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Abstract

Animals effortlessly acquire a visual model for familiar spaces, enabling them to learn to use
their own body, find paths and interact with objects / others. On the other hand, for robots,
all poses must be calibrated against a global reference frame, and even tasks driven by vision
require state estimation onto these canonical coordinates. In this paper, we propose to the idea
of Visual Generalized Coordinates, which are a set of d parameters that describe the motion of
a d degree-of-freedom system. Here we show that images captured by a camera mounted on
the moving system will lie on a low-dimensional manifold homeomorphic to its motor manifold.
The parametrization of such a manifold is equivalent to the traditional coordinates used in
robotics, except that these can be obtained from sensory data. This provides a mechanism
for explaining how cognitive systems build the allocentric map for the space around it. We
demonstrate this process for a simulated robot exploring a planar space. Exploring the space
with a suitable sampling strategy and image space similarity measure can be used to generate
a manifold based on the similarity of images captured from nearby viewpoints, without any
knowledge of the motion coordinates. We show how such a model generates structures very
similar to place cells and orientation cells in mammals, and also how it can be applied for more
visual approaches to robot tasks.

Keywords: Visual Manifold, Place cells, Cognitive Map

1 Introduction

Humans and animals localize themselves in familiar spaces based on visual features, the cog-
nitive models for which are thought to be organized in two frameworks - based on the body
(egocentric) and based on the environment (allocentric). Allocentric models, relevant to nav-
igation tasks, implemented in the limbic brain via specialized classes of neurons (e.g. ”place
cells” and ”orientation cells”), constitute a form of cognitive map [1, 2]. However, how sen-
sory stimuli, particularly vision, is used to encode environmental features onto such structures
remains unclear.
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Localization in robotics differs from cognitive models in that robot positioning is based on
canonical coordinates (e.g. x, y, θ, or joint angles) defined in a pre-specified frame of reference.
The number of such coordinates equals the degrees of freedom of the system. For humans
and animals, such a quantitative characterization is thought to be unavailable to the system
(though both motor efference copy, and also proprioception, provides some noisy measures).
In general, positioning is thought to be relative to local cues (e.g. presence of a wall of a
different colour [3]. Pose knowledge is implicit, and not known quantitatively; locations are
known only relative to other landmarks. Here we propose a new formulation, that a set of
“coordinates” similar to those used in robotics can be derived by relating the view from the
robot to other nearby view images. This enables the human (or robot) to reach for a pose by
relating it on a neighbourhood or chart of nearby views from the agent. The combination of
such charts is an image manifold [4], which is homeomorphic to the configuration space used
in traditional robotics [5]. While we do not actually derive the coordinates on these manifolds,
which can be noisy and data dependent, the existence of the manifold is used to construct local
neighbourhoods which are sufficient for most spatial tasks.

Indeed, it is well known that the motion coordinates that are traditionally used in robotics
are only one of many possible generalized coordinates. The alternate parametrization proposed
here, with a bijective mapping to the canonical coordinates, is an useful characterization for
mapping sensory inputs, and can suggest new approaches for longstanding problems both in
spatial cognition (see a range of views in [6]), and also in robot self-learning (e.g. [7, 8]). In
an earlier work we have shown how such an alternative generalized coordinate can be used to
create egocentric maps for a robot’s own body, based on images of its limb motions [9]. Here
we extend this idea to show how such egocentric views can be “stitched” into a low-dimensional
manifold to create an allocentric map for the agents’ environment. This approach shows that
perhaps, the detection of landmarks for allocentric map construction [10], or the use of optical
flow in visual path integration [11], may not be the mechanisms, and perhaps more parsimonious
explanations may exist.

A popular approach for modeling a robot’s workspace is Probabilistic Roadmaps [5] (PRM),
which involves sampling random poses and connecting these in terms of a neighbourhood graph.
To our knowledge, a similar approach based on image view samples have not been used to pro-
pose a possible mechanism for constructing an allocentric map, though the robotics community
has proposed a role of PRM in the brain [12] Here we construct a visual analogue of the PRM,
which we call the Visual Roadmap [9]. by sampling a random set of images at different poses,
and connecting them in a neighbourhood graph, which represents a sampling on the image
manifold. We show that this possible representation of the allocentric map can be used to find
allocentric bearings and complete routes using only the visual image sample 4.

