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Abstract

The recent strides in networking technology, along with the wide availability of

low-cost computing power, resulted in the explosive growth of the Internet. This

growth has also opened up possibilities for a wide variety of new applications and

services. The current Internet Protocol is not well equipped to handle neither the

growth nor the widely varying service requirements of the new applications. So the

IETF has standardized the new Internet Protocol IPv6 as the successor of IPv4. We

have built a basic IPv6 module in the Linux kernel. This implementation can be used

as a testbed for conducting research into various issues related to deployment and

performance of IPv6. We have also created an IPv6 backbone for the IIT Kanpur

campus network. This backbone allows the deployment of IPv6 in the campus

network in an incremental manner.
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Chapter 1

Introduction

1.1 IPv6 the Next Generation IP

The explosive growth of the Internet in the recent years has led to a number of diffi-

culties with the existing Internet Protocol - IPv4 [J81]. The high speed networking

technologies like ATM, etc., coupled with the wide availability of low cost computing

devices, have resulted in a large number of new applications and services. IPv4 is

not able to cope with the explosive growth of the internet. It also does not have

adequate facilities to support the widely varying service requirements of these new

applications. So the need for a new Internet Protocol, that would address these is-

sues of scalability and quality of service, was felt widely. In 1991 the IETF embarked

on the process of defining a new Internet Protocol - IPng. Later, this protocol was

given a version number of 6 and now, officially, it is known as IPv6.

IPv6 has been designed as an evolutionary step from IPv4. This makes the transition

from IPv4 to IPv6 easier, as IPv6 can be installed into the current IPv4 nodes

as a normal software upgradation. It is expected to be efficient throughout the

networking technology spectrum ranging from high-speed ATM networks to low-

speed wireless networks. The protocol is also designed to be future-safe in the sense
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that, it provides a framework for easy addition of new features. This new protocol

has a huge address space with 128-bit addresses and also allows route aggregation

at multiple hierarchies.

In this project we built a basic IPv6 implementation that may serve as a good

framework for further research and development. This can be used to experiment

with various approaches and tradeoffs involved in the issues that are still unresolved.

Attempts have been made to make this implementation as extendible as possible,

so that extra functionality can be added as the standards evolve.

We implemented this in Linux-1.3.24 kernel. The choice of Linux was driven by its

growing popularity and the wide availability of its source code. Moreover, Linux is

being ported to a wide variety of architectures and expected be much more wide-

spread.

We could also create an IPv6 backbone for the IIT Kanpur campus network, by

running the router code on two Linux machines. The utility of this backbone has

been demonstrated by running two more Linux machines as IPv6 hosts connected to

this backbone. This facility allows any host in the campus network to be upgraded

to IPv6 with minimal effort.

1.2 Organization of thesis

The rest of the thesis is organized as follows. In Chapter 2 we present an over view

of IPv6. We discuss the problems faced by IPv4 and explain how IPv6 is expected

to address these problems.

In Chapter 3 we explain the design and implementation of the networking subsys-

tem in Linux.

In Chapter 4 we describe how the basic framework of the IPv6 module is built.
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In Chapter 5 we explain in detail the implementation of the relevant system calls

and processing done at the interrupts.

In Chapter 6 we talk about tunneling support provided, and the IPv6 backbone

that has been set up in IIT Kanpur.

In Chapter 7 we describe the utilities that aid the setup and maintenance of the

IPv6 network.

Finally, in Chapter 8 we conclude by summarizing the results of our effort and

discuss what can be done as future work.
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Chapter 2

Overview of IPv6

In the following sections we will see how various problems and inadequacies of IPv4,

the generally accepted vision of the future networking, and the plan for transition

have influenced and driven the development of IPv6. Bradner [SA95] gives a detailed

account of the development process.

2.1 Growth of the Internet

IPv4 was designed in 70s and the developers could not foresee the kind of growth the

Internet is experiencing today. The TCP/IP stack was designed with a few thousand

networks in mind. However the latest surveys indicate that at the beginning of 1996

there are over 9 million hosts in 240,000 domains spread over nearly 100,000 networks

[Wiz96]. Even as late as 1987, the projections [R87] indicated that the number of

networks in the Internet would be approaching the 100,000 mark at some “vague”

point in distant future, but it has happened in 1996 itself. The early 90s witnessed

a phenomenal growth with the Internet doubling its size every 12 months.
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2.1.1 Address space crunch

Though the IPv4 addressing mechanism with its 32-bit addresses can address over 4

billion hosts spreading over some 16.7 million networks, the theoretically achievable

efficiency of address space usage is very poor [C94]. The reason is the “granularity”

of address assignment. The boundary between the network number and host number

in an IPv4 address is always located on a byte boundary. A class ‘C’ network can

have only 254 hosts which is too small for most organizations. So class ‘B’ network

addresses were assigned which bundled 65535 addresses. which is again too large

for most organizations and a lot of addresses went unused.

For the reasons mentioned above,, the class ‘B’ addresses were the most popular,

and IETF felt in 1992, that they would get exhausted by March 1994, if they were

allocated at the same rate. The Address Life Expectancy (ALE) working group of

the IETF estimated that the last IPv4 address would be assigned some time between

2005 and 2011. But the ALEWG assumed the growth rate of the year 1992 which

is far below that of 1996. The revised estimates put the address life expectancy

between 4 and 5 years from 1996.

A number of solutions were suggested for extending the address life expectancy of

IPv4.

• ALEWG suggested careful renumbering of major portions of internet to recover

and minimize the unused addresses. The IETF felt that the effort involved

was enormous and rejected the idea [Gro94].

• Use temporary IP addresses for intra-net conversations [Wan92].

The idea here is to remove the restriction that the IPv4 addresses be unique

across the world. All the hosts that are behind a firewall need not have globally

unique addresses. If all of the hosts on one network have unique addresses

among themselves, there would be no problem for the intra-net conversations.

However when a host wants to establish a connection with another host outside
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the net, it requests an address-server to assign a globally unique IPv4 address

for the duration of the connection. thus a handful of IPv4 addresses will

be shared dynamically among the all hosts of the net. But this will restrict

the number of simultaneous outgoing connections and will also require some

special setup.

• Since the Class ‘C’ addresses are relatively abundant, an organization should

be assigned multiple class ‘C’ addresses instead of a scarce class ‘B’ address

[VTJK93]. This technique conserves the addresses, as the smaller granularity

of class ‘C’ addresses allows a more precise number of addresses to be assigned,

which results in very small number of unused addresses. This scheme makes

the total number of networks in the Internet very large, which means that the

routing table sizes explode. But fortunately this can be tackled by deploying

CIDR. (More detailed discussion will follow later.)

• Utilize the remaining class ‘A’ addresses in a more conservative way by assign-

ing one class ‘A’ address to a number of smaller networks [IAN95]. Here the

basic point is to use some sort of “subnetting” in class ‘A’ addresses.

• Reserved addresses can be considered for direct assignment.

• Reserved addresses can be used to extend the length of IP address from 32

bits [Siy92]. If this special address is seen in the address field, the node should

look into the IPv4 options and get the remaining part of the address.

Actually, none of these techniques offer a permanent solution to the address space

crunch. At the most they postpone the inevitable exhaustion of the addresses by

a few more years. Furthermore, the long standing demands for better support for

QoS and mobility, etc., were not addressed by any of them. Because of these factors,

IETF started to evolve a new Internet Protocol with an easy transition plan.
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2.1.2 Routing table explosion

The IPv4 addressing mechanism supports a very primitive level of hierarchy with

only two levels: the host and the network. Aggregation of routes for different hosts

in a particular network can be done by advertising only a single route for the entire

network. The routers outside this network will have a single routing table entry for

the entire net. But there is no easy way of sharing a routing table entry for collection

of networks, that can be reached through the same next-hop node. Which means

that the routing information cannot be aggregated beyond the level of a network.

This is because, we cannot advertise single routes for a collection of networks, since

the network is the biggest aggregation unit and there is no way of “identifying” or

“addressing” a collection of networks.

But the general topology of the Internet is a hierarchical one. It is mandatory that

the backbone routers keep a separate routing table entry for each of the networks it

can reach. So these routers will have very large routing tables and this has a direct

bearing on their performance. Both searching and updating these tables become

expensive operations because of their size.

The concept of Classless Inter Domain Routing (CIDR) shows a way out of this

gloomy situation [VTJK93]. It is a strategy that improves the address space utiliza-

tion as well as solve the problem of the routing table explosion. The central theme

of this technique is to abolish the concept of classes in the IPv4 addresses. The ad-

dresses are treated as continuous 32 bit identifiers, and a mask identifies a portion

of the address that forms the network number. The rest of the address denotes the

host number within that network.

In this new scheme of things, both the advertisement as well as usage of routing

information needs to change. While routing, the router picks up the routing table

entry, with the longest key that fully matches the destination address. Now it is

possible to advertise single routes to a higher level router for a collection of networks,

if the leading bits in their network numbers common. Such routing table entries will
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have only the common part address as the key, which makes sure that any packet

destined to any of the networks in that collection, will match this entry and will

be forwarded accordingly. The longest match ensures that the aggregation does not

shield off better routes to the smaller groups i.e., if available, a route to a host will

be preferred over a route to a network which inturn will be preferred over a route

to a collection of networks.

This kind of route aggregation over topological boundaries will work, only if the

address assignment is done carefully, so that the networks with identical leading

bits in their numbers, are also closely located topologically. The discussion about

how the addresses should be assigned can be found in [Rek93].

CIDR was implemented in backbone routers three years ago and it could contain

the routing table explosion till recently. Now the routing tables have started to grow

again. But the experience was very valuable and influenced the address architecture

design of IPv6 to a great extent.

2.2 Emerging applications

Till now the IPv4 has been serving networks that are primarily data-oriented. Most

of the existing applications belong to two categories: bulk file transfer and interac-

tive. The QoS requirements of both these types are very minimal; they only required

data integrity which was easily provided by checksums and retransmissions.

The advent of high speed networking technologies, like ATM, and the cheap comput-

ing power made available by the new generation micro processors, opened up a host

of new generation applications ranging from distributed simulation to satellite nav-

igation systems in cars. These kind of applications require fairly sophisticated QoS

guarantees, in terms of bounds on delays, availability of bandwidth, and bounds on

packet losses, etc., from the underlying protocols. As the world is moving towards
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BISDN, IPv6 is expected to carry a variety of traffic with different QoS require-

ments. Similarly support for mobility, security and authentication, will all become

mandatory. Further, IPv6 is supposed to be efficient on a wide variety of transmis-

sion media. Since most of these new applications are targeted at common users,

there should not be any need for extensive configuration of devices unlike the IPv4

nodes. The IPv6 should allow and give some facilities for the devices to configure

themselves as much as possible. These features are popularly known as “Plug and

Play”.

In the rest of this section we discuss a few emerging application areas and examine

the kind of requirements they place on IPv6.

