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Abstract

Acquiring words of a language consists of two aspects: a) having some concep-

tual categories, and b) associating these with linguistic units. We build on earlier work

that demonstrates visual category learning from complex scenes to present a computational

approach that attempts to learn words and phrases as labels for these visual categories.

Given a multimodal corpus (complex 3D-scene with multiple narrative descriptions), we

(a) first discover object categories with minimal supervision using foreground extraction,

object tracking and object clustering (b) predict the visual saliency of the objects in the

scene using a bottom-up attention model (c) discover motion concepts by clustering the

trajectories of the tracked objects (d) Segment the utterances into smaller linguistic units

(e) associate the linguistic units in the narrations with the salient objects in the scene to

learn labels for object categories as well as motion concepts. We assume no prior domain

knowledge either during visual or language analysis. Using a bi-modal (visuo-linguistic)

corpus of a complex traffic video and widely varying narratives by different narrators, we

show how linguistic units may be discovered for the object categories bicycle, truck, and

car and motion concepts left-to-right and turn. We also show that the knowledge

of word-boundaries is, though helpful, not a prerequisite for word-learning. We propose a

mechanism to identify appropriate size of linguistic unit based on fragment analysis and

unit-independence conjecture. By analyzing the word-concept associations over increasing

narration exposure, we measure the confidence of the discovered labels in terms of consistent

dominance. We find that the labels discovered for three object categories are consistently

dominating. However, the labels discovered for the motion concepts do not show the con-

sistent dominance. We argue that the consistent dominance of a label with respect to a

conceptual category is necessary for granting it as a word for that category.
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Chapter 1

Introduction

The problem of language acquisition has been of great interest to many disci-

plines including Linguistics, Psychology, Philosophy, Neurobiology, Cognitive science and

Computer Science. From Panini [25] to Chomsky [7] to Tomasello, there have been many

attempts to formalize the theory of language.

Language is one of the key-characteristics that distinguish humans from all other

animals. There is a long-standing debate on whether the language is innate to humans or

not.This debate has led to two different accounts of language. According to rationalists’

account, language is considered to be prewired in humans and is distinguished from all

other cognitive systems. For example, Chomsky [7] argues for the innateness of language

based on the argument (known as “poverty of stimulus”) that the child acquiring language

has access to only positive examples (grammatical sentences), and very little corrective

feedback. Thus, the Chomskyan framework focuses on the syntax of a language and is

largely sceptical about semantics. So, learning a language in the view of rationalists’ is

learning a “generative syntax” for that language.

On the other hand empiricist views of acquisition such as the cognitive grammar

proposed by Langacker [18] give a central role to semantics. Langacker considers gram-

mar as conceptualization and formalizes it as a bipolar symbolic unit interconnecting the

phonological pole (linguistic representation) and the semantic pole (conceptual representa-

tion). In the view of cognitive grammar, language is entrenched in the usage and linguistic

representations get their meanings because of their usage with some conceptual entity. So,

mapping linguistic representations to their conceptual referents is at the core of learning a

language in the “cognitive grammar” view.

In most of the attempts to learn the mapping between linguistic representations

and semantics, the semantics were often limited to logical forms such as predicate structures

and λ-calculus [39, 16]. However, what the conceptual representation be is again a debatable

issue. In [14], Harnad has posed the symbol grounding problem as how the meaning of

meaningless symbols can be expressed in something but other than meaningless symbols.
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Figure 1.1: Semiotic Triangle based on the work of Odgen and Richards

Barsalou [2] proposes perception as one of the ways to ground the meaning of meaningless

symbols and argues for the importance of perceptual schema as an abstract representation

of concepts.

Mandler has argued, based on the work of a number of developmental psychologists

(e.g. Quinn [26], Baillargeon [1], Spelke [34]), that some early notion of categories may be

available to infants from age 2 months onwards, well before any phonetic understanding.

This categorical discrimination, Mandler suggests, is based on the notion of image schema

[20], which are largely perceptual in the young infant.

In this work, we attempt a computational simulation of a similar process, in which

a preliminary perceptual concept is acquired first and is available when attempting to

discover linguistic units that may be associated with it.

1.1 Grounded Semantic Models

In the classical work “Meaning of meaning” [24], Ogden and Richards opposed the

tendency to confuse a “symbol” (or “word”) with the thing or object that it refers to. They

posited that this relationship works via an intermediary which they called “thought” (or

“concept”), and they posited the process as operating in a triangle - the word symbolizes

a concept, and the concept is an abstraction of an actual referent. Thus, the word “car”

symbolizes the concept car, of which a specific observed car may be an image. Thus, in

the triangle formed by these three entities, the link between the word and the referent is

imputed, and not direct (Figure 1.1).

In the cognitive grammar view, all symbols are schematizations or structured ab-

stractions of experiences. Even a word such as “truck” is an abstraction from the many ways

the sound can be uttered (or the word written). All of these map to the same phonological

pole, the word “truck”, which is coupled to the semantic pole, the truck. These two poles

together constitute the symbolic unit [truck], which we are trying to learn in this work.

In our descriptions of this model, we have used the term “word” (and sometimes
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Figure 1.2: Cognitive Grammar:Processes

“label”) to refer to what is called “linguistic unit”, “lexeme”, or ”phonological pole”. Sim-

ilarly, we have used the term “concept” to refer to what has been called “image schema”,

“semantic pole”, “meaning”, etc.

The semiotic triangle of Ogden and Richards may now be elaborated in the cog-

nitive grammar view. There are two processes related to the link between a specific utter-

ance and a referent - language understanding and language generation (autoreffig:cognitive-

process.

• Understanding: upon hearing the utterance, it is mapped to the appropriate word

schema, which invokes to the concept. If the referent is actually present, it then

is identified. In a purely linguistic context, the discourse situation is being simulated

(imagined) so that the referent may be instantiated in the simulation, and its properties

become computable for further statements.

• Generation: upon encountering an object, either in direct perception or in mental

simulation, the object is being recognized and the word becomes available within the

symbolic unit. Then, depending on the context and given the utterance schema of

the individual, the prosodic motor functions are launched and the speech utterance is

produced.

Both these processes take place within a certain sensorimotor and discourse con-

text. Thus, the visual semantics we learn here, e.g. the appearance properties of truck, ap-

plies to the similar visual scenes and not to completely different contexts (e.g. toy trucks).

However, it is not fixed to a very specific video scene . Once the initial symbol for [truck]

is formed, linguistic usage of “truck” will cue its properties and cause the semantic pole

truck to be suitably enriched with the new relations. But this again, is outside the scope

of this work.
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Here we restrict ourselves to the words (note that our use of this term includes

larger linguistic units) associated with a specific conceptual entity. We are not considering

how such symbols combine to form larger linguistic structures (a combination of a phono-

logical string and a semantic structure); we are merely interested in the process by which

the system may bootstrap an initial lexicon of grounded symbols. In the work of Harnad, it

has been pointed out that the “concept” or semantics cannot be in terms of a set of symbols.

Thus, the meaning cannot be defined in terms of a logical predicate which is defined using

other predicates and so on, because this leads to an infinite regress. Thus, at least some of

the concepts must be grounded, or defined in terms of structures outside the set of symbols,

such as in the domain of sensorimotor experience. The objective of this work is to try to

learn some such symbols, which may form part of the substrate on which the entire set of

symbols is constructed.

We now note that many familiar concepts are extremely rich in associations. Thus,

the concept for a truck may include what it looks like (how this is represented is a key

aspect of our work); but it would also have some notion of it’s purpose (used to transport

things), its internal structure (has wheels, has an engine in front and a lading area at

back, etc.), and also many behaviours (pollutes, makes growling sounds, etc.). In fact, it is

not easy to bound the list of such properties - it is an abstraction based on all our direct

encounters with trucks, but also based on what we are told (linguistic information). For

example, many of us may believe that “trucks bodies are made of steel,” or that “drivers of

trucks often drive for long stretches without sleep,” though we are unlikely to have direct

experiential evidence for such facts. These linguistic statements can be correlated to the

concept truck only via the link between the concept and the word “truck”. Thus, language

is a rich source for elaborating concepts - indeed, the vast majority of an adult’s vocabulary

today is learned via linguistic context [3].

Further, the content of a concept is dependent on language. The categories as

experienced by any individual (what Wittgenstein has called “private language” [37]) are

fluid – e.g. an infant familiar with dogs may perceive a calf as a large dog. The fact that

she eventually learns otherwise is a result of the linguistic community using other terms for

the calf. Thus an individual’s concepts get anchored in terms of social norms for categories

which are expressed in language.

Word learning involves segmenting words from a linguistic stream and associating

these with concepts segmented from the “blooming, buzzing confusion” of the world. Ac-

quiring the very first word-meaning associations is a serious challenge since the perceptual

stream from which proto-concepts need to be learned may have many ambiguous referents,

and the linguistic stream from which words are to be found may be long and discursive.

Without the chunks of the world, it is hard to discover the linguistic units, but partitions

in the world often reflect linguistic usage. At the same time, linguistic units themselves are
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often hard to determine without conceptual structure, e.g. the definition of a phoneme, the

basic phonological unit of language relies on the notion of a minimal pair - a single sound

substitution that causes meaning to change.

Thus, we have a chicken and egg problem here. On the one hand, concepts must

exist in order to associate a linguistic label with it, but on the other hand, the content

of the concepts are crucially dependent on language. Learning the initial meaning-label

map is often considered a bootstrapping problem [36]. Once a few initial associations are

available, these can affect (and stabilize) the perceptual schema, and also help learn other

associations. But how are the very first associations acquired? How then, does this process

start? How can one bootstrap a system that wishes to build a semantic lexicon, where every

unit has a map to some meaning? This is the problem we set out to tackle in this work.

There are three approaches to the initial word learning problem: a) Language-first

or nativist: Since there may not be enough data for an infant to learn the mappings, both

concepts, and their association with semantics is taken to be inborn [11]. b) In the Piagetian

view, concepts are acquired, but these do not form until the end of the sensorimotor stage

(about 18 months). Thus, semantics and language are learned around the same time [21]. c)

Semantics-first: A preponderance of evidence indicates that babies are able to make many

category distinctions before coming to language [21, 27]. These are then associated with

words, which may be segmented based on prosodic cues.

Along with these associations, it is sometimes assumed that words can be seg-

mented from the speech input based on prosody, pauses or other non-semantic cues alone.

On the other hand, it is possible that knowledge of semantic classes can also help in this

segmentation.

Most computational models of word learning follow Piagetian view, and one at-

tempts to learn the label and the semantics at the same time [28, 29, 38]. Some models

also consider the problem of partitioning words from speech [30, 38]. Others assume the

existence of logical predicates for relations and attempt to instantiate a propositional view

of language [32] based on manually constructed scene interpretations.

There is considerable evidence for some degree of perceptual distinction being

available at the earliest stages of word learning, including object categories and spatial

prepositions [27], event structures [1, 27], etc. It has been hinted that some of these cat-

egories may provide priors in learning language [21, 33]. One way of investigating such a

possibility would be to try to construct computational simulations.

1.2 Acquiring symbols

A number of approaches have tried to construct such term-meaning associations

from sensorimotor data [36, 12, 30, 23, 9]. However, the semantics in these approaches were
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often limited to scenes with simple objects, and the learning was guided by considerable

feedback. The linguistic input was in the form of “bag of words” or simpler sentences. Also,

the semantics was often hand-coded or learnt in a supervised manner. In [32], Siskind tried

to learn words in presence of referential uncertainty, however, the objects were simple and

linguistic descriptions constrained.

In this work, we attempt to learn words of language as a coupling of a semantics,

learned from a perceptual space, with a unit of language, discovered from a sequence of

syllables or as phrases from a word-separated text. The emphasis on semantics is aligned

to the cognitive view of grammar, but in this work, we make no attempts to discover any

aspects of how words are combined to form larger strings, which would be the main goal

of syntax. Instead, our aim is merely to discover an initial (relationally impoverished)

semantics based on perception alone, which may serve as the “phonological pole” for the

first cognitive symbols being acquired. Without this, it is clear that language acquisition,

in the “cognitive grammar” view, cannot get off the ground.

In this work, we define the usage of language in terms of the perceptual experience.

So, semantics considered in this work are purely visual. We consider learning objects

and interactions from a complex 3D-scene and mapping them to words and phrases from

free, minimally constrained language with full sentences describing the scene. Part of the

mechanism for handling referential uncertainty is visual saliency, predicted using a bottom-

up attention model. The salient objects are then associated with the co-occurring utterances

in the narratives to learn the labels for the visual concepts.

For constructing visual models of objects and interactions, image sequences from a

fixed camera, as typically used in surveillance scenarios, are considered. The stable patterns

of background are first learned, and used to extract foreground blobs corresponding to the

objects of interest. The object blobs are tracked across the frames and regions of occlusion

are identified. Only unoccluded object appearances are considered for object learning. The

foreground blobs are then projected to a feature space based on the “Pyramidal Histogram

Of visual Words” (PHOW) approach [4]. The resulting PHOW descriptor for the blobs

are then classified in an unsupervised manner, resulting in a number of object classes. For

evaluation purposes, we label these clusters into seven known object categories based on

user labels (the ground-truth): tempo, bicycle, motorcycle, truck, human, car, and

also a small category noise with object fragments and lighting effects etc. This is the only

element which brings minimal supervision in our mechanism.

For every agent obtained by tracking object blobs across the frames, a trajectory

is defined using the position and velocity of the blobs in the successive frames. These

trajectories are clustered to obtain a number of motion classes. These are also labeled into

five known categories based on user labels:left-to-right,right-to-left, turn, cross

and noise.
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We note that the resulting models resemble what [36] have called the conceptu-

alizer, which serves to recognize the input into one of several classes, but unlike in that

work, the model here is learned and not programmed beforehand. Also, these models are

similar to abstract perceptual schema proposed by Barsalou [2]. However, these are not as

powerful as image-schema of Mandler [20] since they consider only visual appearance, and

not the behaviour.