The very possibility of alternate Generalized Coordinates opens up important directions in
how the brain integrates spatial data from sensory modalities. The geometric abilities ascribed
to mechanisms such as path integration are shown to be replicable in purely visual maps as
well. This is also relevant for applications in robotics, where even for robots that use visual
data (e.g. in visual servoing), implementations are based on state estimation which predicts the
explicit global coordinates. Here we learn an alternative visual global model without requiring
any knowledge priors for robot geometry or kinematics, external world geometry, camera pose,
and without reference to any external reference frame. [13, 14]
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1.1 Visual Manifolds as alternative Generalized Coordinates

The central idea driving this work is that under some relatively mild conditions, a set of
images obtained during a motion with degrees of freedom d, would lie on a d-manifold that
is homeomorphic to the manifold of the motion coordinates (Visual Manifold theorem). In
the proposed model, we suggest that such a visual manifold may be constructed in practice by
combining patches on the manifold, each based on local interpolations across images from nearby
positions. Each patch is an approximation of a tangent plane or chart on the manifold, which
can be implemented via principal components analysis, by a layer of neurons [15]. Further,
this image manifold is shown to be a cartesian product of a space of translations (encoded in
the allocentric map as place cells), and a space of orientations (encoded as orientation cells).
Developmentally, these areas are learned, we suggest, by combining multiple modalities into a
fused manifold [16, 11]). We show that such a cognitive map has some quasi-metric properties,
and can be used for localization or navigation tasks, though it may sometimes violate euclidean
norms[17, 18].

Several earlier approaches have attempted to combine multiple views to construct a spatial
model. An early approach by Franz et.al [19] constructs a view manifold by combining omni-
directional camera images (360◦ views). Such a setup permits a rotational image shift (similar
to the shift register model for head re-orientation [20] that potentially aligns two views. This
removes the rotational variance from the data. Although the manifolds discovered are of far
lower dimensionality than the image space, they are not relatable to the degrees of freedom,
hence it cannot serve as a generalized coordinates. The approach by Arleo [21] is closer to the
present work but it also is substantially different since it uses integration of wheel rotations
to correlate the images, enabling reinforcement learning to be applied to the motor torques.
Image similarity is computed from gabor output at a set of radial points in every view image.
The system also generates place cell like structures, but again, it does not attempt to capture a
generalized coordinate model. Also, the model does not attempt to map orientation cells from
the data. In [9], the system is primarily focused on looking at a robot’s own limb motions.
The manifold estimated from these images constitutes an egocentric model of the robot.

There are two main contributions in this work. First we present a model for how visual
data may be used for learning a precise characterization for the motion of an unknown moving
system. Since the parameters learned are equivalent to traditional coordinates used in robotics,
the model can be used in lieu of robot coordinates to generate allocentric models of space.
Such a model, of how sensory data informs a potential cognitive map, may help resolve some
of the debates regarding the nature of the allocentric map - e.g. the degree of nativist priors or
modularity [22].

A second contribution is that we address a longstanding problem in robotics - that of being
able to work using vision, as most animals do (e.g. see [23] ch.9). This work applies to any robot
that has a camera, and enables it to generate a view sample-based model that generates an
alternative to the configuration space. This opens up new vistas in robot body schema learning
and in motion planning. In using such a visually grounded map on a robot, we would interface
it with a controller that can reach a pose corresponding to a given image; implementing such
a controller given that we are in some sense near the goal is a well solved problem in visual
servoing [24], and here we focus on the construction of the spatial map.

Unlike some previous work, we consider more than a single input modalities (though see [25]).
It is now understood that place cells are abstractions that arise based on the combination of
multiple modalities [2, 11]. Here, the result of interest is that when we look at the map that
arises from vision, and combine it with a map based on olfactory signals, the combined model
- and not the vision-only or olfaction-only map - can account for the generation of structures
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similar to both place-cells and orientation cells. The fact that this can be done even without
combining the map with motor signals, may support the position that “visual perception and
the visual control of action depend on functionally and neurally independent systems.” [17].

