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Abstract— We present computational models based on visual
attention that learn object-name mappings and action semantics
from simple 2D multi-agent visual streams co-occurring with
word-separated utterance streams. We use no perceptual priors
and the nominals are acquired by an early learner who has no
syntactic knowledge. A late learner then uses the knowledge
of nominals to identify actions referring to these arguments,
and acquires the semantics of motion verbs like run or chase.
Both early and late learners use visual attention to determine
which parts of the scene are salient at the time of the utterance;
we use a synthetic model of dynamic visual attention. Simple
statistical measures based on joint probability are found sufficient
to identify nominal participants from word separated input text,
and a simple recurrent network is used to learn the verb semantics
that encodes fine-grained image schemas as well as the argument
structure as part of the semantic model.

Index Terms— Multimodal Learning, Grounding, Gaze Predic-
tion , Focus of Attention

I. INTRODUCTION

This paper presents computational models based on visual
attention that support two claims of developmental learning:

• that nominals can be acquired from word-separated lan-
guage utterances without any knowledge of syntax.

• that motion verbs can be acquired directly from perceptual
sequences of motion features in temporally referenced se-
mantic schemas. This process also encodes their argument
structures as part of this semantics.

We consider a language learner acquiring grounded mean-
ings for words at two stages in the acquisition of language.
The object name learner (early) acquires nominals solely from
word-object correlations in word-separated utterance streams,
without regard for syntax. The verb learner (late) is aware
of the difference between actions involving single vs multiple
participants (intransitive / transitive verbs) - a sensitivity that
may be present in children as early as 11 months, which is also
the time when they become aware of word boundaries [11].

Here, the learner is not in the presence of the speaker,
and cannot follow cues from the gaze of the speaker to
determine attentive focus. Instead, it is assumed that the learner
realizes that her attentive mechanisms are similar to that of the
speaker, a hypothesis we call the Perceptual Theory of Mind.
Computational mechanisms of visual attention [18]. are then
used to constrain the region of visual computation, and identify
the constituents participating in an action.

There is some agreement that language learners can acquire
some nominals from language usage based on correlation
alone, e.g. Bloom ([2], p. 198): “Syntax is not necessary for
at least some nominal learning.”. But how does this work? In
computational models, models for noun learning tend to look at
single objects [15], or using single words [17] which are then
easily correlated with perceptual precepts. But most words are
learned from multi-object scenes and not accompanied by one-
word labels but by words appearing in usage contexts. In this
direction, [1] use a head mounted camera on the narrator and
incorporate gaze, head and hand movements in their model for
grounded word acquisition. But here also, a single object is the
focus in the utterance.

For our work, we take as input a video made famous
in social psychology by Heider and Simmel [7]. The co-
occurring text were collected as part of an experiment on how
users segment events into hierarchical subtasks [10]. In this
task, users were asked to segment the actions in the scene
and also to describe the action in an unconstrained narrative.
Consequently, the linguistic input has the wide variety expected
in multiple articulations for the same scene (see Table I below).
We use the word-separated text directly, and also the event
boundaries that were attested in their experiments. We then
correlate words co-occurring with perceptually salient objects
to learn the object names, and despite this variation in the
input, we find that nominals are easily associated with their
object tokens.

While we are able to learn nominals without syntax, the
extent to which syntax informs the learning process in verb
learning has been the subject of much debate ([6], [14]).
Without entering substantially in this debate, we assume that
the learner is able to learn the syntactic distinction between
intransitive and transitive verbs based on the number of
participants (arguments) in the corresponding actions. These
correspond to different feature-sets used in the learning task -
monadic (only one agent) or dyadic (two-agent interactions).
Using simple recurrent networks (SRNs), we are able to
capture the fine-grained temporal semantics for actions such
as chase or run in terms of perceptual image schemas. Unlike
other work on linking video to language that assumes a set
of action priors such as those involving contact etc, which are
characterizable a priori, - ([5], [3], we only assume that the
feature set is available to the learner, possibly as a part of



earlier perceptual categorization processes.

Fig. 1. Input Videos. Chase sequence (derived from [7] and Hide and Seek
sequence both created by Bridgette Martin [10]). The same three agents,
“big square”, “small square” and “circle” participate in two activities in two
different spaces.