Nomadic computing

It is fairly certain that personal computing devices like PDAs and the mobile phones

are going to be ubiquitous in the near future. As they become more and more

a necessity, they tend to merge together into a single gadget with capabilities of

personal communication as well as computation and information retrieval. The

main requirement for these devices is that they be networked.

This market is going to be enormous and it will place a great demand on the address

space and the routing infrastructure. Since these devices are going to be mobile and

are also going to be used for personal communication, mobility, security and au-

thentication should be supported as basic elements of IPv6. IPv6 should also offer

least possible overhead as these devices are going to be operated on the low band-

width and lossy RF wireless networks. The protocol should have as little processing

over head as possible. Accounting will be a useful feature to support because the

market for these applications is going be consumer-oriented and they would like be

charged exactly for what they have consumed. Support for policy-based routing will

be helpful for multiple service providers to inter-operate. More detailed discussion

can be found in [Tay94].
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Networked entertainment

The strides made in hardware technology in recent times allowed complex multime-

dia encoding algorithms to run within the real-time constraints and this is going to

increase the video and audio traffic in the future Internet. Servers for movies and

television programs may become widespread in the near future. As the high defini-

tion TV emerges and becomes popular, the distinction between a computer and a

television may diminish. Every television set may become an IPv6 net endpoint.

The major requirements of this segment of applications are the real-time guarantees

on delay bounds and available bandwidths. The communication medium is likely to

be a high bandwidth one, like fiber optic cables and IPv6 should be as efficient as

possible in utilizing the bandwidth. Again, this being a consumer market, support

for accounting and policy-based routing will be welcome. Since we are talking of

almost every home on the globe having an Internet host, the strain on address space

and routing is going to be enormous and the IPv6 should be able to cope. See

[Vec94] for more details.

Smart devices

The concept of intelligent homes with all the everyday devices, like lighting, heating

and cooling equipment, being controlled by a central computer is catching up fast.

But today the devices are being monitored by control hardware that is analog and

is proprietary and expensive. quite proprietary and expensive. The idea is to make

all these instruments IPv6 hosts and work out a generalized solution.

At the moment, the requirements put forward by this kind of applications are not

very clear. The packets may have to use the same power cable that feeds power to the

instrument. Some new encoding techniques which allow this are being researched.

IPv6 should be extendible to incorporate emerging solutions in this area.
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2.3 Transition

The Internet as mentioned earlier, has grown too big making the transition from

IPv4 to IPv6 on a “flag-day” virtually impossible. The major reason why many

protocols, that attempted to replace TCP/IP stack, could not succeed was the lack

of proper transition plan. So a white paper on transition requirements was prepared

by Carpenter [Car94] and is summarized below.

IPv6 should be designed with this necessity for phased deployment in mind. Any

node should be able to get upgraded to IPv6 in isolation i.e.,i.e., there should be

no dependencies for the deployment of IPv6 in either a router or a host. All the

old applications written for IPv4 should run on IPv6 hosts too. Communication

between any pair of machines, at any protocol level should not become impossible

i.e., TCP on an IPv4 host should be able to talk to TCP on an IPv6 host.

The routing infrastructure also is not going to change over night. So the IPv6 should

be able to use the existing IPv4 routers during the initial period of the transition.

Similarly the IPv4 only hosts should be able to use the predominantly IPv6 routing,

during the later stages of the transition. Mechanisms for tunneling of IPv4 packets

over IPv6 networks and vice versa should be worked out. An easy way for translating

IPv4 addresses to and from IPv6 addresses will come in very handy in automating

this kind of tunneling.

Header translation should be totally avoided because, besides being a performance

overhead, it cannot be automated completely. This makes it mandatory for all the

IPv6 hosts to support IPv4 also. This requirement can be withdrawn at the end of

transition.

All the utility programs and services, like DNS, should work with both IPv6 and

IPv4. The socket API should change as little as possible.
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2.4 Overview of IPv6

It can be claimed that IPv6 will meet almost all the requirements that have been

set for it. In this section, we look at the major improvements and new features.

2.4.1 Simple header formats

The IPv6 header is much simpler that that of IPv4. Considering the address size

(128 bits), the IPv6 header is very small (40 bytes). All the IPv4 header fields, that

are not effectively used have been deleted. As far as possible bit fields have been

avoided. Fields are aligned to facilitate extraction of maximum performance out of

64-bit architectures.

Separate extension headers are designed for logically independent functionalities like

routing, authentication, security, etc. The encoding and processing of options has

been improved. IPv6 distinguishes between end-to-end and hop-by-hop options and

they are placed in different headers. This allows routers to skip options that are

not meant for it. It improves the router performance significantly. These extension

headers are kept between the IPv6 header and the transport header. Not all packets

need to have all the extension headers, but each header indicates what the next

header is, forming a singly linked list.

The default actions needed for a particular option can be encoded in the option itself

which makes it very easy to add new options. Similarly, the concept of extension

headers allows addition of new functionalities in a relatively easy way. Unlike IPv4

the total length of the options is not limited to 40 bytes.
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2.4.2 Addressing architecture

The addressing architecture of IPv6 is defined in [Hin95]. The main change has

been the in the length of the address. The choices were 64 and 128 bits. Huitema

in [C94] argues that 128 bits of address length is a safer choice and will provide

with more than enough addresses. So the IPv6 addresses are standardized at 128

bits. As noted earlier, the actual efficiency of address allocation suffers, if we were

to allocate addresses in such a manner to allow aggregation of routing information.

But Huitema’s calculations show that, even in the most pessimistic case we will have

a total of 8x1017 addresses. The most optimistic estimate puts the total addresses

at 2x1033. The preferred textual representation of an IPv6 address is of the form

x:x:x:x:x:x:x:x. Each x designates the hexadecimal representation of a 16-bit quan-

tity. Continuous run of zeros can be abbreviated by a “::”. But it can appear only

once. Embedded IPv4 addresses can be written in the well known dotted decimal

notation, like x:x::a.b.c.d (IPv4 addresses always occupy the last 4 bytes.)

The concept of an “address prefix” or simply “prefix” is very widely used in IPv6.

Any non zero number of contiguous bits from the left-most bit form a valid prefix.

There can be many valid prefixes for a given address. The particular one can be

identified by providing additional information, such as the length of the bit sequence.

A popular notation is xx::yy/len, where len gives the length of prefix in bits.

There are various types of IPv6 addresses like, unicast addresses, local-use addresses,

multicast addresses, etc. They are identified by a field, formed by a variable number

of leading bits in the address, called the Format Prefix. various format prefixes that

have been assigned can be found in [Hin95]. Use of 15% addresses are decided now,

and the rest 85% are reserved for future use.
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Unicast addresses

There are a variety of unicast address forms in IPv6, like IPv4-compatible addresses,

provider-based unicast addresses, addresses for local use, IPX hierarchical addresses,

NSAP addresses, etc. Different format prefixes have been assigned for all these types.

A few main categories are explained below.

• Provider-based unicast addresses

These are the normal globally unique addresses, used in unicast IPv6 data-

grams. The functionality of this is similar to the IPv4 addresses under CIDR.

Since IPv6 is also going to use the underlying concept of CIDR for route ag-

gregation, the allocation should be done in an orderly fashion. Such a plan is

outlined in [Rek95]. The address format is shown in Figure 1

• Local use addresses

These addresses are not unique across the globe. There are two kinds of local

use addresses: link-local and site-local. The formats are shown in Figure 1.

As their names indicate, link-local and site-local addresses are guaranteed to

be unique only on the link and the site (organization) respectively. Link-local

designed to be used in auto address configuration, neighbor discovery, etc.

Site-local addresses are meant for sites which are not yet connected to the

Internet. When they connect, site-local addresses can be changed to globally

unique unicast addresses by replacing the prefix with the one supplied by the

provider.

• Addresses with embedded IPv4 addresses

These addresses are meant for providing an easy way of translating IPv4 ad-

dresses to and from IPv6 way addresses This is useful in implementing the au-

tomatic tunneling of IPv6 packets over IPv4 and vice versa more easy. There

are two kinds of addresses with embedded IPv4 addresses: IPv4-compatible

IPv6 addresses and IPv4-mapped IPv6 addresses. The formats are shown in

Figure 1. The IPv4-compatible addresses identify nodes which support both
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IPv4 address

32 bits16

0

80 bits

IPv4 address

32 bits16

0

80 bits

FFFF

0000

IPv4-Compatible address

IPv4-Mappeed address

Addresses for
Local use

1111111010 0 interface ID

118 - n bitsn bits10 bits

Link-local address

1111111011 0 subnet ID interface ID

118-m-n bitsm bitsn bits10 bits

T = 1 : Non-permanent (Transient)

Site-local address

Adresses with
embedded
IPv4 addresses

Provider based

unicast Address

0 0 0 T

-

-

�

�

Multicast

address

010

3

provider ID

mbits

subscriber ID

o bits 125-n-m-o bits

intra-subscriberregistry ID

n bits

8 bits

flags scope

4 4

group ID

112 bits

11111111

flags:

T = 0 : Permanent (Well-known)

Figure 1: IPv6 Addressing Formats
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IPv4 and IPv6 and employ tunneling. The IPv4-mapped addresses are used

nodes that are “IPv4 only” and does not know IPv6. IPv4-compatible ad-

dresses also help in minimizing the effort in changing over to IPv6. When an

IPv4 host is upgraded to IPv6, no new IPv6 address needs to be assigned. The

node can start using the corresponding IPv4-compatible IPv6 address.

• Anycast addresses

These are essentially unicast addresses that are assigned to more than one in-

terface, possibly on different hosts. The property that distinguishes an anycast

address from a unicast address is that, a packet sent to an anycast address will

be delivered only to the nearest interface having that address, (by th measure

of routing metric). Anycast addresses are syntactically indistinguishable from

unicast addresses. When a unicast address is assigned to multiple interfaces

making it an anycast address, the nodes should be explicitly configured to

know that the address is assigned elsewhere too. Anycast addresses can be

used to implement policy-based routing, to locate a popular service, to locate

a default router, etc.

Multicast addresses

Multicast addresses are distinguished from unicast addresses by a format prefix of

“FF” in the highest order octet. (Figure 1) There is no special broadcast address in

IPv6. Broadcast is treated as a special case of multicast. The four higher order bits

of the octet that follows the format prefix, have been designated as flags, of which

three are reserved for future use and the remaining one is used to denote the type of

the multicast group: permanent or transient. The permanent multicast groups are

going to be well known and will be used to address popular services. For example,

all the NTP servers can be given a well known multicast address, which can be used

to multicast time updates among themselves. These well known multicast groups

are expected to make the application development simpler. Transient groups will

be created dynamically.
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The other interesting feature about IPv6 multicast addresses is its scope field. This

field, in case of transient groups, encodes the geographical spread of the group but

is not interpreted for permanent groups. This is very helpful in making the mul-

ticast routing scalable, as we can use this information to eliminate all unnecessary

membership advertisements. For example: if the scope field of a multicast address

identifies it as a site-local group, the routers at the site-boundary will refrain from

advertising the membership for this group, to outside world. The transient multi-

cast groups are meaningful only within their scope. Two groups with same group-id

but different scopes, are treated as two different groups, even if one scope encom-

passes the other i.e., a link-local group is different from a site-local group with the

same group-id. Similarly a transient group irrespective of its scope field bears no

relationship with a permanent group with the same group-id.

