
ATMSIM: A Simulator for
ATM Networks

A Thesis Submitted

in Partial Fulfilment of the Requirements

for the Degree of

Master of Technology

by

Somanchi Brij Vinod

under the guidance of

Dr. Dheeraj Sanghi

to the

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

April 1995

Certificate

It is certified that the work contained in this thesis entitled ATMSIM : A

Simulator for ATM Networks has been carried out by Somanchi Brij Vinod (Roll

No: 9311125) under my supervision, and that this work has not been submitted

elsewhere for a degree.

April 1995

Dr. Dheeraj Sanghi

Assistant Professor,

Department of Computer Science and

Engineering

IIT, Kanpur

ii

Abstract

The existing simulators cannot provide an environment for simulating various pro-

tocols related to the ATM networks. Setting up an ATM network, which involves

fiber optic cable and switches, is costly. The performance analysis of the ATM net-

works for different kinds of resource reservation and congestion control schemes, is

required to decide whether to implement a particular scheme in reality. Thus, the

need to develop a simulator for ATM networks has been felt. Discrete-event simu-

lation technique offers the greatest degree of flexibility in modeling a simulator for

an ATM network. Due to this reason ATMSIM, the simulator for ATM networks,

is developed using discrete-event simulation technique. ATMSIM allows the user to

define a network configuration consisting of a physical network and specifications of

the components of the network. ATMSIM provides both steady-state and instanta-

neous performance measures to facilitate the study of complex dynamics that arises

in ATM networks. ATMSIM has been used as a test bed for emulating a virtual

reality model for ATM networks and to study the above mentioned schemes.

iii

Contents

1 Introduction 1

1.1 Simulation . 1

1.1.1 Advantages and drawbacks of simulation 1

1.1.2 Types of simulation techniques 2

1.1.3 Desired features of a simulator 3

1.1.4 The output of a simulator . 4

1.2 Existing Network Simulation tools . 4

1.3 Overview of ATMSIM . 6

1.4 Organization of the Thesis . 8

2 Design of ATMSIM 9

2.1 Introduction . 9

2.2 User Interface Module . 9

2.3 Initialization Module . 10

2.4 Simulator Module . 12

2.4.1 Generation of cells . 12

2.4.2 Send cells . 14

2.4.3 Output switch information . 16

iv

2.4.4 Output link information . 16

2.4.5 Output virtual connection information 16

2.5 Conclusion . 17

3 Implementation of ATMSIM 18

3.1 Introduction . 18

3.2 Data Structures Used in ATMSIM . 18

3.3 User Interface Module . 23

3.4 Initialization Module . 23

3.4.1 Initialize output files . 23

3.4.2 Initialize event queue . 24

3.5 Simulator Module . 25

3.5.1 Generation of cells . 26

3.5.2 Send cells . 27

3.5.3 Output switch information . 30

3.5.4 Output link information . 31

3.5.5 Output VC information . 31

3.6 Conclusions . 33

4 Conclusions 34

4.1 Accomplishments . 34

4.2 Future Enhancements . 35

A Input File 38

A.1 Input File Format . 38

A.2 Sample User Input File . 42

v

Bibliography 46

vi

List of Figures

1 Algorithm for initialization of event queue 11

2 Algorithm for generation of cells . 13

3 Algorithm for sending cells . 15

vii

Chapter 1

Introduction

1.1 Simulation

Simulation plays an important role in computer-aided analysis and design of any

system. Simulation technique has often been used to model and design communica-

tion networks. Before we build a system, it is important to evaluate the performance

of various designs. In case of complex systems, it is difficult to build an analytical

model that is mathematically tractable. In such cases, simulation of the system is

often the only technique for performance evaluation.

The simulation of large, complex, high-speed networks presents unique problems,

such as setting up networks of different topologies and evaluating their performance

parameters[16]. These problems can be addressed using statistical simulation tech-

niques, such as importance sampling, distributed computing techniques. Thus, sim-

ulation has been playing an increasingly important role in the modeling and design

of communication networks.

1.1.1 Advantages and drawbacks of simulation

The advantage of a simulator, having modeling constructs closely related to the com-

ponents of communication networks, is that development time of a target network

becomes considerably small.

1

2

The major drawback of basic network simulators is that they are limited to mod-

eling only network configurations allowed by the package’s standard building blocks.

Thus, if a communication system has some specific features which are difficult to

model, they have to be approximated to preserve its behaviour. However, there are

several simulators that allow existing modeling constructs to be modified or new

constructs to be created, with increased modeling flexibility.

1.1.2 Types of simulation techniques

In this section we discuss about various simulation techniques available.

Process emulation Every component of the target system, i.e., the computer net-

work to be studied, is represented by a separate process. Each process executes

code corresponding to the code of its component. An advantage of process em-

ulation is that all components of the target system can be tested. However, in

order to faithfully capture the dynamics of the target system, it is necessary

to periodically synchronize all the processes. The overhead involved in this

process synchronization becomes a serious disadvantage.

Discrete-event simulation In discrete-event simulation, the target system is mod-

eled by a set of variables and a set of events[11][17]. Associated with each event

is a routine that can update the set of variables. A simulation of the target

system corresponds to a succession of event occurrences of time, i.e., a se-

quence of the form (e1, t1), (e2, t2), . . . , (en, en), where (ei, ti) denotes the

execution of event ei’s routine at time ti. The simulator executes a loop, with

one event occurrence simulated in each iteration. It maintains the following

two variables : simulated time, indicating the time of the last event simulated;

and event list, consisting of a set of (e, t) pairs, where e refers to an event and t

refers to the time instant when e is scheduled. In each iteration, the simulator

removes an (e, t) pair with the earliest time from the event list, updates the

simulated time to t, and executes the routine corresponding to event e. The

simulation of event e can schedule new events, i.e., add new (e
′
, t

′
) pair(s) into

the event list.

3

Rare-event simulation This technique is used to measure quality-of-service (QoS)

[9]. The most common example is cell loss in ATM networks. As it becomes

computationally costly to use conventional simulation techniques for finding

the occurrence of a very rare event, this technique has been formulated. Im-

portant sampling[13] technique is a rare-event simulation technique. In this

the probabilities that govern the outcomes of the simulation are modified in

such a way that the original low-probability events, governed by the reference

probability density function, occur more frequently under biased probability

density function, i.e., instead of simulating low-probability events under the

reference probability density function, relatively high-probability events are

simulated under appropriately biased probability density function, and the

results are weighted to compensate for the bias.

1.1.3 Desired features of a simulator

A simulator should have the following features.

• Flexibility in modeling the target system, ease in development of model pa-

rameters and fast model execution speed.

• Addition of new schemes, algorithms, and components of the target system

should be facilitated depending on the requirement and so, a simulator should

be modular in structure.

• Since all communication networks exhibit some sort of random behavior, a

simulator must contain good statistical capabilities, such as random-number

generator with multiple random-number streams and a standard probability

distribution.

• The user should be able to specify various kinds of topological and network

dependent parametric changes in the network and observe the system perfor-

mance.

