
Performance analysis of a Linux based FTP server

A Thesis Submitted
in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by
Anand Srivastava

to the

Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur
July 1996

Certificate

Certified that the work contained in the thesis entitled “Per-

formance analysis of a Linux based FTP server”, by Mr.Anand

Srivastava, has been carried out under my supervision and that

this work has not been submitted elsewhere for a degree.

(Dr. Dheeraj Sanghi)

Assistant Professor, Department of Computer Sci-

ence & Engineering,

Indian Institute of Technology,

Kanpur.

July 1996

ii

Abstract

Linux over the past couple of years has matured to the point where it has been

accepted as a viable platform for server applications. This transformation is due to

its stability and support provided by a few companies. Currently it is being used by

Internet Service Providers. Linux will be accepted for more serious applications only

if it can handle heavy loads. This thesis analyzes the performance of Linux in one

such application, the FTP server. Several experiments were conducted to determine

the performance under different conditions. Conclusions based on these experiments

are drawn and given in this thesis. Experiments show that Linux performs quite

well under heavy loads.

Acknowledgments

I am grateful to Dr. Dheeraj Sanghi for his constant guidance throughout this

work and for providing an opportunity to get acquainted with the internal working

of a real operating system, Linux. I would like to thank all the people who have

contributed their efforts to the free software movement. I would also like to thank

the Class of ’94 who made my stay here a beautiful and memorable experience.

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 The Server . 2

1.3 Organization of Thesis . 2

2 Introduction to Linux 3

2.1 The File System (Ext2fs) . 3

2.2 The Buffer Cache . 4

2.3 Effects of Dynamic Buffer Cache . 5

3 Design and conduction of Experiments 6

3.1 Design of Experiments . 6

3.2 Conducting the Experiments . 9

3.2.1 Working of Server Side . 9

3.2.2 Working of Client Side . 10

3.2.3 Calculation of Results . 11

4 Experiments and Results 12

4.1 Loop Back Experiments . 12

4.1.1 Constant Load Experiments 12

4.1.2 Changing Load Experiments 13

4.2 Non-Loop Back Experiments . 15

4.2.1 Varying Number of Connections 15

4.2.2 Varying File Sizes . 16

ii

5 Conclusions 18

5.1 Future Work . 19

References 20

iii

Chapter 1

Introduction

1.1 Motivation

Linux over the past couple of years has matured to the point that it is now perceived

as a viable operating system for servers. The transformation is partly due to its free

availability, and availability of software for the platform. But the more important

reason is that the kernel has proved its stability over the time, and that a few

companies like Caldera and Cygnus have come forward for providing support. It

is currently being used by the Internet Service Providers, because they are small

businesses and want to keep their investments low. The move to more demanding

applications will depend on the ability of Linux to handle heavy loads. One such

application is an FTP server. The motivation for this thesis was to analyze the

performance of an FTP server, and to find out how it reacts to variations in load.

Linux is a full-featured 32-bit operating system. It is a fully POSIX-compliant

operating system.

File Transfer Protocol [PR85] is the standard for transferring files between different

hosts.

1

1.2 The Server

Our server was housed on an Intel -486 based personal computer. It is connected

to other machines with a 10Mbps ethernet link. The FTP server, is based on the

Ext2fs (Second Extended file system) [TCT]. This file system has become the de-

facto standard for Linux. It allows variable block sizes. We have used 4KB block

size. We used the Linux kernel version 1.3.35.

1.3 Organization of Thesis

Rest of the thesis has been organized as follows.

In Chapter 2 we will discuss the properties of Ext2fs (file system) and buffer cache

which have an effect on Linux performance.

In Chapter 3 we will explain the implementation of Linux’s buffer cache, and how

it works.

In Chapter 4 we will explain how the experiments were conducted. We will see

what modification were made to the server, and what are the types of experiments.

In chapter 5 we will discuss the results of experiments conducted and how they

relate to the expected results.

Finally, in chapter 6 we will conclude by summarizing the results that we have

obtained from the experiments.

2

Chapter 2

Introduction to Linux

In this chapter, we explain the design aspects of file system and buffer cache in

Linux that help in improving performance.

2.1 The File System (Ext2fs)

The file system manages files on disk, or on other mass storage devices. It allows

processes to read, write, and modify files by bringing the required portions of files

into main memory, and writing them out as required. It provides a uniform interface

for accessing files on different storage devices. Following features of Ext2fs help in

improving file system performance.

