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Abstract

Due to the widespread proliferation of computer networks, attacks on computer sys-
tems are increasing day by day. Preventive measures can stop these attacks to some
extent, but they are not very effective due to various reasons. This lead to the devel-
opment of intrusion detection as a second line of defense. Intrusion detection systems
try to identify attacks or intrusions by analyzing network data (network-based sys-
tems) or operating system and application logs (host-based systems), possibly in
real-time. These systems either search for patterns of well known attacks in the
data (misuse detection) or try to find abnormalities in the data by first constructing
the normal profile of the system under observation and then detecting deviations
from this profile (anomaly detection). Anomaly detection is important due to the
inability of misuse detection techniques in detecting unknown attacks.

In this thesis, we describe the design and implementation of an anomaly detection
scheme for Sachet - A distributed, realtime, network-based intrusion detection sys-
tem developed by us. In this scheme, the normal profile is constructed using learning
techniques and stream handling techniques, from features extracted for each connec-
tion in the network traffic. Stream handling techniques are employed because the
problem of constructing normal profile from feature vectors falls in the data stream
class of problems. Several learning and stream handling techniques were tested on
a benchmark data set and the best performing techniques were implemented in Sa-
chet. The final system was tested on a benchmark dataset containing over 58 types
of attacks.
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Chapter 1
Introduction

In the last few years there has been a tremendous increase in connectivity between
systems which has brought about limitless possibilities and opportunities. Unfortu-
nately, security related problems have also increased at the same rate. Computer
systems are becoming increasingly vulnerable to attacks. These attacks or intru-
sions, based on flaws in operating system or application programs, usually read or
modify confidential information or render the system useless. Formally, an intrusion
is defined as any activity that violates the confidentiality, integrity or availability of
the system.

Intrusion prevention is more desirable, but it cannot be fully achieved due to
several reasons like unknown bugs in software, vast base of installed systems, abuse
by insiders and human negligence. Many times it is difficult to have good access
control while simultaneously making the system user friendly. Attacks are inevitable,
but even after the attack has occurred, it is important to determine that the attack
has happened, assess the extent of damage and track down the attacker. This helps
in preventing future attacks. Due to these reasons, a detection system as a second
line of defence is always desirable.

Intrusion detection systems (IDS) can be classified in two ways. The first one
is based on the source of data being analyzed by the system. If the data is from
operating system logs and application logs, it is called a ‘host based’ detection

system; if the data is from network traffic, it is called a ‘network based’ detection



system. Each method has its own advantages and disadvantages. For example, an
attack by a local user cannot be detected by a network based system, but a denial
of service attack can be detected more efficiently by a network based system. Thus
each method is more efficient in detecting a particular class of attacks than the
other.

The other classification is based on the detection method being used irrespective
of the source of data. The main types in this classification are misuse detection
systems and anomaly detection systems. In misuse detection, well known intrusions
are represented by signatures. Fach signature is a pattern of activity which corre-
sponds to the intrusion it represents. A detection system using such signatures is
called a ‘signature based’ or a ‘misuse detection’ system. These detection systems
search for patterns of intrusions in the data being analyzed. Thus misuse detection
is basically a pattern matching process. Misuse detection systems are accurate and
have a low false alarm rate, but they cannot detect unknown intrusions.

Anomaly detection systems assume that intrusions are anomalies or deviations
from normal system activity. These detection systems try to capture the normal
behaviour of the system (also called the normal profile), and then detect deviations
from this normal behaviour. If this deviation is greater than a threshold, an alert is
raised. Anomaly detection systems can detect unknown intrusions, but they have a
high false alarm rate. There is generally a trade-off between detection rate and false
alarm rate.

Several IDSs have been developed in the public and private domains using a
variety of techniques and with varying features. Commercial IDSs mostly use sig-
nature based detection techniques. The features offered by them include scalability,
real-time detection and a user friendly interface. Open source IDSs employ either
misuse detection or anomaly detection or both. They offer features like scalability
and real-time detection. For example, Snort [4], an open source IDS, employs misuse
detection and is capable of doing real-time detection. Public domain research IDSs
generally employ novel detection techniques. For example, ADAM [6] uses data
mining techniques and IDES [17] uses statistical techniques.

Looking at the intrusion detection field from a research perspective, the research



in misuse detection is focused mainly on writing signatures which encompass all
possible variations of an attack without matching normal activity, and on developing
efficient methods of pattern matching. In anomaly detection, the main focus is on
finding methods for representing the normal profile, selection of features used for
constructing the profile and determining threshold levels so that most intrusions are
detected while false alarms are minimized. In an overall system perspective, the
focus of current research is on developing hybrid systems, i.e systems that are both
network based and host based or that employ both anomaly detection and misuse

detection.

1.1 Problem statement and Approach

In this thesis, we describe the design and implementation of a network based, real-
time anomaly detection scheme for the Sachet IDS. Sachet is a network based, real-
time, hybrid intrusion detection system developed at IIT Kanpur. Sachet employs
both misuse detection and anomaly detection; hence it has the benefits of both
the techniques, i.e. the accuracy of misuse detection systems in detecting known
attacks, and the ability of anomaly detection systems in detecting unknown attacks.
The Sachet IDS has agent based architecture with a central server. The detection
is carried out at each agent and the results are aggregated at the server. The
architecture is explained in more detail in Chapter 3. In the remaining part of this
section, we describe the main issues involved in the thesis, followed by our approach.

The main task in anomaly detection is to construct the normal profile of the
system under observation. This profile should adapt to the changes in the system
over time. It should also be small enough so that real-time detection is possible.
The profile is generally constructed from a set of measures or features extracted from
the data being analyzed. In this case, the features are extracted from the network
packets sniffed at appropriate points in the network being monitored. One of the
main issues here is feature extraction in real-time.

The construction of profile from feature vectors follows the data stream model;

we have a continuous stream of feature vectors and the profile at any point should



capture the information in the stream up to that point. If possible, the profile
construction method should give more weight to newer data when compared with
older data. Since the amount of network data is generally very large, any method
used to construct the profile cannot obviously take the entire data seen in the stream
so far, as input. Hence, efficiently dealing with the data stream is also a major issue
here. Older data in the stream has to be discarded periodically, but the information
in the discarded data has to be retained to some extent. Stream handling techniques
have to be employed for this purpose. Finally, the detection technique has to be
implemented in Sachet so that it requires minimal human intervention.

Our approach is as follows: the profile is learned from feature vectors using unsu-
pervised learning (clustering) techniques. The features used for learning the profile
are extracted for each connection in real-time, from the header and payload parts
of network packets sniffed at various points in the network. Features corresponding
to the payload part of the packet are extracted only for commonly used application
layer protocols. These features are then aggregated at a single location, the Sa-
chet learning agent, and the profile of the entire network is learned offline. Stream
handling techniques are used to deal with the continuous stream of feature vectors.
These techniques can be viewed as wrappers around the learning techniques. They
construct a synopsis of the stream seen so far, with the possible option that newer
data is given more weight in this synopsis. Learning is then applied on this synopsis
and the resulting profile is distributed to the detection points where deviations are
detected and alerts are raised.

Two different unsupervised learning techniques, support vector clustering [7] and
a modified k-means technique [14] were considered for learning the profile. To handle
the feature vector stream, three different techniques, Divide-and-conquer technique
of clustering over data streams [15], reservoir sampling [25] and bootstrapping [16],
were considered. The five valid combinations (a clustering technique and a stream
handling technique) resulting from the above were tested on a benchmark data set.
The combination that gave best results was implemented in the Sachet IDS. The
implemented anomaly detection scheme was then tested on a benchmark data set

of size 20GB, which contains over 50 attacks of various types.



1.2 Organization of report

Chapter 2 presents a brief overview of some of the techniques applied to anomaly
detection and describes a few anomaly detection systems. Chapter 3 presents the
architecture of Sachet and its components. Chapter 4 presents the results of evalu-
ation of various learning techniques on the benchmark dataset. The results in this
chapter form a justification for the choice of the methods used in the system. Chap-
ter 5 describes the design and implementation of the anomaly detection system in
Sachet. Chapter 6 presents the results of testing the system using the benchmark

dataset. Chapter 7 presents conclusions and future work.



Chapter 2

Related work

In this chapter we present a brief review of the literature relevant to this thesis. We
describe some of the techniques proposed for anomaly detection and a few actually
implemented anomaly detection systems. We review some data mining techniques
in section 2.1 and some machine learning techniques in section 2.2. In section 2.3,
we review some stream handling techniques and their properties. Finally, in section

2.4, we look at some actually implemented anomaly detection systems.

2.1 Datamining techiniques

Data mining refers to the process of automatically extracting models from large
stores of data [27|. Data mining techniques have been applied for both misuse and
anomaly detection and for feature selection. In anomaly detection normal usage
patterns are mined from audit data. In misuse detection encoded attack patterns
are mined from audit data to detect intrusions. Thus, data mining techniques view
intrusion detection as a data analysis process.

