
het are the agents, feature extra
tion is done at the agents.These feature ve
tors are aggregated at the server for 
onstru
ting the normal pro-�le. The task of learning the pro�le from these features 
an be implemented at theserver itself, but it 
an also be implemented in a spe
ial agent whose purpose isnot to monitor the network but to learn the normal pro�le. In the later 
ase, thelearning pro
ess is transparent to the server and hen
e the learning te
hnique 
an be
hanged without 
hanging the server. This approa
h also redu
es load on the serversin
e learning is a 
omputationally intensive task. The spe
ial agent whi
h deals35
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Figure 5.1: Anomaly dete
tion pro
esswith learning is 
alled learning agent and is responsible for generating the normalpro�le.The pro�le generated by the learning agent will be used for dete
ting deviationsin observed patterns of network a
tivity. This dete
tion 
an be done either at theserver or at the agents. Sin
e dete
tion requires 
onsiderable amount of pro
essing,the later option is more desirable as it will lead to s
alability.Figure 5.1 shows the �ow of data in Sa
het. At the agent, the anomaly dete
torextra
ts features from network tra�
. These features are the same as the onesdes
ribed in Se
tion 4.2 ex
ept for the hot_login feature whi
h is not 
urrentlyimplemented. Sin
e these features are extra
ted on a per-
onne
tion basis, theTCP pa
kets needs to be reassembled into 
onne
tions for extra
ting 
ontent based36



features. The anomaly dete
tor 
omponent at the agent reassembles the pa
kets andextra
ts features for ea
h 
onne
tion. After extra
ting the features, it 
al
ulates thedeviation of this 
onne
tion from normal pro�le and if this deviation is greater thata threshold it raises an alert. Otherwise, it 
onsiders this 
onne
tion as normal andsends the feature ve
tor to the 
ontrol agent.The 
ontrol agent re
eives alerts from the anomaly dete
tor as well as from themisuse dete
tor. If both these dete
tors raise an alert for the same 
onne
tion, the
ontrol agent gives priority to the misuse dete
tor and passes its alert to server,ignoring the alert from the anomaly dete
tor. If the misuse dete
tor alone raisesan alert for some 
onne
tion and the anomaly dete
tor de
lares that 
onne
tion asnormal, the 
ontrol agent again gives priority to the misuse dete
tor and 
onsidersthis 
onne
tion as anomalous; hen
e it does not send the feature ve
tor for su
ha 
onne
tion to the server. In either of these 
ases, the misuse dete
tor has morepriority as its alerts are 
onsidered to be more reliable than those of the anomalydete
tor. Finally, the 
ontrol agent sends these alerts and feature ve
tors to theserver.At the server, the alerts and feature ve
tors re
eived from agents are savedin a database. The alerts are shown to the user through the Sa
het 
onsole; thefeature ve
tors are used by the learning agent to 
onstru
t the pro�le. The serverperiodi
ally requests the learning agent to 
onstru
t the pro�le. When the learningagent re
eives su
h a request, it 
onne
ts to the database and fet
hes the most re
entalerts as well as the previously stored synopsis. It �rst updates the synopsis with thenew data using the stream handling te
hnique implemented at the learning agentand then applies the learning algorithm on this synopsis. The result of learning (thenormal pro�le) is then passed on to the server. The server distributes this pro�le tothe agents and the agents use the new pro�le for dete
tion from that point.Sin
e the pro�le is generated from feature ve
tors, the agents do not have apro�le initially and hen
e they 
annot do anomaly dete
tion until feature ve
torsare gathered for some su�
ient amount of time, and the pro�le is 
onstru
ted andgiven to them. During this period they de
lare all 
onne
tions as normal. Anotherpossible option is to initialize the agents with a pro�le 
onstru
ted from arti�
ial37