• It should provide standard performance measures such as average delay, av-

erage throughput, average load, as well as more specialized measures such as

4

number of voice cells traveled through a link, and number of times a request

for connection setup has failed, etc. It should also provide both average and

instantaneous measures. Instantaneous measures (e.g., link utilization during

the last 5 msecs) are needed to observe the system’s adaptability to radical

changes (e.g., buffer overflow)

1.1.4 The output of a simulator

It is desirable for simulators to generate standard reports for commonly occurring

performance statistics, such as throughput, utilization, end-to-end delays, and num-

ber of buffers allocated. The software should allow tailored reports to be developed

easily, including user-defined statistics that are specific to a particular application.

Ideally, a simulator should provide a graphical interface to enable the user to obtain

a variety of graphical plots of his/her simulation data, which have been stored in a

database.

1.2 Existing Network Simulation tools

Several tools are already available for simulating a network. Some of these tools

have been built by researchers to simulate a specific class of network that they are

interested in studying, while others are general purpose tools that can simulate a

wide variety of networks. We give a glossary of available tools below.

MaRS This has been developed at University of Maryland[6]. It provides a flexible

platform for the evaluation and comparison of routing algoritms.

NetSim This has been developed at MIT. It is designed for studying various flow

control mechanisms.

COMNET II.5 This is a commercial package similar to NetSim, developed by

CACI Products Company.

DeNet (Discrete Event Network) This has been developed at the University of

Wisconsin-Madison. It is a general purpose simulator that simulates a set of

5

communicating objects.

Real Real has been developed by S.Keshav of University of California. It is a

general purpose simulator which takes source and router parameters, network

topology and link speeds as input and generates congestion window sizes,

throughput, queue lengths and link utilization and generates a number of

packet drops and retransmissions.

Vince Vince is a software developed at the Naval Research Laboratory. Its primary

function is to perform ATM signaling and virtual connection (VC) manage-

ment tasks. Vince is a testbed for ATM using TCP/IP connections, over which

multiple hosts can communicate with each other.

BONeS DESIGNER It is a graphically-oriented, general-purpose simulation lan-

guage that contains many features for modeling communications networks[12].

The major building blocks are data structures and block diagrams. In this

simulator, after a simulation has been executed, a user may develop tailored

output reports that are displayed in the form of graphical plots.

BONeS PlanNet It is a simulator for LANs whose major building blocks are LAN

segments, traffic models, interconnects, and a WAN mesh. PlanNet produces

a standard output report that is displayed in the form of graphical plots; how-

ever, numerical results can also be obtained. The PlanNet modules can be

modified using BONeS DESIGNER, provided that the user has the Hierarchi-

cal Version of the PlanNet modules.

COMNET III It is an object-oriented simulator for LANs and WANs. The major

building blocks(objects) are nodes, links, protocols, and traffic generators.

COMNET produces standard output reports, which include such statistics as

average end-to-end delay, throughput, and utilizations.

L.NET II.5 Formerly called LANNET II.5, it is a simulator for LANs. The major

building blocks are LANs, stations, and gateways(a generic device for connect-

ing LANs). After a simulation run has been executed, L.NET provides the

user with a variety of standard reports that include such information as mes-

sages transmitted, number of collisions, utilizations, and average end-to-end

delay.

6

NETWORK II.5 It is a simulator for computer systems and networks whose ma-

jor building blocks are hardware devices and software modules. Hardware

devices include processing elements, transfer devices, and storage devices. It

provides the user with a set of standard output reports, which include device

utilizations, average end-to-end delay, and information on the execution of

software modules.

OPNET Modeler It is a communications-oriented simulation language that uses

Network, Node, and Process Editors to build a simulation model. The Network

Editor is used to specify graphically the network topology consisting of nodes

and fixed-position links. The Node Editor is used to describe graphically the

data flow between modules (hardware and software systems) in a node. Module

types include processors, queues, and traffic generators. OPNET can produce

tailored output reports that include a wide variety of numerical results and

graphical plots.

SES/workbench It is a graphically oriented general-purpose simulation language

that contains features for modeling computer systems and communications

networks. The major building blocks are nodes, arcs and transactions. To

build a model in a workbench, one defines a transaction that corresponds to

a message. The user then develops a directed graph consisting of nodes and

arcs, which describes how transactions flow through the network. It can display

simulation results in both numerical and graphical formats, either during the

simulation or after it has been completed.

1.3 Overview of ATMSIM

In the context of ATM networks, none of the above mentioned simulators can be

used because ATM networks have certain unique features when compared to the

other networks[7][14][1][5]. The features that make the ATM networks different

from other networks are given below.

• ATM is a connection oriented network and deals with the concept of virtual

connections.

7

• In ATM networks routing at the ATM switches is done using routing table

which have been set up statistically at the time of setting up of the network

or dynamically depending on the virtual connections going through the ATM

switches.

• In ATM networks, depending on the application, traffic shaping may be needed

to be done at every switch of a virtual connection.

• ATM networks support different classes of traffic. So, the simulator for ATM

networks needs to provide traffic modeling features.

The performance analysis of ATM networks, for various resource reservation and

congestion control schemes[4][8][2] is required to decide whether or not to implement

a particular scheme in reality. Setting up an ATM network, which involves fibre optic

cable and switches, is costly. Thus, the need for development of a simulator for ATM

networks has been felt. The unique features related to ATM networks as well as the

features desirable by a simulator are provided by ATMSIM. ATMSIM takes network

related parameters as input to set up ATM networks with different topologies, to

measure the performance parameters and to output these parameters periodically.

The features of vince are very close to those required by a simulator for ATM

networks. In vince source modeling has not been done. Source modeling is very nec-

essary to generate cells to do performance analysis on a variety of above mentioned

schemes on ATM networks. Vince uses process emulation to perform signalling and

virtual connection management. As discussed in Section 1.1.2, time synchronization

becomes a problem in process emulation technique. Discrete-event simulation tech-

nique offers the greatest flexibility in modeling a simulator for ATM network. Due

to this reason ATMSIM is developed using discrete-event simulation method.

Entities defined by ATMSIM include switches, links, virtual connections and

cells. These entities are represented internally by data structures, which are de-

pendent on the specifications of the schemes using ATMSIM. For example, a data

structure representing a cell would contain the elements required by the ATM net-

works along with the simulation specific information. A cell-creation time stamp,

for example, can be used to collect statistical information. ATMSIM contains a

user interface module to initialize the data structures, an initialization mechanism

8

to establish the initial system state, network processing routines and statistical col-

lection routines to obtain measurements. It also contains a coordinating program

to control the event list and initiation and termination of the simulation.

1.4 Organization of the Thesis

• Chapter 2 discusses the design aspects of ATMSIM. Some of the algorithms

that are used during implementation are also discussed.

• Chapter 3 discusses different aspects of implementation of ATMSIM in detail.

• Chapter 4 portrays the accomplishments of the thesis and proposed enhance-

ments.

Chapter 2

Design of ATMSIM

2.1 Introduction

ATMSIM is a simulator for ATM networks. So, it should contain the features to

model ATM networks as well as the desirable features of a simulator. ATMSIM

has been designed to support all these features. It takes the input related to an

ATM network and sets it up. It simulates the unique features of ATM and monitors

performance parameters periodically.

