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Abstract. The work proposes a hierarchical architecture for learning
from dynamic scenes at various levels of knowledge abstraction. The raw
visual information is processed at different stages to generate hybrid
symbolic/sub-symbolic descriptions of the scene, agents and events. The
background is incrementally learned at the lowest layer, which is used
further in the mid-level for multi-agent tracking with symbolic reason-
ing. The agent/event discovery is performed at the next higher layer by
processing the agent features, status history and trajectory. Unlike ex-
isting vision systems, the proposed algorithm does not assume any prior
information and aims at learning the scene/agent/event models from
the acquired images. This makes it a versatile vision system capable of
performing in a wide variety of environments.

1 Introduction

In recent years, there has been an increasing interest in developing cognitive vi-
sion systems capable of interpreting the high level semantics of dynamic scenes.
A good overview of cognitive vision system architectures can be found in [1]. Tra-
ditional approaches to dynamic scene analysis operate only in restricted environ-
ments with predefined and/or learned quantitative object and behavior models.
Such models are often fragile and lead to modeling errors; thereby degrading the
performance in most practical situations. A hybrid multi-layered vision architec-
ture, consisting of both quantitative and qualitative models which are more robust
and immune to modelling errors, essentially processes the visual data at lower lev-
els and extracts worthwhile semantic information for analysis in higher layers.

This work proposes a multi-layered cognitive vision system for agent/event
discovery from dynamic scenes, which processes information at various stages of
knowledge abstraction, each layer deriving its percept model from the observa-
tions obtained from lower level(s). The system initializes with a few preset capabil-
ities involving scene feature (color and shape) extraction, and applies multi-agent
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tracking with symbolic reasoning, unsupervised agent categorization and event
discovery with variable length Markov models. Raw visual data is processed at
the lowest level to yield a perception of the background model of the scene. A hy-
brid analysis involving symbolic reasoning and feature extraction from the image
data is performed at the mid-level for multi-agent tracking. The higher layer essen-
tially categorizes the quantitative agent features and qualitative event descriptors
in an unsupervised learning framework. The system can be further extended into
upper layers depending on the application context, which typically requires user
interaction for tagging learned categories and generating linguistic descriptions.
Figure 1 shows the functional architecture of the proposed framework.

Fig. 1. The Proposed hierarchical scene analysis architecture

The paper is organized in the following manner. Section 2 explains the process-
ing at the lower level of the proposed system. The symbolic reasoning for multi-
agent tracking at the mid-level are explored in Section 3. Agent categorization
and event discovery are described in Section 4. The results of experimentation are
briefly described in Section 5. Finally, we conclude the paper in Section 6.

2 Background Learning for Low Level Vision

Traditional vision systems with an object centered approach learn the back-
ground with a specific signal model from a few initially unintruded (pure back-
ground) frames. However, in most practical cases, signal models do change and
pure background frames can’t be availed of for training. Thus, a view centered
approach is to be adopted for estimating the background model in an adaptive
learning framework. The usual approach to incremental background modeling
involves fitting (temporally evolving) Gaussian mixture models [2] on the tem-
poral pixel color histogram. Recently, Gutches et al. [3] have proposed an online
background learning algorithm, which combines the temporal histogram features
along with optical flow information leading to improved modeling performance.
This approach is adopted in our work for modeling the background Bt learned till
the tth instant. This is used to perform the background-foreground segmentation
of the image Ωt followed by a connected component analysis to generate the set
Ft = {Fi(t)}nt

i=1 of disjoint foreground blobs. The extracted foreground blobs are
used for symbolic reasoning to track multiple agents at the mid-level of visual
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(a) (b) (c)

Fig. 2. Background learning. (a) Sample traffic scene, (b) Background learned after
100 frames, (c) Foreground blobs extracted from (a) using (b).

processing. The results of foreground extraction with incremental background
learning (from a traffic video sequence) are illustrated in figure 2.

3 Symbolic Reasoning for Multi-agent Tracking

Agent/event discovery primarily depends on the availability of reliable features
and is often challenged by occlusions arising out of crowding and obstructions
by background objects. Unlike conventional object oriented approaches [4] to
occlusion handling that assume prior shape and motion models and also a
ground plane, we propose a reasoning scheme that is not restricted by specific
agent/environment models and detects several event primitives. This assists the
learning process in selective agent feature updates. [5] provides a detailed dis-
cussion of multi-agent tracking which we summarize here.

Intelligent reasoning is performed over an active set SA(t) = {Aj(t)}mt

j=1 con-
taining agents tracked till the tth instant and also a putative set SP (t) of agents
of which the system has lost track. The system initializes itself with empty sets
and the agents are added (removed) as they appear (disappear) in (from) the
field of view. The jth agent in the active set is characterized by its occupied
pixel set Aj(t), weighted color distribution hj(t) and the order-τ trajectory of
the center Cj(t) of the minimum bounding rectangle of Aj(t). Mean-shift it-
erations [6] initialized with the motion predicted position from the trajectory
{Cj(t − t′)}τ

t′=1 are used to localize Aj(t) in the tth frame. To associate the jth

agent with the ith foreground blob, we construct the thresholded localization
confidence matrix ΘAF (t) and the attribution confidence matrix ΨFA(t). Mea-
sures of foreground regions per agent (ΘA[j](t) and ΨA[j](t)) and agents per
foreground region (ΘF [i](t) and ΨF [i](t)) can be computed from these matrices.