normal data. But doing this may result in a lot of false positives and false negativesinitially. In any 
ase, we believe that the system stabilizes after some time.In this design, the learning agent is an optional 
omponent and the user mayde
ide not to install a learning agent. In that 
ase, the pro�le 
annot be 
onstru
tedand hen
e there is no use of extra
ting features at the agents. Therefore, if thelearning agent is not installed, the server will instru
t the agents to stop anomalydete
tion. Even if the learning agent is installed, the user may wish to turn o� theentire anomaly dete
tion in Sa
het. This option is provided through the 
onsole;the 
onsole passes su
h a request to the server and the server instru
ts all the agentsto stop anomaly dete
tion. The option to start the anomaly dete
tion in Sa
het isimplemented similarly.5.2 ImplementationIn this se
tion, we des
ribe some important implementation issues in feature extra
-tion followed by the implementation of the proposed anomaly dete
tion s
heme atea
h of the Sa
het 
omponents. We also des
ribe the 
hanges made to the Sa
hetproto
ol for implementing this s
heme in Sa
het.5.2.1 Feature Extra
tionAll the features ex
ept `hot_login', des
ribed in Se
tion 4.2, are extra
ted in Sa
het.These features 
an be divided into general, time-based, host-based and 
ontent-basedfeatures. They are extra
ted for ea
h 
onne
tion observed by the anomaly dete
torat the agents. In the 
ase of 
onne
tion-less proto
ols like UDP and ICMP ea
hpa
ket is 
onsidered as a separate 
onne
tion. In the 
ase of TCP, the byte streamsin both dire
tions of a 
onne
tion must be reassembled for extra
ting 
ontent-basedfeatures. For this purpose, an open sour
e software 
alled t
ptra
e [5℄ is used atea
h agent. T
ptra
e has a plug-in ar
hite
ture in whi
h ea
h plug-in provides astandard set of fun
tions that are 
alled for ea
h new pa
ket, for the �rst pa
ket ofea
h 
onne
tion and when a 
onne
tion is 
losed. Feature extra
tion is implementedas a plug-in of t
ptra
e in whi
h information about 
onne
tions is maintained in a38



time sorted linked list.Features are extra
ted for ea
h 
onne
tion when the 
onne
tion is 
losed. Apotential problem with this approa
h is that 
onne
tions may last for several hoursor even days. To over
ome this problem, features are extra
ted either when the
onne
tion is 
losed or when 15 minutes have elapsed sin
e the 
onne
tion is initiatedand is still not 
losed. In the following subse
tions, we des
ribe the extra
tion ofthe four kinds of features.General featuresGeneral features in
lude some 
ommon information about a 
onne
tion like destina-tion port number, proto
ol, number of bytes transferred in both dire
tions, durationof 
onne
tion et
. These features 
an be dire
tly extra
ted from pa
ket headers. Thevalues of these features are obtained from the information maintained by t
ptra
efor ea
h 
onne
tion.Time-based featuresTime-based features are extra
ted by taking a two se
ond time window into 
on-sideration. The values of these features are derived by inspe
ting all 
onne
tions inthe past two se
onds. Hen
e, the information about a 
onne
tion whose featureshave been extra
ted 
annot be thrown away as it may be required to extra
t thetime-based features of a future 
onne
tion. Most of these features are de�ned asper
entage of 
onne
tions in the past two se
onds that have a 
ommon property(su
h as same destination port or IP address), and have a value between 0 and 1.Host-based featuresHost-based features are derived from the past 100 
onne
tions to the same host asthe 
urrent destination host. But if 100 
onne
tions are not available at that point,as many as available are taken into 
onsideration. The 100 most re
ent 
onne
tionsare found by traveling the doubly linked list of 
onne
tion information. Host-basedfeatures involve per
entages and have a value between 0 and 1.39



Content-based featuresContent-based features are extra
ted from the payload of the pa
kets by analyzingappli
ation layer proto
ols. In Sa
het, these features are extra
ted for four proto
ols:telnet, FTP, HTTP and SMTP. The entire data transferred in a 
onne
tion in bothdire
tions is required in sequen
e, to extra
t these features. Sin
e TCP pa
kets 
anappear out of order, the pa
kets must be reassembled to obtain the two streams in a
onne
tion. This reassembling is done by t
ptra
e for the four proto
ols mentionedabove. For all other proto
ols, t
ptra
e is instru
ted to ignore the payload of the
orresponding pa
kets. These features are extra
ted separately for ea
h of the fourproto
ols. Depending on the destination port number, the proto
ol is identi�ed andthe appropriate fun
tion is 
alled. The extra
tion of features for the four proto
olsis des
ribed below. In all these proto
ols ex
ept HTTP, a state based analysis ofthe data is done by examining the 
lient-to-server and the server-to-
lient streamssimultaneously. But if an in
onsisten
y in state is found at any point, we assumethat some pa
kets are lost and pro
ess the two streams separately.TelnetData from telnet 
onne
tions 
ontains telnet 
ontrol 
odes and 
onsole 
ontrol
odes. These 
odes should be removed to get the data generated by the user. Thetelnet 
ontrol information in
ludes option negotiations and sub negotiations identi-�ed by spe
ial 
odes de�ned by the telnet proto
ol, and it always starts with theIAC 
ode. Console 
odes are used to format and present data at the remote termi-nal. They are either spe
ial ASCII 
hara
ters whi
h do not appear in the data, orsequen
e of bytes starting with an es
ape sequen
e. After removing these 
odes, wehave the 
ommands typed by the user in one stream, and the responses from remoteterminal in the other stream.Most of the features are extra
ted by looking at the 
ommands typed by the userand the response of the remote system. Sin
e these depend on the operating system,the �rst task in the extra
tion pro
ess is to determine the server side operatingsystem. All Windows telnet servers have the word �mi
rosoft" in their wel
omemessage whi
h is printed as the �rst line. The server side operating system isassumed to be Windows if this word is found; otherwise it is assumed to be a40