ATMSIM is organized into three modules. The User Interface module reads

network information from an input file. The Initialization module initializes the

event queue and other relevant data structures. The Simulator module deals with

the features related to ATM networks and gathers the performance parameters for

evaluation.

2.2 User Interface Module

This module reads the network dependent parameters from a user-defined input file

and puts them into the corresponding data structures. The user has to specify the

input file in a format described in Appendix A. The user defined input file includes a

description of the network to be simulated. It consists of three parts. The first part

is a list of all components with their parameter values. The second part indicates the

9

10

interconnection of these components. The third part lists the parameters which have

been monitored, the periodicity of monitoring them, and the files into which their

values have to be stored. Depending on input requirements of the protocol being

developed on ATMSIM, the information regarding the network can be changed. The

input file is parsed to read the network related parameters. Parsing is done using

the grammer rules which describe the input file.

2.3 Initialization Module

In this module, we deal with the following three aspects.

1. Data structures are initialized, using the values read from the input file.

2. The database to store the values of the parameters to be monitored periodically

is initialized.

3. The events needed to start the simulation process are put in the event queue.

The algorithm for this process is given in Figure 1.

In ATM networks, the transmission of information payload starts with the for-

mation of cells. In order to reflect the features of ATM networks, simulation process

should also start with generation of cells at each source. For each source, the gen-

eration of cells event is put in the event queue to initiate the process of simulation.

This is scheme dependent. For example, the scheme discussed in [3] requires the vir-

tual connections to be setup before generation of cells. In such schemes, connection

setup event should be put in the event queue to initiate the simulation process and

only on successful setup of connection, the generation of cells starts. Along with

the above mentioned events which are used to reflect the features of ATM networks

in the simulator, the events used to monitor performance parameters periodically,

are also put in the event queue in this module. In the next section, we will discuss

about the way in which events have been discretized.

11

InitEvQ()
{

for each source in the network
{

get information about the source and the start switch of
the virtual connection corresponding to the source;

get the time at which source can start generating cells;
put cell-generation event timestamped with the above mentioned time,

along with the info. regarding the source and
the start switch, into the event queue;

}
for each switch
{

get the switch information and put in
the switch output event structure;

put this event structure into the event queue with
the start time of the simulator as timestamp;

}
for each link
{

get the link information and put in
the link output event structure;

put this event structure into the event queue with
the start time of the simulator as timestamp;

}
for each virtual connection
{

get the virtual connection information and put in
the virtual connection event structure;

put this event structure into the event queue with
the start time of the simulator as timestamp;

}
}

Figure 1: Algorithm for initialization of event queue

12

2.4 Simulator Module

In this module, events are removed from the event queue, till either the simulation

time expires or the event queue becomes empty. The events are simulated which

might result in adding more events to the event queue. This process continues.

The event data structure contains a timestamp, event type, a routine corresponding

to the event and the information that has to be passed to the routine. At the

source switch, ATM layer takes the information payload from the upper layers, adds

header fields including switching information to the payload, and sends the cells

to the physical layer[5]. A source generates cells and an ATM switching element

updates the cell header values and puts them into the network. It is assumed in

this design that an ATM switch can act as a source. So, two basic events are used

to reflect the functionality of ATM networks.

1. Generation of cells

2. Sending cells (for switching at the switches).

In order to monitor the performance parameters and to collect statistical re-

sults, some more events are required. Three kinds of events are recommended for

monitoring the performance parameters periodically at each switch, link and virtual

connection (VC).

The three performance monitoring events are

1. Output information related to each switch.

2. Output information related to each link.

3. Output information related to each VC.

2.4.1 Generation of cells

The algorithm for generation of cells is given in Figure 2. A given source is checked

to see whether or not it is alive. If the source is alive, cells are generated de-

pending on the source characteristics. The simulation specific information, such

13

GenCells()
{

get the information about source and switch;

if source is alive
{

generate cells based on the source characteristics;
if cells are generated
{

find the VC buffer corresponding to the source;
put the generated cells in the VC buffer;
find the outgoing link for the VC;
put the values of the current switch info. and

the outgoing link info. in the event structure;
put a sendcells event, with the current time

as timestamp, into the event queue;
put a generation of cells event, with the next generation time

as timestamp and the source info. and the current switch info.,
into the event queue as event info.;

}
}

}

Figure 2: Algorithm for generation of cells

14

as cell-generation time and queuing delay experienced by a cell, is initialized in the

generated cells before being put into the corresponding VC buffer. In case the source

generates cells, a send-cell event for switching these cells from the current switch to

the next switch is put into the event queue, timestamped with the current time. A

send-cell event needs information about the link through which the cells are to be

sent. So, the link information is also specified in the event. A cell-generation event

is also put in the event queue timestamped with next generation time of the source.

Along with the timing information, information regarding the current source and

the corresponding start switch is also put in the event.

2.4.2 Send cells

The routine corresponding to this event switches cells. The algorithm for doing this

is given in Figure 3. It is checked whether a given link is capable of sending cells. If

the link cannot send cells, since it might be transmitting cells at that time, the time

at which the link becomes free to transmit cells is obtained. A send-cell event is put

in the event queue with the next send time as timestamp, along with information

regarding the current link.

Duration for which the cells in the virtual connection buffers can be sent is

calculated. A send-cell event is put the event queue due to the transmission of cells

through a virtual connection. For speeding up the simulation process, instead of

sending cells of only that virtual connection because of which the present send-cell

event is put into the event queue, all the virtual connections passing through the

link are taken into consideration. Bandwidth is allocated to each virtual connection

through the link, depending on the bandwidth allocation policy[10][19][18].

The cells of each virtual connection are put into the VC buffer in the next switch.

Simulation related information in the cells is updated while being put into the next

switch. The outgoing link of the next switch, through which the cells are to be

sent, is determined. A send-cell event is put in the event queue with the sum of

current simulator time and propagation value of the current link as timestamp and

information regarding the next switch’s outgoing link is put into the event which is

used as input to the corresponding routine.

15

SendCells()
{

/* switching of cells */
get the information about switch and

the outgoing link on which cells are to be sent;

if outgoing link can not send cells at the current time{
put the values of the current switch info. and

the outgoing link info. in the event structure;
put a sendcells event, with the time

at which link can send cells next
as timestamp, into the event queue;

}
calculate duration for which the cells can be sent;
allocate band width depending on the band width allocation policy;
for each VC{

update the simulation related infromation
in the cells being sent;

put the cells to be sent in the corresponding
VC buffer in next switch;

if next switch is not the destination{
put the next switch info. and its outgoing

link’s info. in the event structure;
put a send cells event in the event queue timestamped

with summation of propagation delay of the
present outgoing link and the current time

}
if some cells left in the VC buffer to be sent{

put the present switch info. and the outgoing
link’s info. in the event structure;

put a send cells event in the event queue
timestamped with summation of
the send duration and the current time

}
}
allocate buffer for the cells left in the VC buffers;
drop those cells that could not be buffered;
update the switch output parameter information;
update the link output parameter information;
update the simulation specific link information;

}

Figure 3: Algorithm for sending cells

16

If the cells of a given virtual connection that could not be sent due to bandwidth

allocation problems, a send-cell event is put in the event queue with the sum of

current time and send duration as timestamp. Such cells are buffered in VC buffers

according to the buffer allocation policy used by the current switch. The cells, that

could not be buffered, are dropped according to the cell drop policy of the current

switch[15]. The performance parameters pertaining to the switch and the link are

updated. Simulation related information of the link is also updated.