Block Groups The Ext2fs is divided into block groups. The file system tries to

allocate all blocks of a file in one group. This reduces seek time and increases file

system performance.

3

Different block sizes Ext2fs allows creating file systems with different logical

block size. It currently supports 1K, 2K, and 4K block sizes. File systems with

large block size give better disk performance as more data is read per disk read.

On the other hand using bigger logical blocks wastes disk space. This is because a

typical Unix file system is composed mainly of small files [Bac86]. This problem is

eliminated by using fragments. Fragment is part of a logical block. A file uses only

as many fragments as necessary for the last incomplete block.

Read ahead It has been observed that most file reads are sequential. This allows

Ext2fs to read a few consecutive blocks, along with the requested blocks. These

blocks, which are read before they are actually requested, are called read ahead

blocks. The number of read ahead blocks is different for different devices. Read

ahead blocks are read only when an unread block is requested.

2.2 The Buffer Cache

The buffer cache manages portions of files that are in memory. Its objective is to

improve performance during file access. In this section we explain the features that

affect system performance.

Buffers of different size Linux buffer cache supports buffers of sizes 512 bytes,

1KB, 2KB, and 4KB. This is necessary because the supported file systems use these

block sizes. For example Ext2fs allows 1KB, 2KB, 4KB block sizes, while msdos

file system, allows 512 bytes or 1KB block sizes. Supporting different block sizes

increases the complexity of the buffer cache design and has a detrimental effect on

the file system performance.

4

Dynamic allocation Memory for the buffer cache is allocated dynamically and

can occupy almost all of the available memory. On a machine with 8MB memory, it

was observed, that it usually occupied 4MB, when the system was not working on

memory intensive applications. In some cases, when file intensive applications were

running, it was observed that the memory usage went above 5MB. The dynamic

allocation effects the performance in many ways as we see in the next section.

2.3 Effects of Dynamic Buffer Cache

We discuss in this section the ways in which the presence of a dynamic buffer cache

affects the performance of the system.

When the system is working under nearly constant load, buffer cache stabilizes to

an optimal memory usage level.

Memory manager can free pages as soon as the processes using them have exited.

However buffer cache cannot do so, as it does not have information about which

buffers are being used by which processes. It therefore tries to free buffers which

have the least chances of reuse. Thus memory used by the buffer cache is reused

slowly.

Buffer cache is helpful only if the files are reused, otherwise it results in inefficient

memory utilization.

5

Chapter 3

Design and conduction of

Experiments

In this chapter we detail how and why various experiments were conducted. In the

first section we discuss the design of various experiments conducted. In the next

section we outline the way in which the experiments were conducted.

3.1 Design of Experiments

We need to control the conditions so that we can isolate factors affecting the perfor-

mance of an FTP server. The FTP server, being based on file input output, uses the

buffer cache quite intensively and buffer cache of Linux is dynamic in nature. This

would prevent us from performing experiments one after another, because the first

one would affect the second one. There may also be some random errors introduced,

because our ethernet link is being shared by other systems as well. So, we need

to repeat our experiments and then average the results. We also need to discard

some initial repetitions, so that the influence of previous experiments is nullified.

6

We decided to conduct 15 experiments discarding the first five. This would provide

us with constant load conditions.

We created files before conducting each experiments, to ensure that a file was never

in the cache before an experiment was conducted. The files would be created afresh

even for repetitions of an experiment.

We also had a 1 minute gap between two experiments. The Linux kernel 1.3.35 used

in this experiment is not a very stable kernel and had the problem that a couple of

processes would go into an infinite sleep unpredictably. This problem would occur

very frequently when there was no time gap in between two experiments and we had

started a large number of connections.

We conducted several experiments to find out the data transfer rate achieved by the

server, under various load conditions. The transfer rate depends on the following

parameters.

File size: A bigger file size would reduce the transfer rate, because more buffers

will be required. The buffer cache needs to free previously used buffers. This will

have very small effect on transfer rate. File size of 1MB was used for most of

the experiments because we had observed that buffer cache occupied around 4MB

usually. So, 1MB would be an ideal size to bring out the affects caused by buffer

cache.

Number of connections: When more than one processes are trying to transfer

files, they will be competing against each other for memory, and CPU. This would

reduce the transfer rate. The system transfer rate, in case of multiple simultaneous

connections, is taken as the overall data transfer rate for all connections. Over-

all data transfer rate gives the correct system performance only if all connections

transfer files simultaneously.