2.4.3 Routing

The basic routing remains same as IPv4 routing under the CIDR. All the major

routing protocols that support classless routing will work with a few, simple changes,

like changing the address length to 128 bits from 32 bits.

IPv6 introduced a simple, but powerful routing feature in the form of a new routing

header to be added after the IPv6 header in a packet. This header is identified by

a value of 43 in the immediately preceding header. It allows the sender to choose a

variant of router behaviour by setting the routing data appropriately. This type is

carried in the RoutingType field. The intermediate nodes will check this type, and

interpret the rest of the fields accordingly. On encountering a non-empty routing

header of unknown type, the routers are required to send an ICMPv6 parameter

problem message back to the source. Like all other extension headers, this header

too contains the standard fields, NextHeader and the HdrLength.

Type-0 routing header is defined in [Dee95]. Type-1 [SA95] is designed to support

the Source Demand Routing Protocol (SDRP) which allows source initiated routes
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to augment the routes selected by the routing protocols.

The functionality of Type-0 routing is similar to the IPv4 Source Routing option.

It contains a series of intermediate hosts the packet should visit, en route to its

destination. But unlike IPv4 source option, choice of loose/strict routing is not same

for all the hops. It can be set for each hop independently. This choice is encoded

into a bitmap of length 24. (This restricts the maximum number of intermediate

nodes.)

Unlike the IPv4 source routing this will not become a security threat since any

attempt of abuse will be detected by the authentication mechanism.

This routing functionality has made it possible to support several features. Few

examples are explained below.

• Mobility can be supported with ease, as most of the solutions for the mobil-

ity problem at the network layer level assume a powerful and robust source

routing. Further, IPv6 makes it mandatory for the end hosts, to reverse any

source routes they receive in the routing headers, while replying.

• Provider selection can also be realized with the help of this option. We can

make a host send all its packets through a particular provider’s infrastructure,

by keeping the anycast address of the corresponding routers, at an appropriate

place, in the routing header.

• QoS based routing will be easier to implement. Resource reservation protocols,

like RSVP, can choose paths that support the required QoS better, than the

paths suggested by the normal routing protocol. Source routing can make all

the packets belonging to a particular “flow” follow a given path. For example,

we can make all the packets of a video conference take a path that is entirely

optical fiber, and direct all the packets of an FTP session over normal phone

lines.
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2.4.4 QoS Handling

IPv4 supports only two simple QoS classes: low delay and high throughput. even

these two classes are not supported by typical routers. They processed the packets

essentially in FIFO order. To implement support for more sophisticated QoS classes,

the routers should use some sort of a priority queuing, instead of simple FIFO.

Priority

The router should be able to find out what kind of data a packet is carrying, before

it can decide upon the special treatment or the priority, for that packet. This

information is being encoded in the ToS field of the IPv4 header, but as mentioned

above, this allowed only two values to choose from, providing a crude classification.

The IPv6 allocated 4 bits for denoting the priority class, allowing a much finer

classification with 16 priority classes. They are split evenly between traffic that

backs-down as a response to congestion and the traffic that does not respond to

congestion. TCP traffic is an example for the first kind, and UDP traffic is is an

example for the second kind. There is no relative priority defined between these two

main subclasses. Different priority classes defined can be found in [Dee95].

Flow ID

In some cases, knowing just the priority class may not suffice. For example, some

classes of traffic, like constant bit rate audio can be served better if, we can make

some pre-assignment or reservation of resources. Reservation protocols like RSVP

can reserve resources all along the path, but there should be a way to identify all

the datagrams that should be allowed to use these reservations. So all the packets

that are going to utilize these reservations, should present some identification to the

routers. In other words we should have a way to associate a datagram to a logical
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“flow”. A flow can be defined as a sequence of related packets being sent from a

particular source to a particular destination (can be multicast) and need the same

type of service from the routers. The service they desire can be conveyed to the

routers, by means of a set-up protocol like RSVP.

IPv4 being a pure datagram protocol, does not give any facility to mark the related

packets. IPv6 provides for this by means of a 24 bit flow-id in the IPv6 header. This

flow-id is generated pseudo randomly in a source so that the intermediate routers

can use hashing effectively. The flow-id is going to be unique only within the source,

so the routers should form a unique key by either prefixing, or suffixing the source

IPv6 address to the flow-id. The issues in flow-label usage are discussed in [Par95].

IPv6 also tries to use the flow-label concept in improving the router performance. It

makes it mandatory for the source to have all the packets belonging to a particular

flow carry identical IPv6 header, and any other necessary extension headers like,

routing header and hop-by-hop header, etc. This makes it possible for the routers

to “save” the computation done for one packet in the flow, and reuse it for the

subsequent packets. The routers are free to check for any changes in any of the

headers and send an ICMPv6 parameter problem message back to the source.

The routers should detect a “dead-flow” too. Flows can become inactive, because of

changes in routing or because of the session getting concluded. Both of these cases

can be taken care, by associating a timeout with the state entries the router caches.

The hosts should not reuse the flow-ids until they are sure that the caches in all the

routers have been flushed.

A value of zero for flow-id specifies the non-existence of a flow-id. A router on

receiving a flow-id for which it cannot find a cache entry, should process the packet

as if the flow-id were zero and create a new entry for it in the caches. Any standard

cache management policies like LRU should work here too.
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2.4.5 Miscellaneous features

Security and authentication

The IPv6 provides framework for the implementation of authentication and security

separately.

The Authentication Header (AH) provides for conveying the information relating to

authentication. Though this header is designed to be algorithm independent, the

use of keyed MD-5 algorithm is advocated. Authentication allows the destination

to verify and be sure about the sender as well as the integrity of the datagram.

The other mechanism is called the Encapsulating the Security Payload (ESP). This

provides the confidentiality. The standard DES encryption algorithm will be used

to encrypt the message.

No specific key distribution algorithm is made standard as yet, but the AH allows

both host-to-host and user-to-user keying.

These two mechanisms open up a lot of new possibilities like, corporate virtual

networks that use public data carriers, electronic commerce, etc.

Path MTU discovery

Fragmentation has been considered harmful for the following reasons.

• It increases the processing that needs to be done at intermediate routers.

• Fragmenting the packet into a number of smaller units actually increases the

probability for the packet to get lost, since loss of even a single fragment

effectively make the whole packet use-less.
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• Since the fragments can be reassembled only at the destination, once the packet

gets fragmented, these smaller units travel up to the destination as independent

packets and they will not be able to utilize the higher MTUs available en route.

The IPv6 prohibits fragmentation at the intermediate routers. So the source tries to

find out the MTU of the path and fragments the packet, if necessary, at the origin

itself. The exact method of doing this is described in [CE90].
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Chapter 3

Networking subsystem of Linux

In this chapter we explain about the general principles around which the Linux net-

working subsystem is built. We also describe how the network buffers are managed

and how the different logical entities like device layer, protocols and the protocol

families interact and co-exist.

3.1 General design principles

Linux design has been influenced by the object-oriented technology to a great extent.

Almost all logical modules are treated as objects with well defined interfaces. For

example, each file system is an object, with methods to read and write ordinary files

as well as directories. Similarly each network device is also viewed as an object with

methods to send, receive packets, and to perform ioctls etc.

The general design and algorithms used are generally on the lines of those described

in the text books [Bac86] and [LMKQ89].
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Though the Linux kernel is fully coded in ANSI C, its object oriented design man-

ifests itself in the implementation. As mentioned earlier, each file system is imple-

mented as a self contained object and socket-layer is also treated as a special file

system under the standard Virtual File System (VFS). The abstraction of a method

is implemented with the aid of function pointers. Each of the file systems implements

a standard set of functions to handle all the operations on a file. Pointers to all these

functions are saved in a per-file system structure called file ops, and as part of

opening a file, a pointer to this structure is saved in the system wide file-table entry

of the file being opened. VFS transfers all the system calls on a file descriptor, to an

appropriate function found in the file ops structure. If a pointer for the handler

function is null, VFS returns an appropriate error to the application. Socket-layer

as a file system, makes available handlers for only read and write system call.

On similar lines, each protocol family “exports” to the socket-layer, a well defined

set of operations, in the form of function pointers, which serve as entry points to the

protocol code. This set is defined as a structure named proto ops. As a part of boot-

up initialization, each protocol family fills in a proto ops structure and registers it

with the socket-layer. Socket-layer while creating a new socket chooses the protocol

family and saves a pointer to its proto ops struct, in the newly allocated socket

structure. Subsequent operations on this socket will result in calls to appropriate

function chosen from the proto ops struct found in the socket.

3.2 Boot time initialization

The processing in the kernel can be divided into two main types: bottom half and

upper half. The term “bottom half” is used to denote the part of the kernel that

runs on clock interrupts. Similarly, the “upper half” refers to the processing that’s

done when a system call is made by the application.

During the boot time, after the kernel is loaded into the memory, initializing func-

tions of all the modules are called. This is done just before the init process is
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forked. The function start kernel is responsible for this initialization and as a

part of starting the kernel, it calls sock init to initialize the networking subsys-

tem. The function sock init in turn sets up all the networking devices, bottom

half handler and also calls the initializer function for each of the protocol families

configured. For this, it steps through the protocols list and calls the initializer for

each of the families. This list is an array of structures of type net proto, with two

fields: an ascii string denoting the name of the family and a pointer to the initializer

function. This is built statically by the compile-time initialization.

A typical protocol family initializer apart from taking care of the family specific ini-

tialization, also exports a set of pointers to its handler functions to the socket-layer.

Socket-layer maintains a table, called pops, with each entry holding information

about exactly one protocol family, in two fields : the protocol family identifier and

and a pointer to its proto ops structure. The family initializer, on being invoked

from sock init prepares a proto ops structure and passes it on to the socket-layer,

by calling the sock register function. The sock register function finds an empty

slot in the pops table and fills it in with the supplied proto ops structure. This list

is going to be searched when a socket is being opened with socket system call.

3.3 Network buffer management

Linux network memory management is built around the structure called sk buff.

It is essentially a piece of memory for data, with a header for control information.

Each sk buff holds exactly one packet and unlike the BSD mbufs, can be of variable

size. Because of the fixed size of mbufs, packets are often stored as chains of mbufs.