Our work is based on the availability of a bi-modal visuo-linguistic corpus. Such

visuo-linguistic corpus consists of a visual scene and multiple narrations of the scene by

number of subjects. We construct such a corpus by asking number of human subjects to

narrate IITKGTV2 traffic video [10] in Hindi with minimal restrictions on their speech. The

narrations collected are then manually transcribed and time-stamped at sentence boundaries

as well as long pauses. These transcribed and time-stamped narratives along with the

visual categories discovered earlier form a visuo-linguistic corpus which is the basis of all

our experimentation.

For the word association task, we use the visuo-linguistic corpus described above.

The objects and trajectories in visual focus, as identified by the bottom-up (task inde-

pendent) attention model, are aligned with poly-syllabic strings, words or phrases in the

narrative. In case of poly-syllabic strings we merge the words across word boundaries to

form a continuous stream of syllables and try to associate the poly-syllabic sequences within

an utterance with the visual concepts. As we are dealing with the transcribed text, we ap-

proximate the notion of syllable as a vowel terminated string of characters. In case of

phrases, we consider all possible k-grams of words or syllables as candidate labels without

assuming any fixed length. Using fragment-analysis mechanism based on unit-independence

conjecture, we discard lower length units which mostly occur as a part of larger length units.

In the end, we assess the confidence of learnt associations in terms of consistent dominance

by analyzing the nature of associations with increasing exposure to narrations.

1.3 Summary of Results

We are able to discover the names for three object classes with high visual purity

viz. bicycle, truck and car as the labels with strongest association both at poly-syllabic

and word-level associations. Also, phrases like bAe.N se dAe.N (left to right), geT kI taraf

(towards the gate) are also discovered for the motion classes left-to-right and turn

respectively.

In order to estimate the confidence of an association, we evaluate the stability of

the concept-word association as new narrations are considered. We analyze the association

strengths of these discovered labels with respective visual categories incrementally by pro-

viding increasing number of narrations and measure the confidence of these acquired labels
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in terms of consistent dominance. We find that the labels sAikal (bicycle), Trak (truck)

and kAr (car) are dominant labels for the respective categories bicycle, truck and car

consistently over the set of narrations. However, the label bAe.N se dAe.N (left to right)

and geT kI taraf (towards the gate) fail to dominate for the category left-to-right and

turn consistently over period of time. We argue that the consistent dominance of a label

with respect to the particular category is necessary for the label to be granted as a term for

that category. Based on the notion of consistent dominance, we claim that labels sAikal,

Trak and kAr have established themselves as the labels for the respective categories whereas

bAe.N se dAe.N (left to right) and geT ki taraf (towards the gate) have not. Similar re-

sults obtained both at poly-syllabic and word level associations, show that the knowledge

of word-boundaries may not be a prerequisite for the early word learning.

During association, we remove units that are very frequent in general discourse,

which are assumed to be non-relevant to this context. However, no part of speech, phrasal

structure or other syntactic knowledge is used at any step. Also, no morphological knowl-

edge is assumed. Thus we use no stemming, though the language tested, Hindi, is highly

inflected.

Our unsupervised approach to both vision and language implies two important

scalability advantages. Since we use no knowledge of the camera placement or the types of

objects in the scene, the visual analysis is potentially applicable to a wide range of scenes.

Also, since we use no knowledge of the syntax of the target language, it is possible to use

the approach to other languages as well. Since the terms learned are grounded in the visual

domain, it can be flexibly related to new input situations. The discovered objects and their

linguistic labels also address an important practical problem in the context of multimedia

retrieval where content pertaining to user’s linguistic query are to be retrieved in multimedia

documents. Learning visuo-linguistic mappings is fundamental to building systems that can

respond to user queries via linguistic means, reporting the ongoing activity in the scene.

In a context such as India, it is important to be able to respond in local languages such as

Hindi. The approach outlined here constitutes the first step in this direction.
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Chapter 2

Symbol Learning Framework

In this chapter, we describe the framework for learning symbols as word-concept

pairs using bimodal visuo-linguistic corpus. The framework uses a complex 3D-video and

multiple narrations of the same video by number of speakers. Based on the semantics-first

approach, we learn from 3D-video various object categories first. Then we align the objects

in the video with the utterances from the narratives based on the time-stamps. Using

a bottom-up attention model, we find the most salient objects in the scene. Finally, we

associate linguistic units in the narrative with co-occurrent salient objects in the video. The

unit having maximal association with a given object category according to an association

measure consistently over period of time is taken as a word for that category. This consistent

dominance with increasing narration exposure gives us high confidence in the associations

learned. Next, we describe this framework in detail.

2.1 Overall Framework

The Symbol learning framework (Figure 2.1) consists of four major modules (a)

Discovering visual concepts from a complex 3D-scene (b) Attention model (c) Linguistic

segmentation (d) Label Association task. The framework assumes the availability of a

bimodal visuo-linguistic corpus consisting of visual scene with multiple narrations describing

the scene. For discovering visual concepts, image sequences from a fixed camera, as typically

used in surveillance scenarios, are considered. The stable patterns of background are first

learned, and used to extract foreground blobs corresponding to the objects of interest. The

object blobs are tracked across the frames and regions of occlusion are identified. Only

unoccluded object appearances are considered for object learning. The foreground blobs

are then projected to a feature space based on the “Pyramidal Histogram Of visual Words”

(PHOW) approach [4]. The resulting PHOW descriptor for the blobs are then classified

in an unsupervised manner, resulting in a number of visual classes. section 2.3 describes

the process of object discovery in more detail. The trajectories of the tracked objects
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Figure 2.1: Symbol Learning Framework: Major components of the framework

are then clustered based on the position and velocity vectors to learn motion concepts in

an unsupervised manner. The details of how motion concepts are learnt are covered in

section 2.4. A task-independent bottom-up attention model is used to predict the visual

saliency of the objects in the scene. As there is no way to determine the attentive focus of

the speakers (no gaze or gesture information being available), this visual saliency is used

to decide the attentive focus. The attention model used is described in section 2.5. For

the label association task, we first compile a set of narratives by asking number of adults

to describe the object and activities in free and minimally constrained language. The

narratives are first manually transcribed and then time-stamped at sentence boundaries

and long pauses. The transcribed time-stamped narratives (text) are input to the system.

The process of compiling and time-stamping these narrations used to construct the visuo-

linguistic bimodal data-set is described in detail in chapter 3. Finally, we segment the

sentences in the narratives into sequence of linguistic units. Assuming that the linguistic

focus follows the visual focus and both the speaker and listener follow the visual focus, we

try to associate the linguistic units segmented from transcribed speech with the objects in

the attentive focus. The process of association is described in section 2.7. The end result

is word-concept pair or a grounded symbol.

2.2 Visuo-linguistic data-set

As described above, our symbol learning framework is based on the availability of

a bimodal visuo-linguistic corpus. Such a data-set consists of a visual scene and multiple
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narrations of the scene by number of subjects. For the purpose of our experimentation,

we use IITKGTV2 traffic video ([10]). We show the video to number of adults and ask

them to narrate the objects and activities in free and minimally constrained language. We

choose local language “Hindi” as the language of our experimentation. As voices of speakers

are not so clear and a good speech recognizer for Hindi is still an issue, we prefer to deal

with transcribed text. The recorded narrations are manually transcribed and then time-

stamped at sentence boundaries as well as long pauses. Using the time-stamps, we align the

utterances with the visual context. Finally, we form a corpus with subject ID identifying

the speaker, starting frame, ending frame and the utterance uttered by the speaker during

interval specified by starting and ending frames.

From visual analysis of the video, we are able to discover objects and motion

categories whereas from narratives we are able to get linguistic information. Such a data is

the similar to the data available to a child in the early period of language learning.

2.3 Unsupervised Object Discovery

In recent years, supervised learning for visual object categories has been able to

distinguish hundreds of classes of objects with high accuracies [4, 22]. The critical step in

these approaches is to project the images onto a set of patterns, called “words”, so that each

image is characterized as a distribution on the words. This class of approaches, known as

“bag of words” after similar approaches in document analysis, classify novel images based

on their similarity to the trained models. In [35], these ideas are extended to unsupervised

object classification. Here the object images (foreground blobs from surveillance video)

have the advantage that these are relatively tightly cropped around the region of interest.

(Figure 2.2). Foreground blobs are then tracked to identify the same agent across contiguous

frames - sample views of some agents are shown in Figure 2.3. As can be seen, the results are

very noisy owing to occlusions, shadows, tracking errors, agent appearance changes etc. The

tracking step considers substantially overlapping sequences of blobs. Only where an agent

is isolated is the blob considered for modeling its appearance. The pyramidal histogram of

words (PHOW) approach [4] is used, based on computing the SIFT operator [19] on a very

large number of points (100K) on these blobs. These are clustered to obtain a code-book of

300 “words”. Next, each foreground blob in a tracked agent is projected onto these words,

and the agent is modeled as a probability distribution on the space of words (estimated by

the histogram).

Using a Bhattacharya distance metric, the histograms are clustered using k-means

(results reported for k = 30). Figure 2.4 shows blobs of agents from some of the clusters

formed for k=30. This results in an over-segmentation of the category space, and to evaluate

the effectiveness of the clusters, the agents are manually categorized into seven ground-truth
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Figure 2.2: Segmentation is free, but noisy. A frame from a traffic video, and the
extracted foreground blobs. Blobs like the tempo-car occlusion are identified as occlusions
during tracking. Only isolated tracks are considered for object discovery.

Figure 2.3: Agents as sequences of isolated foreground blobs. Bottom row (agent
130): the sequence is initially tracking a car - but after it exits, it is erroneously mapped to
a motorcycle.

Figure 2.4: k-means (k = 30) clusters Clusters C0, C10, C16, C19, C21, C26, C27, C29.
Representative views from all agents in each class are shown. The membership of these
clusters can be seen in Table 2.1. Whereas C10 and C19 are relatively clean classes, C27
has several noise agents, and C26 is a mixed class.
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classes: tempo, bicycle, motorcycle, truck, human, car, and also a small category

noise with object fragments and lighting effects etc.

This brings some kind of supervision in our approach as we are making use of

ground-truth.

The purity of each cluster is defined as the percentage of its dominant class. If Nk

is the number of agents of ground-truth category k in a cluster C, then purity of the cluster

C is given by

m = argmaxk(Nk(C)) , P (C) = Nm(C)
‖C‖

Ground-truth of the dominant object class in a cluster is assigned as the ground-

truth of that cluster. Overall purity of the classification is given by

Purity =
∑

Ci
Nm(Ci)∑

Ci
‖Ci‖

The average purity of the clusters obtained by this process is 76.5%. By training

the model with a N − m of agents and testing with the remaining M , a cross-validation

accuracy of 70.8% (for M = 5) is obtained.

Classes with many agents (e.g. human, bicycle and motorcycle), have a number

of clusters. Some of the clusters appear to have fine-graded semantic significance - e.g. the

class C16 of Tempo as seen in Figure 2.4 may correspond to “passengers getting off from

tempo”. While such classes were not marked in the ground-truth, this type of discrimination

may actually be important in detecting activity such as humans getting on or off a tempo.

Another unusual cluster is C26 (third row from bottom of Figure 2.4), which has a very

poor correlation with our ground-truth classes (purity of 25%), but one may interpret the

semantics of this class as “a vehicle going at an angle to the bottom-left”. Such a category

may be arising here because SIFT is sensitive to gradient histograms, and appears to have

discovered a coherent class of agents that have high gradients corresponding to this type of

orientation, rather than a particular class of vehicles. Similarly, the cluster C21 is a group

of agents ground- labeled human who are either on a motorbike or a bicycle, but the vehicle

is not visible in the most of the frames (4th row from bottom in Figure 2.4). Some other

clusters are less meaningful; e.g. cluster C27 (second row from bottom), is mostly noise.

In Table 2.1 we tabulate the purities of the different clusters formed (black =

only a single category, white = completely heterogeneous). Table 2.1 also shows one more

category T of transition agents. A top-down cluster refinement procedure is used on the

object clusters discovered to identify the transition agents such as agent 130 (Figure 2.3) in

order to improve object models [35]. These agents are denoted by T. As can be seen, the

purity of object categories human, bicycle, truck/lorry and car is quite high (more

than 80%), whereas the purity of motorcycle is moderate and that of tempo is very

poor. The seven object categories thus discovered with the help of ground-truth are then
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Class:#

agents

Cluster Purity Distribution

H:52

C1 12/13 12H,1X

C2 7/8 7H,1N

C4 8/9 8H,1C

C10 7/9 7H,2N

C11 4/6 4H,1X,1N

(81%) C13 5/8 5H,1X,1B,1N

C14 2/4 2H,1T,1M

C21 6/6 6H

M:36

C3 3/3 3M

C8 8/9 8M,1X

C9 11/15 11M,2T,1X,1B

C22 6/6 6M

(73%) C23 3/5 3M,2B

C24 2/2 2M

C26 2/8 2M,2B,1X,1T,1R,1C

B:32

C5 5/5 5B

C6 1/2 1B,1X

C7 2/3 2B,1X

C15 2/2 2B

(88%) C20 5/5 5B

C28 7/8 7B,1T

T:21

C0 8/16 8T,4X,2C,1L,1R

C16 1/1 1T

C17 1/2 1T,1B

(56%) C18 1/1 1T

C25 4/7 4T,2C,1N

L:12
C12 4/5 4L,1C

(83%) C29 7/8 7L,1T

C:16 C19 9/10 9C,1X

(90%)

N:8 C27 2/4 2N,1B,1H

(50%)

Table 2.1: Purity and ground-truth distribution object clusters. Purity of a cluster
= degree to which it is dominated by a single ground-truth class. Clusters C0 to C29. ( H:
human, M: motorcycle, B: bicycle, T: tempo, L: truck/lorry, C: car, N: noise,
T: Transition agents)
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Figure 2.5: Sample Trajectories traced by agent 120 and agent 156. Both agents are
moving from left to right and then crossing the road upwards.

used to learn the language labels.

2.4 Learning trajectories

For every agent tracked across the frames, the path followed by the agent during

its appearance in the scene defines its trajectory. Formally, a trajectory Ta of agent a is

defined as an ordered set of (ti, fi) for i = 1, 2, ...., n. Mathematically,

Ta = {(ti, fi)|i = 1, 2, ..., n}

where fi is the set of features describing the agent at time ti. The features fi may be position,

velocity, acceleration, orientation etc. of agent a at time ti. In this work, we consider only

position and velocity of the agent as the set of features. So, for us, a trajectory of an agent

a is given as

Ta = {(ti, xi, yi, vxi, vyi)|i = 1, 2, ....., n}

where xi, yi are the co-ordinates of agent a and vxi, vyi are its velocity components in x

and y directions at time ti.