7

Type of experiment: Files transferred over different connections may be same

or different. When transferring same file, due to buffer cache, the file will have to be

read from disk only once. Also the memory requirement will be less than the case

of transferring different files. This will give a better transfer rate.

The following experiments test the effect of the above parameters on system perfor-

mance. The experiments have been repeated as explained above to keep the load

constant.

Loop Back experiment: This experiment was conducted keeping the client and

the server on the same machine without going over the ethernet. It was used to show

that the ethernet would be a bottleneck, and it would also show the load condition

at which the system memory becomes insufficient. We transferred 1MB files over 1,

2, 4, and 6 simultaneous connections.

Varying number of connections: This experiment was conducted over the

10Mbps ethernet. It was done to find out the way in which FTP performance

varies with number of connections. In this experiment 1MB files were transferred

over 1, 2, 4, 8, 16, and 24 connections.

Varying sizes of files: This experiment was done to find out the way in which

FTP performance is affected with file sizes. It was also conducted over the ether-

net. Here we transferred 256KB, 1MB, 4MB, and 16MB files over 4 simultaneous

connections.

We also wanted to find out how the performance varies with variations in load. This

was done by comparing the transfer rates achieved with constant load and the trans-

fer rates achieved with changing load. While the experiments under constant load

where conducted by repeating experiments consecutively, experiments under chang-

ing load were repeated only after a full set of experiments was completed. We also

8

wanted to highlight the effects of buffer cache, so we conducted these experiments in

the order of decreasing load. In these experiments 1MB files were transferred over

6, 4, 2, and 1 simultaneous connections. The experiments were conducted in the

order as detailed below.

The experiment for 6 connections with same file was done first, then experiment for

6 connections with different files was done. After that experiments were repeated

with 4 connections, then with 2 connections and finally with 1 connection. After ex-

periment with 1 connection, all experiments are repeated starting from experiments

with 6 connections. We conducted 5 repetitions of the experiments in this way.

3.2 Conducting the Experiments

3.2.1 Working of Server Side

We used the wu.ftpd server daemon available with Linux. The source for the server

is available at various web sites.

To test the server under heavy load conditions, we do multiple simultaneous trans-

fers. These transfers should start around the same time, so that overall data transfer

rate would give a correct measure of system performance. Each transfer is served by

a separate server process created by the FTP daemon. We needed some mechanism

to synchronize the server processes. We did this by stopping all the server processes

before they started transferring data. When all the server processes were ready to

transfer data, they were allowed to continue.

The RETR command [PR85] is used by an FTP client to retrieve a copy of the required

file from an FTP server. The STOP signal can be used to stop a process, which can

be later continued by the CONT signal [Ste92]. The server was modified so that on

receiving the RETR command the server process would send a STOP signal to itself.

9

The server was also modified to log the file name, start time and the end time for

a transfer. The data was logged to the log file /var/adm/xferlog, which is the

default log file for wu.ftpd. This data was used for calculating the data transfer

rate. Time was obtained using gettimeofday system call. This call returns the

time in microseconds.

3.2.2 Working of Client Side

An experiment consists of creating the files to be transferred, then forking FTP

processes which would transfer these files, and then deleting those files. The trans-

fer rate is calculated according to the values stored at the server. A number of

experiments are conducted in succession. The logged data should contain enough

information to distinguish between the various experiments. The following informa-

tion is embedded in the file name as period separated fields.

• file size

• different or same file was transferred

• experiment number for differentiating between repetitions of one experiment

• number of connections

• file number used to differentiate between different files in one experiment

We have a main program which is used to conduct the experiments. The main

program runs on the client system. It uses the rsh (remote shell) program for

executing commands on the server system, e.g. to create files on the server system.

First it creates the files that are transferred during the experiment. Then it forks

FTP clients which make connections to the server. Main program then remotely

executes a shell script on the server. This script waits for the server processes to

reach the stopped state. At this point the script sends CONT signal to all server

10

processes. Then it waits for the server processes to complete the transfers. The

script returns when the transfers are complete. The main program, which is waiting

for the script to end, then removes the files that were created at the beginning of

the experiment.

3.2.3 Calculation of Results

To calculate the overall transfer rate achieved in an experiment, we first find out the

time when first transfer was started and the time when last transfer was completed.