This allows dynamic shrinking and expanding of the packet, but operations even on

a single packet become quite complicated. Instead Linux uses a single linear buffer

to store the entire packet. Since we cannot expand the allocated linear buffer, with

the growing packet size, we need to take the worst case packet length into account,

before allocating an sk buff. Similarly parts of an sk buff cannot be released
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back, as we strip off the headers. Though these two factors result in slight wastage

of memory, the linear buffers are preferred over chains of mbufs, because it makes

the packet manipulation very simple. The sk buffs can also be linked into doubly

liked lists to form chains of packets, but a packet never spans over two sk buffs.

The other difference is that the “header” that has the control data is kept at the

end of the allocated buffer instead of at the beginning. This is done to exploit the

underlying memory allocation routine kmalloc, which returns always an address

that is a power of two and this helps in minimizing the memory wastage while

aligning the start of the packet.

A collection of general purpose utility routines are made available to operate on

these buffers. The three main types are: functions that allocate and free sk buffs,

functions that help in manipulating the data part of an sk buff and the ones that

help in organizing lined lists of sk buffs. Since most of the sk buff operations are

done at interrupts, these routines are made atomic.

There are four fields in the sk buff header that mark various points in the data

area. The variables head and end mark the beginning and end of the allocated

buffer respectively. Similarly the data and tail mark the beginning and the end of

usable data. The length of the usable data is kept in the len field.

skb alloc allocates a new sk buff. Space can be reserved at the head of the

packet using skb reserve. To add data at the end, we should first advance the

tail pointer and also adjust the len. The function skb put does exactly this. Data

can be pushed into the space reserved at the head, using the skb push. skb pull

and skb trim remove data from the head and tail of the packet respectively. Finally

kfree skb frees an sk buff.

Two simple code fragments are shown in Figure 2.
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struct sk buff *skb;

skb = alloc skb(len,GFP ATOMIC);

if(skb == NULL)

/* Drop the packet */

else {
skb reserve(skb,hdrlen);

memcpy(skb->data,data,datalen);

skb put(skb,datalen);

skb push(skb,hdrlen);

memcpy(skb->data,hdr,hdrlen);

}

Assembling a Frame

struct sk buff *skb;

skb = skb dequeue(list);

if(skb == NULL)

/* No packets - return */

else {
process hdr(skb->data);

skb pull(skb, hdrlen);

process data(skb->data);

kfree skb(skb, FREE READ);

}

Disassembling a Frame

Figure 2: Example usage of sk buff support routines.

3.4 Network Device Layer

The network layer protocols like IPv6 directly rest on the device layer in the standard

protocol hierarchy. They need to use the services of the device layer to send and

receive packets. The same general theme of object-oriented design can be found

here too. Each device is treated as an object and the other kernel modules access it

via a device description structure, called device. This structure holds pointers to

various functions that implement the operations on the device. For example every

device supplies function pointers to initiate the transmit operation, to build MAC

header etc. Along with these function pointers, the device structure, carries several

variables describing various parameters and the device state.

Any network module that is interested in receiving particular type of packets should

first inform the device layer, using the function dev add pack. This function takes

in a description of the packet in the structure packet type, and saves it in a table

that bottom half has access to. This structure contains protocol identifier constant

defined in [JJ94] and a pointer to a handler function. The protocol modules usually
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supplies this information to the device layer as a part of its boot time initialization.

When the device receives a packet, the device driver allocates an sk buff and copies

the packet into it. Then it extracts the protocol ID from the MAC header and saves

it in the control header of the sk buff. This is done because the the function that

actually feed the upper-layer protocols with these packets, is a generic one and will

not know to decipher various kinds of MAC header. It then pulls the MAC header off

the packet and queues it up in a system wide back log queue for further processing

by the bottom-half handler.

The bottom half handler which is run at regular intervals, on a clock interrupt,

examines this back log queue and if there is some packet there to be despatched

to upper-layers. If there are any, for each of the packets, it tries to match the

protocol ID found in the control data of the sk buff with one of the entries in a

table that maps the protocol ID to a pointer to a receive function. This table is built

incrementally, by calls to dev add pack by various protocol modules. On a successful

match, it calls the receive function with the packet (sk buff) as a parameter.

A single interface function dev queue xmit is provided, for all the devices, to send

packets. First the routing mechanism selects an outgoing interface. Then the packet

is prepared with all the headers. This packet is then passed on to the device layer

for transmission, by calling the dev queue xmit function. This function takes: a

pointer to the sk buff and a pointer to the device structure of the outgoing device

as parameters. The protocol module can make sure that the device is up and running

by examining the flags in the device structure. (These flags are set by the system

administrator through the ifconfig command.)

The dev queue xmit first checks whether the device can accept a new packet right

away. The busy flag is set in the device structure, if the device is busy in transmitting

a previously queued packet. If the device is not busy, it calls the function pointed to

by the hard xmit field in the device structure, which invokes the actual hardware

handling routines in the device driver. On the other hand if the device is found to

be busy, the packet is queued up for later trying. The bottom half when run on a
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clock interrupt, attempts to send all such pending packets.

3.5 Adding a new protocol family

The major steps in adding a new protocol family are

1. Define a new protocol family ID in the file /usr/include/linux/socket.h.

Change the PF MAX constant also, if necessary, to an appropriate value, so that

it is larger than the largest value given to any protocol family. The code in

networking subsystem assumes that it always holds such maximum.

2. Change the NPROTO constant in the file /usr/include/linux/net.h, if nec-

essary, to reflect the maximum number of protocol families that can be sup-

ported. This is used to statically define lists like the above mentioned pops

and protocols.

3. Define the new protocol specific address structures and other necessary con-

stants.

4. Write handler functions for the operations that the new protocol family is

going to support. The signatures of these functions can be taken from the

definition of the proto ops structure. Initially they all can simply return an

error like ENOTSUPP after printing some debug messages.

5. Write a handler function for the incoming packets from the device layer.

6. Write an initializer function that takes no arguments and returns a void. It

should do the following.

• Prepare a proto ops structure, with pointers to all the handler functions.

Make sure that the pointers to undefined handlers are set to NULL. Pass

this structure to the socket layer, which reads it and makes an entry in

the pops list, for the new protocol family.
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• Inform the device layer about what protocol ID the packets the the new

protocol module is interested in, should carry, along with a pointer to the

handler function. It should prepare the packet type structure and add

it to the system wide table the bottom half uses.

• Perform other miscellaneous things like initializing various tables and

chains, assigning default or startup values to various configurable param-

eters etc.

• Should initialize the member protocols by calling their initialize functions

in sequence.

7. Decide upon a new name to be given to the family and edit the portion of the

code that statically initializes the protocols list to include an entry for the

new protocol. This causes the sock init to initialize our new protocol family

too during the boot time.

8. Change appropriate makefiles to get the new files also compiled properly and

make the new kernel.

In the next chapter, we will explain how we added the INET6 family following these

steps.

3.6 Member protocols in a family

The individual protocols with in a family are again independent objects with meth-

ods for various operations like read and write. They are accessed by the methods of

the family which inturn are accessed by the socket layer. The handlers at the family

level do every thing that is common to all the member protocols and is specific to

the family. In the same lines the handlers at the protocol level do every thing that’s

specific to the protocol. These form the lowest level in the hierarchy of functions

that implement the system calls.
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Initializing internal details of the protocol is done by the per-protocol initializer,

which are called by the family initializer. For this the family initializer uses a list of

protocols which is constructed by compile time initialization.

A typical protocol initializer does the following.

• Initialize various internal tables, assign default values or initial values for con-

figuration parameters etc.

• If the protocol is interested in receiving packets directly from the device layer,

it should inform the device layer about what protocol ID the packets it is

interested in should carry, along with a pointer to a handler function. It

should prepare a packet type structure and add it to the system wide table

for the use of the bottom-half

• Should set up the linkages with other protocols if necessary.

In the following chapter we explained how the raw IPv6 protocol is added to the

INET6 protocol family.
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Chapter 4

Building the skeleton

In this chapter we will explain the design and implementation of the basic frame-

work for the new IPv6 protocol module. Linux provides the standard 4.3BSD style

Application Programming Interface (API) for the networking modules. We explain

the changes and additions to this API that are needed to support IPv6. We also,

explain how the new module fits into the kernel, and gets initialized etc.

4.1 BSD API

The API provided by the 4.3BSD, more popularly known as the socket interface,

became the de facto standard in recent times. Since the applications written for

this API enjoy a high degree of portability, Linux also provides an API that closely

resembles it. The main components that form the API are: core socket layer func-

tions, address structures, various constants, various socket options, ioctl commands

and address conversion functions. No standard has emerged yet for how these com-

ponents should be adapted to IPv6. The current status can be found in [ESJ96].

Building the API corresponds to the first three steps out lined in Section 3.5.
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The core socket layer functions are inherently very much adaptable for different

protocols, as they require the applications to cast the protocol specific addresses

into the generic sockaddr structure and also takes the length of the protocol address

structure as one of the parameters. The only restriction placed on the address format

is that it should carry the Address Family identification (the AF * constants) in the

first two bytes. So this component of the API should serve its purpose without any

changes.

4.1.1 New structures and constants

The IPv4 address is only 4 bytes long and this leaves 8 bytes of data unused in its

protocol specific socket address sockaddr in. But this is not sufficient to hold the

16 byte long IPv6 address. So it is mandatory that we define a new address family

with new address structures.

A new Address Family constant AF INET6 and a new Protocol Family constant

PF INET6 are defined in <linux/socket.h> along with the other address and pro-

tocol families.

#define AF INET6 10

#define PF INET6 AF INET6

Since none of the standard C types can hold the 128 bit long IPv6 address, a

structure in6 addr is defined in <linux/in.h>, The s6 addr field in this structure,

is an array of 16 unsigned characters in which the IPv6 address is stored in network

byte order.

struct in6_addr {

unsigned char s6_addr[16]; /* IPv6 address */

};
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This in6 addr is used in defining the IPv6 specific socket address sockaddr in6.

IPv6 applications like the IPv4 applications should include <linux/in.h> to get

this definition.

struct sockaddr_in6 {

unsigned short sin6_family; /* AF_INET6 */

unsigned short sin6_port; /* Transport layer port # */

unsigned long sin6_flowinfo; /* IPv6 flow information */

struct in6_addr sin6_addr; /* IPv6 address */

};

This address structure conforms to the standard convention by over-laying the

sin6 family field on the sa family field of the generic socket address sockaddr.

sin6 port is exactly same as the sin port in the IPv4 socket address sockaddr in.

The IP v6 address is carried in sin6 addr, which by virtue of its position in the

structure is aligned on a 64 bit boundary. This kind of alignment is expected to

result in improved performance on 64 bit architectures which are fast becoming the

standard.

IPv6 applications can control the values the flow-id and the priority fields, in the

IPv6 headers of the datagrams they generate. These are input to the IPv6 module

via the sin6 flowinfo field. This 32 bit field carries both the 24 bit flow-id and

the 4 bit priority field. This field contains the flow-id and the priority found in

the incoming datagram, when the sockaddr in6 is received from a system call like

recvfrom. As of now it is not very clear how the unique flow-ids are going to be

generated and used. There are also arguments in favour of replacing this single

integer with a structure or a union with separate fields for flow-id and priority.