Data mining techniques like association rules [24], frequent episodes [20] and the
RIPPER [9] algorithm are widely used for intrusion detection. Association rules
are used to derive multi-feature correlations from a database table. Formally, an
association rule is an expression of the form X — > Y, con fidence, support, where X

and Y are subsets of the feature set, support is the percentage of records in the table



that contain both X and Y and confidence is the ratio of support to the number of
records that contain only X [24]. Association rules find intra-audit record patterns.
On the other hand, frequent episodes, which are sets of events that occur together
in a specified time window [20], are used to find inter-audit record patterns. The
last of the above mentioned algorithms, RIPPER [9], is a rule learning algorithm.
It generates a set of if-then rules using which one can classify test data.

A framework for constructing features and detection models using data mining
techniques is proposed in [27]. The main idea is to use data mining techniques to
identify useful patterns of user and program behaviour and use these patterns for
detecting anomalies and known intrusions. As an example, RIPPER can be applied
on normal and abnormal sendmail system call traces and the rules generated can be
used to classify new traces as normal or abnormal. The problem of identifying useful
features is also addressed in [27]|. Association rules and frequent episode techniques
are used to discover inter-audit and intra-audit record patterns. These patterns help

the user in selecting relevant features.

2.2 Machine Learning Techiniques

Learning algorithms generally try to construct a classifier using training data, and
later apply this classifier on test data. Two forms of learning, supervised learning and
unsupervised learning, are generally applied for intrusion detection. In supervised
learning, a cost metric or label is provided for each training pattern by a teacher.
The goal here is to reduce the total cost for all training patterns. In unsupervised
learning or clustering, the algorithm tries to form ‘natural groupings’ or clusters of
the input patterns without the involvement of a teacher.

Among supervised learning techniques, neural networks have been widely used
for intrusion detection [22|, and recently support vector machines have also been
used [21]. Neural networks are constructed from an interconnected set of units
called neurons. Each neuron takes a number of real-valued inputs and produces a
single output. Artificial neural networks are inspired from the biological learning

system which is built of a complex web of interconnected neurons. On the other



hand, support vectors machines (SVMs) are derived from the statistical learning
theory. SVMs are binary classifiers; they try to construct an optimum hyperplane
after transforming the training points from the input space to a higher dimensional
feature space. The optimality criterion for constructing the hyperplane is to max-
imize the margin of separation of the hyperplane from the two classes of training
points. Intrusion detection using neural networks and support vector machines was
described in [21]. Using supervised learning techniques is not very practical for in-
trusion detection because these techniques require both normal and attack data; but
in practice, it is difficult to get real attack data.

Unsupervised learning techniques have also been applied to intrusion detection.
The most popular unsupervised learning method is the k-means clustering algorithm.
The main goal of the algorithm is to choose k centers in the input space so that
the sum of the distances of the training points from their nearest cluster center
is minimized. But the drawback of this algorithm is that the value of k£ has to be
decided beforehand, which is difficult as k£ depends on the data. Many modifications
of this algorithm have been proposed to overcome this drawback. Y-means [14] is one
such algorithm which tries to bring out the actual number of clusters in the data
given as input. A clustering technique based on the SVMs, calledsupport vector
clustering, was proposed recently [7]. It tries to construct a sphere of minimal

radius in the feature space that encloses all the training points.

2.3 Stream Processing Techniques

A data stream is a massive sequence of elements arriving at a rapid rate. The
general data stream computation model contains a data stream, a stream processing
engine and a synopsis in memory, along with the requirements that each record
can be accessed only a finite number of times, the memory for storing synopsis is
limited and the processing required to maintain the synopsis must be low. Data
processing in network monitoring applications generally follow this model because

these applications generate large streams of data.



There are several stream processing techniques available. One method of con-
structing the synopsis is by using sampling techniques like reservoir sampling [25]
and concise sampling [13]. In reservoir sampling, a sample of a fixed size M is main-
tained and new elements are added to the sample with a probability M/n, where
n is the total number of stream elements seen so far, by evicting random elements
from the sample. In concise sampling also, a sample is maintained, with duplicates
stored as (value, count) pairs. For each new element, count is incremented if the
element is already present in the sample; otherwise the element is inserted into the
sample with some probability.

Clustering under the data stream model is described in [15]. The approach is
to divide the stream into disjoint windows, find & centers for each window weighted
by the number of points assigned to them, and finally apply clustering on these

weighted centers to obtain the clustering of the entire stream.

2.4 Anomaly detection systems

In this section we describe four anomaly detection systems that use four different

techniques for learning the normal profile of the system under observation.

2.4.1 ADAM

ADAM (Audit Data Analysis and Mining) [6] uses several data mining techniques
to discover abnormal patterns in large amounts of data like network audit data. It
discovers frequent events in network traffic and uses them to build a profile of normal
network activity. During detection time it employs a sliding window method and
within each window it considers frequent events that do not appear in the profile as
anomalous. The limitation of ADAM is that it cannot detect stealthy attacks which

cause a relatively small number of events within a short period of time.



2.4.2 NNID

In [22], a method of applying neural networks for intrusion detection is proposed.
It is based on the idea that every user leaves a ‘print’ when using the system and a
neural network can be used to learn this print and identify each user. If the behaviour
of a user does not match this print then an alert for a possible intrusion is raised.
The system is called NNID (Neural Network Intrusion Detector). It is an offline
anomaly detection system which uses a back-propagation neural network to identify
users based on the distribution of commands used by them. It assumes that different
users exhibit different behaviours based on their needs. The set of commands and
their frequencies form the print of the user. The model is implemented in a UNIX
environment where the audit logs for each user are collected for a period of several
days. Command distribution vectors are extracted from these logs and the network
is trained to identify the print of each user. The network is then used to identify the
user for each new command vector and if the suggestion is different from the actual

user or if the network does not have a clear suggestion then an anomaly is signaled.

2.4.3 IDES Statistical Anomaly Detector

The IDES statistical anomaly detector is part of the SRI International’s host-based
real-time intrusion detection expert system [17|. It is based on the general anomaly
detection model proposed in [12|. It observes behaviour on a computer system and
adaptively learns what is normal for users and groups. It also raises alert for a
potential intrusion if the observed behaviour deviates significantly from expected
behaviour. It uses multivariate methods to learn normal behaviour.

IDES maintains a statistical knowledge base consisting of normal profiles of sub-
jects. The definition of a profile, as given in [17], is “a description of a subject’s
behaviour with respect to some intrusion-detection measures". Profiles are con-
structed from audit records and consist of statistics such as frequency tables, means
and co-variances. Each audit record is a vector of intrusion-detection variables cor-
responding to the measures recorded in the profiles. It can be represented by a point

in the n-dimensional space. If this point is sufficiently far from the point defined

10



by the values stored in the profile then it is considered anomalous. Thus the sys-
tem takes into account the values of individual variables as well as the correlation
between them.

The statistical knowledge base is updated daily using the observed behaviour of
subjects. The means, frequency tables and co-variances in the profile are multiplied
by an exponential decay factor periodically. This ensures that recent behaviour is
given more weight than old behaviour resulting in a changing profile over time as
the behaviour of the subject changes.

The IDES statistical anomaly detector uses a single point in n-dimensional space
to represent the profile. But generally, normal data itself is very diverse and a single

point cannot represent the entire spectrum of normal activity.

2.4.4 Defence using autonomous agents

In [11], an architecture is proposed in which programs use genetic programming
to evolve and detect anomalies. These programs, called autonomous agents, run
independently of each other and of the jobs already on the system. The agents
learn normal and intrusive behaviour by observation and adapt to changing profiles.
A prototype solution in which the agents monitor the network traffic on a system
is described. In this solution the agents access the network data through a well
defined set of primitives. They require the values of various fields in the network
packet headers and a variety of aggregate values such as average packet size, inter-
packet arrival times etc.

Each agent can be represented as a parse tree for a simple language. This
language allows the agent to inspect contents of network packets and act accordingly.
Before the agents are deployed for detection they are trained to identify intrusions
and minimize false positives. This involves human interaction with the agents via
the training module. The operator presents both normal and intrusive traffic to the
agents and guides their learning through a feedback mechanism. The agents use
genetic programming to actually learn.

Many agents are evolved at the same time with each agent monitoring a small

aspect of the overall network traffic. The agents cooperate by communicating their

11



suspicions among themselves. FEach agent makes a suspicion broadcast whenever
it believes that the observed activity is suspicious. As successive agents analyze
packet data and make such broadcasts, the level of suspicion rises above a predefined
threshold and the system raises an alert, indicating a possible intrusion. The main
drawback of this system is that it requires manual intervention during the training

phase.
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Chapter 3

Architecture of Sachet IDS

In this chapter, we briefly describe the architecture of the Sachet IDS. We begin by
introducing the components in the system and the interactions between them at a
high level. In the subsequent sections, we briefly describe the components in the
system, as they were before anomaly detection was incorporated in Sachet. In the
final section of this chapter, we describe the changes made to the architecture and
the components for incorporating anomaly detection into Sachet.