Using these two values we calculate total time taken for the experiment. Total

amount of data transferred is calculated from the file size field in the file name.

The overall transfer rate is calculated by dividing the total data transferred by total

time taken. Since there are several repetitions of an experiments we find the average

overall transfer rate. To confirm that all the experiments do start at around the

same time we also calculate the average transfer rate over individual connections.

If the average transfer rate multiplied by the number of connections is not much

greater than the overall transfer rate, then the experiments must have started at

nearly the same time. If we are suspicious that transfers of some experiment did

not start at the same time then the actual data can be seen.

A Perl (Larry Wall’s interpreted systems language [WS91]) script is used for parsing

the log file, calculating the overall transfer rate for each experiment and preparing

tables.

11

Chapter 4

Experiments and Results

In this chapter we discuss the experiments that we have conducted and analyze the

results. We will use the notation (n,type) for an experiment which uses n simul-

taneous connections for transferring type files. For example (4,same) would mean

transferring same file over 4 simultaneous connections.

4.1 Loop Back Experiments

4.1.1 Constant Load Experiments

In this section we discuss the results of the loop back experiments under constant

load. We conducted these experiments to confirm if the 10Mbps ethernet will be a

bottleneck. These experiments are not conducted over the ethernet and can have

higher transfer rates than the bandwidth limit of ethernet. We transferred 1MB

files over 1, 2, 4, and 6 simultaneous connections. The results of the experiments

are given in the following table.

12

Type of Number of connections

transfer 1 2 4 6

Same file 1388.82 1393.44 1350.22 1257.11
Different files 1200.11 500.23 328.27

Overall transfer rates in KBps, 1MB files

Table 1: Performance at constant load in loop back experiments

Analysis of Results

For the case of transferring same files we observe that transfer rate is almost same

from 1 to 2 connection and then there is a decrease in transfer rate. The first slight

increase could be attributed to the slight time saving, because both processes would

wait simultaneous for a disk read. The gradual decrease afterwards is due to CPU

becoming a bottleneck, due to process switching overheads.

For the case of transferring different files we observe that transfer rate drops from

1 to 2 connections only moderately because memory is enough for two connections.

The drop is because some buffers will have to be made free for reuse. From 2 to 4

connections there is a huge drop because the buffer cache is not sufficient to take in

the 4MB of 4 files at one time. Working in the limited memory would require freeing

and reusing buffers at a larger scale, along with processor switching overheads. Due

to the same reasons we get a large drop again when going from 4 to 6 connections.

4.1.2 Changing Load Experiments

In this section we discuss the experiments that we conducted to find out how change

in load affected the transfer rate. The experiments were conducted in the order of

decreasing load. 1MB files were used with 1, 2, 4, and 6 simultaneous connections.

The following table shows the results of the experiments.

13

Type of Number of connections

transfer 6 4 2 1

Same file 1062.94 1083.88 983.27 947.52
Different files 350.50 476.70 1067.44

Overall transfer rates in KBps, 1MB files

Table 2: Performance with changing load in loop back experiments

Analysis of Results

If we compare these results with the results in table 1, we observe that there is a

general reduction in the transfer rates except for the case of experiment (6, different).

The reason for the better performance in this case is that these experiments use

substantial amounts of buffer cache. In the case of constant load these experiments

were conducted consecutively, requiring the next repetition to free buffers. While

in this case the experiment has been conducted after the experiment (6, same).

These experiments use substantial amount of memory pages through virtual address

space. These pages are free when the processes exit allowing the next process to

find memory easily.

The opposite is true for the experiments transferring same files. In addition the

effects of buffer cache are also carried over to the next few experiment. This is how

the buffer usage of (6, different) affects (4,different) and also how (4,different) affects

(2,different). This also explains why (1,same) is lower than (6,same).

We also note a counter intuitive result in that (2,same) is lower than (2,different).

Ordinarily it should not happen because in the first case only one file has to be read

from disk, while in the second case two files have to be read. The transfer rate of

(2,same) is low because of high buffer usage by (4,different), while the transfer rate

of (2,different) is high because of low buffer usage by (2,same).

14

4.2 Non-Loop Back Experiments

4.2.1 Varying Number of Connections

In this section we will discuss how the performance varies with increasing number

of connections. The experiments comprised of transferring 1MB files on 1, 2, 4, 8,

16, 24 simultaneous connections. The results of the experiments are as follows.