Right now, in our implementation we do not include any mechanism to supply a

unique flow-id. We do not even have any sanity checks for the application supplied

flow-ids, but will copy whatever is found in the destination sockaddr in6 into the

IPv6 headers.
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In IPv4 domain, the INADDR ANY allows the applications to specify a system selected

address. Similar facility in IPv6 cannot be provided in a straight forward manner

since unlike IPv4, IPv6 address is defined as a structure. So we need to supply

a macro IN6ADDR ANY INIT and a global variable in6addr any to allow compile

and run time initializations respectively. Application programs can access these

by including the <linux/in.h>. Similarly, a macro IN6ADDR LOOPBACK INIT and a

variable in6addr loopback are also defined in the same file, to achieve functionality

same as that provided by the constant INADDR LOOPBACK in IPv4 domain.

/* Use these macros only for COMPILE TIME initializations. */

#define IN6ADDR_ANY_INIT {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}

#define IN6ADDR_LOOPBACK_INIT {0,0,0,0,0,0,0,0,0,0,0,0,0x7f,0,0,0x01}

/* Use these variables only for RUN TIME initializations. */

struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;

struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;

4.1.2 Address conversion functions

The address conversion functions of IPv4 inet addr and inet ntoa assume the 4

byte long IPv4 addresses and their functionality can not be extended transparently

to handle a different protocol family. More generic address conversion functions

inet pton and inet ntop, which accept the protocol family also as a parameter are

defined. Another improvement over the old functions is that these new functions

are guaranteed to be thread-safe, as they do not employ any static storage. These

functions are eventually going to be part of the standard C librarylibc, but right

now they are kept in a separate library - the libaconv. Manual pages for these

functions are available on-line and can be referred for exact syntax and semantics.
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4.1.3 Socket options

The main socket option that is being proposed is to change the type of addresses

the socket operates with, from IPv6 to IPv4 dynamically. This is necessary in cases

where an IPv6 aware application forks and execs an application that knows only the

IPv4. Since the child inherits all the open sockets, in the above mentioned case, the

IPv4-only child process inherit the IPv6 sockets of the parent also. Then the child

can get confused, by the “strange” IPv6 addresses returned by system calls by such

inherited IPv6 sockets. So the parent should make all the IPv6 sockets return the

IPv4 addresses before forking and execing the older applications.

However at the moment, the semantics for this socket option are not very clear

and we do not support it. There are a host of multi cast related setsockopts being

proposed, but as our implementation supports only unicast these too are not relevant

for us.

The two important socket options we implemented are:IPV6 HDRINCL and IPV6 -

SRCROUTE. Both of them operate at the IP level (SOL IP).

Applications can choose to take the responsibility of constructing and consuming

the IPv6 headers, when a raw IPv6 socket is being used. To do this, they have to

set the hdrincl flag in the socket structure using the socket option IPV6 HDRINCL.

This option takes an integer as a parameter. A non zero value for this parameter

sets the hdrincl flag and a value of zero resets it. If this flag is on, the raw IPv6

module does not attempt to construct any headers, but assumes that headers have

been constructed by the application itself. It will simply, route, build the MAC

headers and forward the packet to device layer. Similarly on receiving a packet, the

IPv6 module queues it for a raw IPv6 socket with the hdrincl flag set, without

stripping off the IPv6 headers. This facility is very much useful to generate test

packets and aids in debugging.

The other socket option IPV6 SRCROUTE sets the source route associated with a
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socket. This is operation is allowed only once on any socket in the same lines as

connect. This is done to avoid problems that can occur when the socket is being

accessed by more than one process. Consider the scenario in which the first process

sets up the source-route on a datagram socket and gets preempted. Now suppose

the second process gets scheduled and sets up another source-route. Then the first

process has no way to know, that the route it had set up is no longer in effect.

Similar problem would occur had the connect been allowed multiple times. So we

made this setsockopt a one-time operation on the socket.

But this prevents the application from using the very powerful feature of the data-

gram sockets i.e., the ability to multiplex traffic to different destinations from the

same socket. The problem of having a separate system call only to specify the source

route is that it actually splits the logical operation of “sending data to a destina-

tion via a route.” into two system calls: identifying a route and sending the data.

But these two operations are not logically separable and so we should do both the

identification of source-route and sending data via that route in a single system call.

To achieve that we should either develop a new system call like sendtovia which

accepts the source route also as a parameter, or make the send to accept the source

route too. Since the send to accepts the length of the address as a separate param-

eter and takes in a pointer to the destination socket address instead of the structure

it self, it is easy to pass a source route as an array of socket addresses with an

appropriate length. Besides providing a way to specify the source route once for the

life time of the socket (the IPV6 SRCROUTE socket option), we allowed the route to

be passed through the sendto system call too.

We also provided several ioctl calls to manipulate various kernel tables specific to

IPv6. These will be explained later in the report.
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4.2 Initializer for INET6

In this section we describe how the IPv6 module fits into the larger framework of

the kernel and how it gets initialized.

As mentioned earlier, the sock init function initializes all the configured protocol

families. A list of such families is built by initializing the protocols list at compile

time. A new entry is added to this list specifying the protocol family as INET6 and

the initializer function is inet6 proto init.

struct net_proto protocols [] = {

.

.

.

{"INET", inet_proto_init},

{"INET6", inet6_proto_init}};

During the boot up, the network subsystem initializer function sock init steps

through this list and calls inet6 proto init which initializes the IPv6 module, by

taking the following steps.

• Prepares a proto ops structure inet6 proto ops with the protocol family ID

(AF INET6) and pointers to various functions that serve as entry points. Calls

the socket register with AF INET6 and inet6 proto ops as parameters.

This gets the inet6 proto ops into the global pops list.

• Initializes various caches tables and counters of the module.

• Call the initializers of the member protocols. As of now we support the raw

IPv6. As more and more protocols like TCP/IPv6 and UDP/IPv6 are added

to the family, their initializers should also be called along with the rawv6 init.
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4.3 Initializer for raw IPv6

IPv6 is a member of INET6 protocol family and can be accessed through a raw

socket, so we refer the simple IPv6 as raw IPv6 on the same lines as raw IP.

The initializer rawv6 init on being called, from inet6 proto init does the follow-

ing things.

• Raw sockets by default receive all the IPv6 packets destined for the host. So

every packet received is copied to all of them. This requirement simplifies the

organization of raw sockets and a simple linear linked list is sufficient. Actually

this is not the list of the sockets, but is a list of all the PCBs of the raw v6

sockets. The initializer initializes this list ipv6 sk list to null. The socket

system call adds PCBs to this list.

• Prepares a packet type structure ipv6 packet type for IPv6 packet and reg-

isters it with the device layer. The two important fields of the packet type

are: a protocol ID the packet carries in its Ethernet header and a handler

function to be called whenever such a packet is received. For IPv6, the proto-

col ID is defined as ETH P IPV6 with a value 0x86DD in <linux/ifether.h>.

The handler is ipv6 rcv. The tables of the device layer are set up with this

information when the call to dev add pack is made with ipv6 packet type

as a parameter.

• Creates two special proc files ipv6 and ipv6 route in /proc/net directory.

These provide file system interface for various kernel tables specific to IPv6

module. These are explained in more detail in Section 7.1

Having seen how the INET6 protocol family, with raw IPv6 as the constituent

protocol, is fitted into the kernel we will move onto the implementation of various

system calls in the next chapter.
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Chapter 5

System calls

In this chapter we implementation of the system calls and also give a detailed picture

of the processing done on the clock interrupts.

5.1 Socket

Socket system call is used to open a socket. The standard interface to socket

system call takes three parameters: Address/Protocol family, type of the socket and

the protocol to be used. To open an IPv6 socket the first parameter should be

AF INET6 or PF INET6. As we support only the raw IPv6 as of now, the second and

third parameters should be SOCK RAW and a zero respectively. So, to open a raw

IPv6 socket the application should use the socket system call in the following way.

socket(AF INET6, SOCK RAW, 0).

The system call wrapper in the standard C library after setting up the parameters

either on the stack or in the registers, traps the kernel. The trap handler runs a

generic system call handler, depending on the system call number retrieves param-

eters from the user space if necessary, and calls an appropriate function. In case
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of socket system call, the control gets transferred to sys socket which takes the

following steps.

• Does sanity checks like, making sure that the supplied socket type is valid etc.

• Searches the pops list for a match with the address family chosen by the

application. if no match occurs, the error -EINVAL is returned. Otherwise, it

keeps a pointer to the pops entry that matched.

• Gets a free in-core inode. Allocates memory for a socket structure and ini-

tializes various fields in it. A pointer to the previously matched pops entry is

saved in ops field of the socket structure. The in-core inode structure inode,

has a field of type void pointer to allow the file system code to store a pointer

to its private data. A pointer to the newly allocated and initialized socket is

stored in this field.

• Allocates an entry in the system-wide file table and initializes it. A pointer

to the newly allocated in-core inode is saved in this entry. Mode is set to

read/write. The file table entry carries a pointer f op to a structure file ops

that holds pointers to functions that actually implement the file system. The

socket layer too has one such set of function pointers called socket file ops

whose address is marked in the f op field of the file table structure.

• Allocates a free file descriptor from the file table in the user area and sets up

a pointer to the file table entry allocated in the previous step.

• Selects the function pointed to by the create field in the pops structure of the

selected protocol family (socket->ops->create) and calls it, in effect giving

control to the protocol family.

• Returns success if the family specific create returns successfully. otherwise,

undoes every thing and returns failure.

In case of PF INET6, the sys socket gives control to the family specific create routine

inet6 create. One of the main functions of this is to allocate and initialize the
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Protocol Control Block (PCB). Ideally all the member protocols should define their

own PCBs and memory should be allocated in the protocol specific create routine.

But the INET family, uses a common PCB for all the three protocols UDP, TCP and

IP, though most of it is TCP specific. We decided to use the same PCB structure

sock for INET6 also for two reasons. First, utility routines to manipulate this

structure are already available Second, TCP and UDP irrespective of the underlying

protocol will need the same PCB and most of the IP specific portion can be re-used

for IPv6. So now, that all the member protocols are going to have the same PCB, we

should allocate it in the common family specific create routine. The inet6 create

does the following things.

• Checks if any specific protocol is requested by the application (in the third

parameter of the socket system call). If so, ensures consistency between the

socket type and the protocol. If the application did not choose any protocol

specifically, an appropriate protocol is decided upon based on the socket type.

A pointer to the protocol operations structure struct proto of the chosen

protocol is remembered.

• Allocates the PCB (sock structure) and initializes it. Store the pointer to

the proto struct of the protocol in it. Link this PCB to the socket struct by

saving a pointer to it in the data field of the socket.