ΘAF [j, i](t)=
{

1; |Aj(t)∩Fi(t)|
|Aj(t)| ≥ ηA

0; Otherwise
; ΨFA[i, j](t)=

{
1; |Aj(t)∩Fi(t)|

|Fi(t)| ≥ ηF

0; Otherwise
(1)

ΘA[j](t) =
∑nt

i=1 ΘAF [j, i](t), ΘF [i](t) =
∑mt−1

j=1 ΘAF [j, i](t) (2)

ΨA[j](t) =
∑nt

i=1 ΨFA[i, j](t), ΨF [i](t) =
∑mt−1

j=1 ΨFA[i, j](t) (3)

We construct four Boolean predicates: IsoUnOccTrkj(t) for agent isolated,
unoccluded and well tracked ; LostTrackj(t) for agent lost track of;
IsoPartOccj(t) for agent partially occluded ; Crowdj(t) for agent in a crowd.
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IsoUnOccTrkj(t) = ∃i[ΘAF [j, i](t) = 1] ∧ [ΘF [i](t) = 1] ∧ [ΨF [i](t) = 1] (4)
LostTrackj(t) = [ΘA[j](t) = 0] ∧ [ΨA[j](t) = 0] (5)
IsoPartOccj(t) = ∀i[ΨFA[i, j](t) = 1] ∧ [ΨF [i](t) = 1] ∧ [ΨA[j](t) > 1] (6)

Crowdj(t) = ∃i[ΘAF [j, i] = 1] ∧ [ΘF [i](t) > 1] (7)

(a) (b) (c) (d)

Fig. 3. Cases of occlusions. (a-b) Partial occlusions: agent detected as multiple fore-
ground blobs; (c-d) Crowding: multiple agents merge to form a single blob.

Color, shape and trajectory of individual agents under IsoUnOccTrk, but
only the trajectory of agents under IsoPartOcc and Crowd are continuously
updated. Agents under LostTrack are moved from the active set to the putative
set.

The entry/reappearance of an agent is attributed to the existence of a
foreground blob Fi(t) in the scene having no association with any agent from
SA(t − 1). Hence, the corresponding Boolean predicate NewBlobi(t) is,

NewBlobi(t) = [ΘF [i](t) = 0] ∧ [ΨF [i](t) = 0] (8)

The features of the new blob Fi(t) are matched against those in SP (t − 1) to
search for the reappearance of agents. If a match is found, the agent is moved
from SP (t−1) to SA(t). Otherwise, a new agent’s entry is declared and is added
to SA(t). Similarly, an agent is declared to exit the scene, if its motion predicted
region lies outside the image region and is thus removed from the active set.

The vision system often encounters the phenomenon of splitting, when two
(or more) agents enter the scene in a group and separate later within the field
of view. In such cases, they are initially learned as a single agent and the split
is eventually detected as a fragmentation (such as that caused by partial occlu-
sion) for the first few frames (the exact number depends on the relative velocity
between separating agents). Afterwards, the tracker converges on one agent and
loses track of the other(s), which eventually emerge as a new region(s) and is
(are) added as new agent(s).

4 Discovery of Agents and Events

The agents are essentially represented by their color, shape and motion features.
The instances of the same class can have significantly different color and motion
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features, thereby leaving the shape as a more reliable descriptor. In this work,
we opt for the second to seventh order Zernike moments [7], which serve as a
shape feature. The shape feature vector Xj(t) of the jth agent is only computed
when the agent is isolated and well localized and a Gaussian mixture model is
incrementally learned over this feature set. Empirically, the selected feature set
seems to provide consistent classification which agrees well with that of a human
observer. The categorization algorithm has successfully classified the instances
of man, man on bike, vehicle and rickshaw (figure 4(a)-(d)).

Events are of two different categories, viz. actions (characteristic state space
trajectories of individual agents) and interactions (activities involving multiple
agents). Typical examples of actions are the path taken by a vehicle in a traffic
scenario or the pose sequence exhibited by a dancer. The events of chasing, over-
taking of vehicles refer to interactions in a homogeneous group and the examples
for a heterogeneous group include activities like boarding a vehicle, riding a bike
etc. Variable length Markov models (VLMMs) have been used previously for the
purpose of learning actions [8] and interactions [9]. In this work, we apply the
VLMMs for online event discovery by learning the frequent sequences of sym-
bolic descriptors acquired earlier. A detailed discussion on learning with VLMMs
can be found in [8].

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4. Instances of learned agents. (a) Man, (b) Man on Bike, (c) Vehicle, (d) Rick-
shaw. Discovered multi-agent interactions. (e-f) Person on cycle detected followed by
person-cycle split: person getting off a cycle, (g-h) Person and cycle isolated followed by
person-cycle crowded: The event of person embarking a bicycle, (i-j) A heterogeneous
crowd followed by track loss of several agents: people embarking a vehicle, (k-l) Isolated
vehicle followed by vehicle-person split: The event of disembarking from a vehicle.
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5 Results

The proposed algorithm for event discovery from dynamic scenes is applied to
a traffic scenario. The agents and events are discovered online from a video
sequence acquired with a static camera. The multi-agent tracking algorithm
provides us with symbolic descriptors of object states at each time instant. We
assume the interacting agents to be present within a specific attentional win-
dow. spatio-temporal interactions are learned as frequently co-occurring sets of
agent states. Results show the discovery of events like a man boarding a bicycle,
man disembarking the bicycle, people boarding vehicle and people getting off from
vehicle. The results of discovered sequences are shown in figure 4.

6 Conclusion

We have proposed a hierarchical architecture for discovering events from dynamic
scenes. Symbolic and sub-symbolic learning is performed at different processing
levels in the hierarchy. The architecture requires minimal prior knowledge of
the environment and attempts to learn the semantic informations of dynamic
scenes. Qualitative reasoning at a higher level induces tolerance to learning error
at lower levels . This makes it suitable for a wide range of applications.
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