Type of Number of connections

transfer 1 2 4 8 16 24

Same file 457.53 517.69 523.80 530.01 516.49 503.47
Different files 480.36 421.32 302.75 229.08 199.36

Overall transfer rates in KBps, 1MB files

Table 3: Performance with varying number of connections over ethernet

Analysis of Results

For transferring same files we observe that the ethernet is a bottleneck. The transfer

rate is nearly same for almost all the values. The difference between (1,same) and

(2,same) is large. This is because one out of two processes can start transferring

files faster than one process. This further helps in the case of (4,same) and (8,same)

because substantial amount of memory pages are used which allows the processes to

start transferring faster. For (16,same) and (24,same) process switch times become

substantial and start affecting the transfer rate.

For transferring different files we observe that (2,different) is being affected by its

use of buffer cache. Being two processes is helping the transfer rate by allowing it to

start faster but having to free buffers is reducing the gain that can be obtained. For

4 and more connections the memory becomes a bigger bottleneck than the ethernet

15

and the performance reduces with increase of connections. The performance drop

is less than 30% every time number of connections is doubled.

4.2.2 Varying File Sizes

In this section we will discuss our experiments used to determine the transfer rate

as a function of file sizes. We transferred files of 256KB, 1MB, 4MB, and 16MB

over 4 connections. The results are given in the following table.

Type of File size

transfer 256KB 1MB 4MB 16MB

Same file 520.05 510.75 483.45 494.88
Different files 531.44 405.01 321.57 306.10

Overall transfer rates in KBps, 4 connections

Table 4: Performance with varying file sizes over ethernet

Analysis of Results

We observe from the above table that in the case of transferring same file there is

very small difference between the different transfer rates. We observe that transfer

rate in experiment (256K,same) is lower than (256K,different). The four processes

in (256K,same) wait in a queue to access the first block. While the four processes

in (256K,different) can proceed independently. Providing the opportunity to start

transferring data sooner.

For the case of transferring same files we observe that the transfer rates are nearly

constant. The transfer rate reduces from 256KB to 4MB, because the processes need

to free an increasing number of buffers. After 4MB a limit is approached and then

the transfer rates should be nearly constant.

16

We also observe that transferring different files larger than 1MB, reusing buffers

poses a performance bottleneck. The transfer rate would become nearly constant a

little above 4MB, because we observe very little difference between (4M,different)

and (16M,different).

17

Chapter 5

Conclusions

We have examined the performance of Linux under various load conditions and have

also analyzed how it reacts to changes in load. According to our experiments we

have obtained the following results.

• Under moderate loads a 10Mbps ethernet poses a performance bottleneck.

• For the case of transferring different files we find that the 8MB RAM becomes

a bigger bottleneck than the ethernet with just 4 connections. The rate of

transfer reduces by less than 30% when number of connections are doubled.

This means that Linux scales quite well with load.

• For the case of transferring same files we find that the memory is sufficient for

around 16 connections. Memory would pose a bottleneck for more number of

connections.

• Transferring different files reduces the performance but the fall in performance

reduces as the files become very large.

• In the loop back experiment we discovered that there was a very large fall in

transfer rate from 2 to 4 connections when transferring different files.

18

From these observations we can conclude that Linux does scale quite well, and will

be able to handle heavy loads.

5.1 Future Work

We have observed that the ethernet is the major bottleneck. It would be useful to

find out how Linux would perform given a 100Mbps ethernet, because then the link

would not be a bottleneck.

19

References

[Bac86] Maurice J. Bach. The Design of the UNIX Operating System. Prentice-Hall,

Englewood Cliffs, NJ 07632, USA, 1986.

[PR85] J. Postel and J. Reynolds. File transfer protocol (ftp). Technical Report

RFC-959, Network Working Group, 1985.

[Ste92] Richard Stevens. Advanced Programming in the UNIX Environment. Ad-

dison-Wesley, Reading, MA, USA, 1992.

[TCT] Theodore Tsó, Remy Card, and Stephen Tweedie. Design and implemen-

tation of the second extended filesystem. In Proceedings of the First Dutch

International Symposium on Linux.

[WS91] Larry Wall and Randal L. Schwartz. Programming Perl. Nutshell Hand-

books. O’Reilly and Associates, Inc., 632 Petuluma Avenue, Sebastopol,

CA 95472, first edition, January 1991.

20