The architecture of Sachet is shown in Figure 3.1. The components in the system,
as can be seen from the figure, are multiple Sachet agents, a Sachet server and the
Sachet console. The agents and the server communicate with each other using
the Sachet protocol, which provides authentication, reliability, confidentiality and
integrity.

Sachet agents are deployed at various points in the network, depending on its
topology. Their main task is to monitor the network for intrusions. The Sachet
server is deployed on a dedicated machine and is responsible for controlling the
agents, collecting data from agents and interacting with the Sachet console. It uses
a database to store configuration information and alerts. The user interacts with
and controls the system using the Sachet console. Generally the server and the

console are installed on the same machine.
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Console

Learning agent

Database

Figure 3.1: Architecture of Sachet IDS

3.1 The Sachet Protocol

The Sachet protocol, used for communication between agents and server, is imple-
mented over UDP. It provides authentication, encryption and reliability to the com-
municating parties. Authentication is done using public key cryptography method.
The server maintains the public keys of all the agents and similarly each agent
maintains the public key of the server. During authentication, each side proves the
ownership of its public key to the other side using a challenge-response mechanism.
After authentication is completed in both directions, the server sends a random se-
cret key to the corresponding agent. All the messages from this point are encrypted

using the secret key. This key is changed periodically.



Bytes 2 2 2 2 2 variable 128 or

tlilncryption Packet ID Agent ID Data Length| Message type Data Hash
pe
. S . . Encrypted with sender’s
Not encrypted Encrypted with receiver’s public key or session key| private key or session keJ
\ ] 1

Figure 3.2: Message format

Reliability is achieved using acknowledgements, timeouts and retransmissions.
Every message in the protocol is acknowledged by the recipient. If the sender does
not receive the acknowledgement within a time period, either because the packet is
lost or because the recipient is down, it retransmits the packet. The retransmission
is done until either the sender gets an acknowledgement or the retransmission count
exceeds a threshold. In the later case, the sender assumes that the other side is
down and goes into the initial unauthenticated state. The retransmission timeout
is updated using the round trip time of each message.

Every message in the protocol uses exactly one UDP packet. The general message
format is shown in figure 3.2. Each message has a header of size 10 bytes, divided into
5 fields of 2 bytes each. The ‘encryption type’ field is used to specify the encryption
method, used for the current message, to the receiver. It takes one of three possible
values representing the following: encryption is not used, RSA encryption is used
or symmetric encryption is used. The ‘packet id’ field contains a unique integer for
each message with respect to the sender and is used to identify duplicates. The
‘agent id’ field is used to identify the sender of the message. Each agent is assigned
a unique 2 byte non-zero integer for this purpose. The messages from server have
0 in this field. The ‘data length’ field gives the length of the data portion of the
packet in bytes. The ‘message type’ field identifies the message present in the current
packet. The data field is interpreted based on this value. The ‘hash’ field contains
the encrypted MD5 checksum of the entire packet. The size of this field is 128 bytes
if RSA encryption is used and 16 bytes if 3-DES is used.

15



3.2 The Sachet Server

The Sachet server is a console based application which can run in the background
as a daemon or service. It does not have any user interface but it can interact
with other programs acting as user interfaces. The main functions of the server are
as follows: the server acts as a central point from which the entire system can be
controlled by the administrator. The server aggregates data from agents and stores
this data in the database. The data received from agents include alerts generated for
possible intrusions. The server maintains information about agents in the database
and retrieves it at the beginning of its execution. It also communicates with the
Sachet console using a simple request-response protocol in which the console sends
a request for some information or a command from user and the server responds

with the appropriate information or result.

3.3 The Sachet Agent

The Sachet agent is also a console based application which can run in the back-
ground. It does not interact with the user; as the name indicates, it does work on
behalf of the server. It consists of two main components: the control agent and
the misuse detector. These two components run as separate processes on the target
host. The main functions of the control agent are communicating with the server,
executing commands from server locally and controlling the misuse detector.

The misuse detector analyzes network packets in real-time for finding possible
intrusions. It has a database of attack signatures. It applies them on each connection
and raises an alert on finding a match. Snort [4] is currently used as the misuse
detector in Sachet. The agent can be deployed to monitor either an entire network

segment or a single host.

3.4 The Sachet Console

The Sachet console is a Java based GUI application using which the administrator

interacts with the system. It communicates with the server on a predefined port. It

16



also interacts with the database for extracting information requested by the admin-
istrator. The administrator uses the console to configure, monitor and control the
system from a central location. For example, the administrator can add a new agent
to the system using the console. The console presents important information about
all the agents on a single screen and more detailed information about each agent on

a separate screen. It can also show alerts from all the agents simultaneously.

3.5 Incorporating anomaly detection in the Sachet

Architecture

In this section, we describe the changes made to the architecture and components
of Sachet to incorporate anomaly detection into Sachet. The major changes to the
architecture are the addition of a learning agent to Sachet and the inclusion of an
anomaly detector at each agent in the system.

The anomaly detector at an agent processes network traffic and produces a com-
pact representation called feature vector for each connection. Using this feature
vector and the normal profile of the system, it generates an anomaly score and de-
tects deviations from the normal profile. It raises an alert if this deviation is more
than a threshold. The ‘control agent’ component at the agent receives alerts and
feature vectors from the anomaly detector and sends them to the server.

The Sachet server is modified to receive both alerts and feature vectors from
agents; these alerts and feature vectors are stored in the database by the server.
The server periodically instructs the learning agent to learn the normal profile of
the system. It collects the normal profile from learning agent and distributes this
profile to agents in the system.

The Sachet learning agent uses the same protocol described earlier for commu-
nicating with the server. The main task of the learning agent is to learn the normal
profile of the system. It authenticates with the server like other agents, and waits for
commands from server. Upon receiving the ‘start learning’ command from server,
it fetches the feature vectors from database and applies the learning algorithm on

this data. When the learning is completed, it sends the result or profile generated

17



by the algorithm to the server.

The Sachet console was modified so that it gives information about the learning
agent in a separate screen. The user can start the learning of profile at the learning
agent from the console. Many new messages were added to the Sachet protocol to
implement the new features of server and agent described above. Since the server
has to deal with learning agent also, many learning agent specific messages were also

added to the protocol.
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Chapter 4

Application of Learning Techniques

for Anomaly Detection

In this chapter, we describe the learning and stream handling techniques considered
for implementing in the anomaly detection scheme, along with their application to
intrusion detection, and give the results of testing these techniques on a benchmark
dataset. We begin by giving a classification of attacks that is used throughout this
report for presenting results. In the second section, we briefly describe the features
used for testing. We describe some learning and stream handling techniques in the

subsequent sections, and in the last section we present the results of our tests.

4.1 Classification of attacks

Classification of attacks into groups that share common properties will make the
presentation and analysis of results easier. The classification given here was orig-
inally presented in [26]. It is based on the level of access of the attacker and the
transitions thereof. In this taxonomy, there are four levels of access an attacker can
have. They are remote access, local access, superuser access and physical access.
In remote access, the attacker can send network packets to the victim machine but

he does not have an account on that machine. In local access, the attacker has an
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account on the victim machine and in superuser access, the attacker has root privi-
leges on the victim machine. In each class the attacker either performs some action
at a particular level or tries to obtain a higher level of access. The four classes in

this classification are explained below.

4.1.1 Denial of Service Attacks

In a denial of service attack (DoS) the attacker tries to render a resource or system
feature unusable by legitimate users by making it too busy with false requests. There
are different kinds of denial of service attacks. Some attacks try to exploit bugs in
network software and protocol stack by sending malformed packets. Others send
valid requests at a very fast rate so that the victim machine cannot handle them.
Remote access is generally sufficient to perform DoS attacks. Examples of DoS

attacks are back, ping of death, smurf, neptune, teardrop etc. [2]

4.1.2 Probes

Probes do not cause any damage by themselves but they provide valuable informa-
tion which can be used later to launch an attack. Remote access is sufficient to
do probing. The attacker tries to search for valid TP addresses, services running on
each machine or for known vulnerabilities. Examples of probes and probing tools

are ipsweep, mscan, nmap, saint, satan etc. [2]

4.1.3 Remote to User

In a remote to user attack, the attacker has remote access to a system but not local
access. He tries to exploit some vulnerability in the system to gain local access. The
vulnerabilities include buffer overflows in network server software, weakly configured
and misconfigured systems etc. Examples of remote to user attacks are dictionary

attacks, guest login, ftpwrite, sshtrojan, httptunnel etc. [2]
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4.1.4 User to Root

In a user-to-root attack, the attacker has local access on a system and by exploiting
some vulnerability he gains superuser privileges on that system. The most common
vulnerability is the buffer overflow vulnerability. Other vulnerabilities like bugs
in management of temporary files and race conditions are also exploited in these

attacks. Examples in this class are eject, loadmodule, casesen, anypw, yaga etc. [2]

4.2 Features

The features used in the evaluation can be divided into four main categories. They
are general, time-based, host-based and content-based. The general category con-
tains features like protocol, service, number of source bytes etc. Time-based features
are derived features which are extracted by considering connections in a 2 second
time window. Host-based features are extracted by considering the last 100 connec-
tions to the same host. Content based features are extracted from the data portion

of the packet and require analysis of application layer protocols.