Figure 2.5 shows the sample trajectory traced by agent 120 and 156 during their

appearance in the scene. Each of the points on the path (marked with red line) defines the

trajectory of the agent.

To reduce the dimension of the trajectory, we choose 10 distinct frames at regular

intervals (10 distinct points on the path traced). So, four components i.e. x, y co-ordinates

and vx, vy in each of these frames define a 40-dimensional vector of trajectory for each of

192 agents obtained during object discovery. All positions of an agent are taken relative

to its position in the starting frame. So, each agent is assumed to start its trajectory at

the same point, the origin O(0,0). This avoids the misclassification of trajectories due to

locational bias. We cluster all these 192 trajectories into seven clusters using simple k-means

algorithm with Euclidean distance as the distance measure.

Figure 2.6 and Figure 2.7 show the various agent blob sequences for some of the

agents in trajectory clusters C1 and C2 respectively. The blobs are taken from the ten

frames selected for the purpose of modeling the trajectories. As can be seen from Figure 2.6,
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Figure 2.6: Trajectory Cluster C1: Blob sequences of agents 9, 20 and 45 in the selected
10 frames. All the three agents are going from right to left.

Figure 2.7: Trajectory Cluster C2: Blob sequences of agents 120, 130 and 147 in the
selected 10 frames. Agent 130 is noisy due to tracking errors.

the agents 9 ( bicyclist), 20 (car) and 45 (truck) are going from right to left in the scene.

Figure 2.7 shows the blob sequence of agent 120 (first row) who initially comes from left

towards right and then at some point turns upwards to cross the road. Figure 2.5 shows

the traced trajectory of agent 120. The last row of Figure 2.7 shows a white van (agent

147), which initially turns towards right coming from the bottom and then moves from left

to right.

For evaluation purpose, we marked the ground-truth of these trajectories as one

of the five categories: left-to-right (LR), right-to-left (RL), turn (T), cross (C)

and noise (N). A category noise is used to mark the trajectories which can not fit into

any of the other four categories. It also contains wrongly tracked agents. e.g. many

times the two vehicles crossing each other are tracked as same agents due to high overlap

during the transition period (agent 130 in the middle row of Figure 2.7). However, the

two agents belong to two different kinds of trajectories but are considered to be a part of

single trajectory, as we consider only a single trajectory per agent. Figure 2.9 shows the

representative trajectories for each of ground-truth categories. The frames shown are the

final frames of the trajectory. The agent of trajectory is present at the end of red-line

tracing the trajectory.

Each cluster is a representative of the ground-truth category to which plurality

of trajectories in that cluster belong. The purity of each cluster is calculated in the same

way as it is calculated for object clusters. Table 2.2 shows the distribution of ground-truth

Figure 2.8: Misclassified trajectories: agent 143 turning belongs to C4 (RL), a noisy
trajectory of agent 58 in C6.
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Figure 2.9: Representative Trajectories:left-to-right (agent 125),right-to-left
(agent 9),turn (agent 54),cross (agent 109), noise (agent 130)

Ground-Truth LR RL T C N Total % Purity

Cluster

C1 (RL) 0 20 0 0 1 21 95

C2 (LR) 15 0 1 0 1 17 88

C3 (LR) 20 0 2 0 1 23 87

C4 (RL) 0 26 8 1 3 38 68

C5 (LR) 21 2 4 8 4 39 54

C6 (LR) 13 8 4 2 7 34 38

C7 (T) 0 3 14 3 0 20 70

Total 69 59 33 14 17 192

Table 2.2: Ground-Truth distribution of Trajectory clusters: Distribution of ground-
truth categories for each of seven trajectory clusters

categories for each of the seven trajectory clusters discovered. As shown there, out of seven

clusters discovered, C1 and C4 are good representatives of ground-truth category right-

to-left (RL), whereas C2, C3 and C5 are good representatives of left-to-right (LR).

The clusters C6 though noisy overall represents LR. In addition to this, one cluster (C7) for

the category turn (T) is also discovered. The purity of clusters C1, C2, C3 is quite hight

whereas C6 has very low purity. The purity of C4, C5 and C7 is moderate. The reason for

lower purity of C4 is that many vehicles in the video come from right going towards left and

then in between turn towards down in the video (e.g. agent 143 of C4 Figure 2.8). These

agents have been classified under the ground-truth category of turn (T), however during

clustering they are classified in the cluster C4 containing mostly vehicles going from Right-

To-Left. Similarly, many vehicles crossing the road come from left, move towards right and

then cross the road (e.g. agent 156 in Figure 2.5). So, during clustering these are grouped

together along with vehicles going from Left-To-Right reducing the purity of cluster C5.

The very low purity of cluster C6 is mostly because of the Noisy trajectories. The noisy

trajectories generally include small-sized human blobs which keep moving arbitrarily in the

scene (e.g. agent 58 shown in Figure 2.8 is standing doing some hand movements).
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2.5 Attention Model

We use an attention model to find the most salient part of the scene. Such a model

tries to predict the part of the scene the human is most likely attend to. The words used

in the description are more likely to refer to objects that are in perceptual focus, i.e. we

assume that linguistic focus follows perceptual focus.

In general, attention combines bottom-up mechanisms (independent of task) with

top-down mechanisms (task dependent). While a number of models are available for bottom-

up attention, on both still [17] and dynamic [31] images, top-down attention is far more

difficult to model owing to complexities in modeling the task. Also, in our context, linguistic

commentaries were collected without providing any specific task, hence the role of top-down

attention is limited, and we use a dynamic bottom-up model.

In our work, we have an advantage over traditional dynamic attention models

since the objects of attention are already segmented and available as tracked sequences of

segmented foreground blobs. These are the scene regions that are competing for attention.

Unlike many computational models that consider saliency of pixels in the data, we are in

a position to evaluate the saliency of the scene, objects i.e. segmented foreground region

directly. Our attention model is based on the findings that a) Objects with higher speed

are likely to be more salient, and b) Objects with a larger image size are more likely to

be attended [17]. We ignore some other factors such as colour and texture, which are

more relevant in still images; for image sequences, motion and size are more significant.

In addition to the saliency map based on the above factors, we also need to construct a

confidence map, based on how recently information was collected about the object. Objects

which have not been attended for some time tend to decay in their confidence, and thus

become more likely to be attended to. These aspects are combined in an overall saliency

measure. For object blob j, this is given as

Sj = (1− e−k∆t)(w1Aj + w2vj)

where Aj is the image area (in pixels) and vj is image speed (in pixels per frame) of the

object j. ∆t is the time elapsed since the object was last updated. Larger delays result in

lower confidence and higher saliency, and the weights w1 and w2 reflect relative importance

of object size and object image velocity. We set k,w1 and w2 all to 1.

2.6 Linguistic segmentation

Linguistic segmentation refers to breaking down the utterances into smaller lin-

guistic units. However, what the smaller linguistic unit of break-up should be is a debatable

issue. It is sometimes assumed that words can be segmented from the speech input based

on prosody, pauses or other non-semantic cues alone. In such case, it is assumed that
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Figure 2.10: FSM: To identify syllabic units

word-boundaries are known before learning words from other non-semantic cues. So, an

utterance can be segmented into words based on the knowledge of word-boundaries. On the

other hand, it is possible that knowledge of semantic classes can also help in this segmen-

tation. In this case, the knowledge of word boundaries is not assumed to be known before

word-learning. Moreover, the linguistic labels learnt for semantic classes without assuming

word boundaries themselves can lead to identification of word-boundaries.

To put some light on the two approaches, we allow segmentation of utterances in

two types of linguistic units. In one case, we assume that the word-boundaries are known

before word-learning based on prosodic and other non-semantic cues and make use of word-

boundaries available in the transcribed speech to segment utterances into words. In the

other case, we merge the words in the transcribed speech across word-boundaries. Then we

find the syllables in the continuous utterance and break the utterance into a sequence of

syllables. As we are dealing with transcribed speech, we approximate the notion of syllable

to the vowel terminated string of characters. We use a simple FSM to identify a unit as a

syllable. Figure 2.10 shows the FSM used. In Figure 2.10, Un denotes the set of all Unicode

characters, C denotes set of consonants, V denotes the set of vowels, M denotes the set of

mAtrAs accompanying consonants in Hindi whereas h denotes halant. The state F ∗ is a

failing state reaching which we declare the whole sequence of Unicode characters except the

last one as a syllable and start searching for next syllable with the last character observed.

2.7 Associating language labels

Before the process of label association, what we have is the visual categories dis-

covered earlier through visual analysis, the most salient agents per frame according to visual

saliency predicted by attention model and the time-stamped sentences in the narration bro-

ken down into smaller linguistic units. From this input, we need to align the most salient

objects in the video with co-occurrent linguistic units in the narratives. A mathematical

model for label association task in described in chapter 4. It tries to associate the most
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salient objects in the video with co-occurrent linguistic units uttered by number of speakers.

Based on some association measure such as conditional probability, mutual information, we

rank the labels in order of their relevance for each of the visual categories learnt.
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Chapter 3

Bimodal Dataset for Vision and

Language

In order to learn language with the help of visual context, it is important to have

a linguistic description aligned with the visual context. Such a visuo-linguistic corpus is at

the core of the language learning framework described in chapter 2. We construct a bimodal

visuo-linguistic corpus, with minimal restrictions on both the visual or linguistic domains.

We collected human narrations in Hindi from 44 adults on IITKGTV2 Traffic Video. The

collected narrations are then aligned with the video frames. The aligned bimodal data-

set is then used for the purpose of further experimentation. We have made this data-set

publicly available for the future research on Vision and language [10]. The details of the

methodology used to construct this data-set and the various properties of the data-set are

explained in this chapter.

3.1 Visual scene and linguistic narrations

For the purpose of constructing a visuo-linguistic corpus, we use IITKGTV2 traffic

[10] video shot from a static camera . The scene is a natural one as it is shot in the real traffic

environment. Also, the scene consists of complex interactions of multiple agents present in

the video. Typically, the scene consists of different kinds of vehicles, people, road and its

premises. Typical interactions include the crossing and turning of vehicles, overtaking of a

vehicle by the another, person riding or getting off a vehicle. The presence of multiple objects

(sometimes as many as 20) in the scene simultaneously provides possibility of ambiguous

reference. The scene is full of occlusions and no manual analysis or helpful camera angle

is available to resolve these occlusions. The visual scene is recorded first as it forms the

basis for linguistic narrative. The recorded video has a length of 4 minutes and 32 seconds

(around 4.5 minutes). The video is then sampled at the rate of 24 frames per second to get

an image sequence of 6538 frames. This image sequence is used for the visual processing
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described in section 2.3. The sample frames of the video are shown Figure 3.1.

Figure 3.1: Sample frames from the video .Frame no.s 1200, 1255, 1300, 1350.

For the purpose of collecting narrations, we show the visual traffic scene to number

of people and ask them to narrate the scene in Hindi. Hindi is morphologically rich and

highly inflected language. It distinguishes from most of the western languages by using

subject-object-verb (sov) form. It is characterized by relatively free word order forming a

loose and flexible syntax. Again, there are many dialects of Hindi that are spoken in various

regions of India. Hindi-Urdu dialects vary in a continuum across most of North India and

West Pakistan. These dialects differ in terms of the way Hindi is spoken, or the way certain

words and constructions are used. Although the mother tongue of the respondents was in

various dialects, the language spoken here was generally in the dominant lect, which is often

known as Standard Hindi. Finally, in the country like India where a large number of people

speak in Hindi, it is important to build systems that can understand and respond to users

in Hindi. For all these reasons, we prefer Hindi as a language of our experimentation.

3.2 Collecting narrations

We collected human narrations in three phases. In the first phase, we collected

narrations from 11 subjects without constraining the subjects about what they should talk.

We call this phase as “free unconstrained narratives”. In the second phase, we collected

narrations from 20 subjects by asking them to focus on the objects and activities in the video

with some initial feedback. We call this phase as “Feedback-based narratives”. Finally, in

the third phase, we collected narrations from 13 subjects by asking them to describe the

scene as if they are describing it to a 2-years’ baby. We call this phase as “child directed

narratives”. Each of these phases is described next in detail. In all three phases, the subjects

were allowed to talk full sentences.

3.2.1 Free unconstrained narratives

In this phase, we showed the subject first 40 sec of the video in order to familiarize

him with some context. Immediately after this, the subject was shown the entire video for

around 4.5 minute and was asked to describe the scene in his own words in Hindi. The
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specific instruction given was:

“ This is a traffic video. This video will be shown to you twice. First time, you
will be shown this video for around 40 sec when you have to just watch it. Next
time when this video will be shown to you for around 4.5 minutes, you have to
describe the scene in your own words in Hindi. ”

After giving this instruction, we showed the first 40 sec of the video in order to provide

the subjects with some context. Then we showed the subject full video and recorded his

speech.

As the language was not restricted in any way, this data-set is bit noisy in that

the people often described peripheral things not very much related to scene. As some of

people could figure out that this road is the one outside IITK, they often talked “yah IITK

ke bAhar ke grAnT-Tra.nk roD kA dRushya hai” (This is the scene of Grant-trunk road

outside IITK). One of the subject also said “yah grAnT Tra.nk roD sher shAh surI dvArA

banAyI gayI thI” (This Grant-Trunk road was built by Sher-Shah-Suri).

In this phase, we collected narrations from 11 different subjects. Hereafter, the

data collected in this phase is referred to as ADULT-1.

3.2.2 Feedback-based narratives

In this phase, we continued to show the subject first 40 sec of the video in order to

familiarize the subject with some context. Immediately after this, the subject was shown

the first 40 sec again and asked to comment on the people, vehicles and their activities in

the video. Based on this sample narration, we gave the subject some suggestions. In the

third step, we showed the entire video and asked subject to describe the people,vehicles and

their activities in own words in Hindi. The specific instruction given was:

“ This is a traffic video. You will be shown this video first for 40 sec and you
have to just watch it. Next time you will be shown the same 40 sec of the
video. This time you have to describe the objects like people, vehicles and what
they are doing in the video in Hindi. Then you may be given some feedback on
your narration. Finally, you will be shown the full video of around 4.5 minutes.
Considering the suggestions given if any, you have to describe the objects and
what they are doing in Hindi.”