Start End Subject One Subject Two
Frame Frame
617 635 the little square hit the

big square
they’re hitting each
other

805 848 the big square hit the
little square

and they keep hitting
each other

852 1100 the big square hit the
little square again; the
little circle moves to
the door; the big square
threatens the little circle

now the circle is block-
ing the entrance for the
big square; now the cir-
cle is inside the square

1145 1202 the big square goes in-
side the box; (and) the
door closes

another square went in-
side the big square

TABLE I

Description of the Events by Subjects. DIFFERING STATEMENTS BY TWO

SUBJECTS IN THE [Chase VIDEO]

II. SYNTHETIC MODELS OF VISUAL ATTENTION

Computational models of Visual Attention involve bottom-
up and top-down processes. While top-down processes vary
depending on task requirements, bottom-up aspects are more
stable and have been encoded for static images [8] based on
parallel extraction of intensity, colour and orientation con-
trast feature maps. Colour and intensity contrast maps are
obtained as feature pyramids (maps at different scales), along
with center-surround maps (multi-scale difference of feature
maps). The center-surround feature processing is similar to
the difference of gaussian convolved images (DOGs). For
orientation specific processing, gabor filters are used with
different frequencies and at different scales to generate the
orientation specific feature map.

The static model, which replicates saliency map structures
likely to be present in the LGN or V1 regions of the mam-
malian cortex, is extended here to model dynamic scenes based
on motion saliency. Motion saliency is computed from the
optical flow, and a confidence map is introduced to record
the uncertainty accumulating at scene locations not visited
for some time. A small foveal bias is introduced to mediate
in favour of proximal fixations as opposed to large saccadic
motions. The saliency map is the sum of the feature maps and
confidence maps, mediated by the foveal bias, and a Winner-
Take-All (WTA) isolates the most conspicuous location for the
next fixation. The overall architecture is highlighted in ”Fig.2”.

Perceptual Theory of Mind

The Theory of Mind hypothesis [2] holds that the learner has
a model for several aspect of the speaker’s mind, at various
levels from a sensitivity to the object being attending to, to
belief structures (e.g. children under three are found to be
incapable of entertaining false beliefs). In this work, we focus
at the lowest end of this spectrum, and focus on what we call
the Perceptual Theory of Mind. While much of the Theory of
Mind work has focused on gaze following based on cues from
the speaker’s eyes or her gaze direction, the Perceptual Theory
of Mind makes a much weaker claim: in the absence of direct
cues from a speaker, it assumes that the speaker would have
attended to those parts of the scene that the learner also finds
salient. This is probably a valid assumption for children from
the age of six months onwards [4], although the mechanisms
for perceptual salience are themselves being developed at this
stage. In our work, we do not specify a particular development
status for our learning agent, but assume this model to infer
that the scene objects being attended to by the agent were also
salient for the speaker at the moment of utterance.

Language Acquisition experiments tend to cast doubts on the
efficacy of a purely associationist model of learning words, and
it is true that a large percentage of our vocabulary is not learned
using multimodal inputs but from reading. Nonetheless, this
work presents some evidence that for the beginning learner,
multimodal associations mediated by attentional processes
provide strong and reliable cues for learning nominals and their
properties, verbs and their argument and event structures.

III. EARLY LEARNER STAGE : NAME LEARNING

Data. Two video sequences were used in the experiments.
Both show two squares and a circle moving in a 2D space
”Fig.1”. The first sequence (Chase) shows a room with a door,
and a large square that chases the other two. The second (Hide
& Seek) shows a game of hide & seek.

Grounded semantics for nominals appearing in the text are
associated with the corresponding image object token based
on the following steps:

1) Tracking and Recognition. Object recognition is based
on shape.

2) Synthetic Gaze Prediction Estimates the entities that are
being attended to during a particular utterance, under the
perceptual theory of mind assumption.

3) Associative Learning. The words in the commentary are
associated with their perceptual correlates.