4.2.1 General features

Duration Length of the connection in number of seconds.
Protocol Transport layer protocol of the packet, such as TCP, UDP etc.

Service Network service on the destination such as FTP, HTTP etc. This infor-

mation can be obtained from destination port number. e.g, FTP, HTTP etc.
Source bytes Number of data bytes from source to destination.
Destination bytes Number of data bytes from destination to source.

Flag Status of the connection. This feature indicates whether the connection is

half closed, fully closed and whether there are any errors in the connection.

land This value is 1 if the source IP address or port number is equal to destination

IP address or port number. Otherwise it is 0.

21



Wrong fragment Number of wrong fragments. A wrong fragment is an IP frag-

ment whose length is not a multiple of 8.

Urgent Number of packets in which the urgent flag is set.

4.2.2 Content-based features

Hot Number of hot indicators like access to system directories, creation and exe-

cution of programs etc.
Number of failed logins Number of failed login attempts.
Logged in 1 if the login is successful. 0 otherwise.
Number of compromised conditions Count of “file path not found" error.
Root shell 1 if root shell is obtained. 0 otherwise.
Su attempted 1 if root access is attempted. 0 otherwise.
Num root Number of commands typed as root.
Num file creations Number of file creation operations.
Num shells Number of shell prompts.
Num access files Number of operations on access control files.
Num outbound commands Number of outbound commands in an FTP session.
Is hot login 1 if the login belongs to the ‘hot’ list; 0 otherwise.

Is guest login 1 if the login is a guest login; 0 otherwise.
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4.2.3 Time-based features

Some of the features in this and in the next category use the concept of SYN error
and REJ error. A connection which has less than 2 SYN packets is said to have a
SYN error. A connection which is rejected by setting the RST flag is said to have a
REJ error. All these features are extracted by considering connections in a 2 second

time window.

Count Number of connections to the same host as the current connection.
Serror rate Percentage of connections that have SYN errors.

Rerror rate percentage of connections that have REJ errors.

Same srv rate Percentage of connections to the same service.

Diff srv rate Percentage of connections to services other than the current service.
Srv count Number of connections to the same service as the current connection.

Srv serror rate Percentage of connections to the same service as the current one

having SYN errors.

Srv rerror rate Percentage of connections to the same service as the current one

having REJ errors.

Srv diff host rate Percentage of connections to hosts other than the current host.

4.2.4 Host-based features

The features in this section are extracted by considering past 100 connections to the

same host as the current host.

Dst host count Count of connections having the same destination host as the

current, one.

Dst host srv count Count of connections having the same destination host and

same service as the current one.
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Dst host same srv rate Percentage of connections having the same destination

host and using the same service.

Dst host diff srv rate Percentage of connections to the same host as the current

one and are to services other than the current one.

Dst host same src port rate Percentage of connections to the current host hav-

ing the same source port.

Dst host srv diff host rate Percentage of connections to the same service as the

current one but coming from hosts others than the current one.

Dst host serror rate Percentage of connections to the current host that have a
SYN error.

Dst host srv serror rate Percentage of connections to the current host and cur-

rent service that have an SYN error.

Dst host rerror rate Percentage of connections to the current host that have a
REJ error.

Dst host srv rerror rate Percentage of connections to the current host and cur-

rent service that have an REJ error.

4.3 Supervised Learning

In supervised learning, each point in the training data has a class label assigned to
it, which is used by the learning algorithm during the training phase. The learn-
ing algorithm tries to construct a model which can classify the training data as
accurately as possible. For example, in neural networks the model consists of the
weights on the paths connecting the neurons. These weights are adjusted during
the training phase using the class labels of the training data. Similarly in a support
vector machine, which is a binary classifier, the model consists of a hyperplane sep-
arating the two classes. The position of hyperplane is adjusted in such a way that

the margin of separation between this plane and the nearest data points of the two
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classes on either side of this plane is maximized. Again, this optimization is carried
out using the class labels of the training data set. Thus, these algorithms depend
heavily on the labels of training data set and any error in this labeling will result in
an inaccurate classifier.

When these learning techniques are applied to intrusion detection, they require
accurately labeled attack and normal data during the training phase. But in any
practical IDS, it is not possible to accurately label the data; some attacks are flagged
as normal (false negatives) and some normal connections are flagged as attack (false
positives). Generating training data manually is not a viable option because the
amount of network data is generally very large and the training has to be done
periodically to cope up with the changing patterns of network activity. Another
important issue here is the relative size of normal and attack data in the training
data. Generally, normal data will be overwhelmingly large when compared to attack
data. Since supervised learning techniques try to reduce the error in classifying
training data, by the output classifier, if one of the input classes has very few
points, the learning algorithm may ignore this class. This is a big drawback in
our case because if the attack data, which is present in relatively small numbers
generally, is ignored either partially or completely by the learning algorithm, the
detection rate will fall drastically.

While choosing the learning algorithm for the anomaly detection scheme we
considered the following supervised learning techniques: support vector machines
[10], supervised k-means algorithm [18| and soft linear vector quantization [23|. But
due to the reasons mentioned above, we did not consider these algorithms during
the testing phase in which different learning algorithms were compared (by testing

them on a benchmark dataset) to choose the best one.

4.4 Unsupervised Learning

In unsupervised learning algorithms, the training data does not need to be labeled.
These algorithms try to bring out ‘natural groupings’ or clusters from the training

data, by looking at how close a point is from the rest of the points in the training
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data. The degree of closeness is determined by using a metric; the most widely used
metric is the Euclidean distance.

Unsupervised learning can be effectively applied to anomaly detection. In anomaly
detection, the main goal is to learn the profile of the system under observation and
then detect deviations from this observed profile. In the case of a network based
IDS, the normal profile is learned from feature vectors extracted for normal connec-
tions. Unsupervised learning techniques do not have the drawbacks of the supervised
learning techniques mentioned above, when applied to intrusion detection. Even in
this case the decision regarding the normality of a connection is made by the IDS
and hence the training data, from which normal profile is learnt, may not entirely
be normal. However, the algorithm tries to bring out the differences among the
input points, and hence we can always identify and discard most of the attack data,
so that the normal profile is learnt from mostly normal data. Our approach is to
discard 2 percent of the training data on the grounds that it is possibly anomalous.
The normal profile retains information from the rest of the 98 percent training data.

We considered two unsupervised learning techniques for anomaly detection. They
are y-means |[14] and support vector clustering [7]. We briefly describe these two
techniques and their application to anomaly detection in the following two subsec-

tions.

4.4.1 Y-means clustering

K-means is a popular clustering algorithm which partitions the input data into k
groups based on a similarity metric. Its main drawback is that the result depends
on the value of £ and finding an optimal value of £ is not easy. Many modifications
have been proposed to k-means to overcome this drawback. The y-means clustering
technique [14] defines three operations for this purpose: empty cluster removal,
splitting and merging. Empty cluster removal simply removes zero sized clusters.
Splitting is used to break up clusters with a large number of outlier points into
multiple clusters. A cluster has outliers if the point farthest from the cluster center
is not within a radius of (mean -+ r * standard deviation), where mean and standard

deviation are calculated on the Fuclidean distances of the points in the cluster from
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the center, and r is an integer. For all the clusters with outliers, the farthest point
in the cluster is taken as a new cluster center and the k-means algorithm is applied
again. After each iteration, empty clusters are removed and new clusters are added
by splitting clusters with outliers. This process is continued till outliers are not
found in any cluster. In this clustering technique the final number of clusters does
not depend on the value of k.

The output of this technique is a set of points representing the cluster centers.
A threshold is calculated such that 98 percent of the training data points lie within
this distance from their nearest cluster center. For classifying the test patterns the
distance of the test pattern from the nearest cluster center is calculated and if this
distance is greater that the threshold, the test pattern is classified as an attack.

Otherwise it is classified as normal.

4.4.2 Support Vector Clustering

The main idea in support vector clustering [7] is to represent the normal data by
a sphere of minimal radius in a higher dimensional space using a non-linear kernel.
Here input data points are mapped to a higher dimensional feature space using
a Gaussian kernel, and a sphere with minimal radius enclosing all these points is
constructed. When this sphere is mapped back to the input space, it separates
the data into several components or clusters. As the width of the Gaussian kernel
is decreased, the number of clusters increases. The method allows outliers to be
present by employing a soft margin in which not all points are required to be within
the sphere in the feature space. The points that lie on the surface of the sphere are
called support vectors and the points that lie outside the sphere are called bounded
support vectors. In the input space, the support vectors form contours of clusters
and the bounded support vectors form the outliers. The percentage of outliers is
determined by the value of the soft margin constant C'. If the value of C' is 1 then
no outliers are present.