2.4.3 Output switch information

Depending on the performance parameters to be stored in the output file, the average

and instantaneous values (values obtained for a period of time, between time the

parameters have been stored last time and current time) are stored in the output file

for a given switch along with the name of the switch and the current time. Output of

performance parameters is done periodically as specified by the user through input

file. The next time at which the switch has to output the performance parameters,

is calculated. A switch output event is put in the event queue, with the next output

time as timestamp, and the current switch information which is needed by the event

routine.

2.4.4 Output link information

Gathering of the performance parameters for links is similar to that of switches,

except that the switch information is replaced by the link information.

2.4.5 Output virtual connection information

In this module, the cells received by the destination switch of a virtual connection

are processed and performance parameters of the virtual connection are measured.

Processing at destination switch of the virtual connection is application dependent.

When an application provides the existence of higher layers, cells reaching the des-

tination have to be sent to the upper layers for further processing[7]. In such cases,

17

processing of cells at the destination and updating information of the virtual connec-

tion can be seperated from this module. But, in this design such features have not

been considered. Simulation specific parameters, like queueing delay contained in

each cell, are used to calculate average and instantaneous values. The average and

instantaneous values of throughput for the given virtual connection are calculated

using the number of cells reaching the destination. Other performance parameters

like maximum and minimum queuing delays of the cells are updated. Depending on

the performance parameters to be monitored, the corresponding values are stored

in the output file. Finally, a virtual connection output event is put in the event

queue with the next monitoring time of the virtual connection as timestamp and

the information regarding the current virtual connection as input for the routine

corresponding to output VC event.

2.5 Conclusion

In this chapter we described the different modules of ATMSIM. It can be used to

simulate a variety of schemes for finding out the performance of ATM networks,

given the network related information. In the next chapter, we will be describing

the implemetation aspects of ATMSIM.

Chapter 3

Implementation of ATMSIM

3.1 Introduction

The implementation of simulator can be broadly divided into three modules, namely,

user interface module, initialization module, and simulation module.

Data structures used in ATMSIM are discussed in Section 3.2. Implementation

details of the user interface module are discussed in Section 3.3. The implementation

aspects of initialization module are discussed in Section 3.4. Various implementation

aspects of the simulator module are discussed in Section 3.5. We conclude this

chapter in Section 3.6.

3.2 Data Structures Used in ATMSIM

In this section, we discuss some important data structures.

Event Queue : As the number of events that are going to be in the event queue

are not known at the beginning of the simulation, the event queue is repre-

sented as a linked list of event structures. The pointer to the first event of the

event queue is maintained globally.

18

19

The data structure of an event is given below.

typedef struct eventqueue {

/* keeps the events in the ascending order of time */

void *evInfo;

/* info. for the event specified in the eventType */

event_e eventType;

/* type of the event */

void (*Event)();

/* this is the function that is going to be called

/* depending on the type of the event */

time_t *time;

/* time at which the event occurs */

struct eventqueue *nextEv;

} eventQ_t;

Set of switches : The set of switches is represented as an array of switch struc-

tures. Each switch is identified by the index number in the array. Memory

for this array is dynamically allocated depending on the number of switches

in the network. The data structure of a switch is given below.

typedef struct switches { /* info. about each switch */

char *swName;

int noOfLinks; /* no. of out going links */

outLink_t *outLink; /* info. of outgoing links */

bwPolicy_t *bwPolicy; /* bandwidth allocation policy */

baPolicy_t *baPolicy; /* buffer allocation policy */

int noOfSrcs; /* no of sources for this switch */

source_t **source; /* information of source */

lookUpTable_t *luTable; /* lookup table for vpi and vci */

swOp_t *swOp; /* Info. of switch for output */

} switch_t;

Set of Outgoing links of each switch : These are represented as an array of

outgoing link structures. Depending on the number of outgoing links of each

switch the array is dynamically allocated. The link information field of the

outgoing link structure is a pointer to a link structure. The bufferQ field of

the outgoing link’s data structure contains an array of virtual connections,

memory for which has been allocated dynamically using the number of virtual

20

connections going through the outgoing link. The data structure for repre-

senting outgoing link is given below.

typedef struct outlink {/* info. regarding out link */

linkBuffer_t *bufferQ;/* buffer queue of the outgoing link */

link_t *link; /* this points to the corresponding

* link in the array of links */

} outLink_t;

Set of sources in a switch : This is represented as an array of pointers, each

pointing to the corresponding source structure. It is allocated dynamically

using the number of routes. The data structure of the source is given below.

typedef struct source {

/* info. for the source if the switch has a source */

int sourceId; /* the source identifier */

time_t *liveTime; /* amount of time

* the source can be alive */

time_t *startTime; /* time at which

* it can start generating cells */

int vpi :12; /* virt. path identifier for

* the out link */

int vci :16; /* virt. conn. identifier for

* the out link */

int linkNo; /* out going link no.

* corresponding to vpi,vci */

sourceChar_t *sChar; /* characteristics of the source and

* the virtual connection */

struct route *route; /* route for this source */

} source_t;

Cells : The cells in the VC buffers are always represented as a list of cell structures.

In order to decrease the frequency of memory allocation for cell structures

during the simulation, these cells are maintained as an available pool of cell

structures. The data structure used for representation of cells is given below.

typedef struct buffercell { /* info. for each buffer cell */

int PT : 3; /* payload type (data, audio or video) */

int CLP : 1; /* if CLP is 1 cell can be dropped */

int sTmsec;

int sTpsec; /* time when cell started from its source*/

21

int rTmsec;

int rTpsec; /* time when it has to received by switch */

int qDmsec;

int qDpsec; /* the amount of time the cells is queued */

struct buffercell *next;

} bufferCell_t;

Set of links : The set of links is used in the form of an array of link structures.