• Lets the protocol do its initializations allocations and other protocol specific

processing by calling its create method.

The opening of a raw IPv6 socket results in a call to rawv6 init at the lowest level.

This simply links the PCB into a list of raw ipv6 sockets after properly increasing

the priority level. The success indication from this function propagates upwards to

the application.
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5.2 Close

The processing of close is trivial. It basically involves freeing of all the structures

allocated and releasing of the table entries used. The control first reaches down to

the raw IPv6 handler for close - the rawv6 release, via the family level handler

inet6 release.

The rawv6 release takes the following steps.

• Checks and releases any un-read buffers queued up in the protocol control

block.

• Removes the PCB from the list of raw IPv6 PCBs after taking care of atomicity

of the operation.

The inet6 release frees the PCB and gives control back to the socket level function

which frees the socket and returns to the VFS level. The VFS level handler, frees

the in-core inode and releases the entries in system-wide and the per-process file

tables and returns to the application.

5.3 Sendto

This is one of the most complicated system calls. The other two system calls that

pass data to the socket write and send can be implemented as special cases of

sendto.

The VFS level routines simply follow the pointer socket file ops and call the

sendto handler of the INET6 family - inet6 sendto. This checks if the protocol

has any handler for sendto, and if available hands over the control to it, otherwise

returns -ENOTSUPP.
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In the case of a raw IPv6 socket, the control thus reaches the rawv6 sendto. The

processing in this function can be divided into the following five major steps.

1. Sanity checks

2. Deciding the next hop IPv6 address and the corresponding outgoing interface.

3. Allocating buffers for the packet.

4. Constructing IPv6 header and any other extension headers.

5. Forwarding the packet to the device layer.

We explain each of these steps in greater detail in the following paragraphs.

5.3.1 Sanity checks

The raw IPv6 in this implementation does not support any flags, so the routine first

makes sure that all the bits in the supplied flags are zero.

Since the raw ipv6 socket is a datagram socket, packets to different destinations

can be multiplexed. So for an unconnected socket, the application must supply the

destination address. This can be checked by ensuring the size of the address is at

least the size of the sockaddr in6 structure.

If the supplied address size is more than that of one sockaddr in6, it is inferred that

the application is passing a source route in which case the size of the address should

be an integral multiple of the size of sockaddr in6. Application can specify source

route in sendto only if it has not already specified one, through the IPV6 SRCROUTE

socket option. An error is returned if there is a saved source route in the PCB.
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5.3.2 Next hop determination

The next hop determination algorithm uses several tables which are described below.

• Prefix cache: This table contains all the prefixes that are known to be local.

i.e., if a destination’s address matches with any of the prefixes, the destination

is directly reachable and the next hop address is same as the destination ad-

dress. This table has three fields : 16 byte long IPv6 prefix, length of the prefix,

and a pointer to the device through which the destination can be reached. We

have provided an ioctl command SIOCSV6PFCENT that makes an entry in this

table. This can be used only by the super-user. Actually, this table should be

filled in automatically by the host, as part of router advertisement processing.

For this, full fledged neighbor discovery [TEA96] should be supported. This

table is implemented as a doubly linked list sorted in the decreasing order of

the prefix length.

• Default router cache: This table maintains a list of default routers that are

willing to accept traffic destined for out-side of the network. In future, this

will also be filled from the router advertisements. However we have provided

another ioctl command SIOCSV6DEFRTR which allows the super-user to make

entries in this table. This table is maintained as a doubly linked circular list.

This is done to allow a round robin selection of routers.

• Routing table: This table is used only in routers. In hosts this will be

a null list. This is similar to the old IPv4 except for the longer addresses.

This table maps a prefix to a next hop router address. The major fields are:

prefix, prefix length, and the next hop router address. We have retained other

standard fields like the routing metric, flags etc., to make the deployment of

the adapted versions of the standard routing protocols like, RIPv6, OSPFv6.

We also extended the semantics of the ioctl command SIOCADDRT, so that if it

is attempted on an IPv6 socket, an IPv6 route is added to this cache.
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This is also built as a doubly linked list sorted in the descending order of

the prefix length, so that a match with longer prefix is attempted first. This

guarantees the longest match, which is the major requirement of the CIDR

style of routing, if we commence our search always at the start of the list.

• Destination cache: The next hop computation is saved in this table. This

has three important fields: destination address, its next hop address and the

outgoing device. In later-versions this table will serve as a one-place repository

for all the destination specific information.

In two cases the packet should be sent out only if the destination is directly con-

nected: one is when the socket option SO DONTROUTE is set and the second is during

the routing header processing. This kind of routing is called local routing.

If a source-route is specified for this packet, the first address in it, specifies the

destination of the packet as far as the routing at this node is concerned. So we should

route the packet based on the first address found in the source-route, instead of the

destination address specified by the application. The actual destination address is

put in the routing header as the last address. The first hop address based on which

the routing is done, is kept in the main IPv6 header as the destination address.

The function ipv6 route computes the next hop address. It takes two input param-

eters: the destination address and a flag which when set indicates that only local

routing should be attempted. On successful completion, it outputs the next hop

address via an output parameter and returns a pointer to the device structure of

the outgoing device.

The algorithm for determining the next hop is shown in Figure 3

It first searches the destination cache, to see if any previously decided next hop

address for the given destination is available. If so, the next hop and the device

are taken from the matched entry. Otherwise, the algorithm checks to see if the
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destination is on-link, by searching in the prefix cache. If a match occurs, the

next-hop is same as the destination and the device is taken from the matched entry.

If no prefix in the prefix cache matches, destination is decided to be off-link and if

non-local routing is requested, a router is selected. If the routing table is not empty,

it is tried first. If a route is found the next hop is the one specified in the routing

table entry, otherwise a router from the default router list is picked up as the next

hop. Again the outgoing device for this next hop address is found by matching it

with one of the prefixes in the prefix cache and selecting the corresponding outgoing

device.

In both prefix cache and routing table, match with the longest prefix is guaran-

teed since we alway commence our search from the heads of the lists and they are

organized in decreasing order of the prefix length.

5.3.3 Buffer allocation

The next step is to allocate buffers for the packet. As mentioned earlier, in Linux,

the entire packet with all the headers are stored in a single linear buffer called

sk buff. So we need to calculate the maximum size of the packet before allocating

the buffers.

For raw IPv6 the space required is the sum of the lengths of MAC header IPv6

header, any extension headers and data. The MAC header length can be found

from the device structure of the outgoing device selected by the routing. The field

hard header len contains the length of the MAC header the driver is going to build.

Size of the IPv6 header is always 40 bytes. During the sanity checking phase a flag

is set if the packet is going to contain a routing header. The routing header size is

easily calculated by the formula no of addresses * 16 + 8. Data length comes as

a parameter from the application. The total buffer space required is calculated by

adding all these sizes.
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ipv6 route:

Input : dst addr and local flag. Output : nexthop addr.

Returns : pointer to the device structure on success and NULL on failure.

/* Look for a hit in the destination cache. */

dst cache entry = lookup dst cache(dst addr);

if(found) /* Cache hit. */

nexthop addr = next hop address from dst cache entry;

save in destination cache and return (device from dst cache entry)

device = null;

/* Cache miss - try matching the onlink-prefixes. */

device = lookup prefix cahce(dst addr);

if(device) /* destination is directly reachable. */

copy dst addr into nexthop addr;

save in destination cache and return (device);

if (local flag) /* only local-routing. */

return(null); /* Destination unreachable. */

/* Destination is off-link. try finding a route to it. */

nexthop addr = null;

route entry = lookup route table(dst addr);

if(route entry)

nexthop addr = router address in route entry;

else

/* No route try pickup a default router. */

nexthop addr = get default router();

if(nexthop addr)

/*

* Found the next hop, This must be on-link

* so get the address from prefix cache.

*/

device = lookup prefix cahce(dst addr);

save in destination cache and return(device)

else

/* Destination unreachable */

return(null);

Figure 3: Algorithm for next hop determination.
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But before allocating the sk buff we need to make one more check. Our implemen-

tation does not support fragmentation and re-assembly. Therefore the total size of

the packet should not exceed the MTU of the outgoing device. The MTU of the

device is also available in the device structure.

It is checked, if the allocation of memory to the new packet will violate the maximum

write-buffer space that can be allocated for this socket. If so, we will put the process

to interruptible sleep, if the socket is a blocking one. The drivers after sending a

packet, release the sk buff and wake up any processes that are sleeping for the

write-buffers. If the socket is non-blocking the error EWOULDBLOCK is returned.

After making sure that we can allocate more write-buffers without exceeding the

limits, we’ll try to allocate an sk buff. This can fail if the system is running low

on memory, in which case an error ENOBUFFS is returned. Otherwise the buffer

allocation function completes successfully.

5.3.4 Building the headers

Once the buffers are allocated, the sendto handler proceeds to build the headers. As

the current implementation supports only, Ethernet, we use the terms MAC header

and Ethernet header interchangeably. The function ipv6 build header is the top

most function that the rawv6 sendto uses.

Mac header

Firstly, enough space is reserved at the head of the sk buff using skb reserve. To

construct the MAC header we need a mechanism which maps the IPv6 addresses

to MAC (Ethernet) addresses i.e., a counterpart of ARP in IPv4 domain. In a full-

fledged implementation neighbor discovery will take care of this mapping, in the

absence of which we resorted to the following solution.
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If the address is an IPv4 compatible one, the solution is trivial. Extract the last

four bytes and look up in the ARP cache using the arp find function. We can even

postpone the construction of the Ethernet header, until the moment it reaches the

device driver. The control data of sk buff has two fields to hold IPv4 addresses of

the source and the next hop. A Flag is also provided which when set indicates to the

driver that the MAC header is not built by the upper-layer protocol, but needs to

be built now. in which case, the driver uses the source and next hop addresses from

the sk-buff and builds the MAC header. So, in the IPv6 module, we need not build

the MAC header at all, the module extracts the IPv4 addresses of the source and

destination from the supplied IPv4 compatible IPv6 addresses, and records them in

the above mentioned two fields of the sk buff control data. Then it sets the flag

also, instructing the device driver, to build the MAC header.

If the destination address is a general IPv6 address, the last six bytes are assumed

to carry its Ethernet address. The last six bytes are used as the Ethernet address in

constructing the Ethernet header. The IPv6 addressing architecture has provision

for this kind of the addresses, since they make the auto address configuration easy.

The ipv6 build header uses a function pointer from the device structure to con-

struct the MAC header. This function takes as parameters, the MAC addresses

of both source and the destination (next hop), and builds the MAC header in the

previously reserved space at the head of the packet.