• Now you are going to watch the video for next 40 sec.
(Presented the first 40 sec of the video).
• Now you will be shown the video for next 40 sec and you have to describe

the people, vehicles and what they are doing along with the video in your
own words in Hindi.
(Presented the first 40 sec of the video again and gave some suggestions after
listening the narration).
• Now you are going to watch the full video for next 4.5 minutes. Considering

the suggestions given, you have to describe people, vehicles and what they
are doing along with the video in your own words in Hindi.
(Presented the full video and recorded the narration).
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Figure 3.2: Picture of Baby: Used during Child directed narratives

After giving first instruction, we showed first 40 sec of the video. In the second

step, we showed first 40 sec of the video again and asked the subject to comment. Based

on this sample commentary, sometimes we provided some feedback in order to make the

narrator to focus on events in the video rather than the broader context. Suggestions given

may be “Talk about what is being shown in the scene and not about the notion of traffic

in your mind.”, “Don’t talk about the dog, the bench, tea-shop etc. Instead focus on what

is happening on the road”. In the third step, we showed the full video, and recorded the

narration.

In this phase, we collected narrations from 20 different subjects. Hereafter, the

data collected in this phase is referred to as ADULT-2. These 20 narrations were collected

in two different sub-phases. We refer to the two sub-datasets as ADULT-2-1 and ADULT-

2-2. ADULT-2-1 consisted of 9 narrations whereas remaining 11 narrations were part of

ADULT-2-2. However, instructions given in both these sub-phases were the same.

3.2.3 Child directed narratives

In this phase, we continued with the method of Feedback-based narratives. How-

ever, we asked the subjects to speak about the scene as if they were speaking to a 2-years’

baby. To make experiment a little realistic, we kept the picture shown in Figure 3.2 along-

side the screen so that narrator would feel as if a baby is watching the video. The specific

instruction given was:

“ This is a traffic video. You will be shown this video first for 40 sec and you
have to just watch it. Next time you will be shown the same 40 sec of the video.
This time you have to describe the objects like people, vehicles and what they
are doing in the video in Hindi as if you are describing it to a 2-years’ baby who
is watching this video. Then you may be given some feedback on your narration.
Finally, you will be shown the full video of around 4.5 minutes. Considering the
suggestions given if any, you have to describe the objects and what they are doing
in Hindi as if you are describing it to a 2-years’ baby who is watching this video.”

• Now you are going to watch the video for next 40 sec.
(Presented the first 40 sec of the video).
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• Now you will be shown the video for next 40 sec and you have to describe the
people, vehicles and what they are doing along with the video in your own
words in Hindi as if you are describing it to a 2-years’ baby who is watching
this video.
(Presented the first 40 sec of the video again and gave some suggestions after
listening the narration).

• Now you are going to watch the full video for next 4.5 minutes. Considering
the suggestions given, you have to describe people, vehicles and what they
are doing along with the video in your own words in Hindi as if you are
describing it to a 2-years’ baby who is watching this video.
(Presented the full video and recorded the narration).

After giving the first instruction, we showed first 40 sec of the video. In the second step,

we showed first 40 sec of the video again and asked the subject to comment. After listening

to his commentary, we gave some suggestions in order to reduce the noise. In addition

to the suggestions given in Feedback-based narratives, the suggestions given in this phase

prominently included a suggestion like “Describe the scene as if you are describing it to a

baby”. In the third step, we showed the full video, and recorded the narration.

In this phase, we collected narrations from 13 different subjects. Hereafter, the

data collected in this phase is referred to as CDS.

3.3 Post-processing of narrations

After collecting these narrations, we transcribed them into text using “Kamraj”

Unicode Hindi converter [15]. While transcribing the utterances, every two consecutive

words were separated by space to maintain word boundary. The post-positions were gen-

erally treated as separate words and hence were separated from the content words they

were attached to. However, the morphological variations were preserved and transcribed

as it is without separating them from their roots. The compound words like sAikalwAlA

and moTarsAikal were written together. The narrations were transcribed as it is without

correcting them for any grammatical errors. The care was taken to follow uniform writing

style to avoid the transliteration variations. The transcribed narrations were time-stamped

along with the video at sentence boundaries. We also broke the narration at pauses longer

than 1.5 sec. For every segment of the narration, we note down the starting and ending

frames of the video.The reason for choosing sentence boundaries for segmentation is that

the sentence can be regarded as the unit of describing an event in the scene. The transcrip-

tion and time-stamping of narratives were done manually. For recording and time-stamping

the narration, we make use of “Microsoft Movie Maker”. After, this post-processing of the

narrations, finally we construct a data-set which consists of subject-ID identifying the sub-

ject, start-frame, end-frame and the narration of the specified subject during the period

specified by start-frame and end-frame. Table 3.1 shows the snapshot of the data-set. The
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Speaker Start End Utterance

ID Frame Frame

ADULT1-7 1216 1375 aur ek dIlaks bas gayI abhI bAe.N se dAe.N or

ADULT1-3 1201 1392 is saD.ak pe Traifik pulis kI vyavasthA bhI

dikhAi nahi paDatI

ADULT1-10 1208 1228 bAikwAle log hai.n

ADULT2-2 1254 1308 kuch moTarsAikal aur jAte aA rahI hai.n

ADULT2-14 1225 1288 aur usake pIche pIche moTarsAikalwAle aAe hai.n

ADULT2-15 1217 1275 moTarsAikal pe sawAr ek yAtrI

CDS-3 1201 1277 yah ek moTarsAikal

CDS-6 1210 1288 aur yah Tempo kI taraha hakate hai.n

CDS-11 1220 1274 moTarsAikal sTArT huI calanA

Table 3.1: Snapshot of visuo-linguistic corpus: Transcribed descriptions with time-
stamps

descriptions shown belong to the portion of the video shown in Figure 3.1.

Figure 3.3: Co-occurring sentences and salient objects in a given time-interval

Based on the time-stamps, sentences from the narrations are then aligned with

the most salient objects in the scene as predicted by attention model. Figure 3.3 shows the

alignment of salient objects and some of the sentences in the narration. Figure 3.1 shows

the sample frames of the visual scene during the timeline shown in Figure 3.3. Table 3.2

shows the sentences S1, S2 and S3 in Figure 3.3 with their gloss. Sentences indicated with

* are grammatically incorrect, but are given as uttered.

3.4 Subject Information and Dataset properties

We collected the information from subjects regarding their age, sex, first language,

second language, place where they spent first few years of their lives, first language of their

parents etc. This information is summarized in Table 3.3 where S represents the number

of subjects, Nh1 the number of subjects with Hindi as their first language, Nh2 the number

of subjects with Hindi as their second language, Nh′ the number of subjects with Hindi as
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Sentence Interval

S1 ek bAik gayI abhI 1158 -1224

One bike go+past now.

A bike went now.

S2 sAiD me.n sAikal rikshA pe ek ADamI caDhA 1216-1382

Side [on] one cycle rickshaw [on] one man climb+past

A man climbed on a cycle rickshaw on the side (of the scene).

S3 * sAikal bAik Aye jA rahe hai.N. 1239 -1354

Bicycles bikes come+pp go+pp are.

Bicycles, bikes are coming and going.

Table 3.2: Sentences uttered by different speakers and their time-lines

Dataset S Nh1 Nh2 Nh′ Nm Nf

ADULT-1 11 8 3 0 8 3

ADULT-2 20 17 1 2 19 1

CDS 13 12 1 0 12 1

All 44 37 5 2 39 5

Table 3.3: Subject Information: S: Total # of speakers, Nh1: # of speakers with Hindi
as first language, Nh2: # of speakers with Hindi as second language, Nh′ : # of speakers
with first and second languages other than Hindi, Nm: # of male speakers, Nh1: # of
female speakers

neither the first language nor second language, Nm the number of male subjects whereas

Nf represent the number of female subjects. All 44 subjects were college students (39 male;

5 females) with their ages between 18-27 years. As can be seen from Table 3.3, 37 out

of 44 subjects mentioned their first language as Hindi. The subjects were from various

areas of the country like Uttar Pradesh, Delhi, Rajsthan, Punjab, West Bengal etc. and

hence were speaking various dialects of Hindi such as Avadhi, Bhojapuri, Bundelkhandi

etc. We also analyzed the datasets collected for different statistical properties which are

summarized in Table 3.4. In Table 3.4, S represents the number of subjects in the data-set,

As the average number of sentences spoken, Ap the average number of pauses taken, Ast

the average sentence length in time (s), Ast the average pause length in time (s), Asw the

average sentence length in words and W the total number of words in the data-set. As can

be seen in the Table 3.4, ADULT-1 data-set consists of small number of longer sentences

with small number of longer pauses. On the other hand, in CDS there are large number of

sentences of smaller length. Also, the pause length is shorter. Analyzing the descriptions
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Dataset S As Ap Ast Apt Asw W

ADULT-1 11 51 11 4.05 6.02 8 4599

ADULT-2 20 77 16 2.9 3.66 7 10799

CDS 13 83 17 2.79 3.06 6 6991

All 44 72 15 3.15 4.09 7 22389

Table 3.4: Dataset Statistics: S: Total # of speakers, As: Average # of sentences, Ap:
Average # of pauses, Ast: Average sentence length in seconds, Ast: Average pause length
in seconds, Asw: Average sentence length in words, W : Total # of words

mentioned in the narrations, we find that the lexical choice and linguistic constructions

varied widely across the subjects. Thus the same event may be described as “gADI dAe.N

se bAe.N or gayI” (car went from right to left), “blaik kalar kI gADI gayI” (black car went)

“ek sa.NTro gayI”(one Santro [car-make] went) etc. More importantly, perspectives varied

tremendously; thus, for the same time interval in the video, subjects said: “ek kAr aAyI”

(One car came), “vah saD.ak krOs kar rahA hai” (He is crossing the road) etc. Also, the

commentaries include considerable peripheral descriptions: “yaha jI TI roD sher shAh surI

dvArA banayI gayI thI (this GT raod was built by Sher Shah Suri), “usane dekhA bhI nahI

be.nc kI taraf” (He didn’t even look at the bench) etc. Even when we asked the narrators

to focus on the people, vehicles and their activities during instructions, some of narrators

described considerable peripheral descriptions: “bIc me.n koI DivAiDar nahI.n hai” (There

is no divider in the middle), “pArki.ng ke liE yahA.N par kuch hai nahI.n” (There is nothing

for parking here) etc.

We also analyze the frequency of different words relevant to the video in different

datasets. Table 3.5 lists some of the important words and their frequencies in each of the

data-set. As can be seen, the word Trak is used heavily as compared to its synonymous word

lauri. In fact, the word lauri is used only in data-set adult-2-1. Similarly, bAik is more

used as compared to moTarsAikal and skUTar in general. adult-1 uses bAik more often

than moTarsAikal whereas in data-set adult-2-2 both are used equally. The terms kAr

and gADI are also present in good proportion. In adult-2-2, the use of kAr is much higher

than the use of gADI whereas CDS contains them in almost equal proportion. Most of the

occurrences of bAe.N se dAe.N are present in adult-2-1 data-set only. dAe.N kI taraf is

present only in adult-2-1. So, adult-2-1 data-set is rich in directional descriptions.
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adult-1 Adult-2-1 ADULT-2-2 Adult-2 CDS ALL

OTo 13 43 29 72 89 174

Tempo 53 48 107 155 60 268

sAikal 65 91 181 272 155 492

bAik 33 53 65 118 65 216

moTarsAikal 5 23 65 88 42 135

skUTar 11 18 41 59 22 92

Trak 44 55 107 162 117 323

lauri 0 19 0 19 0 19

bas 24 26 45 71 52 147

aAdamI 22 50 76 126 66 214

aurat 2 8 6 14 7 23

sAikalwAlA 10 9 18 27 15 52

rikshAwAlA 0 5 10 15 8 23

bAikwAlA 0 2 3 5 11 16

moTarsAikalwAlA 1 2 8 10 1 12

kAr 18 24 76 100 57 175

gADI 18 26 17 43 42 103

vain 6 17 14 31 13 50

jIp 5 13 23 36 15 56

bAe.N 19 30 35 65 17 101

dAe.N 19 48 29 77 10 106

bAe.N se dAe.N 3 15 9 24 0 27

dAe.N kI taraf 0 23 0 23 0 23

lefT 1 44 43 87 20 108

dAe.N se bAe.N 7 5 6 11 0 18

lefT kI taraf 0 8 0 8 0 8

mUD 2 7 14 21 17 40

geT kI taraf 8 6 4 10 0 18

krOs 21 47 45 92 57 170

Table 3.5: Word frequencies: Frequencies of some important words relevant to the video
in different datasets



31

Chapter 4

Learning language labels

This chapter describes the label association algorithm and various experiments

we performed with respect to label association for proto-concepts discovered in chapter 2.

We experiment with various kinds of linguistic units, different association measures and

different datasets. Typically, we assume the linguistic units to be contiguous (k-grams) at

word and syllabic-level. We also experiment with units of different lengths combined to

form phrases at word and syllabic level. We propose a mechanism to learn the appropriate

units of correct size based on fragment analysis and unit-independence conjecture. We

confirm the stability of learnt labels by analyzing the associations incrementally to assess

the confidence in terms of consistent dominance. We analyze the behaviour of different

association measures for label association task. We compare results on different datasets

mentioned in chapter 3. Different configurations of label learning process are described

in section 4.1. The subsequent sections describe the results of various experiments we

performed based on the different configurations.

4.1 Label Association

Given the visual categories discovered earlier, the salient agents in the scene and

the time-stamped narrations , we try to associate the language labels in the narratives with

the co-occurrent salient objects in the scene. The label having maximum association with

a given object category is taken as the label for the category.