These are the structures to which the pointers in the outgoing link structures

point to.

typedef struct link {

/* info. regarding each link in the network */

int linkId; /* link identifier */

int headSw; /*head switchNo. of the connection*/

int tailSw; /*tail switchNo. of the connection*/

int bufSize; /* no. of buffers allocated to the link */

float bandWidth; /* the band width of the link */

float allowedBW; /* bandwidth that a link can allocate */

time_t *propDelay;/* propagation delay of the link */

time_t *idleTime; /* idle time of the link */

time_t *lastSent; /* time the last cell was sent */

time_t *nextSend; /* used in sendCells event time at which

* next chunk of cells have to be sent */

linkUtil_t *linkUtil; /* to gather performance parameters */

} link_t;

Events : Various event structures are distinguished by the information content

stored in the event information field. So, an array of list of available events

of various event types is constructed in the beginning of the simulation. In

the next section, we will discuss about the data structure used to provide

information to the event routines through evInfo field for the event types cell-

generation, output switch information, output link information, and output

virtual connection. The data structure used to provide information to the

event routine corresponding to send-cell event is given below.

typedef struct sendcell {

int switchNo; /* switch on which event is performed */

int linkNo; /* no. of links thru which cells are sent */

} sendCell_t;

22

VC output information : VC output information is represented in the form of

array of vcOpInfo t structures. It is given below.

typedef struct vcInfo {/* info. about the VC */

/* VC is identified by the start switch, source

* no. in that switch and the dest. switch */

int QoS; /* quality of service for VC */

int vcInd; /* virtual connection identifier */

int stSw; /* start switch of VC */

int destSw; /* destination switch of VC */

int totalCells; /* total no. of cells that reached

* destination upto a particular moment*/

time_t *avge2eDelay;/* avg end to end delay of connection */

time_t *mine2eDelay;/* minimum of all the e2e delays */

time_t *maxe2eDelay;/* maximum of all the e2e delays */

time_t *avgQDelay; /* average queuing delay */

time_t *minQDelay; /* minimum of all the queuing delays */

time_t *maxQDelay; /* maximum of all the queuing delays */

thruput_t *thruput;/* thruput of the VC */

int alive; /* this flag specifies whether the source

/* corresponding to VC is alive or not */

} vcInfo_t;

There is a correspondence between a VC, a route, and a source. So, they are

identified by a VC index.

Time : In a format similar to events, time information is maintained as a pool of

time data structures represented in the form of an dynamic array of pointers

to the time structure. Time values of the simulator are stored in the data

structure given below.

typedef struct { /* timing info. in msec and picosec */

int msec;

int picosec;

} time_t;

The reason for dividing the time value into milliseconds and picoseconds is to

get better accuracy.

Output file information : The output files for each switch, link and VC are

represented in the form of an array of file pointers.

23

3.3 User Interface Module

In the user interface module the general purpose routines compatible to lex and

yacc for parsing an input file for a certain parameter value are implemented. So,

this module is specific to the parsing rules of the input file format. But, changing the

parsing rules will make it useful for various input file formats. A recursive descent

parser is implemented using the grammar rules specifying the input file format.

The grammar rules regarding the user defined input file are given in Appendix A.

Depending on the grammar rules, it reads the description about the network to

be simulated. The read values are put into the corresponding fields of the data

structures. This parser can be used to read any data from a given input file by

changing the grammar rules of the input file.

3.4 Initialization Module

This section deals with the following implementation aspects.

3.4.1 Initialize output files

For storing the performance parameters that are monitored periodically, the output

files are opened in the routine OpenOutputFiles().

This routine takes the output files for each switch, link and virtual connection

and opens them using fopen(), a standard C function to open an ASCII file, and

puts them at the corresponding position indexed by the identification number in

the array of file pointers. While opening the output files it checks for duplication.

The output files are not opened if they have already been opened, for storing the

information of another switch or link or virtual connection. After opening the output

files this routine puts the information that enhances readability and interpretation

of the parameters to be monitored.

24

3.4.2 Initialize event queue

The process of initializing the event queue is done using the following routines.

InitEvQ() is the routine which initializes the event queue. The events with

which the event queue has to be initialized, are dependent on the protocol being

implemented. In ATMSIM the events with which the event queue is initialized are

generation of cells, output switch information, output link information, and output

VC information.

An available pool of events for each event type is implemented in the simulator.

GetAvailEvent() takes the event type as input and gives the corresponding event

structure.

A generation of cells event is put in the event queue, for each source, timestamped

with its start time. For ease of processing identification number of the switch, in

which the source is present, and the source identification number are put in the event

information field of the event structure. A pointer variable of type ¨void *̈ıs used in

the event structure is used for this purpose as pointer as any structure can be pointed

to by this field and information regarding a specific structure can be retrieved by

casting this field to a pointer to the same. This makes the implementation easier as

information needed by the event routines can easily be put into the event structure.

By doing this the underlying aspects of implementation are abstracted. The data

structure used to provide information for the routine corresponding to cell-generation

event is given below.

typedef struct gencell {

int switchNo;/* switch on which event is performed */

int sourceNo;/* to know about the characteristics of the source

* for which cells are to be generated */

} genCell_t;

For each switch, an output event is put in the event queue, time stamped with the

start time of the simulation, as the performance parameters have to be monitored

from the beginning of the simulation in ATMSIM. The time, at which monitoring

starts, can be changed depending on the scheme. The information needed by the

corresponding routine for this event is the identification number of the switch for

25

which output has to be monitored. The identification of the switch is the index

number of the corresponding switch structure in the array of switches. The data

structure containing this information is given below.

typedef struct swEvInfo {

int switchNo;

/* identifier of the switch on which event is performed */

} swEvInfo_t;

For each link and VC, the process is same as described above except that the

information regarding a switch is replaced by that of the link and VC. The data

structures containing this information are given below.

typedef struct linkEvInfo {

int linkInd;

/* identifier of the link on which event is performed */

} linkEvInfo_t;

typedef struct vcEvInfo {

int vcInd;

/* identifier of the VC on which event is performed */

} vcEvInfo_t;

The routine putInEvQ() puts the event given as input, into the event queue in

the increasing chronological order. This routine checks for duplication of events.

Duplication of event in the event queue is checked by comparing the time values

and the information contents of the evInfo field of the events. In case a duplication

does occur, it is not put into the event queue. Thus, InitEvQ() updates both the

event queue and the variable pointing to its first event structure.

3.5 Simulator Module

Switchprocessing() routine contains a basic simulator loop in which processing of

the cells and monitoring of performance parameters are done. This takes an event

from the event queue using GetEvent(), which returns the first event of the event

queue and updates the global variable pointing to the first event of the event queue,

26

if the event queue is not empty and NULL otherwise. Throughout the discussion,

the event returned by GetEvent() routine is referred to as the current event, and its

timestamp as the current time. The simulation is continued till GetEvent() returns

NULL or time information extracted from the event structure is greater than the

simulation end-time.

The routine corresponding to the event type is represented as a pointer to func-

tion. After execution of the routine, the current time value is printed to enable the

end user to know about the processing of the simulator. In the following subsec-

tions we discuss about the implementation aspects of the event routines used in the

simulator module.