In our case, we stop after constructing the sphere. This is because, we want
only a representation of the normal data i.e. the regions in the n-dimensional space

containing the normal data, but not the exact clusters. Since the sphere itself gives
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us this information (whether a point is inside any normal cluster), we do not need
to map it back to the input space and find the exact clusters. The normal profile is
represented by the center and the radius of this sphere, which are in turn represented
by the support vectors. We modified LIBSVM [8], a library for support vector
machines, to find this sphere. We used an RBF kernel with its width parameter
set to 1/k, where k is the number of features. The soft margin constant C' is set
to 1.0 which means that outliers are not allowed. The radius is calculated so that
only 98 percent of the training points are inside the sphere. During testing, the test
pattern is mapped to the feature space and its distance from the sphere center is
calculated. If this distance is greater than the radius of the sphere, the test pattern

is considered anomalous.

4.5 Stream Processing Techniques

The problem of construction of the normal profile from feature vectors falls in the
stream processing class of problems, since feature vectors form a data stream and
the profile at any point must capture the information in the stream up to that
point, with the possible option that newer data is given more weight than older
data. Learning algorithms alone cannot achieve this because they cannot work in
an incremental fashion and they cannot handle very large amounts of input data (if
we want to create the profile from the entire stream). To overcome this problem
stream handling techniques are required. These techniques maintain a synopsis of
the stream such that processing the synopsis at any point is approximately the same
as processing the entire stream up to that point. The major restrictions on stream
processing techniques are: each stream element can be seen only a finite number of
times, the size of synopsis is limited and the time taken to maintain the synopsis
should be low. There are several stream processing techniques available out of which
we considered three techniques: a divide-and-conquer technique for clustering data
streams, reservoir sampling and bootstrapping. We briefly describe each of these

techniques in the following subsections.
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4.5.1 Clustering Data Streams

A method for clustering under the data stream model was described in [15]. The
main objective in this method is to maintain a good clustering of the points observed
so far, using small amounts of memory and time. A divide-and-conquer approach
is used in which the stream is divided into disjoint parts, each part is clustered
separately, and finally, the cluster centers obtained for individual parts are clustered
to obtain a clustering for the entire stream. While clustering the centers, they are
weighted by the number of points associated with them. This basic approach is then
extended so that it fits under the data stream model. The main restriction here is
the space required to store the intermediate cluster centers. To achieve clustering in
a limited space, whenever the number of intermediate cluster centers in the memory
reaches a threshold, they are clustered again to get much fewer second level cluster
centers. In general, when the number of centers at level i reaches a threshold,
they are clustered to obtain much fewer cluster centers at level + + 1. When the
clustering of points observed so far in the stream is needed, the centers at all levels
in the memory are clustered to obtain the final clustering.

This method can be applied on all clustering algorithms that output cluster
centers, i.e, on all k-means class of algorithms. Since the support vector clustering
method does not give cluster centers, this method for dealing with data streams
cannot be applied along with support vector clustering. It can be applied along
with the y-means algorithm described in the previous section, to generate the normal
profile of the network traffic. Whenever the profile needs to be updated, the most
recent points in the stream are first clustered to obtain centers and then these centers
are merged along with the centers in the previous profile and clustered again to get

the new profile. Weighted clustering is done in all the cases.

4.5.2 Reservoir Sampling

A random sampling technique for maintaining the synopsis in the data stream model
was described in [25]. This method, called reservoir sampling, maintains a true
random sample of the data seen so far in the stream, in a reservoir. All algorithms

that maintain a true random sample of fixed size after processing each record in
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the stream are called reservoir algorithms. Initially, these algorithms put the first
few records of the stream into the reservoir till the reservoir is full. After this, each
record in the stream is considered for inclusion into the reservoir, and if chosen, it
replaces a randomly chosen sample from the reservoir.

This stream handling method can be applied along with both the unsuper-
vised learning techniques described above. The learning algorithm is applied on
the records in the reservoir. The size of the reservoir is fixed beforehand depending
on the memory and processing power of the host on which learning is carried out.
Whenever the profile needs to be generated/updated, a reservoir algorithm is ap-
plied on the most recent data in the stream and the reservoir is updated first. The

learning algorithm is then applied on the reservoir to get the new profile.

4.5.3 Bootstrapping

Bootstrapping is a technique used to generate artificial training data set from original
training data set [16]. The bootstrap method has also been successfully applied for
error estimation and 1-NN classifier design [16]. We use the bootstrap method in
the context of sampling and data reduction. The method of maintaining synopsis
using bootstrap samples is as follows: every time after the profile is generated, a
bootstrap sample of size n/2 is taken, where n is sum of the number of records in
the current synopsis and the number of new records observed in the stream. This
sample is set as the new synopsis. The profile is generated using the records in the

synopsis and the most recent data from the stream.

4.6 Experimental Evaluation

An anomaly detection scheme requires a learning technique and a stream handling
technique. To choose the best combination, the learning and stream handling tech-
niques described above were evaluated using a benchmark data set. Since two learn-
ing techniques and three stream handling techniques were considered, there are six
possible combinations out of which five are valid. The method of clustering in data

streams cannot be applied for support vector clustering for the reasons mentioned
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earlier. These five combinations were tested on a benchmark data set and the com-
bination that performed the best was considered for implementation in the Sachet

system.

4.6.1 Preparation of Datasets and Criteria for evaluation

We used the data provided in the 1999 KDD Cup [3|, for testing the techniques
mentioned above. Each point in this data corresponds to a network connection and
contains values of the 41 features described in Section 4.2. This data itself was
obtained by extracting features from the 1998 DARPA IDS evaluation data.

A sample of 1,50,000 feature vectors corresponding to normal connections was
taken from the 1999 KDD cup data. The data stream was simulated using these
feature vectors. The profile was generated /updated every time after 25,000 feature
vectors were processed. Thus, for each combination, the profile was generated six
times. The classifier obtained at the end was tested on three test datasets. The
test datasets were prepared from KDD cup data using stratified sampling. Stratified
sampling is a random sampling technique in which data points are first separated
into mutually disjoint sets and then each set is sampled separately. This method
is advantageous if the number of data points in each class vary drastically. In the
KDD cup data some attack types have thousands of data points while some have as
few as two or three data points. Hence stratified sampling was used to create the
datasets.

Another important issue here is the normalization of data. Each feature in
the data has its own range. Some features have very large ranges where as some
take only binary values. Hence all features will not have equal weight during the
learning process and features with bigger ranges exert greater influence than those
with smaller ranges. To solve this problem data needs to be normalized. The z-score
normalization technique, described below, was used for this purpose.

Z-Score normalization: The mean (x) and the standard deviation (o) of the
data to be normalized are first calculated and the normalized instance is calculated

as follows,

R A (1)



Training data is first normalized using this technique and the mean and standard
deviation vectors are saved. Test data is then normalized using the saved mean and
standard deviation vectors.

The evaluation criteria used for comparing the performances are detection rate
and false alarm rate. Detection rate is equal to the number of intrusions detected,
divided by the total number of intrusions present in the data set. False alarm rate
is equal to the number of normal connections classified as intrusive by the algorithm
divided by the total number of normal connections. The detection rate should be
as high as possible and the false alarm rate should be as low as possible. Apart
from these criteria, the training time and the output size of the algorithm were
also considered. The training time is important as the profile has to be updated

periodically. The size of the result is important as real-time detection is desired.

4.6.2 Results

The results of applying the five valid combinations on the benchmark data are
shown in Table 4.1. The numbers given in this table are the averages of results over
all three test datasets. Note that the results here indicate the performance of the
stream handling technique and learning algorithm together, rather than the learning
algorithm alone.

When we compare the detection rates among attack classes, all combinations gave
the best results for probe class of attacks, and performed fairly well for user-to-root
(U2R) and DoS class of attacks. The detection rate was lowest for the remote-to-
login (R2L) class of attacks. The time-based and host-based features are designed for
DoS and probe class of attacks and the host-based features are designed for the R2L
and U2R class of attacks. The detection rate for probes and DoS attacks is expected
to be high because they are basically network-based attacks. The detection rate of
DoS attacks is lower than that of probes because the attacks ‘back’ and ‘mailbomb’,
which are present in large numbers in the test data, were not detected by any of
the methods. The detection rate of U2R attacks, which are inherently host-based
attacks, shows that the content-based feature capture the general patterns of these

attacks well enough. The low detection rate of R2L attacks shows that the features
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Detection rate
Combination | DoS | Probe | R2L | U2R | Total | False Alarm Rate
BS-YM 59.14 | 99.21 | 57.07 | 90.35 | 72.46 2.19
BS-SVC 69.58 | 98.05 | 51.01 | 78.68 | 75.76 2.88
RS-YM 54.07 | 94.79 | 55.36 | 84.21 | 68.0 1.53
RS-SVC 68.96 | 92.69 | 47.12 | 74.59 | 72.93 1.87
DQ-YM 69.35 | 99.48 | 52.49 | 71.93 | 76.26 2.76

BS - bootstrap technique.