Next, we define the mathematical model of label-association task:

Let, C be the set of concepts ci for i = 1, 2, ...., |C|. Let, A be the set of agents aj

for j = 1, 2, ....., |A|. Let, S be the set of speakers s. With each agent aj ∈ A, there is a

concept associated to which it belongs. Let, C(aj) denote the concept associated with agent

aj . With each speaker s ∈ S, there is a set of utterances associated denoted by Us. With

each utterance u ∈ Us, there is a time-interval associated. Let ts(u) and te(u) denote the

start and end time of utterance u. Also, with each utterance u, there is a list of linguistic



32

units associated. Let, L(u) = {li|i = 1, 2, ...., u}.
We say a concept ci is attended at time t, if ∃a ∈ A such that C(a) = ci and a

is attended at time t. We say that a linguistic unit l is uttered by a speaker s at time t if

∃u ∈ Us such that l ∈ L(u) and ts(u) < t < te(u).

We define following probabilities.

Attention probability of the concept c for the speaker s at time t

P (c|s, t) =

 1 if c is attended by speaker s at time t

0 otherwise

A continuum probability could have been used for attention, but cognitively attention is

more of “winner-take-all” problem. Hence, we consider the attention probability to be

binary.

Utterance probability of a linguistic unit l for the speaker s at time t

P (l|s, t) =

 1 if l is uttered by s at time t

0 otherwise

We define the Joint probability of a label l and an object category c as

J(l, c) =
1

T ∗ |S|
∗

T∑
t=1

∑
s∈S

P (c|s, t) ∗ P (l|s, t)

Similarly, we define the concept probability of a concept c as

P (c) =
1

T ∗ |S|
∗

T∑
t=1

∑
s∈S

P (c|s, t)

The label probability of a label l is given as

P (l) =
f(l)∑
l f(l)

where f(l) is the frequency (number of occurrences) of label l in the narrative corpus.

Initially, we assume that all speakers attend to those agents which are visually the

most salient. The visual saliency is predicted by the attention model. So, the attention

probability does not depend on the speaker. Therefore, simplifying the notations,

P (c|s, t) = P (c|t) =

 1 if c is visually salient at time t

0 otherwise

With this assumption, we can rewrite the joint probability as

J(l, c) =
1
T
∗

T∑
t=1

P (c|t) ∗ P (l|t)

where

P (l|t) =
1
|S|

∑
s∈S

P (l|s, t)
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is the fraction of number of speakers uttering label l at time t

Using joint probabilities J(l, c), concept probabilities P (c) and label probabilities

P (l), a suitable association measure M(l, c) can be defined.

As can be seen, there are three main issues in the framework that need to be

addressed : 1. What should be the linguistic unit of association? 2. What should be

the association measure? 3. Which of the linguistic units should be associated? Besides

these main issues there are some other issues from modeling point of view such as minimal

supervision involved in merging the object clusters, usefulness and necessity of attention

model used. Another issue is to decide when we can say that a label is learnt for the partic-

ular proto-concept. This section describes the various linguistic units, various association

measures and various strategies we experimented with for associating labels with visual

categories.

4.1.1 What should be the linguistic unit of association?

In most of the attempts to learn labels for the semantic categories, the basic unit

of association is a “word”. However, this assumes that the knowledge of word-segmentation

is known before the word is learnt. The obvious question is how we can know the word-

boundary when we don’t know the word itself. Though there are evidences that the infants

are sensitive to the acoustic properties and can identify the word-boundaries from non-

semantic cues[8], it is not very clear whether the word-boundaries are known before learning

the words or not. In fact, the knowledge of semantic categories may help in identifying word

boundaries during the process of word-learning. To address these issues, we experiment

mainly with two different kinds of linguistic units: Word-level unit and Poly-syllabic unit.

In word-level association, we assume that the word-boundaries are somehow known and

we treat word k-grams as the basic unit of association. In poly-syllabic unit, we assume

no word-boundaries and merge all the words in an utterance across word-boundaries. We

approximate the notion of a syllable to vowel-terminated string of characters as we are

dealing with transcribed text and not with the speech directly. We find syllabic k-grams in

the continuous utterance and associate these with the visual categories discovered.

Also, associating a single word with the semantic categories in some sense assumes

that the semantic category can be described with the single word. In real world, semantic

category may have a phrasal description. The size of the phrase is also likely to vary

from one semantic category to the other. So, we need to allow a linguistic unit to vary

in size. In both word and syllabic-level units, we further distinguish between two types of

units: Fixed-length units and Variable length units. In fixed length units, we experiment

with fixed value of k, whereas in variable length units, we allow linguistic units to vary

in length and combine all fixed-length units for different values of length k. We call the
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word-level units with variable length as phrases and syllabic-level units with variable length

as syllabic-phrases.

The setting where we use word as basic unit of association is denoted by W+

whereas the setting where we use poly-syllabic unit as basic unit of association is denoted

as W−. The corresponding settings at phrase level are denoted respectively by Pw and Ps.

4.1.2 Association measures

To find the maximally associated linguistic unit for a given visual category, we need

an association measure which can rank the labels according to the degree of co-occurrence

between the label and the visual category. A typical association measure should have

following properties:

1. It should give high association values if the label and the visual category co-

occur frequently.

2. It should penalize the labels which co-occur frequently with many categories

whereas should prefer labels which co-occur frequently only with a particular category.

Various association measures we experimented with are described next.

Dominance Weighted Joint Probability

Dominance weighted joint probability is proposed by Guha and is described in

[13]. To capture the dominance of a label for a particular concept over all other concepts,

we look at the distribution of joint probability of a label over all concepts. The dominance

weighted joint probability favours the peaky distributions as compared to the flat ones.

To calculate Dominance weighted joint probability, we multiply the joint proba-

bility with a term called as dominance weight.

First, we normalize the joint probability as follows:

NJ(l, c) =
J(l, c)∑

c∈C J(l, c)

Then, we calculate, the dominance of label l for the concept c over all other

concepts c as follows:

w(l, c) =
1

|C| − 1

∑
x 6=c

(NJ(l, c)−NJ(l, x))

The dominance weights are then again normalized as

ws(l, c) =
w(l, c)−minx{w(l, x)}

maxx{w(l, x)} −minx{w(l, x)}

The normalization is required to avoid the negative values of weights. The weight

ws(l, c) captures the peakiness of the distribution of a label over set of concepts. The weight
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is high for the labels having peaky distribution, whereas it is low for the labels having flat

distribution.

Finally, the dominance weighted joint probability is given as

DJ(l, c) = ws(l, c) ∗ J(l, c)

The dominance weighted joint probability favours the labels whose associations are concen-

trated around a particular concept and penalizes the labels having equal association with

many concepts.

Conditional Probability

Conditional probability of a label l given a concept c is given as

P (l|c) = J(l, c)/P (c)

Conditional probability of a label given concept favours the concepts having rare

occurrence but having sufficient co-occurrence with the label. However, it doesn’t consider

the distribution of the joint probability of the label over all concepts and hence fails to

capture the second property of association measure.

Mutual Information

Mutual information of a label l and a concept c is given as

MI(l, c) = J(l, c) ∗ log(
J(l, c)

P (c) ∗ P (l)
)

Mutual information favours the rare concepts and rare labels having sufficient

degree of co-occurrence.

4.1.3 Which of the linguistic units should be associated?

Not every linguistic unit in the description may be good candidate to be appro-

priate labels of the visual categories. Some linguistic units can be very much specific to the

context whereas some other may be general. The linguistic units which are specific to the

visual context are more likely to be the labels for visual categories than the linguistic units

which are used in general such as articles, common verbs, auxiliary verbs etc. To evaluate

the effect of using context-specific knowledge, we make use of the word frequencies in Hindi

Unicode Corpus provided by IIT, Bombay ([6]) (general corpus). We typically experiment

with two types of settings:

1. We consider all linguistic units present in the narrative corpus for the association

task without using any context specific knowledge. We denote this setting by T−.

2. We remove the most frequent k linguistic units of general corpus assuming these

to be non-relevant to the current visual context. We denote this setting by T+.
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L M T G A V D

W DJ T+ G+ A+ obj ADULT-1

S CP T− G− A− traj ADULT-2

Pw MI CDS

Ps ALL

Table 4.1: Parameters of experimentation: Different configurations tested for validat-
ing language model. L=Linguistic Unit, M=Association Measure, T=Top-K removed or re-
tained, G=using ground-truth, A=Use of attention model, V=visual categories, D=Dataset

4.1.4 Using ground-truth and attention model

To assess if we can get rid of even the minimal supervision involved in the process

due to use of ground-truth in merging the object clusters, we experiment with two differ-

ent configurations. In one configuration, we use the seven ground-truth object categories

obtained using ground-truth information. This setting is denoted as G+. In the other con-

figuration, we use the thirty object clusters obtained directly through clustering of agents

without using ground-truth. This setting is denoted as G−.

To assess if we really require the attention model to learn the labels, we experiment

with again two different settings. In one setting denoted by A+, we use the attention model

described in section 2.5 to predict the visual saliency. In the other setting denoted by A−,

we don’t use attention model for predicting the visual saliency, but assume that each agent

present in the scene to be salient at that point of time.

Also, we try to learn labels for two kinds of visual categories viz. object categories

(obj) and motion categories (traj).

Table 4.1 lists the different settings for each parameter used for the purpose of

experimentation. Based on these parameters, we present the results of various experiments

performed in the following sections. Unless mentioned otherwise, the results presented

here mostly are according to conditional probability (CP), with top-k units removed (T+),

using ground-truth (G+) and using attention model (A+). Each of the table presenting

the results mentions the parametric configuration used. The parameter which is being

varied is marked with an (*). The appropriate terms discovered as top-most labels are

high-lightened as white text against dark black background. The relevant labels in top-3

(other than top-1) are high-lightened against gray background. Also, note that, the values

of conditional probability (CP) mentioned are multiplied by 100, whereas the values of

dominance weighted joint probability (DJ) and mutual information (MI) are multiplied by

1000. Also, while performing association, we have not considered first 1000 frames (around

first 40 sec) and last 500 frames (around 20 sec) of the video.
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( W, CP, T+, G+, A+, obj, ALL)

k = 1 k = 2 k = 3

Concept (c) l CP l CP l CP

Tempo 4.46 ek Trak 2.52 dAe.N se bAe.N 1.08

tempo kAr 4.33 ek Tempo 2.16 Ai Ai TI 0.87

pe 4.25 ek kAr 1.84 do OTo aur 0.79

sAikal 1.95 ek sAikal 1.14 sAikal jA rahI 0.32

bicycle moTarsAikal 0.79 aur sAikal 0.32 gais silinDar le 0.32

pe 0.63 lefTsAiD 0.32 silinDar le ke 0.32

pe 8.60 ek Tempo 4.39 sAmAn le ke 1.45

motorcycle bAik 7.12 ek bAik 3.27 aur ek bAik 1.44

Tempo 6.56 ek OTo 3.19 ek sAikal pe 1.03

Trak 17.29 ek Trak 10.67 se ek Trak 1.74

truck pe 3.24 tIn sAikalwAle 2.01 ek Trak nikalA 1.47

sAikal 2.84 Trak gayA 1.76 niilii ra.ng kI 1.25

saD.ak 7.50 krOs kar 3.93 krOs kar rahA 3.04

human krOs 6.68 ek Tempo 2.68 roD krOs kar 1.46

roD 6.54 roD krOs 2.52 lAl sharT me.n 1.16

kAr 7.76 ek kAr 4.89 bAe.N se dAe.N 1.41

car gADI 3.99 ek gADI 2.31 kAr jA rahI 1.12

nikalii 2.81 krOs kar 1.44 krOs kar rahA 1.11

Table 4.2: Word-level Associations: Top3 k-grams (k = 1 to 3) for six ground-truth
categories according to Conditional Probability with top1000 removed using all-in-one data-
set.Appropriate labels are discovered as top-1 unigrams for four of the categories and within
top-3 unigrams for one more category.

4.2 Experimenting with Linguistic Unit (L)

4.2.1 Word-level Association (W)

In Word level association, we assume that the word boundaries are known to the

system before learning the labels for object categories. So, we consider each k-gram of words

to be separate linguistic unit for the association. Table 4.2 shows the top-3 labels for each

of six ground-truth categories (G+) of objects (obj) for k = 1 to 3 separately according

to Conditional probability of a label l given a concept c. As most frequent words in the

general context are likely to be non-relevant to the current context, we remove 1000 most

frequent words (T+) from consideration during association.

As can be seen from Table 4.2, the appropriate labels Tempo (tempo), sAikal
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(bicycle), Trak (truck) and kAr (car) are discovered as top 1-grams for the categories tempo,

bicycle, truck and car respectively. A label like bAik also appears among top-3 1-grams

for the category motorcycle. A label like gADI (car) which is synonymous to kAr also

appears as the second most strongest label for the category car. Among 2-grams, phrases

like ek sAikal (a bicycle), ek Trak (a truck), ek kAr (a car) appear to have the strongest

association for the categories bicycle, truck and car. The phrases like Trak gayA (truck

went), krOs kar (crossing) describing the motions of the vehicles appear among top-3 2-

grams . The phrases like dAe.N se bAe.N (right to left), bAe.N se dAe.N (left to right)

appear among top-3 3-grams indicating the direction of motion.

4.2.2 Poly-syllabic Association (S)

In poly-syllabic association, we first merge the words across word-boundaries and

then try to associate poly-syllabic sequences (referred to as s-word to mean “syllabic word)

with the visual concepts. The notion of a syllable is explained in section 2.6. We find the

association of all possible poly-syllabic words of length k in a continuous utterance without

assuming the knowledge of word-boundaries. The poly-syllabic word having the strongest

association with a category c is considered to be the label for that category.

Table 4.3 shows the top3- k-grams for k = 2 to 4 according to conditional proba-

bility. Here also, we remove 100 most frequent k-grams at syllabic level from consideration.

The appropriate word Trak appears as the strongest label for the category truck among

2-grams at syllabic-level. Also, the labels like sAikal (bicycle) , ekTrak (a truck) and ekkAr

(a car) are discovered as the top 4-grams. As can be seen, the labels sAi, ik, kal at 2-gram

level and sAik, ikal at 3-gram level are nothing but the parts of appropriate label sAikal for

bicycle. The label kAr does not appear in top-3 labels at 2-gram level for car because it

is among the 100 most frequent 2-grams in general corpus and hence is not considered for

the association. The labels like jArahAhai (is going) appear among top-3 k-grams (k = 4)

indicating the motion of the vehicle. This shows that the results of label association hold

even in the absence of knowledge of word-segmentation. This in some sense is an indica-

tion of the fact that the knowledge of word-segmentation is not a prerequisite to the word

learning.