3.5.1 Generation of cells

The routine corresponding to the cell-generation event is GenCells(). The informa-

tion needed by the routine is extracted from evInfo field of event structure. Check-

EndTime() routine compares the life time of the source with the current time of the

simulator. If the life time is greater than or equal to the current time, the source

generates cells. The SwitchWithCells field in sourceChar t structure is used to point

to the routine to be executed depending on the source type. The data structure

corresponding to sourceChar t is given below.

typedef struct characteristics {

/* Characteristics of virt. conn. and switch */

float peakRate; /* peak rate of the source */

float avgRate; /* average rate of the source */

int burstSize;

time_t *burstDur; /* Burst Duration */

time_t *interBurstGap;

float burstTol; /* tolerance in the size of the burst */

time_t *delayTol; /* Delay tolerance in micro second*/

float *(*SourceWithCells)();/* depending on the source type

/* pointer to the corresponding function is set*/

source_e sourceType;

union {

video_t *videoSrc;

singleVoiceSrc_t *sVoiceSrc;

data_t *dataSrc;

27

} source_u;

} sourceChar_t;

The input values that the routine, pointed to by SwitchWithCells, takes are the

source characteristics. It returns the time at which the source can generate next

burst of cells and an array of intercell gap values. The design and implementation

aspects of source modeling have been discussed in [3]. The generation time of each

cell is put into the cells using the array of intercell gap values and the current

time. This is done in the routine MakeCells() which takes an array of intercell gap

values as input and returns a linked list of updated cell structures. This routine

also initializes queuing delay of the cells to zero. The VC buffer, to which generated

cells belong, is obtained and the cells are put into it. The initial values of the VCI,

VPI and incoming link identification number are used to determine the VC buffer.

The reason for not using VCI, VPI and link identity number in the cell header is

discussed in the next section.

The nextArrivalTime field of the VC buffer data structure is set to the next

generation time. Identification number of the outgoing link through which the cells

have to be sent is determined. This value along with identification number of the

current switch is put in evInfo field of the event structure. Depending on whether

or not cells are generated in the source, a send-cell event has to be put into the

event queue with the current time as timestamp. A generation of cells event is put

into the event queue with the next generation time as event timestamp and the

source identification number and the corresponding switch identification number as

information to the GenCells() routine.

3.5.2 Send cells

The process of switching(sending) cells is done in the SendCells() routine.

From evInfo field of event structure the information needed by the routine is

extracted. In the link structure nextSendTime field specifies the time at which it

can send cells next time. This time is compared with the current time. The current

link identification number and the current switch identification number are put into

the send-cell event structure which is used as input to the routine corresponding to

28

send-cell event. If nextSendTime is greater than the current time, a send-cell event

is put in the event queue with nextSendTime as timestamp.

The amount of time for which cells can be sent through the link is calculated

using GetSendDur() routine. The nextArrivalTime field in the VC buffer structure

specifies the time at which next chunk of cells will be received by the VC buffer.

The nextArrivalTime of each VC buffer in the link, is used in the calculation of

send duration. This is used to speed up the process of simulation. At the source

switch, next generation time and at intermediate switches, propagation delay of the

incoming link of a switch for a particular virtual connection and the duration for

which cells have been sent through the link, is used to set the nextArrivalTime of

the virtual connection. The minimum value of next arrival time of all the virtual

connections is taken as send duration.

Bandwidth is allocated for each virtual connection going through the link de-

pending on the bandwidth allocation policy of the current switch[10]. Depending

on the bandwidth allocation policy of the switch, the corresponding routine is put

in the associated policy structure. This routine takes the buffer queue structure

of the outgoing link, and the link identification number as input. It updates the

amount of time cells can be sent (send duration) and sets the sendTail field of each

VC buffer structure. It returns the send duration and the total number of cells to

be sent on the link. From the VC buffer structure, the incoming VCI, VPI and

link identification numbers are obtained. The reason for maintaining these values

in the VC buffer structure is to lessen the complexity of the simulator. All the cells

being put into the VC buffer have the similar incoming VCI, VPI and link identifier

values. This makes the processing easy in a way that the cells need not be updated

whenever they are switched from the current switch to the next. The VC buffer and

the corresponding outgoing link identifier of the next switch of the virtual connec-

tion, are found using the look up tables of the current switch, and the next switch.

The cells in each VC buffer of the current switch are put into the corresponding VC

buffer of the next switch. The time at which each cell is going to be received by

the next switch, and the queuing delay it has suffered till then, are calculated and

the corresponding fields are updated in each cell structure. The next arrival time

of the corresponding VC buffer structure of the next switch is set to the sum of the

29

current time and the propagation delay of the outgoing link.

In ATMSIM, processing at the destination is done while outputting the perfor-

mance parameters of the virtual connection. In a destination the outgoing link is

given the identification number as -1. This is used to find out whether the next

switch is the destination of a specific virtual connection. If the next switch is the

destination, the send cells event is not put in the event queue. Otherwise the same

event is put into the event queue, with the sum of current time and the propagation

delay of the outgoing link as timestamp and the next switch identification number

and the outgoing link identifier as event information. At least one cell is left in the

buffer, if the receive time of the cell pointed to by the head field of the VC buffer is

less than the sum of the current time and the send duration. In that case buffers are

allocated to all the cells, that should have been sent before the send duration but

could not be transmitted due to bandwidth allocation problems, depending on the

buffer allocation policy of the switch. The cells that could not be buffered are either

dropped or the CLP value in the header is set to 1 depending on the drop policy

being used by the switch. And also, a send cells event is put in the event queue

timestamped with the nextSendTime of the link along with the current switch and

the outgoing link identifiers.

For gathering the performance parameters, such as buffer uttilization and number

of cells dropped, to be output swOp field in switch structure is used. The swOp field

is represented by data structure given below.

typedef struct outputinfo {

/* contains output info. of a switch */

bufferUtil_t *bufferUtil;

/* buffer utilization of each buffer queue

* in the switch */

lossOfCells_t *cellsLost;

/* cell losses in the switch */

} swOp_t;

The two fields are again used to store the information about the buffer utilization

in the switch and the number of cells dropped in the switch respectively. They give

the information about the cumulative and instantaneous number of cells allocated

or dropped along with the time at which the information has to be updated in case

30

of instantaneous cells.

For a link, link utilization is represented in terms of the cumulative and instan-

taneous number of cells transmitted through the link. The corresponding field in

the link structure contains information about the time information as to when the

output of the parameters given above is going to be performed.

The number of buffers used in the switch is calculated by adding the number

of buffers allocated to the cells of each virtual connection. The cumulative and

instantaneous parameters are updated using the calculated values. The number of

cells transmitted through the link is returned by the bandwidth allocation routine.

This value is used to update the cumulative and instantaneous parameter of link

utilization.

The nextSendTime field of the link structure is updated with the summation

of the current time and the send duration. The fields referred to as lastSendTime

and idleTime of link structure are also updated. SendCells() routine acts as the

backbone during the performance evaluation of ATM networks on ATMSIM.

3.5.3 Output switch information

The routine that stores the information required is SwOpEvent(). The file pointers

of the files, where the monitored performance parameters are stored, are represented

in the form of arrays of file pointers. The file pointer indexed by the identification

number of the switch, is opened for appending the new information regarding the

performance parameters. The flags in the switch output structure are checked to

find the parameters to be stored in the output file. The instantaneous value fields

in the corresponding data structures are set to zero in order to obtain the values till

the next output time. The data structure containing information about the flags

and the output file name is given below.

typedef struct swOpInfo { /* output info. for each switch */

int switchNo;/* switch # of which info. is given */

int lossFlag;/* specifies whether or not cell losses

* have to be given as output */

int bufFlag; /* specifies whether or not buffer

* utilization has to be stored in the file */

31

time_t *freq; /* frequency at which the output is given in other

* words time interval between two outputs */

char *swFile; /* file into which output has to be printed */

char *swName; /* User’s name to the switch being dealt with */

} swOpInfo_t;

The frequency field is used in finding out the time at which the storing of the

parameter information is to be done. This value is added to the current time to give

the next output time. With this time as timestamp, an switch output information

event is put in the event queue along with the identification number of the switch.