�avour of UNIX.The login related features are extra
ted as follows: if there is a �Login in
orre
t"message or a �Logon failure" message immediately following the login and passwordprompts in a telnet 
onne
tion, the login attempt is 
onsidered as a failure. If nosu
h message is found after the login prompt, the login attempt is 
onsidered asa su

ess. The login attempt is also 
onsidered as su

essful if the login promptis not found. The `num_failed_logins' feature is set to the number of failed loginattempts found in this 
onne
tion. The `logged_in' feature is set to 1 if a su

essfullogin attempt is found in the 
onne
tion. The `is guest' feature is set to 1 if thelogin name is �guest".The root-attempt related features are extra
ted only for UNIX based systems. Ifat least one su 
ommand is found in the 
lient to server data, the `root attempted'feature is set to 1. To �nd whether an su attempt is a su

ess or failure, the responseof the server immediately after the su 
ommand is observed. If this response startswith �su:" at the beginning, the 
orresponding attempt is 
onsidered as a failure.Otherwise it is 
onsidered as a su

ess. The `num root a

esses' feature is 
al
ulatedas the number of 
ommands typed as root.The `hot' feature gives the number of a

esses to system dire
tories and 
reationand exe
ution of programs. It is in
remented whenever 
ompiler and linker 
om-mands like `g

' and interpreter 
ommands like perl, java and awk are present inthe 
lient to server data stream of the 
onne
tion. The `
ompromised' feature givesthe number of `�le not found' errors. The `num �le 
reations' feature is in
rementedwhenever 
ommands like 
p, mv are found or the 
ommand has the redire
tion sym-bol `>'. The `num a

ess �les' 
ommand gives the number of a

esses to system �les.It is in
remented if any of the 
ommands has a system folder path as its argument.FTPFTP uses the telnet proto
ol in the 
ontrol 
onne
tion. The telnet 
ontrol 
odesare �rst removed from the ftp data before doing further pro
essing. The ftp sessionstarts after the server sends the 220 
ode to the 
lient, whi
h says that the server isready for a

epting requests. Every 
ommand from 
lient gets at least one 3 digitresponse 
ode from server. The �rst digit in the response 
ode indi
ates the result41



of the 
ommand. The �rst digit 
an be a number from 1 to 5. 4 and 5 indi
ate error
onditions, 1 indi
ates that another response is being sent, 2 indi
ates su

ess, and 3indi
ates that the server is expe
ting another 
ommand from 
lient. If reply 
ode 220is found in the data from server to 
lient, we 
an asso
iate 
ommands in the 
lient toserver dire
tion with responses in the server to 
lient dire
tion; otherwise we 
annotasso
iate 
ommands with responses. At �rst we assume that we have the 
ompletedata transferred in the 
onne
tion and we pro
ess the two streams simultaneouslyby mat
hing the requests with responses and maintaining states. But if there is anin
onsisten
y in state while pro
essing the requests and responses in the proto
ol,we assume that some pa
kets are missing. In this 
ase we pro
ess the two streamsseparately.The `USER' 
ommand in the 
lient to server data indi
ates a login attempt. Areply 
ode starting with 4 or 5 indi
ates that this attempt is a failure. If the reply
ode starts with 3, the server is prompting for a password and if it is 2, the loginattempt is a su

ess. The 
ommands `RETR', `STOR' and `STOU' 
reate �les eitheron the lo
al ma
hine or on the remote ma
hine and hen
e the `num �le 
reations'feature is in
remented when these 
ommands get a reply 
ode starting with 2. A