IPv6 header

Building the IPv6 header is straightforward. The data area in the sk buff is ex-

tended by 40 bytes and the header is built there. Only thing to be noted is that in

the presence of the routing header, the IPv6 header should carry the first hop IPv6

address found in the routing header, as the destination address. Actual destination

address goes into the routing header as the last hop. The priority and the flow-id
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are copied as they are, from the destination sockaddr in6 supplied by the appli-

cation. No checks or attempts to use these fields are made. The next header field

is assigned a value, that indicates the presence/absence of the routing header. The

hop-limit is assigned from the value found in the PCB. The hop limit cab be set by

the application through a socket option.

Routing header

The source route is stored in the PCB, in three fields: v6srcroute len carries the

size of the source route in 8 octet units, v6srcroute carries the sequence of addresses,

and v6srcroute lsbmp holds the loose/strict bitmap. The amount of space to be

allocated in the packet can be computed by the formula : v6srcroute len * 8 +

8. The extra 8 octets are used for the control data of the routing header. After

allocating the space in the sk buff, it is straight forward to fill in the routing

header. The first address in the sequence is not written into the routing header,

since it is going to be the destination address in the main IPv6 header and after

the last address, the actual destination address is copied as the last address into the

routing header.

5.3.5 Forwarding to the device layer

As mentioned earlier, all the devices are accessed through a single interfacing func-

tion dev queue xmit. Just before forwarding rawv6 sendto checks the status of

the device. It looks at the flags in the device and makes sure that the device is

up and running. Otherwise it returns an error ENETUNREACH. After this check, the

dev queue xmit function is called with pointers to the device and the packet. The

packet is queued and is sent, when its turn comes. Actually the bottom half takes

over here. Every time the network bottom half handler is run, it looks at the packet

queues, and if there are any packets waiting to be transmitted, it sends them by

invoking the hardware handling routines.
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5.4 Recvfrom

There are two parts for this system call, that work asynchronously. The bottom

half is responsible for receiving the packets from the net and delivering them to

appropriate sockets. When the application requests for data via recvfrom, the

upper half dequeues packets from the receive queue in the PCB and copies the data

to application buffers.

The other two system calls that read data from the socket - read and recv can

be trivially implemented as special cases of recvfrom. Therefore we will explain

below only the operation of recvfrom. We will first explain the the bottom half

then proceed to explain the upper half.

5.4.1 Bottom half

When a packet is received from the net, the device driver allocates an sk buff

and copies the packet into it. Then it examines the MAC header and extracts the

protocol ID from it and stores it in the protocol field of the control data part of the

sk buff. It then removes the MAC header and queues up the packet for despatch

to higher level protocols. When the network bottom half handler runs on the next

clock interrupt, it takes up packets one by one from this queue and searches the table

that maps the protocol ID to corresponding handler function. After the appropriate

handler is identified, it is called with the packet as the argument. In case of IPv6

the packet is passed onto the protocol handler function ipv6 rcv.

The function ipv6 rcv proceeds along the following steps:

• Extract the IPv6 header from the packet and make sure that version number

is six.
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• Next step is to see if the packet is actually addressed to this host. Each host

keeps a list of addresses it is expected to recognize. The destination address

found is matched against each of them. If no match occurs, the packet needs

to be forwarded, and so it is passed on to the function ipv6 forward.

• If the destination address in the packet matches one of the recognized ad-

dresses, the packet is apparently destined to this host only, but there can be

a routing header and it can request the packet to be forwarded. So check the

next header field in the IPv6 header. If it indicates, that the packet is carry-

ing a routing header, process it by passing it to the ipv6 process route hdr.

After this, the destination address could have changed, so it is again matched

with the set of recognized addresses and is forwarded if necessary.

• The IPv6 as well as other extension headers are removed from the packet and

then it is passed on to the raw IPv6 receive function ipv6 rcv. Once TCP

and UDP are added, this function will be extended to call the receive function

of the appropriate protocol, depending upon the next header field in the last

IPv6 extension header.

The rawv6 rcv picks up the PCBs chained in ipv6 sk list and delivers them a

copy of the packet. For this, it queues up the packet in the receive queue of the

PCB and wakes up all the processes that have slept waiting for data to appear on

that particular socket.

Routing header processing

We provide support for the type 0 routing header which is described in [Dee95].

The important fields are: length, segments left, sl bmp and type . length

field gives the length of the data i.e., the list of addresses, in units of 8 octets.

segments left indicates how many more addresses in the data are yet to be

visited. sl bmp is the bit map in which bits are numbered from left to right and, k
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th bit denotes whether the k th hop is to be routed strict or loose i.e., whether the

k th address need to be a neighbor of k-1 th address, or not.

The processing of type 0 header follows the steps out-lined below:

• If the routing header type is not a known type i.e., not of type zero and if

there are no more segments left, simply ignore the routing header. But,if a

routing header of unknown type with a non-zero value in segments left field,

is encountered the packet is dropped and an ICMPv6 message needs to be

generated.

• Ensure the sanity of the length and segments left fields. The length should

be an even number and should not exceed 46, since the maximum number of

hops that a routing header of type zero is limited by the length of the sl bmp to

23. The segments left should not exceed the total no of hops i.e., length/2.

• Compute the offset of the next hop address. Decrement segments left by

one and subtract it from the total no of addresses (length/2). Multiply this

quantity by 16 to get the byte offset of the next address form the start of the

data field.

• Interchange this address of the next hop and the destination address found in

IPv6 header. Return the strict/loose bit corresponding to this hop from the

sl bmp.

A return value of zero from this routine indicates that the next hop does not need

to be a neighbour. On the other hand any positive value indicates that the next

hops must be a neighbor, and hence only local routing should be attempted. So the

value returned by this routine is used as the local flag for the ipv6 route when

forwarding is being attempted.
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Forwarding

The main steps in forwarding algorithm (ipv6 forward) are described below.

• Decrement the hop limit in IPv6 header by one and drop the packet if this

becomes zero.

• Route the packet and find the outgoing device. The function ipv6 forward

gets the local flag as parameter from ipv6 rcv and passes it on to the

ipv6 route.

• Check if the new device chosen is the same on which this packet is received.

This check may be helpful in future when we augment the ability to generate

and handle route redirect ICMPv6 messages.

• Make sure that the MTU of the new device will be able to handle the packet.

If it cannot, drop the packet.

• See if the space available at the head of the packet is sufficient to construct

the new MAC header, if so go ahead and construct it. If not, allocate new

skb and copy the packet and then construct the new MAC header. We always

have enough head room since we support only Ethernet.

• Check whether the device is up and running and send the packet off by calling

the dev queue xmit.

5.4.2 Upper half

When the application requests data via the recvfrom system call, the control even-

tually comes to the function rawv6 recvfrom.

Similar to sendto, in this version, we do not support any flags in recvfrom as

well. So first it is made sure that they are zero. The function tries to dequeue a
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packet from the receive queue in the PCB. If the socket is non blocking an error

EWOULDBLOCK is returned. Other wise the process is put to sleep, until some data

appears.

After dequeuing a packet, data bytes are copied to the application buffers upto a

maximum of the number of bytes requested by the application. If the packet holds

more data, the remaining data is discarded, as the sk buff is freed after copying.

It returns the actual number of bytes copied.

5.5 Setsockopt and getsockopt

These system calls copy some data from application to kernel tables or vice versa.

The main steps are given below.

• Check whether the socket option is valid or not. This may include checking if

the calling process is running with super user privileges or not. Check if the

level of the option is correct or not.

• Verify if a read (write) operation on the area specified by the argument of

setsockopt(getsockopt) is going to violate the memory protection. If so, return

the EINVAL error.

• Copy the data from the argument to the kernel data structure in case of

setsockopt and from the kernel data structures to the argument in case of

getsockopt.

Implementation of ioctl calls is also on the same lines, except for a few obvious

differences like the absence of checks for option level.

56



Chapter 6

Tunneling and 6Bone

In this chapter we discuss the implementation of the pseudo device driver to tunnel

IPv6 packet over IPv4 clouds. We also explain how this is used in laying out a IPv6

backbone over the IIT Kanpur campus network.

6.1 Tunneling

The existing IPv4 infrastructure is too vast to be phased out on a flag day. Therefore

IPv4 and IPv6 are going to co-exist for reasonably long time over which the IPv6

is gradually phased in in a diffused manner. This makes, tunneling of the IPv6

datagrams over IPv4 routing infrastructure, not just attractive but also imperative.

The [RE96] specifies several transition mechanisms. There are two main variants of

tunneling: Automatic tunneling and configured tunneling.

In automatic tunneling, the host will decide to tunnel the packet if the destination

address is an IPv4 compatible IPv6 address. The IPv4 header that encapsulates

the IPv6 packet, carries the IPv4 address that is embedded in the destination IPv6

address, as its destination address. So there is no fixed configured endpoint for
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tunneling. The endpoint is determined dynamically from the destination IPv6 ad-

dress, and there is no need of any configuration by the system administrator. But

the inherent disadvantage is that this mechanism may not exploit whatever IPv6

infrastructure that is existing.

In contrast to automatic tunneling, configured tunneling works in terms of a point

to point pseudo device driver with a fixed endpoint. This requires some setup by

the system administrator, but not only allows exploitation of IPv6 infra structure,

but also gives the system administrator a finer control in deploying IPv6.

6.1.1 Tunnel driver

We support configured tunneling in our implementation. We developed a pseudo

device driver that looks like point to point IPv6 link. This driver can be configured

using the same ifconfig and the kernel modules access it like any other network

device i.e., through dev queue xmit. Instances of these driver are named v6tunl1,

v6tunl2, etc.

All the network device drivers should implement two functions: one initializer and

a transmit function. The initializer is called only once, during the boot time. A

statically initialized linked list of device structures, is employed to keep track of all

the devices, in the same as the protocol families are organized. The list is traversed

by the dev init when it is called by sock init and the initializer function of each

of the device is called. This function initializes and, fills in the rest of the details in

the device structure. v6tunnel init is the initializer for v6tunl devices.

The transmit function is called by the dev queue xmit, this should transmit the

packet on the network. The processing done in the transmit function v6tunnel xmit

is explained below.
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• Do some sanity checking like verifying the version number in the packet, mak-

ing sure that the device has been assigned IPv4 addresses for both ends, it is

supposed to connect as a point to point link etc.

• Switch on the device busy flag in the device struct. This puts the dev xmit

on hold.

• Allocate a new sk buff and, copy the packet, leaving enough head room for

the new IPv4 header.

• Fill in the IPv4 header

– The source and destination addresses come from the device struct which

have been assigned by the system administrator using ifconfig.

– After building the packet, it is going to be handed over to the ip forward

to be forwarded and it is going to decrement the TTL by one and drop

the packet if it becomes to zero. So, we assign a value one more than

what is found in the hop limit field of the IPv6 header.

– The [JJ94] defines a protocol ID for IPv6 tunneling over IPv4 and it is

assigned to the protocol field in the IP header.

• Compute the checksum for the new IPv4 header.

• Pass the packet to ip forward.