3.5.4 Output link information

LinkOpEvent() is the routine performing the task of storing the information re-

quired. The process of output is similar to that of a switch except that information

about the link is used in place of that of the switch. The parameters output in this

routine are link utilization and number of cells cells sent through the link for each

kind of traffic. The data structure containing the information about the flags and

the name of the output file is given below.

typedef struct linkOpInfo { /* output info. for each link */

int linkId; /* link Identifier of the link */

char *linkName; /* user’s name for that link */

char *linkFile; /* name of the file for output */

time_t *freq;/* time interval between two successive outputs */

int utilFlag;/* whether or not to output link utilization */

} linkOpInfo_t;

3.5.5 Output VC information

The routine for storing the performance parameters is VcOpEvent(). The parame-

ters being monitored for each virtual connection are throughput, maximum queueing

delay experienced by the cells, cells dropped and end to end delay for each virtual

connection. The cells received at the destination of the current virtual connection

are processed. To perform this the following actions are taken.

32

• The queuing delay information of each cell received is obtained from the cell

structure to calculate the total queuing delay and to check for the maximum

and the minimum queuing delays.

• The cells are either discarded or processed depending on the application being

implemented on top of the simulator. In this implementation, the cells are

discarded after finding the queuing delay information.

• The number of cells received at the destination are counted. The queuing delay

and cell count information is used to update the information in the VC output

structure given in Section 3.2. The throughput field of VC output structure

contains information about the cumulative and instantaneous cells reaching

the destination.

The output process is similar to that of switch except that the information about

the VC is used in the place of that of the switch. The data containing the information

about the flags and the name of the output file is given below.

typedef struct vcOpInfo {/* output info. for each virt. conn. */

int vcInd;

/* source identifier for a source */

char *srcName;

/* source name given by the user */

char *vcFile;

/* the name of the file into which

/* output has to be stored */

time_t *freq;

/* frequency at which the VC output is stored */

int e2eFlag;

/* flag to show whether or not

/* the end to end delay can be output */

int qFlag;

/* flag to show whether or not

/* the queuing delay can be output */

int thruputFlag;

/* flag to show whether or not

/* the thruput can be output */

} vcOpInfo_t;

33

3.6 Conclusions

In this implementation the special features of interest are

• The abstraction of the event routines and the information passed to them.

• Ease in the way of getting various routines executed depending on the source

type, buffer allocation policy, etc.

• The implementation aspects of the resursive descent parser.

We will discuss about the accomplishments of this thesis work and the proposed

enhancements in the next chapter.

Chapter 4

Conclusions

In this chapter, we summarize the accomplishments of this thesis, and propose future

enhancements to ATMSIM.

4.1 Accomplishments

The need for a simulator for ATM networks has been felt, due to the fact that the

simulators available can not be used as ATM network simulators. For finding the

feasibility of various schemes on ATM networks, using a simulator is cost effective.

Therefore, ATMSIM, a simulator has been designed and implemented with the de-

sirable features of a simulation software with ATM networks as target system. The

features like generation of cells at the source and switching of cells from one port

to the other depending on the routing tables at the intermediate switches are the

most common ones in the context of ATM networks. In order to incorporate these

features along with the aspects related to performance monitoring, ATMSIM has

been designed using discrete-event simulation technique. In ATMSIM, a user inter-

face has been provided using which user specified input file is read and the network

is set up. ATMSIM also provides some primitive routines which can be used for im-

plementing different congestion control and resource reservation schemes on ATM

networks. The performance parameters stored in the database can be used to decide

whether the scheme being implemented is feasible in reality. ATMSIM provides a

database of statistical results which can be converted into the form needed by the

34

35

graphics packages to give the graphical output.

4.2 Future Enhancements

The features that can be added to ATMSIM are as follows.

• Features such as connection set up, source modeling, schemes for buffer allo-

cation and bandwidth allocation, required by various congestion control and

resource reservation scheme have to be added to ATMSIM, so that it can be

used as a tool for implementing different applications of ATM networks.

• A graphical user interface has to be provided to the end user to setup the

network and to modify the network related parameters dynamically.

• ATMSIM deals only with features of ATM layer such as switching and cell

generation. It can be extended to incorporate the features of higher layers so

that applications related to other network protocols can also be implemented.

Bibliography

[1] A Alles. Tutorial: ATM in private networking. Hughes Lan System, 1993.

[2] J J Bae and T Suda. Survey of traffic control schemes and protocols in ATM
networks. Proceedings of the IEEE, 79(2):170–189, February 1991.

[3] Uzzal Baruah. A framework for congestion control in ATM networks. Master’s
thesis, CSE Dept, I I T, Kanpur, India, March 1995.

[4] A W Berger, A E Eckberg, T C Hou, and D M Lucantoni. Performance charac-
terizations of traffic monitoring and associated control mechanisms for broad-
band packet networks. In IEEE INFOCOMM, pages 350–354, 1990.

[5] J-Y Le Boudec. The Asynchronous Transfer Mode : A Tutorial. Computer
Networks and ISDN Systems, 24:279–309, 1992.

[6] Klaudia Dussa-Zieger Cengiz Alaettinoglu, A.Udaya Shankar and Ibrahim
Matta. Design and implementation of MaRS : A routing testbed. Technical
Report 2687, University of Maryland,College Park, jun 1993.

[7] Prycker M de. Asynchronous Transfer Mode Solution for Broadband ISDN.
Ellis Horwood, 1993.

[8] Eckberg A E. BISDN/ATM traffic and congestion control. IEEE Network,
pages 28–37, September 1992.

[9] V. Frost and B. Melamed. Traffic modeling for telecommunications networks.
IEEE Communicaqtions Magazine, pages 70–80, March 1994.

[10] G Gallassi, G Rigolio, and L Fratta. ATM : Bandwidth assignment and band-
width enforcement policies. In IEEE GLOBECOM, 1989.

[11] Naim A. Kheir, editor. Systems Modeling and Computer Simulation, volume 46.
Electrical Engineering and Electronics, second edition edition.

[12] Averill M. Law and Michael G. McComas. Simulation software for communica-
tions networks : The State of the Art. IEEE Communications Magazine, pages
44–50, March 1994.

36

37

[13] Q.Wang and V. Frost. Efficient estimation of cell blocking probability for ATM
systems. IEEE Trans. on Networking, April 1993.

[14] M N Ransom and D Spears. Applications of public gigabit networks. IEEE
Network, March 1992.

[15] E Rathgreb. Modeling and performance comparison of policing mechanisms for
ATM networks. IEEE Journal on Selected Areas in Communications, SAC-9(3),
April 1991.