essto system folders is in
remented if any of these 
ommands spe
ify a path 
ontaininga system dire
tory as its argument. The `num outbound 
ommands' feature isin
remented for ea
h o

urren
e of the `SITE' 
ommand. The `logged in' feature isset to 1 if at least one reply 
ode starting with 2 is found. The `num_
ompromised'feature is in
remented by whenever a reply 
ode starting with 4 or 5 is found.SMTPThe reply 
odes of SMTP follow the same format as that of FTP. The 
lientstarts issuing 
ommands only after re
eiving the 220 reply 
ode from server. If this
ode is not found then the server to 
lient data is ignored. Every time a reply 
odestarting with 4 or 5 is found, the number of 
ompromised 
onditions is in
rementedby 1. If at least one reply 
ode from server starts with a 2 then the `logged in'feature is set to 1. The other features are not relevant for SMTP.HTTPIn the 
ase of HTTP the 
lient to server data is pro
essed independently of the42



server to 
lient data. The `num 
ompromised' feature is set to the number of `�lenot found' replies plus the number of replies indi
ating failure, found in the serverto 
lient data of the 
onne
tion. The `logged in' feature is set to 1 if there is atleast one reply 
ode indi
ating su

ess. The `num a

ess �les' and `hot' features areextra
ted by examining the arguments to the GET, HEAD and POST requests inthe 
lient to server data. If the path in the argument to these methods 
ontains asystem folder then the values for these features are in
remented.5.2.2 Changes to Sa
het proto
olMany new messages have been added to the proto
ol to implement the anomalydete
tion s
heme in Sa
het. These messages are required to transfer feature ve
torsfrom agent to server and to transfer the pro�le from learning agent to server andfrom server to agent. In the 
ase of the pro�le, a single message 
annot hold theentire pro�le as there is an upper limit on the size of a UDP datagram. To over
omethis drawba
k, the pro�le is sent in multiple messages with a `more' �ag in thedata part of the message along with a pie
e of the pro�le. A value of 1 for this �agindi
ates that at least one more message 
ontaining the remaining part of the pro�le
an be expe
ted and a value of 0 indi
ates that the pro�le is 
ompletely transferredto the destination after this message and no more pro�le messages will follow.5.2.3 AgentThe anomaly dete
tor is implemented as a plug-in of t
ptra
e whi
h runs as a sepa-rate pro
ess. The 
ontrol agent intera
ts with the anomaly dete
tor and the misusedete
tor and re
eives data from both of them. As stated already in Se
tion 5.1, themisuse dete
tor has priority over the anomaly dete
tor. The 
ontrol agent should
orrelate the alerts and feature ve
tors from anomaly dete
tor with the alerts frommisuse dete
tor to implement this priority. For this purpose, the 4-tuple and times-tamp of the alerts from misuse dete
tor are saved in a list. When the 
ontrol agentre
eives an alert or a feature ve
tor from the anomaly dete
tor, it 
ompares the4-tuple and timestamp of this data with the ones saved in the list. If a mat
h is43



found, this alert or feature ve
tor is ignored; otherwise it is sent to the server. Notethat if the data from the anomaly dete
tor, for a parti
ular 
onne
tion, rea
hes the
ontrol agent before the data from the misuse dete
tor, the above implementationwill fail. But this will not generally happen be
ause the misuse dete
tor works ona per pa
ket basis and hen
e it generates the alerts mu
h faster than the anomalydete
tor.The agent re
eives the pro�le from server in multiple messages. On re
eiving the�rst pro�le message, the agent opens a temporary �le and saves the 
ontents of thismessage in the �le. For subsequent pro�le messages, it appends the 
ontents of themessage to the temporary �le. If the `more' �ag is set to 0 whi
h indi
ates that thismessage is the last pro�le message, the agent deletes the old pro�le and saves the
ontents of the temporary �le as the new pro�le. It then deletes the temporary �leand restarts the anomaly dete
tor. The anomaly dete
tor 
omponent at the agentis not started until the server sends a `start' message. If the learning agent is notinstalled or if anomaly dete
tion is turned o�, the server will not send this messageand anomaly dete
tion will not be turned on at any agent.5.2.4 ServerThe server re
eives the pro�le from the learning agent in a pie
emeal fashion andsaves it in a �le. It 
annot interpret the pro�le and hen
e the learning algorithm
an be 
hanged at the learning agent, resulting in a new pro�le format, withoutmaking any 
hanges to the server or to the proto
ol. The server sends the pro�le ina pie
emeal fashion to all the agents that are alive at the time it re
eived the pro�lefrom the learning agent. It also sends the pro�le to agents immediately after theauthenti
ation, irrespe
tive of whether the agent has this pro�le or not. In this waythe latest pro�le is maintained at all the agents.The server identi�es the learning agent among the agents using the `type' �eldpresent in the information saved for ea
h agent in the database. At the startuptime, if the server 
annot �nd a learning agent, it will not instru
t the agents tostart the anomaly dete
tor. Anomaly dete
tion 
an be turned o� from the 
onsoleeven if the learning agent is present in Sa
het. The server maintains a variable in the44