4.2.3 Phrase-level Association

By looking at Table 4.2, we can note that, for the category of truck, Trak, ek Trak

and se ek Trak appear as the top-most 2-gram, 3-gram and 4-gram of words respectively.

Also, from Table 4.3, we can note that ik, sAik and sAikal appear as the top-most 2-gram,

3-gram and 4-gram of syllables respectively for the category bicycle. Now the question

is which among these labels is a true label for the particular category. From the nature of
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( S, CP, T+, G+, A+, obj, ALL)

k = 2 k = 3 k = 4

Concept (c) l CP l CP l CP

ik 12.23 taraf 6.81 sAikal 5.79

tempo jAr 9.23 rek 6.45 aurek 5.22

kal 8.76 sAik 6.32 jArahAhai 4.52

ik 3.4 sAik 3.06 sAikal 2.9

bicycle sAi 3.06 ikal 2.9 eksAi 1.3

kal 2.91 eksA 1.3 ksAik 1.3

ik 19.09 sAik 10.54 sAikal 9.24

motorcycle jAr 13.43 ikal 9.24 rsAik 7.21

sAi 12.41 bAik 8.88 jArahAhai 6.02

Trak 19.23 ekTra 11.83 ekTrak 11.83

truck kTra 11.83 kTrak 11.83 sAikal 6.41

jAr 10.2 rahehai.n 8.61 jArahAhai 4.67

hIhai 14.37 saD.ak 7.66 sAikal 6.35

human jAr 10.86 aAdamI 7.62 jArahAhai 6.29

kal 10.78 taraf 7.26 ekaAd 5.2

kkA 5.32 ekkA 5.32 ekkAr 5.15

car jAr 4.51 kkAr 5.15 ekaur 2.63

hIhai 4.33 rahIhai 4.33 jArahIhai 2.46

Table 4.3: Poly-syllabic Associations: Top3 k-grams (k = 2 to 4) for six ground-truth
categories according to Conditional Probability with top100 k-grams removed using all-
in-one data-set. Appropriate labels appear to have strongest association for three object
categories.
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labels, it is clear that top-most labels at lower-level are generally substrings of the top-most

labels at higher level. Analyzing association strengths of the above units w.r.t appropriate

categories, one can say that most of the times ik and sAik co-occur with bicycle as a part

of larger unit sAikal (because association strengths of the three are very close). On the

other hand, as association strengths of Trak and ek Trak w.r.t truck differ largely, there

are many occasions where Trak co-occurs with truck independently and not as a part of

ek Trak.

Fragment analysis

We say that a k-gram lk is a fragment with respect to an n-gram ln (n > k) for

a category c if lk is contained in ln and M(ln,c)
M(lk,c) > τ where M(l, c) is the association-value

between label l and category c and 0 < τ < 1 is some threshold.

We call lk a fragment of ln because most of the occurrences of lk are also the

occurrences of ln where lk is a part of ln.

Unit Independence conjecture

A smaller k-gram lk is independent of a higher n-gram ln w.r.t. a concept c if lk

is not a fragment of ln. Only those smaller k-grams lk which are independent of all higher

n-grams ln w.r.t a concept c can be labels for c.

In other words, we can say that a smaller unit is independent of a larger unit

containing lower unit as its substring w.r.t to some concept if the association of the two

w.r.t that concept differ considerably. Otherwise, the lower unit is not independent one and

hence can not be a label for that concept.

In subsection 4.2.1 and subsection 4.2.2 association, we assumed the size of lin-

guistic unit to be fixed. However, the size of the label may vary from one category to the

another. In fact, according to Cognitive grammar proposed by [18], any sequence (of any

length) of phonemes can be a word provided that it is sufficiently usage-entrenched. To allow

the candidate labels for an object category to be of any size and to make it more meaningful

in the cognitive grammar view, we combine all k-grams for k = 1 to 4 together and associate

each such k-gram or phrase with the object categories. The association is similar to the

word-level and poly-syllabic association except for the fact that we identify fragments and

remove them from consideration focusing only on non-fragments or independent units.

Associating word phrases

Table 4.4 shows the top3 phrases according to conditional probability and mutual

information after removing 1000 most frequent words. Here we set τ = 0.9. The appropriate

labels for bicycle, truck and car appear as the topmost labels whereas bAik appears
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( Pw, CP / MI , T+, G+, A+, obj, ALL)

CP MI

Concept (c) l M(l, c) l M(l, c)

Tempo 4.46 kAr 7.41

tempo kAr 4.33 bAik 7.34

pe 4.25 Tempo 6.54

sAikal 1.95 sAikal 1.34

bicycle ek sAikal 1.14 ek sAikal 0.96

moTarsAikal 0.79 gais silinDar 0.53

pe 8.60 pe 12.88

motorcycle bAik 7.12 bAik 11.64

Tempo 6.56 skUTar 8.99

Trak 17.29 Trak 15.01

truck ek Trak 10.67 ek Trak 9.91

pe 3.24 tIn sAikalwAle 2.37

saD.ak 7.50 saD.ak 27.90

human krOs 6.68 krOs 20.76

roD 6.54 roD 18.19

kAr 7.76 kAr 9.30

car ek kAr 4.89 ek kAr 6.61

gADI 3.99 gADI 4.38

Table 4.4: Phrase-level Associations: Top3 word k-grams (k = 1 to 4 combined) for all-
in-one with top1000 removed. Four of the categories have appropriate terms as top-most
label according to CP.
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( Ps, CP / MI, T+, G+, A+, obj, ALL)

CP MI

Concept (c) l M(l, c) l M(l, c)

ik 12.23 ik 29.68

tempo jAr 9.23 jAr 21.35

kal 8.76 kal 19.70

sAikal 2.90 sAikal 2.81

bicycle jAr 1.62 eksAi 1.60

eksAi 1.30 ksAik 1.60

ik 19.09 ik 39.35

motorcycle D 15.08 D 28.61

jAr 13.43 Tar 26.42

Trak 19.23 Trak 22.55

truck ekTrak 11.83 ekTrak 14.70

jAr 10.20 jAr 9.42

hAhai 14.37 hAhai 62.35

human D 13.85 D 53.54

jAr 10.86 wAlA 46.14

ekkAr 5.15 ekkAr 9.38

car jAr 4.51 gADI 6.12

rahIhai 4.33 rahIhai 5.05

Table 4.5: Syllabic phrase level Association: Top3 k-grams combined for k = 1 to
k = 4 according to MI after removing top100 k-grams. Three of the object categories have
strongest association with appropriate terms

as the second label for motorcycle. The label Tempo also appears as the topmost label

for the category Tempo according to conditional probability. This result is similar to the

results of word-level association. However, using phrase-level association relieves the system

from unnecessary assumption of fixed-length label allowing variable length phrases to be

discovered as the labels for visual categories. The visual categories we are dealing with,

however, do not have a phrasal label to show the strength of this approach.

Syllabic phrase association

Table 4.5 shows the top3 Poly-syllabic phrases for different object categories with

top100 k-grams removed. Here, we set τ = 0.75 considering the larger number of frequent

combinations possible at syllabic-level. Appropriate labels sAikal, Trak and ekkAr appear

as the strongest labels for the categories bicycle, truck and car respectively. In addition
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( W, M*, T-, G+, A+, obj, ALL)

DJ CP MI

Concept (c) l M(l, c) l M(l, c) l M(l, c)

hai 1.11 hai 21.62 hai 21.50

tempo aur 0.90 aur 15.74 aur 17.04

jA 0.52 se 10.35 se 10.32

gais 0.03 ek 2.58 sAikal 0.86

bicycle sAikal 0.02 hai 1.96 gais 0.45

uspar 0.02 sAikal 1.95 silinDar 0.32

ek 1.40 ek 36.83 ek 31.58

motorcycle hai 1.22 hai 30.37 hai 28.32

skUTar 0.76 aur 15.80 jA 14.90

Trak 0.41 ek 30.99 ek 12.21

truck ek 0.25 hai 21.93 Trak 12.11

Ta.Nkar 0.21 Trak 17.29 hai 8.52

hai 5.84 ek 34.11 hai 62.17

human ek 5.39 hai 31.32 ek 58.05

rahA 3.61 aur 15.64 rahA 33.77

kAr 0.40 ek 18.20 kAr 7.43

car camcamAtI 0.23 hai 12.58 ek 6.29

mahAshay 0.22 kAr 7.76 hai 4.12

Table 4.6: Word-level Associations for different probability measures: Top3 1-
grams according to Dominance weighted Joint Probability, Conditional probability and Mu-
tual Information measures without removing top1000 words. All three measures rank ap-
propriate labels within top3 for three object categories. DJ and MI succeed in ranking
appropriate labels as top-most labels for two of the categories whereas CP fails to do so.

to this, according to MI, gADI also appears as the second label for car. The label kAr

is not appearing for car as top100 bigrams contain it as a common frequent bigram and

hence gets removed from the consideration.

4.3 Comparing different association measures (M)

Table 4.6 and Table 4.7 show the top-3 labels for different association measures

with and without removing top1000 words. As can be seen, dominance weighted joint

probability (DJ) and mutual information (MI) have a tendency to favour rare co-occurrences

of labels. There is one event in the scene where a person is carrying a gas cylinder over

the bicycle. As these kinds of events which are surprising to the viewer are generally
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attended to, the labels like gais (gas), silinDar (cylinder) appear for bicycle among top-3

labels according to DJ and MI. The relevant labels sAikal (bicycle), Trak (truck)and kAr

(car)appear among top-3 labels according to all three probability measures respectively for

the categories bicycle, truck and car. In fact, MI ranks sAikal and kAr as the top-most

label. Conditional probability (CP), however, ranks labels ek (one) and hai (is) higher than

the relevant labels for these categories. Generally, the descriptions are often of the form

ek Trak jA rahA hai (a truck is going), ek kAr jA rahI hai (a car is going) for the events

where vehicles are going in the scene, these labels have high co-occurrence with many of

the concepts.

However, after removing top1000 words from consideration, we get rid of the words

like ek , hai as these are frequent in general corpus [6]. The most frequent words in the

general corpus can be assumed not to be so much relevant to the current context and hence

not considering them for the association is a valid assumption. Table 4.7 shows the top-3

1-gram for different probability measures. As can be seen, all of them rank the relevant

labels at the top for the categories truck and car. Though MI performs good even without

removing top1000 words compared to conditional probability, after removing top1000 words,

it fails to rank sAikal as the top-most label for bicycle. From the general observation we

find that DJ and MI are likely to favour rare co-occurrences. The similar behaviour is

observed in case of poly-syllabic associations though only word-level associations are shown

here. This is the reason why we prefer conditional probability with top1000 words removed

over mutual information.

4.4 Comparing results on different datasests (D)

Table 4.8 shows the top-3 1-grams for three different datasets according to Con-

ditional probability respectively. The appropriate labels for bicycle, truck and car are

among top-3 even for these individual datasets. That means results hold even for the smaller

datasets. This indicates that even a set of 10 narrations is sufficient to learn the labels for

visual categories.

The reason why a relevant label doesn’t appear for tempo in case of ADULT-1

data-set can be inferred from the analysis of attention model (section 4.7). As can be seen

from Figure 4.6, the attention precision is very low for tempo in case of ADULT-1.

4.5 From Minimal supervision to totally unsupervised learn-

ing

So far we made use of ground-truth information to find coherent object categories.

Using ground-truth (Human judgment), we grouped 30 object clusters obtained during un-
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( W, M*, T+, G+, A+, obj, ALL)

DJ CP MI

Concept (c) l M(l, c) l M(l, c) l M(l, c)

bAik 0.42 Tempo 4.46 mArutI 2.24

tempo kAr 0.40 kAr 4.33 bAik 1.92

piilii 0.36 pe 4.25 kAr 1.72

sAikal 0.02 sAikal 1.95 silinDar 0.16

bicycle uspar 0.02 moTarsAikal 0.79 I.njin 0.14

I.njin 0.02 pe 0.63 Dilaks 0.14

skUTar 0.76 pe 8.60 bAik 4.65

motorcycle bAik 0.70 bAik 7.12 pe 4.43

a.ndar 0.54 Tempo 6.56 skUTar 4.30

Trak 0.41 Trak 17.29 Trak 6.22

truck Ta.Nkar 0.21 pe 3.24 peTrol 1.47

peTrol 0.16 sAikal 2.84 Ta.Nkar 1.13

saD.ak 2.74 saD.ak 7.50 saD.ak 12.51

human biThAke 2.12 krOs 6.68 krOs 7.06

rikshAwAlA 1.84 roD 6.54 biThAke 5.81

kAr 0.40 kAr 7.76 kAr 3.61

car camcamAtI 0.23 gADI 3.99 gADI 1.46

mahAshay 0.22 nikalii 2.81 nikalii 1.33

Table 4.7: Word-level Associations for different probability measures with
top1000 removed

Word-level Associations for different probability measures with top1000 re-

moved: Top3 1-grams according to Dominance weighted Joint Probability, Conditional

probability and Mutual Information measures after removing top1000 words. DJ and MI

are found to favour the rare co-occurrences whereas CP favours sufficiently co-occurring la-

bels. All three measures ranked appropriate labels at the top for four of the object categories
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( W, CP, T+, G+, A+, obj, D*)