A. Tracking and Shape-based recognition

Spelke [16], among others has demonstrated that infants
perceive objects as connected blobs with coherent motion.
In our videos, these blobs are rather simple, and these are
extracted and tracked for the duration of the video. A global
list of all the objects and their pose and orientation is used for
computation of motion primitives.

Shape recognition is required to obtain shape universals for
different object tokens with the same perceptual signature.
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Fig. 2. Bottom-Up Dynamic Visual Attention Model. The feature maps
for static images (colour, intensity and orientation) are extended with a
motion saliency map (based on optical flow). In addition a confidence map
records which sites have not been visited for a longer time. Winner-Take-All
determines the next fixation.

This is important in both correlating objects in the same scene
(squares) and also across different perceptual input situations,
as in combining word associations across the two separate
videos. Shape matching for 2D objects is implemented based
on a histogram of the tangent direction at each point along the
boundary, a simple scale, rotation and transformation invariant
metric that is cognitively plausible. The normalized (scale in-
variant) histograms were circularly shifted and compared using
statistical divergence function as in Roy [15] to determine the
closest transformation between two shapes, which serves as
our model of shape similarity.

dv (X, Y ) =
∑

i
(xi−yi)

2

(xi+yi)

where X =
⋃

i xi and Y =
⋃

i yi are two histograms and xi ,
yi are the values of a histogram.

B. Gaze prediction

The synthetic model of visual attention for dynamic scenes
was used to predict the gaze for the two videos. The predicted
gaze for the two videos are shown in ”Fig.3”.

C. Association of meanings with words

The attended objects are now associated with the temporally
correlated words using one of two probability measures. At

Fig. 3. Focus of attention on the video. Red circles represent the focus
of attention; Oscillating attention between multiple objects makes multiple
participants more likely.

this point, we also assume that the learner has been exposed
to other linguistic fragments before this, so that words like
“the” and “is” are known to be more general than this discourse
context, and are not applied to this situation. (In the BNC, “the”
occurs 1500 times more frequently than “square”, say). Using
perceptual equivalence relations based on shape, we associate
the objects with words from the multiple narratives using the
probability measures outlined below.

Two measures for associating the words with the objects are
used.

1) Mutual Information Measure.
2) Joint Probability Measure.
1) Mutual information Measure: After temporally correlat-

ing words with objects the association is defined as the product
of mutual information of word wi and object oj with their joint
probability.

A = Pr (wi, oj) log Pr (wi,oj)
Pr (wi) Pr (oj)

If W and O ( W =
⋃

i wi and O =
⋃

i oi ) are two random
variables then their Mutual Information I(W, O) would be

I(W, O) =
∑

i

∑
j Pr (w, oj) log Pr (wi,oj)

Pr (wi) Pr (oj)

where Pr (wi, oj) log Pr (wi,oj)
Pr (wi) Pr (oj)

is the contribution of each
word object pair.

2) JointProbability Measure: This measure is the product
of the conditional probability of object oj given word wi with
their joint probability.

A = Pr (wi, oj) Pr (oj |wi)

The conditional probability will give high values for the
words that occurred specifically for a given object, while
joint probability will highlight the number of word object
pairs. Hence this measure should bring out the stronger labels
associations.

Both the measures showed object names being highly as-
sociated with the corresponding object. Results are shown for
the chase video and both videos together ”Fig.4 and Fig.5”
respectively.

IV. LATE LEARNER STAGE : ACTION LABELS

In the next stage, we posit a late learner with limited
syntactic knowledge, who then uses the learned entity names as
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Fig. 4. Early Learner: Noun Learning using First Encounter. Association us-
ing Joint Probability of words with Big Square, Door, Little Square and Circle
in Chase video. Most objects except “little square” are well characterized.

Fig. 5. Noun Learning using Multiple Encounters. Associating words using
Joint Probability - remembering shapes across two encounters (both videos).

arguments in a k-ary predicate structure, based on the valences
of the verbs appearing in the text. Actions are pre-linguistically
categorized using different k-ary feature sets, depending on
the number of participants in the action, using a recurrent
neural network (SRN) [12]. This also results in discovering
the valence of the verb.