on�guration �le whi
h indi
ates whether anomaly dete
tion is 
urrently turned onor not. Again, if the server �nds out at the startup time that anomaly dete
tion isturned o�, it will not instru
t the agents to start the anomaly dete
tor. In this waythe entire anomaly dete
tion s
heme 
an be enabled or disabled from the server.5.2.5 Learning agentThe learning agent starts the learning algorithm in a separate thread upon requestfrom the server. Before exe
uting the learning algorithm, this thread 
onne
ts to thedatabase and fet
hes feature ve
tors and synopsis using the ODBC interfa
e. Thedata sour
e name, username and password required for this purpose are providedto the learning agent through a 
on�guration �le. After fet
hing the required datafrom the database, the learning algorithm is applied on this data. When the learningis 
ompleted, the learning agent sends the result to the server. If an error o

urs atany point during this pro
ess, e.g, 
onne
tion to the database may fail, a messageindi
ating the type of failure is sent to the server.5.2.6 ConsoleThe 
onsole has been enhan
ed with a separate s
reen for the learning agent in whi
hit shows some basi
 information about the learning agent in
luding its 
urrent status.The same s
reen also has several buttons through whi
h the user 
an start or stopthe learning of pro�le, and disable or enable the entire anomaly dete
tion pro
ess inSa
het. When the start button for learning is pressed, the 
onsole prompts the userfor parameters to the learning algorithm and sends them to the server. The user hasto provide all the parameters in the form of a string in whi
h 
onse
utive parametersare separated by spa
es. This string is passed on from 
onsole to server and �nallyto the learning agent where the parameters are extra
ted from this string.
45



Chapter 6ResultsIn this 
hapter we present the results of evaluating the anomaly dete
tion in Sa-
het on the 1999 DARPA data, a ben
hmark dataset generated for the purpose ofevaluating intrusion dete
tion systems. We �rst give a brief des
ription of the 1999DARPA data and the evaluation 
riteria used. We then des
ribe the experimentalmethodology, and �nally present the results.The 1999 DARPA data [1℄ was generated for the 1999 DARPA intrusion dete
-tion evaluation [19℄ 
ondu
ted by MIT Lin
oln Laboratory, using a test bed thatsimulated an existing military network. This data 
ontains more than 200 instan
esof 58 atta
ks types laun
hed against vi
tims using both UNIX and Windows NT.The data also 
ontains a wide variety of ba
kground tra�
 to test the false alarmrate of the system being evaluated. It was 
olle
ted over a period of �ve weekswith �ve days per week, in whi
h the �rst and third weeks of data is free of atta
ksand the se
ond, fourth and �fth weeks of data 
ontains atta
ks along with normala
tivities. The data 
olle
ted in
ludes sni�ed network tra�
, Solaris Basi
 Se
urityModule (BSM) audit data and Windows NT audit event logs along with nightlylisting of all �les in the system and dumps of se
urity-related �les.Sin
e Sa
het is a network-based IDS, we used only the network data for theevaluation purpose. This network data was obtained by sni�ng at two points in thesimulated test bed, the inside router and the outside router. A