ADULT-1 ADULT-2 CDS

Concept (c) l CP l CP l CP

pe 4.75 Trak 6.13 kAr 5.23

tempo nikalA 4.07 kAr 5.77 moTarsAikal 4.45

Trak 2.91 Tempo 5.71 OTo 4.37

sAikal 1.3 sAikal 3.02 rikshA 0.95

bicycle pe 1.3 moTarsAikal 1.38 sAikal 0.84

rikshA 0.65 sAiD 0.71 krOs 0.55

pe 8.18 Tempo 10.95 pe 10.52

motorcycle roD 7.31 bAik 8.66 OTo 9.29

bAik 5.84 pe 7.59 sAmAn 7.28

Trak 7.77 Trak 22.48 Trak 23.93

truck Tempo 3.76 pe 5.07 roD 3.18

sTrIT 3.45 sAiD 5.07 sAikal 3.13

saD.ak 8.07 Tempo 8.34 saD.ak 7.34

human krOs 8.03 pe 7.97 pe 6.46

rikshewAlA 5.66 roD 7.79 roD 6.44

nikalii 4.35 kAr 10.74 kAr 6.07

car kAr 4.35 pe 3.68 gADI 5.37

gADI 2.91 gADI 3.68 nikalii 3.05

Table 4.8: Word level Associations for different datasets: Top3 1-grams according
to conditional probability for ADULT-1, ADULT-2 and CDS datasets (After removing
top1000 words). Appropriate labels are discovered as top-most label for many of the object
categories even for individual datasets despite smaller data size.
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( W, CP / MI, T+, G-, A+, obj, ALL)

Cluster l CP l MI

(Concept)

kAr 4.98 bAik 2.4

C0 (T) bAik 4.96 moTarsAikal 2.13

Tempo 4.5 kAr 2.01

bAik 14.22 skUTar 4.57

C8 (M) skUTar 12.66 bAik 3.7

pe 12.53 pe 2.27

sAikalwAle 8.82 sAikal 3.64

C15 (B) sAikal 7.12 sAikalwAle 3.63

dAe.N 6.85 dAe.N 1.67

kAr 8.27 kAr 3.78

C19 (C) gADI 4.05 gADI 1.4

nikalii 2.85 nikalii 1.27

roD 6.82 roD 0.41

C22 (M) pe 2.68 khAlI 0.3

skUTar 1.92 laDkI 0.29

Tempo 18.33 Tempo 5.62

C25 (T) pe 11.75 mUD 3.05

sAikal 6.87 pe 2.75

Tempo 12.36 Tempo 3.02

C28 (B) sAikal 8.48 sAikalwAle 3.01

sAikalwAle 6.27 mUD 1.83

Trak 26.4 Trak 4.83

C29 (L) pe 8.02 sAmAn 1.51

sAmAn 5.95 Ore.nj 1.25

Table 4.9: Word-level Association without ground-truth: Top3 1-gram for some of
30 object clusters according to CP and MI (After removing top1000 words). Four of the
clusters could get appropriate terms as top-most labels whereas four other clusters have
appropriate terms within top-3 labels.
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supervised object discovery into 7 different categories. This step brings some supervision

into the model. To assess if we can get rid of this minimal supervision and make our ap-

proach totally unsupervised, we tried to associate labels with 30 clusters obtained directly

from clustering of objects without using ground-truth categories. Considering 30 clusters

separately reduces the coherency of the object categories as clusters that can be grouped to-

gether according to ground-truth are now considered as different object categories. Despite

this fact, we could learn appropriate labels for some of the 30 clusters.

Table 4.9 show the top3 words for selected clusters after removing top1000 words.

Only those clusters for which the appropriate labels could be found are shown in the results.

We are able to learn appropriate labels as shown in Table 4.9 for four of the clusters: bAik

for cluster C8 of bicycle, kAr for cluster C19 which is the only cluster of car, Tempo for

cluster C25 of tempo and Trak for cluster C29 which is one of the two clusters of truck.

Appropriate labels Tempo for C0, skUTar for C22, sAikal and sAikalwAle for C15 and C28

appear among top3 labels. In fact, according to MI, sAikal is the top-most label for the

cluster C15 whereas. Top3 labels for C8 also contain skUTar which is synonymous to top-

most label bAik. Similarly, gADI, a synonym for kAr also appears in top3 labels for cluster

C19. So, we are able to get relevant terms in top3 labels in case of 8 out of 30 clusters.

This shows that the use of ground-truth helps in learning appropriate labels by

providing required coherence for the object categories. However, labels can be learnt even in

the absence of such a ground-truth. If the object clusters of sufficiently high coherency can

be obtained with improved object models and better clustering techniques, then we may be

able to reproduce good results even without making use of ground-truth thus avoiding the

minimal supervision involved in the process.

4.6 Incremental Analysis

In subsection 4.2.1, subsection 4.2.2 and subsection 4.2.3, we found that the ap-

propriate labels for some of the object categories especially, bicycle, truck and car

appeared as the label with highest association. However, we can also note that these labels

were also found to have highest association with appropriate categories even when smaller

number of narrations were considered as shown in Table 4.8. So, the obvious question is

whether these labels are really acquired and if acquired then at which point of time during

the process. Word learning is not a one-stage-process but a continuous one. But can we

quantify the notion of word-learning so that we can answer when a word can be said to

be learnt? With this in mind, we tried to analyze the status of object-word associations

after every k- narrations for k = 1, 2, ..., n where n is the total number of narrations in the

data-set. This process of incremental analysis is equivalent to the incremental word learning

except that at every step k, the results are obtained considering all k narrations together
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and not by updating the associations of step k − 1 considering only kth narration.

4.6.1 Effect of increasing usage on Label learning

We experiment with ADULT-2 data-set having 20 narrations and consider the as-

sociation of various labels with various categories by considering k- narrations incrementally

for k = 1, 2, ..., 20.

Figure 4.1: Increasing usage: Effect on word-level associations. The words sAikal, Trak
and kAr appear to have stable associations with respect to categories bicycle, truck and
car whereas Tempo is not stable with respect to tempo

.

Figure 4.1 shows the effect of increasing usage on word-level association for some

words with respect to various object categories. As can be seen, the association strengths

(conditional probability on Y-axis) of appropriate labels sAikal, Trak and kAr respectively

for categories bicycle, truck and car are sufficiently high and consistent after first few

narrations. There is some competition observed for the category bicycle for two labels

moTarsAikal and sAikal for first few commentaries. In case of tempo, there is no single label

which has dominating association strength. In fact, many labels are competing throughout

the process and even after 20 narrations, there is no clear winner. So, we can say that

the labels sAikal, Trak and kAr have established themselves as the labels for the categories

bicycle, truck and car respectively. However, the label Trak, despite being the topmost

label, can not be said to have established itself as the label for tempo due to its instability.

Similar results are shown for poly-syllabic level association in Figure 4.2. The

labels sAikal and ekTrak are dominating other labels consistently respectively for bicycle

and truck. In case of car, however, the label ekkAr doesn’t seem to have a clear dominance

over other labels. So, perhaps it is not yet established as a label for the category.

Note that only few important labels are shown for various categories in Figure 4.1

and Figure 4.2. Also, “zero” value on Y-axis indicates that either the association value is
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Figure 4.2: Increasing usage: Effect on poly-syllabic associations. The labels sAikal,
ekTrak appear to have stable associations with respect to categories bicycle and truck
whereas ekkAr is not stable with respect to car

“zero” or the label is not among top 10 labels for that category at that point.

4.6.2 Random ordering and stability of label learning

In the above analysis, we used a fixed order of narrations. However, the stability

of the labels may get affected if we consider the narrations in some other order. To confirm

that stability of acquired labels is not incidental, we perform the same incremental analysis

over random orders of randomly selected set of narrations. For this matter, we choose 9

narrations of ADULT-2-1 data-set and 6 narrations from CDS data-set. We experiment

with three different random orderings of these 15 narrations. In random-order-1, we first

randomly order 9 narrations from ADULT-2-1 followed by randomly order 6 narrations from

CDS data-set. So, in this order, all narrations in ADULT-2-1 are preceding to the CDS

narrations. In random-order-2, we randomly ordered all 15 narrations so that narrations

from ADULT-2-1 and narrations from CDS may alternate. In random-order-3, we randomly

order narrations but with a condition that all CDS narrations should precede the ADULT-

2-1 narrations.

Figure 4.3 shows the effect of increasing usage for category truck over the set of

15 narrations for three different random orders and their average effect. Figure 4.4 shows the

effect of increasing usage averaged over the three random orders for the categories bicycle,

truck and car. As shown by these results, we can conclude that the labels sAikal, Trak

and kAr are indeed stable enough for the categories bicycle, truck and car respectively.

This also confirms the robust acquisition of these labels for the corresponding concepts.
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Figure 4.3: Random usage: Effect on word-level associations for truck. Trak is consis-
tently dominating other labels for truck after few initial narrations

Figure 4.4: Average Random usage: Average Effect on word-level associations
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Figure 4.5: Attention Precision and Recall: Precision and Recall Vs % of speakers.
Precision is good for truck and car even for large fraction of subjects indicating that
most of the subjects simultaneously attend to trucks and cars.

Figure 4.6: Attention Precision and Recall: Precision and Recall for various datasets

4.7 Evaluating the attention model (A)

We evaluate the attention model in two ways:

1. We try to evaluate how good the attention model conforms to human attention.

To evaluate this performance of attention model, we analyze the Attention-Precision and

Attention-Recall of various categories.

2. We try to evaluate the need of attention model in order to learn the language

labels. For this, we compare the results of label association with and without using the

attention model.

We call a concept c to be visually salient at time t if there exists an agent a

belonging to concept c such that a is predicted to be the most salient at time t by the

attention model. Also, we call a concept c to be linguistically salient at time t if there exist

more than x% of speakers who utter a label relevant to concept c at time t.

Attention-Precision PA(c) for concept c is defined as the ratio of number of frames

in which a concept c is both visually and linguistically salient to the number of frames in

which a concept c is visually salient. Also, Attention-Recall RA(c) for concept c is defined

as the ratio of number of frames in which a concept c is both visually and linguistically

salient to the number of frames in which a concept c is linguistically salient.

We plot the Attention-Precision and Attention-Recall of various object concepts

for various values of x, the percentage of speakers. Figure 4.5 shows the plots for Attention-

Precision and Attention-Recall over entire data-set of 44 narrations. As can be seen, for
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small values of x i.e. when a small % of speakers is considered for linguistic saliency, the

precision of attention model is quite good. In fact, high precision values (near to 1) for

truck ,car and human when x = 0 indicate that there is at least one speaker in the

set of speakers who talks about the object predicted to be visually most salient. However,

as x increases, precision values decrease sharply as having attention of speakers on the

same object becomes rare when number of speakers increase. So, attention model seems to

be a good proposition when number of speakers is small say 8-10. However, considerable

precision of truck and car even for x = 40 indicate that there are large number of speakers

who attend to the same object simultaneously and this object is visually most salient. So,

the prediction of attention model for truck and car seems to be good. The low values of

recall suggest that the attention model fails to predict the speaker’s attention many times.

Also, talking about the objects even after the object moves out of the scene may have

resulted into low recall by making denominator large. The reason why recall increases with

the increase in x (% of speakers) is that as x increases number of frames in which a concept is

linguistically salient decreases (many people talking about the same object simultaneously

becomes rare as number of people increases).

Also, Figure 4.6 shows the Attention-Precision and Attention-Recall values of ob-

ject categories for various datasets when x = 0.

To assess whether the use of attention model helps to learn the labels, we compare

the word-level associations with and without using the attention model. When we use

the attention model, the words in the narratives are associated only with the co-occurrent

objects which are most salient according to attention model. When experimenting without

attention model, we assume that every object in the visual scene to be equally salient and

associate words in the narratives with every co-occurrent object in the video.

Table 4.10 shows the top3 1-gram of words for each of object categories with and

without using the attention model. As can be seen, even without using attention model,

appropriate words sAikal, Trak and vain are discovered for the categories bicycle, truck

and car respectively. Moreover, for the category car, all top3 labels are relevant. Even

the results for the other categories are similar. Additionally, it can be noted that when

attention model is not used, the label Tempo has much stronger association with tempo

as compared to its competing labels pe and OTo. When the attention model was used

the association strengths of all top3 labels for tempo were close showing that none of

these labels was dominant. This shows that the use of attention model is not necessary for

learning the labels for visual categories. In fact low attention-recall values suggest that,

many times none of the objects in the scene are considered salient according to attention

model. This makes much of the linguistic information unusable. With no attention model

this information can be used to some extent.
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( W, CP, T+, G+, A*, obj, ALL)

With Attention (A+) Without Attention (A-)

Concept (c) l CP l CP

Tempo 4.46 Tempo 9.71

tempo kAr 4.33 pe 5.79

pe 4.25 OTo 5.51

sAikal 1.95 sAikal 1.63

bicycle moTarsAikal 0.79 moTarsAikal 0.69

pe 0.63 pe 0.59

pe 8.60 pe 7.17

motorcycle bAik 7.12 bAik 6.25

Tempo 6.56 roD 5.55

Trak 17.29 Trak 14.39

truck pe 3.24 sAikal 4.40

sAikal 2.84 pe 3.87

saD.ak 7.50 krOs 6.76

human krOs 6.68 roD 6.68

roD 6.54 saD.ak 6.32

kAr 7.76 vain 7.89

car gADI 3.99 kAr 7.73

nikalii 2.81 gADI 5.68

Table 4.10: Word-level Association with and without attention model: Top3 1-
gram for some of object categories with and without using attention model. Appropriate
labels are discovered for four of object categories irrespective of whether attention model is
used or not. This suggests that the attention model is not required for learning labels
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4.8 Learning labels for trajectories

We try to associate linguistic labels with seven trajectory clusters discovered. The

process of label association is the same as it was in case of object-label association. Ta-

ble 4.11 shows the top3 3-grams of words according to conditional probability for each of

the seven clusters of trajectory with and without removing top1000 words. As can be seen,

when we consider all 3-grams of words without removing top1000 words, most of the clus-

ters got associated with units like jA rahA hai, jA rahI hai, jA rahe hai.n (is/are going) as

all the trajectory clusters represent some kind of motion. A label like bAe.N se dAe.N (left

to right) also appears at third position for the cluster C3.

After removing top1000 words, we get rid of these commonly occurring descriptions

and bAe.N se dAe.N appears as the strongest label for cluster C3. Also, labels like roD krOs

kar, krOs kar rahA appear for cluster C5 indicating the trajectory cross (C). We can note

that cluster C5 contains many agents with ground-truth category cross (C) (Table 2.2).