RS - reservoir sampling.

DQ - divide-and-conquer method of clustering data streams.
YM - y-means clustering.

SVC - support vector clustering.

Table 4.1: Comparison of detection rates and false alarm rates

used currently do not capture these attacks properly and hence there is a need to
define more features appropriate to this class of attacks.

The performance of learning techniques alone can be compared by fixing the
stream handling technique. Support vector clustering performed better than y-
means when applied along with both reservoir sampling and bootstrapping stream
handling techniques. This shows that the performance of these learning techniques
is independent of the stream handling techniques. Among the stream handling tech-
niques, the divide-and-conquer method of clustering data streams performed the best
followed by bootstrapping and then the reservoir sampling. This can be observed
by comparing the stream handling techniques for a given learning technique.

Another important criterion is the false alarm rate. From the table, it can be
seen that the false alarm rate is lowest when the reservoir sampling technique is
applied. Among the learning algorithms, the false alarm rate is lowest for y-means
clustering for a given stream handling technique.

In terms of detection rate the best performing combination is the stream clus-
tering and y-means combination, and hence it is the natural choice for the anomaly
detection scheme. But the false alarm rate is a bit high for this combination and
also for the second best combination. Since false alarm rate is also an important

criterion, we may also choose a combination that performs fairly well with respect
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to both detection rate and false alarm rate. From the table, it can be seen that the
reservoir sampling and support vector clustering combination is exactly like this,
i.e, it shows good detection rate and low false alarm rate simultaneously.

The other criteria considered are the training time and the profile size. The
training time of y-means algorithm is around 15 minutes for an input size of 25000
and the training time of support vector clustering is around 2 minutes for the same
size of data. If stream handling techniques are being used, then we can always fix
the size of the synopsis such that the training time is reasonable enough for a given
learning technique. The same is the case with profile size also.

We chose the reservoir sampling and support vector clustering combination for

implementation in the Sachet system.
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Chapter 5
Design and Implementation

In this chapter we describe the design and implementation of an anomaly detection
scheme in Sachet. In Section 5.1, we describe the design, and in Section 5.2, we
describe feature extraction followed by the implementation of this scheme at each

of the components in Sachet.

5.1 Design of the anomaly detection scheme in Sa-

chet

Any anomaly detection scheme involves the construction of a normal profile. Since
Sachet is a network-based intrusion detection system, the normal profile is con-
structed by observing patterns in network traffic. More precisely, it is constructed
by using certain metrics or features extracted from network traffic. Since the mon-
itoring points in Sachet are the agents, feature extraction is done at the agents.
These feature vectors are aggregated at the server for constructing the normal pro-
file. The task of learning the profile from these features can be implemented at the
server itself, but it can also be implemented in a special agent whose purpose is
not to monitor the network but to learn the normal profile. In the later case, the
learning process is transparent to the server and hence the learning technique can be
changed without changing the server. This approach also reduces load on the server

since learning is a computationally intensive task. The special agent which deals
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Figure 5.1: Anomaly detection process

with learning is called learning agent and is responsible for generating the normal
profile.

The profile generated by the learning agent will be used for detecting deviations
in observed patterns of network activity. This detection can be done either at the
server or at the agents. Since detection requires considerable amount of processing,
the later option is more desirable as it will lead to scalability.

Figure 5.1 shows the flow of data in Sachet. At the agent, the anomaly detector
extracts features from network traffic. These features are the same as the ones
described in Section 4.2 except for the hot login feature which is not currently
implemented. Since these features are extracted on a per-connection basis, the

TCP packets needs to be reassembled into connections for extracting content based
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features. The anomaly detector component at the agent reassembles the packets and
extracts features for each connection. After extracting the features, it calculates the
deviation of this connection from normal profile and if this deviation is greater that
a threshold it raises an alert. Otherwise, it considers this connection as normal and
sends the feature vector to the control agent.

The control agent receives alerts from the anomaly detector as well as from the
misuse detector. If both these detectors raise an alert for the same connection, the
control agent gives priority to the misuse detector and passes its alert to server,
ignoring the alert from the anomaly detector. If the misuse detector alone raises
an alert for some connection and the anomaly detector declares that connection as
normal, the control agent again gives priority to the misuse detector and considers
this connection as anomalous; hence it does not send the feature vector for such
a connection to the server. In either of these cases, the misuse detector has more
priority as its alerts are considered to be more reliable than those of the anomaly
detector. Finally, the control agent sends these alerts and feature vectors to the
server.

At the server, the alerts and feature vectors received from agents are saved
in a database. The alerts are shown to the user through the Sachet console; the
feature vectors are used by the learning agent to construct the profile. The server
periodically requests the learning agent to construct the profile. When the learning
agent receives such a request, it connects to the database and fetches the most recent
alerts as well as the previously stored synopsis. It first updates the synopsis with the
new data using the stream handling technique implemented at the learning agent
and then applies the learning algorithm on this synopsis. The result of learning (the
normal profile) is then passed on to the server. The server distributes this profile to
the agents and the agents use the new profile for detection from that point.

Since the profile is generated from feature vectors, the agents do not have a
profile initially and hence they cannot do anomaly detection until feature vectors
are gathered for some sufficient amount of time, and the profile is constructed and
given to them. During this period they declare all connections as normal. Another

possible option is to initialize the agents with a profile constructed from artificial
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normal data. But doing this may result in a lot of false positives and false negatives
initially. In any case, we believe that the system stabilizes after some time.

In this design, the learning agent is an optional component and the user may
decide not to install a learning agent. In that case, the profile cannot be constructed
and hence there is no use of extracting features at the agents. Therefore, if the
learning agent is not installed, the server will instruct the agents to stop anomaly
detection. Even if the learning agent is installed, the user may wish to turn off the
entire anomaly detection in Sachet. This option is provided through the console;
the console passes such a request to the server and the server instructs all the agents
to stop anomaly detection. The option to start the anomaly detection in Sachet is

implemented similarly.

5.2 Implementation

In this section, we describe some important implementation issues in feature extrac-
tion followed by the implementation of the proposed anomaly detection scheme at
each of the Sachet components. We also describe the changes made to the Sachet

protocol for implementing this scheme in Sachet.

5.2.1 Feature Extraction

All the features except ‘hot _login’, described in Section 4.2, are extracted in Sachet.
These features can be divided into general, time-based, host-based and content-based
features. They are extracted for each connection observed by the anomaly detector
at the agents. In the case of connection-less protocols like UDP and ICMP each
packet is considered as a separate connection. In the case of TCP, the byte streams
in both directions of a connection must be reassembled for extracting content-based
features. For this purpose, an open source software called tcptrace [5] is used at
each agent. Tcptrace has a plug-in architecture in which each plug-in provides a
standard set of functions that are called for each new packet, for the first packet of
each connection and when a connection is closed. Feature extraction is implemented

as a plug-in of teptrace in which information about connections is maintained in a
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time sorted linked list.

Features are extracted for each connection when the connection is closed. A
potential problem with this approach is that connections may last for several hours
or even days. To overcome this problem, features are extracted either when the
connection is closed or when 15 minutes have elapsed since the connection is initiated
and is still not closed. In the following subsections, we describe the extraction of

the four kinds of features.

g General features

General features include some common information about a connection like destina-
tion port number, protocol, number of bytes transferred in both directions, duration
of connection etc. These features can be directly extracted from packet headers. The
values of these features are obtained from the information maintained by tcptrace

for each connection.

g Time-based features

Time-based features are extracted by taking a two second time window into con-
sideration. The values of these features are derived by inspecting all connections in
the past two seconds. Hence, the information about a connection whose features
have been extracted cannot be thrown away as it may be required to extract the
time-based features of a future connection. Most of these features are defined as
percentage of connections in the past two seconds that have a common property

(such as same destination port or IP address), and have a value between 0 and 1.

g Host-based features

Host-based features are derived from the past 100 connections to the same host as
the current destination host. But if 100 connections are not available at that point,
as many as available are taken into consideration. The 100 most recent connections
are found by traveling the doubly linked list of connection information. Host-based

features involve percentages and have a value between 0 and 1.
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g Content-based features

Content-based features are extracted from the payload of the packets by analyzing
application layer protocols. In Sachet, these features are extracted for four protocols:
telnet, FTP, HTTP and SMTP. The entire data transferred in a connection in both
directions is required in sequence, to extract these features. Since TCP packets can
appear out of order, the packets must be reassembled to obtain the two streams in a
connection. This reassembling is done by teptrace for the four protocols mentioned
above. For all other protocols, tcptrace is instructed to ignore the payload of the
corresponding packets. These features are extracted separately for each of the four
protocols. Depending on the destination port number, the protocol is identified and
the appropriate function is called. The extraction of features for the four protocols
is described below. In all these protocols except HTTP, a state based analysis of
the data is done by examining the client-to-server and the server-to-client streams
simultaneously. But if an inconsistency in state is found at any point, we assume
that some packets are lost and process the two streams separately.