A. Features for Spatio-Temporal Analysis

The feature set determines the dimensionality of the space
in which the word meaning is grounded. The valence of the
predicate is a crucial input for this information, it is seen
that a monadic feature set is sufficient for actions like run
(intransitive), whereas a dyadic feature set is needed in actions
like chase (transitive).

There is considerable evidence that infants have pre-
linguistic perceptual notions for Path concepts such as source,
trajectory etc, and also other notions such as Up-Down,
Containment, Force, Part-Whole and Link [9]. Some of these
aspects have also been implemented in computational systems
[13]. In this work, we assume that the pre-linguistic visual
system has the capability to abstract the following:

(a) Shape classes (square vs circle, on a high contrast
image)
(b) Motion characteristics for individual agents (monadic
features)
(c) Motion characteristics for pairs agents (dyadic fea-
tures)

Specifically, we define the following abstract features:

• Monadic Features:

1) Velocity- vx and vy in respective direction
2) Acceleration- ax and ay in respective direction
3) θ- Angular displacement of the object
4) dθ- Change in displacement of the object.
5) ω - Angular velocity of the object.
6) α - Angular acceleration of the object.

• Dyadic Features

1) Proximity- It is inverse of the boundary-to-boundary
distance between two objects.

2) Relative Velocity between the two objects
3) Relative Acceleration between the two objects
4) Measure of Parallelism between the direction of

motion of the two objects i.e. cos (v̂a − v̂b)
5) Leader A - Measure of leadership (in motion) of A

w.r.t B i.e cos (v̂a − θba)
6) Leader B - Measure of leadership (in motion) of B

w.r.t A i.e. cos (v̂b − θab)
7) Chamfer- Measure of chamfering between the two

objects i.e. sin (v̂a−θba)+sin (v̂b−θab)
2

For example, an action such as “X chases Y” may associate
Proximity (indicative of spatial clustering between X and Y),
Parallelism, high Leader X and low Relative Velocity. The
dyadic parameter Chamfer feature reflects if two objects are
moving together or are moving one ahead of the other this
feature, when low, may indicate a follow or chase action; when
close to 90, it is indicative of a move-together action.

B. Similarity Clustering of Verbs

Action intervals in the video are surprisingly consistent
across viewers [10], and we use these boundaries for denoting
temporal intervals for actions that are to be labelled. The
diverse statements of the experiment participants are clustered.
Lexical units occurring extremely infrequently (just one in-
stance) are removed from consideration, and pairs of head-
verbs that are used consistently in the same interval, with the
same set of agents as arguments, by different subjects, are
considered as synonymous, with suitable changes in the agent
order as necessary. The cluster of such head-verbs was labeled
using the most frequent lexical unit, resulting in the clusters.
The objective was to acquire the semantics for these actions.

C. Verb Learning Results

Assuming that each video sequence is of l duration during
which a verb is reported for τ time units and not reported
for l − τ units. The Detection Accuracy, or true positives, is
computed as a percentage of positive classifications out of τ .
The False Negatives, again, are computed as a percentage of
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Fig. 6. Big Square Chases circle in the Hide and Seek video. 1 Second
intervals .

τ . However, the false positives as well as focus mismatches
are computed as a percentage of l − τ . Results are presented
for three learning scenarios:

1) One-Verb-One-Network:Human Subject Tags. Here Dif-
ferent SRNs are trained for each action cluster; Table
II presents the results with unsupervised text and image
correlations based on the statements of human subjects.
”Fig.9” shows some of the video fragments which are
classified by the learning system as chase.

Timescale = 2530 frames (81 seconds)

Fig. 7. Comparing machine and human classifications, for verb:chase. Each
row is a different pairwise combination of agents.

Timescale = 2530 frames (81 seconds)

Fig. 8. Comparing outputs - trained on synthetic data. One-Verb-One-
Network for chase video on Synthetic Data.

”Fig.7 ,Fig.8 and Fig.10” present results along a time
line, each row reflects a different combination of agents
(small square, big square, circle). Dark gray color indi-
cates false positive classification, while light gray color
indicates focus mismatches.