A label like geT kI taraf (towards the Gate) appears as the top-most label for C7. Many

vehicles of the category turn (T) are those which turn towards down from the middle of

the video. As many narrators could predict the location where video was shot (though they

were not explicitly told) and knew that there is gate of an educational institute towards the

downside of the video scene, a description like geT kI taraf is relevant one. The descriptions

like aur ek bAik ( and a bike) and ek aur Tempo ( one more tempo) are due to the presence

of descriptions of objects which are inherently associated with trajectories.

Table 4.12 shows the top3 3-grams for seven trajectory clusters with top1000 words

removed using adult-2-1 data-set. As can be seen, the label bAe.N se dAe.N (left to

right) appears as the strongest label for clusters C2 and C3 whereas the label dAe.N kI

taraf appears among top3 for clusters C5 and C6. The label geT kI taraf appears as the

strongest label for cluster C7. The reason for better results with data-set adult-2-1 can

be inferred from Table 3.5. One can note that the labels bAe.N se dAe.N and dAe.N kI

taraf are profound in this data-set as compared to other datasets. Also, the reason for not

learning the appropriate label like dAe.N se bAe.N (right to left) or lefT kI taraf (towards

left) for trajectory categories C1 and C4 (representing RL) can be the low frequency of such

labels in the corpus. In other words, the event of “vehicles going from right to left” is not

commented as often as the event of “vehicle going from left to right”.

Though the overall results are not very exciting, the success in getting phrases

like jA rahA hai, bAe.N se dAe-N as top3 labels shows the ability of the system to learn

verb phrases and motion directives. With improved object tracking and better techniques

of trajectory and activity recognition, it should be possible to learn more verbs and motion

directives with their associated action schema.
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( W, CP, T*, G-, A+, traj, ALL)

Top 1000 retained (T-) Top 1000 removed (T+)

Concept (c) k = 3 CP k = 3 CP

jA rahA hai 2.84 aur ek bAik 0.79

C1 jA rahe hai.n 1.52 krOs kar rahA 0.78

jA rahI hai 1.39 geT kI taraf 0.61

jA rahA hai 3.96 krOs kar rahA 2.24

C2 kar rahA hai 2.76 lAl sharT me.n 1.17

jA rahI hai 2.31 roD krOs kar 0.92

jA rahA hai 6.49 bAe.N se dAe.N 2.12

C3 jA rahI hai 2.39 pUch rahA hai 1.47

bAe.N se dAe.N 2.12 pAr hotI hai 1.24

jA rahA hai 3.35 roD krOs kar 2.18

C4 jA rahI hai 3.15 krOs kar rahA 2.16

kar rahA hai 3.03 saD.ak krOs kar 0.84

jA rahA hai 3.92 roD krOs kar 2.43

C5 jA rahI hai 3.62 krOs kar rahA 2.38

kar rahA hai 2.95 geT kI taraf 1.54

jA rahe hai.n 3.19 ek aur Tempo 0.75

C6 jA rahI hai 2.44 blaik kalar kI 0.74

jA rahA hai 1.70 pe ek aAdamI 0.66

jA rahI hai 5.28 geT kI taraf 1.36

C7 jA rahA hai 4.47 TI ke geT 1.20

jA rahe hai.n 2.95 ke geT kI 1.12

Table 4.11: Word-level Association for trajectory clusters: Top3 3-gram for seven
clusters of trajectories with and without removing top1000 words. Appropriate phrases are
discovered for clusters C3 and C7 when top1000 words are removed.
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( W, CP, T+, G-, A+, obj, ADULT-2-1)

Trajectory k = 3 CP

purI khAlii hai 1.71

C1 saD.ak pUrI khAlii 1.71

kuch log bAiks 1.43

bAe.N se dAe.N 3.16

C2 lAl sharT me.n 2.73

sharT me.n lAl 2.73

bAe.N se dAe.N 4.44

C3 pUch rahA hai 3.96

ek rikshAwAlA sIn 2.77

roD krOs kar 4.62

C4 krOs kar rahA 4.47

krOs kar rahI 2.19

krOs kar rahA 4.67

C5 roD krOs kar 4.2

dAe.N kI taraf 3.28

kuch log roD 2.2

C6 dAe.N kI taraf 2.18

ek kAlii gADI 1.82

geT kI taraf 3.57

C7 Ai Ai TI 3.57

Ai TI ke 3.06

Table 4.12: Word-level Association for trajectories: Top3 3-gram for 7 clusters of
trajectories after removing top1000 words for adult-2-1 data-set. Clusters C2, C3 and
C7 have appropriate phrases as top-most labels.
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Figure 4.7: Incremental Analysis of Trajectory labels

4.8.1 Incremental analysis of trajectory labels

To confirm whether labels discovered as the strongest associations for the trajec-

tory categories are really learnt or not, we performed incremental analysis of the associations

of top few labels in similar way as we did it for confirming object label learning. Figure 4.7

shows the association strengths of top few labels for some trajectory categories. As can be

seen, the top labels discovered for the clusters, C2, C3, C7 are not stable enough and do not

show considerable difference as compared to the association strengths of competing labels.

So, though, these labels are found to have maximal association, these can not be said to be

acquired at this point as they do not show consistent dominance required.

However, given few more set of narrations which are rich in describing motion

of the vehicles, the appropriate labels may show stable and sufficiently high association

strength for the respective categories. One can ask the narrators to focus on directions

of motion and use the narrations thus obtained to learn the relevant motion directives as

discovered in the label association here.

4.9 Results Discussion

This chapter discussed the results of label association under varying assumptions

and parameters. The results show that the labels Tempo, sAikal, Trak and kAr are discovered

as the top-most label according to conditional probability measure for the object categories
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tempo, bicycle, truck and car respectively. Also, in case of poly-syllabic associations,

we show that the labels sAikal, ekTrak, ekkAr are discovered for bicycle, truck and car

respectively even without the knowledge of word boundaries. The results hold even when

we allow the variable length word-level and poly-syllabic phrases. In all these cases, we

removed most frequent units in general corpus assuming them to be non-relevant and less

likely to be labels of the visual categories. To assess the confidence of the discovered labels,

we analyze their associations with increasing exposure to the narratives. We find that the

labels sAikal, Trak and kAr at word-level are consistently dominating other labels showing

more confidence in acquisition whereas the label Tempo fails to do so resulting in low

confidence. Similarly, the incremental analysis of poly-syllabic associations shows that the

labels sAikal and ekTrak have higher confidence in terms of consistent dominance whereas

ekkAr has lower confidence. The reason for not learning the labels of other object categories

is partly due to the poor visual categories. It can be noted from Table 2.1, that the purity

of object category tempo is quite poor. The category motorcycle can be described by

many labels such as moTarsAikal, bAik, skUTar etc. Same is the case with the category

of human which is often described as aAdamI (man), aurat (woman) etc. Many times,

the humans riding on the vehicles are referred to as bAikwAlA (motorcyclist), sAikalwAlA

(bicyclist) etc. For these reasons the labels for tempo, motorcycle and human are not

learnt.

We also show that the phrases like bAe.N se dAe.N and geT kI taraf are discoverable

for motion categories left-to-right and turn respectively. However, these labels have

very low confidence in terms of consistent dominance. The reason why the label for the

motion category right-to-left is not discovered during label association is that the events

of vehicles going right to left are commented rarely as shown by the frequency of a relevant

term dAe.N se bAe.N in the corpus of narrations (Table 3.5). Also, the concepts of left-to-

right and right-to-left can be described in many ways in Hindi e.g. left-to-right

can be described as bAe.N se dAe.N, dAe.N kI taraf, dAe.N or, dAe.N taraf. Also, lefT

and rAiT are often used even by Hindi speakers for left and right instead of bAe.N and

dAe.N. Due to the multiple possible ways of expressing the motion and not a single phrase

being sufficiently used, the system could not gain enough confidence in discovered labels for

motion categories.

The evaluation of attention model also shows that the prediction of visual saliency

is good for the objects of truck and car. However, owing to the similar results obtained

for label associations with and without using attention model, we can say that such an

attention model may not be necessary for label learning.

The study of different association measures show that conditional probability

works reasonably well with most frequent linguistic units removed. Mutual information

though works sufficiently good even without removing most frequent linguistic units, its
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Variable Parameters Top-1 Top-3

(L, M, T, G, A, V, D)

L

(W, CP, T+, G+, A+, obj, ALL) 4/6 2/6

(S, CP, T+, G+, A+, obj, ALL) 3/6 0/6

(Pw, CP, T+, G+, A+, obj, ALL) 4/6 3/6

(Ps, CP, T+, G+, A+, obj, ALL) 3/6 1/6

M

(W, CP, T+, G+, A+, obj, ALL) 4/6 2/6

(W, DJ, T+, G+, A+, obj, ALL) 4/6 3/6

(W, MI, T+, G+, A+, obj, ALL) 3/6 3/6

T
(W, CP, T-, G+, A+, obj, ALL) 0/6 3/6

(W, CP, T+, G+, A+, obj, ALL) 4/6 2/6

G
(W, CP, T+, G+, A+, obj, ALL) 4/6 2/6

(W, CP, T+, G-, A+, obj, ALL) 4/30 5/30

A
(W, CP, T+, G+, A+, obj, ALL) 4/6 2/6

(W, CP, T+, G+, A-, obj, ALL) 4/6 2/6

V
(W, CP, T+, G+, A+, obj, ALL) 4/6 2/6

(W, CP, T+, G-, A+, traj, ADULT-2-1) 3/7 2/7

Table 4.13: Summary of Results: Number of categories for which the relevant terms
appear in top1 and top3 labels in different parametric settings

tendency to prefer rare co-occurrences makes it unreliable especially with smaller data sets.

Designing a good association measure which can take care of second property of association

measures mentioned may relieve from the need of removing most frequent units.

Table 4.13 summarizes the results of label association. The number of categories

for which relevant terms appear in top1 and in top3 are tabulated in Table 4.13 for each of

parametric setting.



61

Chapter 5

Conclusion and Future Work

In this work, we propose a semantics-first approach for word-learning based on (a)

Minimally supervised object discovery from a complex 3D-scene (b) Bottom-up attention

model and (c) multiple human narrations describing the scene. Given the object categories

discovered and visual saliency of these objects over the time, we demonstrate the ability

of our system to learn nouns like sAikal, Trak and kAr for the object categories bicycle,

truck and car respectively. We confirm the success in learning words by analyzing the

strength of associations with increasing number of narrations. We argue that the consistent

dominance of association strength of label with a visual category over the other labels is

desirable and can be taken as a confirmation of the word learning. The success in learn-

ing appropriate labels even without knowing word-boundaries shows that the knowledge of

word boundaries may not be a prerequisite for early word-learning. Moreover, word bound-

aries can be automatically discovered with the labels learnt for semantic categories. Also,

we propose a mechanism based on fragment analysis and unit independence conjecture to

automatically learn labels of appropriate size without assuming a fixed length for the labels.

We also learnt the motion concepts like left-to-right, right-to-left, turn

and cross by clustering the trajectories of the objects discovered. We attempted to learn

the labels for these motion concepts. Though labels like bAe.N se dAe.N, geT kI taraf appear

to have highest association strengths with appropriate concepts left-to-right and turn

respectively, these labels failed to show the consistent dominance required.

The success of the semantics-first approach in learning words as a simple label

association task shows the importance of preverbal conceptual development in simplifying

the process of word learning. Also, as we assume no language or domain specific knowledge,

the approach is likely to work independent of specific language and specific domain.

The word-meaning pairs thus obtained address many important questions in lan-

guage understanding, language generation and content-based multimedia retrieval. Using

word-meaning pairs, such as discovered in this work, would help to detect the various ob-

jects and activities in novel scenes and generate appropriate linguistic descriptions for them.
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Also, it is possible to use such paired associations to answer linguistic queries with relevant

multimedia documents containing objects and activities specified in the query.

We would like to extend the current work for different visual domains and different

languages to prove the domain-independent and language-independent nature of the model

claimed here. A larger goal is to integrate models of actions and motion-trajectories with

the knowledge of nominals, and begin to attempt to build the kind of defeasible knowledge

structures. Further, using the knowledge of nouns, we can replace the synthetic attention

model with the linguistic attention model which is more realistic. Typically, if we know that

Trak refers to the category truck, we can always say that if Trak appears in the narration,

it is the object of truck present in the scene which is being referred to. Such an attention

model can be used to learn the verbs and motion directives from action models. Also, given

the label bAe.N se dAe.N for left-to-right, kAr for car and a description like gADI

bAe.N se dAe.N jA rahI hai when there is an object of car in the scene, we can infer that

gADI is a synonym of kAr as both represent the same object concept car. Thus, using the

knowledge learnt earlier we can dig out more and more knowledge of the system to build

the knowledge structures rich in semantics.

The model presented here is not an incremental one as we are not updating the

association values with each additional instance. However, in human learning, the process

of word learning is incremental where each new usage revises the beliefs and the association

between linguistic units and the concepts. We would like to extend our idea to model an

incremental word learning process which is more realistic than the one presented here. The

incremental analysis of label association is one step towards it. Also, we would like to

quantify the necessary and sufficient conditions for word-learning. The notion of consistent

dominance introduced in this thesis needs to be studied further and a precise mathematical

quantification that can allow us to define the point where a label can be said to be learnt

for a particular concept.

[5] make a distinction between two knowledge acquisition processes: In robotic

toil, one learns the symbol grounding using direct sensorimotor experience as in this work,

while in symbolic theft, knowledge structures are learned from language. For humans, the

vast majority of our knowledge structures (and vocabulary) is learned using symbolic theft,

though the resulting symbols remain grounded, because some initial symbols were directly

grounded in sensorimotor terms. We believe that computational NLP systems must be

able to evolve a process for symbolic theft, where a vast number of concepts are acquired

from symbolic data, based on a small subset that has been acquired in a directly grounded

manner. In the process, the system would build defeasible ontology, without any need for

hand-coding. With some initial grounding of nouns and verbs, it should be possible for

the system to form higher level concepts using the mechanism of symbolic theft. e.g. if

we know the grounding of kAr as object category car, bAe.N se dAe.N as left-to-right
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and jA rahI hai as is-going, then it should be possible to infer a scenario of car going

left-to-right with a description like “kAr bAe.N se dAe.N jA rahI hai”.
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