ordingly, there aretwo t
pdump �les 
alled the inside data and the outside data for ea
h of the 25 days46
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Figure 6.1: Experimental setupduring whi
h the data was 
olle
ted, ex
ept for one day on whi
h the inside data isnot available.The 
riteria used for evaluation are false alarm rate and dete
tion rate. Thefalse alarm rate is the per
entage of false alerts with respe
t to the total number of
onne
tions. The dete
tion rate is measured in terms of number of atta
ks and notnumber of 
onne
tions. The dete
tion rate is de�ned as the per
entage of the totalnumber of atta
ks, dete
ted by the system.The experiments were 
ondu
ted in a simulated test-bed where pa
ket �les fromthe 25 days of data were pro
essed by the anomaly dete
tor (t
ptra
e with ourplug-in). Figure 6.1 depi
ts the experimental setup. Note that the misuse dete
torwas not used in these experiments. This is be
ause all the atta
ks in the testdata are quite well-known now and Snort already has signatures for most of these47
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Figure 6.2: False alarm ratesatta
ks. The t
ptra
e utility was modi�ed by us to take the pro�le and a pa
ket �lein t
pdump format as input and produ
es alerts for 
onne
tions �agged as atta
ks,and feature ve
tors for normal 
onne
tions. The alerts were later analyzed manuallyto 
al
ulate the dete
tion rates and false alarm rates. After pro
essing ea
h day'sdata, the normal feature ve
tors were pro
essed by the stream handling algorithmand the synopsis was updated as in the a
tual Sa
het system. The learning algorithmwas then applied on this synopsis and the pro�le was generated, whi
h was used byt
ptra
e for pro
essing the next day's tra�
. Initially the pro�le was empty andhen
e for the �rst day all 
onne
tions were assumed to be normal and no alerts weregenerated. 48
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Figure 6.3: Overall atta
k dete
tionThe false alarm rates for the 25 days are plotted in Figure 6.2. The average falsealarm rate is 3.92%.Figure 6.3 shows the number of atta
ks present and the number of atta
ks de-te
ted for the data of ea
h day. The average dete
tion rate is 66.46%.The dete
tion rates for spe
i�
 
lasses of atta
ks are shown in the Figures 6.4 to6.7. The average dete
tion rate is 65.5% for DoS atta
ks, 70.47% for Probe atta
ks,66.17% for R2L atta
ks and 75.48 for U2R atta
ks. Among the four 
lasses, thedete
tion rates for Probes and U2R atta
ks are quite high as expe
ted. This is dueto the fa
t that the host-based and 
ontent-based features 
apture the 
hara
teristi
s49



of these atta
ks to a very large extent. Even stealthy probes that have a large timedelay between su

essive attempts are su

essfully dete
ted due to the host-basedfeatures. The time-based features are mostly suitable for DoS atta
ks and Probes.The dete
tion rate for DoS atta
ks is low be
ause most 
ontent-based DoS atta
kslike ba
k [2℄ and 
rashiis [2℄ have not been dete
ted.
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Figure 6.4: DoS atta
k dete
tion
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tion
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Chapter 7Con
lusions and Future WorkWe have developed a real-time network-based anomaly dete
tion s
heme for theSa
het Intrusion Dete
tion System using unsupervised learning and stream handlingte
hniques. We 
onsidered various learning and stream handling algorithms andevaluated them on a ben
hmark dataset. We implemented the best performingte
hniques in Sa
het by modifying the 
omponents of Sa
het. Finally, we testedthis s
heme on a ben
hmark dataset of size 20GB 
ontaining 200 instan
es of 58atta
k types and presented the results. The average false alarm rate is 3.92% andthe average dete
tion rate is 66.46%.This s
heme is very pra
ti
al and s
alable, involves very little human interventionand shows good dete
tion rates and fairly low false alarm rates. But the false alarmrates have to be brought down even further to make the system more reliable. Also,there are several parameters involved in this system like the gamma value for thelearning algorithm, reservoir size, threshold for deviation et
. that need to be tunedproperly for maximum a

ura
y of the system.In future, our anomaly dete
tion s
heme 
an be extended to in
lude alert 
orre-lation and signature generation. The anomaly dete
tor works on individual 
onne
-tions and generates one alert for ea
h anomalous 
onne
tion. Many atta
ks 
ompriseof more than one 
onne
tion and atta
ks like Denial of Servi
e sometimes 
ompriseof even thousands of 
onne
tions. Hen
e the anomaly dete
tor in Sa
het may gener-ate multiple alerts for a single atta
k. The present work 
an be extended to analyze53