2) One-Verb-One-Network: Synthetic Data: To overcome
the very severely limited data in the videos, a synthetic
video with only two agents was created, executing
canonical versions of the actions over 2660 frames.
These may be thought of as pre-linguistic categorization

Verb TP FP FN FM
hit 3 3 1 1
chase 6 0 3 4
come Closer 6 20 7 24
move Away 8 3 0 14
spins 22 0 1 9
moves 5 1 2 7

where TP=True Positive,FP=False Positive,FN=False Negative and
FM=Focus Mismatch

TABLE II

Interval results. ONE-VERB-ONE-NETWORK, UNSUPERVISED

Fig. 9. Example of classification of chase event, one for every 1 Second (30
frames), between the circle and the small square

of the actions. The system is trained on the synthetic
data, and tested on the original human-annotated video;
Table III shows the results.

Verb TP FP FN FM
chase 52.59% 0.21% 47.09% 1.24%
come Closer 53.61% 11.29% 45.52% 20.41%
move Away 65.30% 12.07% 33.37% 17.15%

where

TP=True Positive,FP=False Positive,FN=False Negative and
FM=Focus Mismatch

TABLE III

PERCENTAGE RESULTS FOR ONE-VERB-ONE-NETWORK SYNTHETIC DATA

Between the two scenarios - learning from one pair
of agents in a human-tagged data vs learning from
elaborately created synthetic data, it is clear that having
more data improves the classification accuracy. However,
since the training set has only two agents and has no
focus mismatch, the extent of this problem is actually
higher when trained on synthetic data.

Timescale = 2530 frames (81 seconds)

Fig. 10. A comparison of system and human descriptions of come closer
verb over a time line. Note the large extent of focus mismatch (light grey).
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3) All-Verbs-One-Network: Synthetic Data
Here we train a single recurrent network to distinguish
among all the verbs, and use the synthetic video for
training. Only dyadic features are used. There is one
input neuron for each feature, one output neuron for each
verb and the hidden layer has the same number of nodes
as the input layer. An additional output neuron indicates
no output.
The accuracy of events detected improves considerably
if we constrain the sequence based on the participating
agents as well as the verb. The Interval accuracy is
computed as a ratio of correctly classified intervals to
the total intervals for each pair of objects. Table IV lists
the performance of the system in this mode.

Video Total
Frames

Objects
in-
volved

Frames
Classi-
fied

Correct
Classi-
fication

Interval
Accu-
racy %

SS, C 2492 2380 94.07
Hide
&
Seek

2530 SS,
BS

2329 2156 85.22

BS, C 2530 2028 80.16
SS, C 2334 2285 90.30

Chase 2530 SS,
BS

2329 2156 85.22

BS, C 2384 2207 87.23
SS = Small Square, BS = Big Square, C = Circle. Percentage accuracy
computed over total number of frames and not on number of classified

frames.

TABLE IV

FRAME-BY-FRAME INTERVAL ACCURACY RESULTS FOR

ALL-VERBS-ONE-NETWORK.

V. CONCLUSION

In this work we make the assumption that the learner
observing a visual scene identifies the objects she is attending
as those also being attended to by the speaker. This makes
it possible for us to use a computational model of dynamic
vision that identifies the participants in the co-occurring text.

The present system makes a number of assumptions on
the learning process. The set of features in verb learning are
presumed to be available to the learner, and are not learned
per se. While one may argue that some of these notions (such
as size or motion trajectory information) may be preferred as
a part of the innate perceptual apparatus, we strongly suspect
that some of the relative motion parameters may actually be
learnable given enough training data, and we hope to explore
this with the additional data.

In this work, no attempt was made here to learn the syntactic
structure of the statements per se, and effects such as tense,
case, gender etc are not modeled at all. An important extension
would be to learn more grammatical structures as in the work
of [5]. In our case, once the verbal heads of various phrases
are known, and with some knowledge of closed-class words,
it would be possible to identify some of the roles played by

grammatical elements in different constructions appearing in
the narrative.

A particularly attractive line of inquiry following this work
is that of delineating the spatial primitives involved as adjunct
modifiers to the nominals and verbal phrases in this very text.
These modifiers are important cues to the action, and are also
strongly related to the gaze fixation model adopted here, and
we are actively looking into modeling the semantics of these
spatial correlates in the coming months.
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