Telnet

Data from telnet connections contains telnet control codes and console control
codes. These codes should be removed to get the data generated by the user. The
telnet control information includes option negotiations and sub negotiations identi-
fied by special codes defined by the telnet protocol, and it always starts with the
IAC code. Console codes are used to format and present data at the remote termi-
nal. They are either special ASCII characters which do not appear in the data, or
sequence of bytes starting with an escape sequence. After removing these codes, we
have the commands typed by the user in one stream, and the responses from remote
terminal in the other stream.

Most of the features are extracted by looking at the commands typed by the user
and the response of the remote system. Since these depend on the operating system,
the first task in the extraction process is to determine the server side operating
system. All Windows telnet servers have the word “microsoft" in their welcome
message which is printed as the first line. The server side operating system is

assumed to be Windows if this word is found; otherwise it is assumed to be a
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flavour of UNIX.

The login related features are extracted as follows: if there is a “Login incorrect"
message or a “Logon failure" message immediately following the login and password
prompts in a telnet connection, the login attempt is considered as a failure. If no
such message is found after the login prompt, the login attempt is considered as
a success. The login attempt is also considered as successful if the login prompt
is not found. The ‘num _failed logins’ feature is set to the number of failed login
attempts found in this connection. The ‘logged in’ feature is set to 1 if a successful
login attempt is found in the connection. The ‘is guest’ feature is set to 1 if the
login name is “guest".

The root-attempt related features are extracted only for UNIX based systems. If
at least one su command is found in the client to server data, the ‘root attempted’
feature is set to 1. To find whether an su attempt is a success or failure, the response
of the server immediately after the su command is observed. If this response starts
with “su:" at the beginning, the corresponding attempt is considered as a failure.
Otherwise it is considered as a success. The ‘num root accesses’ feature is calculated
as the number of commands typed as root.

The ‘hot’ feature gives the number of accesses to system directories and creation
and execution of programs. It is incremented whenever compiler and linker com-
mands like ‘gee’ and interpreter commands like perl, java and awk are present in
the client to server data stream of the connection. The ‘compromised’ feature gives
the number of ‘file not found’ errors. The ‘num file creations’ feature is incremented
whenever commands like cp, mv are found or the command has the redirection sym-
bol *>’. The ‘num access files’ command gives the number of accesses to system files.
It is incremented if any of the commands has a system folder path as its argument.

FTP

FTP uses the telnet protocol in the control connection. The telnet control codes
are first removed from the ftp data before doing further processing. The ftp session
starts after the server sends the 220 code to the client, which says that the server is
ready for accepting requests. Every command from client gets at least one 3 digit

response code from server. The first digit in the response code indicates the result
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of the command. The first digit can be a number from 1 to 5. 4 and 5 indicate error
conditions, 1 indicates that another response is being sent, 2 indicates success, and 3
indicates that the server is expecting another command from client. If reply code 220
is found in the data from server to client, we can associate commands in the client to
server direction with responses in the server to client direction; otherwise we cannot
associate commands with responses. At first we assume that we have the complete
data transferred in the connection and we process the two streams simultaneously
by matching the requests with responses and maintaining states. But if there is an
inconsistency in state while processing the requests and responses in the protocol,
we assume that some packets are missing. In this case we process the two streams
separately.

The ‘USER’ command in the client to server data indicates a login attempt. A
reply code starting with 4 or 5 indicates that this attempt is a failure. If the reply
code starts with 3, the server is prompting for a password and if it is 2, the login
attempt is a success. The commands ‘RETR’, ‘STOR’ and ‘STOU’ create files either
on the local machine or on the remote machine and hence the ‘num file creations’
feature is incremented when these commands get a reply code starting with 2. Access
to system folders is incremented if any of these commands specify a path containing
a system directory as its argument. The ‘num outbound commands’ feature is
incremented for each occurrence of the ‘SITE’ command. The ‘logged in’ feature is
set to 1 if at least one reply code starting with 2 is found. The ‘num__compromised’
feature is incremented by whenever a reply code starting with 4 or 5 is found.

SMTP

The reply codes of SMTP follow the same format as that of FTP. The client
starts issuing commands only after receiving the 220 reply code from server. If this
code is not found then the server to client data is ignored. Every time a reply code
starting with 4 or 5 is found, the number of compromised conditions is incremented
by 1. If at least one reply code from server starts with a 2 then the ‘logged in’
feature is set to 1. The other features are not relevant for SMTP.

HTTP

In the case of HI'TP the client to server data is processed independently of the
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server to client data. The ‘num compromised’ feature is set to the number of ‘file
not found’ replies plus the number of replies indicating failure, found in the server
to client data of the connection. The ‘logged in’ feature is set to 1 if there is at
least one reply code indicating success. The ‘num access files’ and ‘hot’ features are
extracted by examining the arguments to the GET, HEAD and POST requests in
the client to server data. If the path in the argument to these methods contains a

system folder then the values for these features are incremented.

5.2.2 Changes to Sachet protocol

Many new messages have been added to the protocol to implement the anomaly
detection scheme in Sachet. These messages are required to transfer feature vectors
from agent to server and to transfer the profile from learning agent to server and
from server to agent. In the case of the profile, a single message cannot hold the
entire profile as there is an upper limit on the size of a UDP datagram. To overcome
this drawback, the profile is sent in multiple messages with a ‘more’ flag in the
data part of the message along with a piece of the profile. A value of 1 for this flag
indicates that at least one more message containing the remaining part of the profile
can be expected and a value of 0 indicates that the profile is completely transferred

to the destination after this message and no more profile messages will follow.

5.2.3 Agent

The anomaly detector is implemented as a plug-in of tcptrace which runs as a sepa-
rate process. The control agent interacts with the anomaly detector and the misuse
detector and receives data from both of them. As stated already in Section 5.1, the
misuse detector has priority over the anomaly detector. The control agent should
correlate the alerts and feature vectors from anomaly detector with the alerts from
misuse detector to implement this priority. For this purpose, the 4-tuple and times-
tamp of the alerts from misuse detector are saved in a list. When the control agent
receives an alert or a feature vector from the anomaly detector, it compares the

4-tuple and timestamp of this data with the ones saved in the list. If a match is
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found, this alert or feature vector is ignored; otherwise it is sent to the server. Note
that if the data from the anomaly detector, for a particular connection, reaches the
control agent before the data from the misuse detector, the above implementation
will fail. But this will not generally happen because the misuse detector works on
a per packet basis and hence it generates the alerts much faster than the anomaly
detector.

The agent receives the profile from server in multiple messages. On receiving the
first profile message, the agent opens a temporary file and saves the contents of this
message in the file. For subsequent profile messages, it appends the contents of the
message to the temporary file. If the ‘more’ flag is set to 0 which indicates that this
message is the last profile message, the agent deletes the old profile and saves the
contents of the temporary file as the new profile. It then deletes the temporary file
and restarts the anomaly detector. The anomaly detector component at the agent
is not started until the server sends a ‘start’ message. If the learning agent is not
installed or if anomaly detection is turned off, the server will not send this message

and anomaly detection will not be turned on at any agent.

5.2.4 Server

The server receives the profile from the learning agent in a piecemeal fashion and
saves it in a file. It cannot interpret the profile and hence the learning algorithm
can be changed at the learning agent, resulting in a new profile format, without
making any changes to the server or to the protocol. The server sends the profile in
a piecemeal fashion to all the agents that are alive at the time it received the profile
from the learning agent. It also sends the profile to agents immediately after the
authentication, irrespective of whether the agent has this profile or not. In this way
the latest profile is maintained at all the agents.

The server identifies the learning agent among the agents using the ‘type’ field
present in the information saved for each agent in the database. At the startup
time, if the server cannot find a learning agent, it will not instruct the agents to
start the anomaly detector. Anomaly detection can be turned off from the console

even if the learning agent is present in Sachet. The server maintains a variable in the
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configuration file which indicates whether anomaly detection is currently turned on
or not. Again, if the server finds out at the startup time that anomaly detection is
turned off, it will not instruct the agents to start the anomaly detector. In this way

the entire anomaly detection scheme can be enabled or disabled from the server.

5.2.5 Learning agent

The learning agent starts the learning algorithm in a separate thread upon request
from the server. Before executing the learning algorithm, this thread connects to the
database and fetches feature vectors and synopsis using the ODBC interface. The
data source name, username and password required for this purpose are provided
to the learning agent through a configuration file. After fetching the required data
from the database, the learning algorithm is applied on this data. When the learning
is completed, the learning agent sends the result to the server. If an error occurs at
any point during this process, e.g, connection to the database may fail, a message

indicating the type of failure is sent to the server.