these alerts and identify groups of alerts that are generated from the same atta
kand present the entire group as a single alert to the administrator.Anomaly dete
tion is generally used to dete
t unknown atta
ks, but on
e anatta
k is identi�ed it is always desirable to dete
t it in future using the signaturebased method due to its reliability. This 
an be done if a signature is generatedfor this new atta
k. This generation 
an be done in two ways: the system itself
an generate a signature and add this signature to the existing database or thesystem 
an provide useful information about the atta
k to the user and the user 
anmanually generate the signature.Another possible improvement in this anomaly dete
tion s
heme is in the in-formation provided for ea
h alert. Right now, only the UDP or TCP 4-tuple andthe timestamp are available; there is no indi
ation about the type of atta
k. Butwe believe that by looking at the feature ve
tor, one 
an provide more informationabout the alert than just the timestamp and the 4-tuple.
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Appendix ANew Messages In
luded in theSa
het Proto
olThe new messages added to the Sa
het proto
ol for implementing anomaly dete
tionin Sa
het IDS are des
ribed in this appendix along with their format. The pa
ketformat for these messages is shown in Figure 3.2. Here, we present only the formatof the data part of these messages. The numbers in the bra
kets beside the �elds inthe format indi
ate their size in bytes. Strings have variable size and are terminatedby a NULL 
hara
ter while in
luding in any message.CONN_FEATURES: This message is used by the agent to send feature ve
-tors of normal 
onne
tions to the server. Multiple feature ve
tors 
an be sent in asingle message. Ea
h feature ve
tor has a four byte timestamp and a string that isobtained by 
on
atenating the values of features with spa
es in between and endingin a NULL 
hara
ter. The format is shown below:CONN_FEATURES | 
ount (2) | timestamp-1 (4) | feature_ve
tor-1 (string) |timestamp-2 (4) | feature_ve
tor-2 (string) | ...where `
ount' is the number of (timestamp, feature_ve
tor) tuples present in thismessage. The reply from server to this message 
ontains the reply 
odeCONN_FEATURES_REPLY with an empty data �eld.LEARNING_RESULT: This message is used to transfer the pro�le from thelearning agent to the server and then from the server to the agent. Generally, the55



pro�le 
annot be sent in a single message and requires multiple su
h messages. Thepro�le is handled by the server and the agents as a text �le and while transferingit, they in
lude 
onse
utive lines from this �le in ea
h message till the entire �le hasbeen transfered. The �le is re
onstru
ted at the re
eving end from these messages.The format is as follows:LEARNING_RESULT | more (2) | 
ount (2) | line-x (string) | ... | line-y (string)where `more' �eld indi
ates whether more messages will follow for this transferand `
ount' 
ontains the number of lines of pro�le present in this message.The reply to this message 
ontains the message 
odeLEARNING_RESULT_REPLY with an empty data �eld.START_AD: The server instru
ts the agent to start the anomaly dete
torusing this message. The data �eld of this message is empty.The reply to this message 
ontains the message 
odeSTART_AD_REPLY and the data �eld 
ontains a 2-byte reply 
ode indi
atingwhether the operation is a su

ess or failure.STOP_AD: The server instru
ts the agent to stop the anomaly dete
tor usingthis message. The data �eld of this message is empty.The reply to this message 
ontains the message 
odeSTOP_AD_REPLY and the data �eld 
ontains a 2-byte reply 
ode indi
atingwhether the operation is a su

ess or failure.START_LEARNING: Using this message the server instru
ts the learningagent to learn the pro�le. The data part of this message 
ontains a NULL terminatedstring. The parameters to the learning algorithm are provided by the user in theform of this string through the 
onsole. This string is passed on to the learningalgorithm where individual parameters are extra
ted.START_LEARNING | parameters (string)The reply to this message 
ontains the message 
odeSTART_LEARNING_REPLY with a reply 
ode in the data part indi
ating whetherthe learning has started or not.STOP_LEARNING: Using this message the server instru
ts the learningagent to stop the learning algorithm. The data part of this message is empty.56



The server sends this message only when the user presses the STOP button on the
onsole but never on its own.The reply to this message 
ontains the message 
odeSTOP_LEARNING_REPLY with an empty data �eld.LEARNING_FAILED: The learning agent sends this message to the serverwhen it en
ounters any problem during the learning phase. For example, database
onne
tivity may fail in the middle while fet
hing the feature ve
tors, memory al-lo
ation may fail if the input data is too large et
. The datapart of this message
ontains a 2-byte 
ode indi
ating the 
ause for the failure if possible. Otherwise it
ontains a zero.LEARNING_FAILED | 
ode indi
ating reason (2)The reply to this message from the server 
ontains the message 
odeLEARNING_FAILED_REPLY with an empty data part.
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