On the receive side, this packet is going to be received as an IPv4 packet so it

is passed to the IPv4 receive function ip rcv. We define a new dummy protocol,

IPv6IP, in INET family with the protocol ID that is used for this tunneling and

a simple receive function. The ip rcv after the normal processing, looks at the

protocol ID in the IPv4 header and hands the packet is handed over to the dummy

protocol, IPv6IP. Since the actual IPv4 packet is received on the Ethernet device,

the device pointer points to the eth0 device. Therefore, the receive function of the

IPv6IP ipv6ip rcv does a little processing on the packet, to make it look as if it

had come from the v6tunl driver and hands it over to the IPv6 receive function

ipv6 rcv. From here onwards the normal processing of an IPv6 packet follows.
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6.2 6Bone

Since commercial implementations of IPv6 are expected to start appearing in the

market soon, work has been started to set up a world-wide IPv6 backbone called

“6Bone”. This backbone is going to be constructed on the lines of the multicast

backbone “Mbone”. It’s going to connect islands of IPv6 networks together, by

means of dedicated IPv6 links where possible or by the configured IPv6 tunnels

described above. Since we developed all the required technology, we set out to set

up a miniature version of such 6Bone in IIT Kanpur campus network. We could set

up the 6Bone with two Linux machines acting as backbone routers. We also had

two hosts, one each on CSE and ACES networks. We describe the set up in the

following sections and explain the journey of an IPv6 packet through this network

with source route.

6.2.1 Local setup

The IIT Kanpur campus network consists of a backbone Ethernet, to which all

individual department Ethernets are connected via IPv4 routers. We chose two ma-

chines, godavari on CSE net and kusha on ACES net, to act as IPv6 routers. We

joined these two machines with a bidirectional tunnel comprising of two unidirec-

tional IPv6/IPv4 tunnels (v6tunl). We also have one simple host on each of the two

networks. Addresses assigned to these machines are shown in the following table.

Constituent machines of 6Bone

Name IPv4 Address Site-local IPv6 Address

godavari 144.16.162.121 FEC9:6164:6F72:6555:1:0000:C00F:00D9

kusha 144.16.160.231 FEC9:6164:6F72:6555:2:0080:4800:39BE

cspc12 144.16.162.112 FEC9:6164:6F72:6555:1:0000:E8C3:A938

eepc51 144.16.160.151 FEC9:6164:6F72:6555:2:0080:4884:D25F
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Since all of these machine can communicate using IPv4 as well, their IPv6 modules

recognize the corresponding IPv4 compatible IPv6 addresses also. We use these

addresses in the forthcoming examples as they are more compact and readable. The

prefix caches, routing tables and default router caches on different machines are

shown in the following tables.

Default router cache

IPv4 Compatible

Name IPv6 Address Default Router

cspc12 ::144.16.162.112 ::144.16.162.121

eepc51 ::144.16.160.151 ::144.16.160.231

Prefix cache

IPv4 Compatible Prefix

Name IPv6 Address Address Length Device

::144.16.160.231 16 v6tunl1

godavari ::144.16.162.121 ::144.16.162.0 15 eth0

::127.0.0.0 13 lo

::144.16.162.121 16 v6tunl1

kusha ::144.16.160.231 ::144.16.160.0 15 eth0

::127.0.0.0 13 lo

::144.16.162.0 15 eth0

cspc12 ::144.16.162.112 ::127.0.0.0 13 lo

::144.16.160.0 15 eth0

eepc51 ::144.16.160.151 ::127.0.0.0 13 lo

Routing table

IPv4 Compatible Prefix

Name IPv6 Address Address Length Next-hop

godavari ::144.16.162.121 ::144.16.160.0 15 ::144.16.160.231

kusha ::144.16.160.231 ::144.16.162.0 15 ::144.16.162.121
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Now consider an IPv6 packet being sent from godavari to eepc51 with a source

route that specifies an intermediate host cspc12 to be visited. We see how each

machine processes this packet.

1. The IPv6 module on godavari after receiving the packet from the application,

finds that a source route is specified and it picks up the first hop destination,

cspc12 and routes the packet. The second entry (::144.16.162.112/15) in the

prefix cache matches, and the corresponding device eth0 is selected as outgoing

device. The packet is sent to cspc12 with the destination IPv6 address as

cspc12 itself and with a routing header specifying eepc52 as the next-hop

destination.

2. The host cspc12 receives the packet and successfully matches the destination

address with one of its own. It then proceeds to process the header. It finds

that there is a routing header which specifies that the packet is to be forwarded

to the next destination, eepc51. It fails to match any of the on-link prefixes

found in its prefix cache. So it decides to send it to a router. Since it is a

simple host its routing table is empty. It looks up in the default router cache

and selects godavari as the next hop.

3. The packet reaches godavari with a destination address of eepc52. The IPv6

module on godavari decides that this packet should be forwarded, since the

packet’s destination address does not match with any of its own addresses. No

prefix from the prefix cache matches the packet’s destination address and the

routing table is consulted. From the routing table it is found that the router

for this host is kusha. Hence, the prefix cache is searched with the address of

kusha and the tunnel v6tunl1 is chosen as the outgoing device. The packet

is sent on this device with eepc51 as the destination.

4. The machine kusha decides that the packet should be forwarded, since none

of its addresses match with the destination address found in the packet. It

searches in the prefix cache and finds out that the host eepc51 is directly

reachable through the device eth0.
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5. Finally, eepc51 receives the packet and matches its address with the destina-

tion of the packet. It then checks that there are no more hops specified in the

routing header and the packet has reached the final destination.

As mentioned earlier, various tables used by IPv6 will be set up by the neighbour

discovery module. Since the current version does not support neighbour discovery,

we have provided some utility programs that allow the system administrator to

manipulate these tables. In the next chapter we explain these utilities and other

tools provided.
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Chapter 7

Tools and utilities

In this chapter we describe the facilities we have provided to setup, maintain and

test the IPv6 module in the kernel. We explain the /proc file system interface to

the kernel tables and also give brief descriptions of a few utility programs we have

developed.

7.1 The /proc file system interface

The /proc file system started as a pseudo file system under VFS, with the main aim

to provide a file system interface to the virtual memory of the active processes. In

this file system, which is traditionally mounted on /proc, a process is represented

as a file under /proc directory with its process ID forming the name. For example,

reading the file /proc/43, from the beginning, is equivalent to reading the virtual

memory of the process with ID 43 starting at the virtual address zero. The process

can be manipulated in a variety of ways by executing appropriate ioctl commands

on the file descriptor obtained by opening the corresponding file in the /proc file

system. Thus this interface forms a superset of the process manipulating system

call ptrace.
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Linux extended this concept to cover the kernel tables and some system status

related information as well. For example, the file /proc/uptime reports the time

for which the system has been up, since the last boot. The file /proc/net/arp can

be read to get the kernel’s ARP tables. All the major networking protocols have one

such file in /proc/net, which can be read to see some important tables and status

variables.

We created two such files in the same directory with names ipv6 and ipv6 route.

The file ipv6 gives out information like the number of open raw IPv6 sockets, number

of datagrams received and transmitted since boot up time, etc. Similarly, the other

file ipv6 route, outputs the kernel tables like prefix cache, router cache, routing

table etc.

The steps given below are followed to create these two files.

• The whole directory hierarchy for this file system is maintained in memory.

So we need to allocate inode numbers for these two files. The include file

<linux/proc fs.h> is edited to include two more inodes in the enumerated

list. These numbers are later used to create the in-core inodes when an open

is attempted on the corresponding file.

• The module which wants to create a proc file should tell the proc file system

module, by giving the inode number. This is done in the protocol initializer

for IPv6 ipv6 init. Along with the inode number, a function pointer also

needs to be supplied to which all the read requests on the corresponding file

converge.

• Two such information supplying functions get ipv6 info and get ipv6 -

route info are developed. They simply print the tables and variables into

the buffer supplied.
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7.2 Packet snooper

A small but powerful snooper utility is also developed to read and (write) packets

from (to) the ethernet device directly. This has been of great use to catch and

examine the packets generated by the IPv6 module and to feed it with test packets.

This is based on a special type socket SOCK PACKET that can be opened by the super

user. This allows direct access to the devices. The device is identified by giving

its name as an ascii string in the data part of the sockaddr. This is implemented

as a member protocol in INET. The third parameter in socket system call, should

identify the hexadecimal constant the packets, the socket is expected to catch, carry

in the protocol ID field of their MAC header. A special constant DEV P ALL makes

the socket catch all the packets. Packets are copied into these sockets at two points:

the incoming packets in the bottom half handler, and the outgoing packets in the

dev queue xmit. While writing on this socket, the application should construct the

MAC header also.

7.3 Miscellaneous utilities

The following miscellaneous utilities have also been developed.

• We had to change the ifreq struct to add the IPv6 address also to the union

that carries the argument for almost all the ioctl commands, that work on the

device drivers. The ifconfig depends on these heavily and the changed size

creates problems in the existing executable of this program. We provided a

new executable that works on the new kernel.

• Small utility programs: addpf, addrtr, addroute, are developed to add en-

tries to prefix default router and routing tables respectively. These programs

use the special ioctl commands implemented for this purpose.
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Chapter 8

Conclusions

We have successfully implemented the basic IPv6 in Linux, as a new protocol family.

An enhanced version of the popular BSD API is also provided. Applications could

access the protocol module through the raw socket interface of this API and could

communicate with each other.

We have also implemented a minimal IPv6 router. This router uses CIDR style

of routing and could forward packets between IPv6 networks. We provided the

functionality of source routing also, which is going to aid in experimenting and

conducting research into issues like mobility etc. We could use the existing routing

infrastructure by implementing a tunnel driver that tunnel IPv6 packets in IPv4

routing domains. This helps in connecting island of IPv6 networks through the

IPv4 networks.

An IPv6 backbone is created n IIT Kanpur campus network with two IPv6 routers.

We also developed a set of basic utilities that aid in setting up and managing the

IPv6 networks. This backbone allows any host in either CSE network or ACES

network to be upgraded to IPv6 without worrying about any other dependencies.
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8.1 Future Work

The implementation may be extended and refined in the following ways.

• The ICMPv6 needs to be implemented. This will make Path MTU discovery

feasible. Support for fragmentation and re-assembly can follow.

• Multicast capability may be added.

• A few changes in transport layer protocols like TCP and UDP are required.

For example the pseudo-header for CRC computation is different in case of

IPv6.

• Neighbor discovery should be implemented and the dependency on ARP mod-

ule should be removed.

• Auto address configuration may be added.

• Support for security and authentication may be a provided.

• Different routing protocols like, RIP, OSPF etc., may be adapted to run on

IPv6.

• More research needed to study the flow handling techniques at the intermediate

routers and how the resource reservation protocols like RSVP fit into this

framework.

• API can be improved to include new multicast related socket options, ways

for the applications to get unique flow-ids, etc.
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