5.2.6 Console

The console has been enhanced with a separate screen for the learning agent in which
it shows some basic information about the learning agent including its current status.
The same screen also has several buttons through which the user can start or stop
the learning of profile, and disable or enable the entire anomaly detection process in
Sachet. When the start button for learning is pressed, the console prompts the user
for parameters to the learning algorithm and sends them to the server. The user has
to provide all the parameters in the form of a string in which consecutive parameters
are separated by spaces. This string is passed on from console to server and finally

to the learning agent where the parameters are extracted from this string.
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Chapter 6

Results

In this chapter we present the results of evaluating the anomaly detection in Sa-
chet on the 1999 DARPA data, a benchmark dataset generated for the purpose of
evaluating intrusion detection systems. We first give a brief description of the 1999
DARPA data and the evaluation criteria used. We then describe the experimental
methodology, and finally present the results.

The 1999 DARPA data [1] was generated for the 1999 DARPA intrusion detec-
tion evaluation [19] conducted by MIT Lincoln Laboratory, using a test bed that
simulated an existing military network. This data contains more than 200 instances
of 58 attacks types launched against victims using both UNIX and Windows NT.
The data also contains a wide variety of background traffic to test the false alarm
rate of the system being evaluated. It was collected over a period of five weeks
with five days per week, in which the first and third weeks of data is free of attacks
and the second, fourth and fifth weeks of data contains attacks along with normal
activities. The data collected includes sniffed network traffic, Solaris Basic Security
Module (BSM) audit data and Windows NT audit event logs along with nightly
listing of all files in the system and dumps of security-related files.

Since Sachet is a network-based IDS, we used only the network data for the
evaluation purpose. This network data was obtained by sniffing at two points in the
simulated test bed, the inside router and the outside router. Accordingly, there are

two tcpdump files called the inside data and the outside data for each of the 25 days
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during which the data was collected, except for one day on which the inside data is
not available.

The criteria used for evaluation are false alarm rate and detection rate. The
false alarm rate is the percentage of false alerts with respect to the total number of
connections. The detection rate is measured in terms of number of attacks and not
number of connections. The detection rate is defined as the percentage of the total
number of attacks, detected by the system.

The experiments were conducted in a simulated test-bed where packet files from
the 25 days of data were processed by the anomaly detector (teptrace with our
plug-in). Figure 6.1 depicts the experimental setup. Note that the misuse detector
was not used in these experiments. This is because all the attacks in the test

data are quite well-known now and Snort already has signatures for most of these
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attacks. The teptrace utility was modified by us to take the profile and a packet file
in tcpdump format as input and produces alerts for connections flagged as attacks,
and feature vectors for normal connections. The alerts were later analyzed manually
to calculate the detection rates and false alarm rates. After processing each day’s
data, the normal feature vectors were processed by the stream handling algorithm
and the synopsis was updated as in the actual Sachet system. The learning algorithm
was then applied on this synopsis and the profile was generated, which was used by
teptrace for processing the next day’s traffic. Initially the profile was empty and
hence for the first day all connections were assumed to be normal and no alerts were

generated.
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Figure 6.3: Overall attack detection

The false alarm rates for the 25 days are plotted in Figure 6.2. The average false
alarm rate is 3.92%.

Figure 6.3 shows the number of attacks present and the number of attacks de-
tected for the data of each day. The average detection rate is 66.46%.

The detection rates for specific classes of attacks are shown in the Figures 6.4 to
6.7. The average detection rate is 65.5% for DoS attacks, 70.47% for Probe attacks,
66.17% for R2L attacks and 75.48 for U2R attacks. Among the four classes, the
detection rates for Probes and U2R attacks are quite high as expected. This is due

to the fact that the host-based and content-based features capture the characteristics
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of these attacks to a very large extent. Even stealthy probes that have a large time
delay between successive attempts are successfully detected due to the host-based
features. The time-based features are mostly suitable for DoS attacks and Probes.
The detection rate for DoS attacks is low because most content-based DoS attacks

like back [2| and crashiis [2| have not been detected.
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Chapter 7
Conclusions and Future Work

We have developed a real-time network-based anomaly detection scheme for the
Sachet Intrusion Detection System using unsupervised learning and stream handling
techniques. We considered various learning and stream handling algorithms and
evaluated them on a benchmark dataset. We implemented the best performing
techniques in Sachet by modifying the components of Sachet. Finally, we tested
this scheme on a benchmark dataset of size 20GB containing 200 instances of 58
attack types and presented the results. The average false alarm rate is 3.92% and
the average detection rate is 66.46%.

This scheme is very practical and scalable, involves very little human intervention
and shows good detection rates and fairly low false alarm rates. But the false alarm
rates have to be brought down even further to make the system more reliable. Also,
there are several parameters involved in this system like the gamma value for the
learning algorithm, reservoir size, threshold for deviation etc. that need to be tuned
properly for maximum accuracy of the system.

In future, our anomaly detection scheme can be extended to include alert corre-
lation and signature generation. The anomaly detector works on individual connec-
tions and generates one alert for each anomalous connection. Many attacks comprise
of more than one connection and attacks like Denial of Service sometimes comprise
of even thousands of connections. Hence the anomaly detector in Sachet may gener-

ate multiple alerts for a single attack. The present work can be extended to analyze
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these alerts and identify groups of alerts that are generated from the same attack
and present the entire group as a single alert to the administrator.

Anomaly detection is generally used to detect unknown attacks, but once an
attack is identified it is always desirable to detect it in future using the signature
based method due to its reliability. This can be done if a signature is generated
for this new attack. This generation can be done in two ways: the system itself
can generate a signature and add this signature to the existing database or the
system can provide useful information about the attack to the user and the user can
manually generate the signature.

Another possible improvement in this anomaly detection scheme is in the in-
formation provided for each alert. Right now, only the UDP or TCP 4-tuple and
the timestamp are available; there is no indication about the type of attack. But
we believe that by looking at the feature vector, one can provide more information

about the alert than just the timestamp and the 4-tuple.
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Appendix A

New Messages Included in the
Sachet Protocol

The new messages added to the Sachet protocol for implementing anomaly detection
in Sachet IDS are described in this appendix along with their format. The packet
format for these messages is shown in Figure 3.2. Here, we present only the format
of the data part of these messages. The numbers in the brackets beside the fields in
the format indicate their size in bytes. Strings have variable size and are terminated
by a NULL character while including in any message.

CONN _FEATURES: This message is used by the agent to send feature vec-
tors of normal connections to the server. Multiple feature vectors can be sent in a
single message. Each feature vector has a four byte timestamp and a string that is
obtained by concatenating the values of features with spaces in between and ending
in a NULL character. The format is shown below:

CONN_FEATURES | count (2) | timestamp-1 (4) | feature vector-1 (string) |
timestamp-2 (4) | feature vector-2 (string) | ...

where ‘count’ is the number of (timestamp, feature vector) tuples present in this
message.  The reply from server to this message contains the reply code
CONN_FEATURES REPLY with an empty data field.

LEARNING RESULT: This message is used to transfer the profile from the

learning agent to the server and then from the server to the agent. Generally, the
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profile cannot be sent in a single message and requires multiple such messages. The
profile is handled by the server and the agents as a text file and while transfering
it, they include consecutive lines from this file in each message till the entire file has
been transfered. The file is reconstructed at the receving end from these messages.
The format is as follows:

LEARNING _RESULT | more (2) | count (2) | line-x (string) | ... | line-y (string)

where ‘more’ field indicates whether more messages will follow for this transfer
and ‘count’ contains the number of lines of profile present in this message.

The reply  to this message contains the message code
LEARNING RESULT_ REPLY with an empty data field.

START AD: The server instructs the agent to start the anomaly detector
using this message. The data field of this message is empty.

The reply  to this message contains the message code
START AD_ REPLY and the data field contains a 2-byte reply code indicating
whether the operation is a success or failure.

STOP _AD: The server instructs the agent to stop the anomaly detector using
this message. The data field of this message is empty.

The reply  to this message contains the message code
STOP _AD_ REPLY and the data field contains a 2-byte reply code indicating
whether the operation is a success or failure.

START LEARNING: Using this message the server instructs the learning
agent to learn the profile. The data part of this message contains a NULL terminated
string. The parameters to the learning algorithm are provided by the user in the
form of this string through the console. This string is passed on to the learning
algorithm where individual parameters are extracted.

START _LEARNING | parameters (string)

The reply  to this message contains the message code
START LEARNING REPLY with a reply code in the data part indicating whether
the learning has started or not.

STOP LEARNING: Using this message the server instructs the learning
agent to stop the learning algorithm. The data part of this message is empty.
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The server sends this message only when the user presses the STOP button on the
console but never on its own.

The reply  to this message contains the message code
STOP _LEARNING REPLY with an empty data field.

LEARNING FAILED: The learning agent sends this message to the server
when it encounters any problem during the learning phase. For example, database
connectivity may fail in the middle while fetching the feature vectors, memory al-
location may fail if the input data is too large etc. The datapart of this message
contains a 2-byte code indicating the cause for the failure if possible. Otherwise it
contains a zero.

LEARNING _FAILED | code indicating reason (2)

The reply to this message from the server contains the message code
LEARNING FAILED REPLY with an empty data part.
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