[16] Victor S.Frost. Computer-aided modeling and simulation for communications
networks. IEEE Communications Magazine, page 42, March 1994.

[17] S.Schoemaker. Computer Networks and Simulation. Second edition edition,
1968.

[18] J S Turner. Managing bandwidth in ATM networks with bustry traffic. IEEE
Network, pages 50–58, September 1992.

[19] W Wang and T N Saadawi. Bandwidth allocation for ATM networks. In IEEE
ICC, pages 439–432, 1990.

Appendix A

Input File

A.1 Input File Format

The input file comprises the following declarations (not necessary in the same order), each

of them terminated by a semicolon. The declarations which comprises of blocks (where

a block is a series of statements delimited by opening and closing brace) should not be

terminated by a semicolon. Also white space characters are ignored and can be used to

improve readablity. A line with hash ’#’ as the first non-white character is treated as a

comment. The declarations are:

• Number of Switches

• Names of Switches

• Number of Links

• Names of the Links

• Number of Sources

• Routes

• Link Information

• Source Information

• Buffer Allocation Policy Information

38

39

• Bandwidth Allocation Policy Information

• Switch Output Information

• Link Output Information

• Source Output Information

• Accuracy Desired

• Simulation Duration

These declarations need not appear exactly in the order shown above but certain dec-

larations must appear before others. The number of switches must be declared before the

names of the switches, the buffer allocation policy information, the bandwidth allocation

policy information and the switch output information. . Similary the number of links has

to be declared before the number of links, link information, link output information. Also,

the number of sources must be specified before any declaration related to source is done.

Each identifier (i.e., the name of the switch and route) must be a sequence of al-

phanumeric characters that begins from a alphabetic character. Thus A, src1 are valid

identifiers. values gives in ’[]’ are optional.

The declaration syntax is specified below:

numofswitches = {number of switches} ;

nameofswitches : {comma separated identifier list} ;

nooflinks = {number of links} ;

linksare : {comma separated list of links} ;

Each link is two switch names separated by a dash.

noofsources = {number of sources} ;

routesare {
each route is a dash separated list of identifiers

{source name 1} {route 1} ;

{source name 2} {route 2} ;

. . .

{source name n} {route n} ;

}
linkinfo {

40

a link name of default will set the given

values as default

{linkname 1} {
bandwidth = {bandwidth} {unit} ;

buffer = {buffer size} ;

propdelay = {propagation delay} {unit} ;

}
{linkname 2} {

bandwidth = {bandwidth} {unit} ;

buffer = {buffer size} ;

propdelay = {propagation delay} {unit} ;

}
. . .

{linkname n} {
bandwidth = {bandwidth} {units} ;

buffer = {buffer size} ;

propdelay = {propagation delay} {units} ;

}
}
sourceinfo {

if source name is default that will specify

default values for all sources

{source 1} {
starttime = {start time} {units} ;

livetime = {live time} {units} ;

peakrate = {peak rate} {unit} ;

averagerate = {average rate} {unit} ;

burstsize = {burst size} ;

RESERVEDBANDWIDTH = {reserved bandwidth} {unit} ;

burstduration = {burst duration} {unit} ;

bursttolerance = {burst tolerance} {unit} ;

celllossprobability = {the probability} {unit} ;

video;

interburstgap = {inter burst gap} {unit} ;

delaytolerance = {delay tolerance} {unit} ;

41

}
. . .

other sources follow

}
bapolicyinfo {

if switch name is default that will specify

default values for all switches

{switch name 1} {
{drop policy type} ;

{buffer size} ;

{buffer allocation policy type} ;

}
. . .

other switches follow

}
bwpolicyinfo {

if switch name is default that will specify

default values for all switches

{switch name 1} {
{band width allocation policy type} ;

}
. . .

other switches follow

}
switchoutput {

switches name can be default

{switch name 1} {
[lossofcells;]

[bufferutilization;]

frequency = {the frequency} {unit} ;

file = {the file} ;

}
. . .

more switches follow

}

42

linkoutput {
links name can be default

{link name 1} {
[linkutilization;]

frequency = {the frequency} {unit} ;

file = {the file} ;

}
. . .

more links follow

}
sourceoutput {

{source name} can be default.

{source name 1} {
[endtoenddelay;]

[qdelay;]

[throughput;]

frequency = {the frequence} {unit} ;

file = {the file} ;

}
. . .

others sources follow

}
accuracy = {accuray} ;

simulationduration = {simulation duration} ;

A.2 Sample User Input File

noofswitches = 5;

nameofswitches : A, B, C, D, E;

nooflinks = 4;

linksare : A-B, B-C, B-D, B-E;

noofsources = 3;

43

routesare {

src1 A-B-C;

src2 A-B-D;

src3 A-B-E;

}

linkinfo {

default {

bandwidth = 55442 KB ;

buffer = 3000 cells;

propdelay = 500 micro;

}

A-B {

bandwidth = 155442 KB ;

buffer = 3000 cells;

propdelay = 500 micro;

}

}

sourceinfo {

default {

starttime = 1 msec;

livetime = 1000 sec;

peakrate = 24392.04545 kb;

averagerate = 6048.37 kb;

burstsize = 1000 cells;

RESERVEDBANDWIDTH = 10 MB;

burstduration = 1 msec;

bursttolerance = 100 million;

celllossprobability = 1 inmillion;

video;

interburstgap = 10 micro;

delaytolerance = 1 msec;

}

44

src1 {

starttime = 1 msec;

livetime = 1000 sec;

peakrate = 345.04545 kb;

averagerate = 60.37 kb;

burstsize = 100 cells;

RESERVEDBANDWIDTH = 0.2 MB;

burstduration = 1 msec;

bursttolerance = 150 million;

celllossprobability = 1 inmillion;

data;

interburstgap = 10 micro;

delaytolerance = 1 msec;

}

src2 {

starttime = 1 msec;

livetime = 1000 sec;

peakrate = 64.04545 kb;

averagerate = 25.37 kb;

burstsize = 100 cells;

RESERVEDBANDWIDTH = 0.2 MB;

burstduration = 1 msec;

bursttolerance = 30 million;

celllossprobability = 1 inmillion;

singlevoice;

interburstgap = 10 micro;

delaytolerance = 1 msec;

}

}

bapolicyinfo {

default {

LIFD;

infinite;

distributed;

45

}

A {

CLP1;

fixed;

shared;

}

}

bwpolicyinfo {

default {

reserved;

}

}

switchoutput {

default {

LOSSOFCELLS;

BUFFERUTILIZATION;

frequency = 1 msec;

file = swds10;

}

B {

BUFFERUTILIZATION;

frequency = 3 msec;

file = swds12;

}

}

linkoutput {

default {

linkutilization;

frequency = 1 msec;

file = linkds10;

}

46

}

sourceoutput {

default {

endtoenddelay;

qdelay;

throughput;

frequency = 1 msec;

file = srcds10;

}

src2 {

endtoenddelay;

throughput;

frequency = 4 msec;

file = srcds11;

}

}

accuracy = 0.02727 ;

simulationduration = 200;