Figure 1: Images taken from a robot turning on its own axis. Left: Images as seen from
different turn angles. Right: The image manifold discovered as a ring. The topology of the
motion manifold (θ) is also a ring S1. Thus the image manifold is “homeomorphic” - has the
same topological structure - as the motion manifold. Since the robot can move along only one
dimension, the images can also vary in only one way. See Table 2 below for the regression
correlation between the generalized coordinates of these images and the θ parameter.

1.2 Demonstrations

We demonstrate this approach on a simulated mobile robot with a single camera, executing
repeated motions in a bounded region of space. Such a robot has 3 degrees of freedom -
two for position and one for orientation, and we first conduct some simulation experiments
where we have it move in restricted ways, (1-DOF and 2-DOF), before having it move in full
x, y, θ motions, sampling a random set of poses while it moves in a random manner that we call
“brownian motion”. In the 1-DOF experiment Fig 1, the robot turns on its own axis. Increasing
the angle eventually returns to its original pose so it has a ring topology. The corresponding
visual manifold shown (every dot is an image) - is also seen to be a 1-D ring manifold. In each
case the image manifold preserves the topology of the motion space; in the last, fully general,
situation, the manifold is the product of a 2D translation manifold with a rotational ring, i.e.
R2 × S1. Such an integrated manifold is similar to what has been proposed by Redish and
Touretzky [2].

This initial model is based only on vision, and cannot separate the information encoded in
place cells (x, y) from that of orientation (θ). However, we show that when this visual model
is fused with an additional sensory modality, say, olfaction, which discriminates only spatial
position, ignoring orientation, then the visually derived map can be seen to be a cartesian
product of a position map (bands in the 3-D map) and a orientation map (2-D patches on the
3-D map). The position maps are be analogous to place cells, encoded as a ring of images
corresponding to orientation variation, and the orientation maps - sets of images obtained for
motions while looking in the same direction.
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In the following sections, we first present some theoretical underpinnings (section:2), fol-
lowed by several demonstrations of the process, based on a simulated mobile robot (section:3),
equipped with a camera that collects images at frequent intervals as it wanders about in a
fixed environment. The first rotation experiment (section:3.1) is used to illustrate the simplest
example, where the robot simply rotates on its axis. The corresponding motion manifold has a
ring topology (S1), and we show that images collected during the spin also lie on a 1-manifold,
with a ring topology. In the main experiment, the robot wanders around a planar space (sec-
tion:3.2), so that each pose of the robot can be described by 3 variables or degrees of freedom
(DOF), corresponding to canonical coordinates like x, y for the position and θ for orientation.
From the set I of N images captured, we can use one of many well-known Non-Linear Dimen-
sionality Reduction (NLDR) algorithms to come up with a low dimensional mapping with the
same structure as the motor manifold. Section 4 shows simulation experiments for localization
(relative to “nearby” visual images), followed by generation of the Visual Roadmap for motion
planning. In the last section, we add an olfactory modality and show how this helps separate
the positions (places) from orientation (section:5).

2 Visual Manifold Theorem

In the absence of motion constraints, the pose of a mechanism with d degrees of freedom can be
described by a d-dimensional configuration vector q˜. The space Q of all possible configurations

is called the Configuration Space or C-space of the robot. However, how to determine q˜ is not

fixed; any generalized coordinate that fully specifies the robot pose can be used. Let R(q˜) be

the volume occupied by the robot in configuration q˜. R(q˜) is a subset of Rsv that is the volume

swept by the robot in all possible configurations. For a mobile robot, the degrees of freedom
d = 3, and traditionally, the configuration q˜ = (x, y, θ) is used. We note that the topology of the

C-space is R2 × S1, which is not euclidean, since as θ increases, it returns to the original pose.
This causes some difficulty in the algorithm, since most NLDR manifold discovery algorithms
(e.g. ISOMAP [26]) assume that the target manifold is euclidean. Now consider a camera
mounted on a robot that is moving in a static world. The image obtained from the camera is a
function of its pose q˜ ∈ Q. The imaging transform function F () which maps a 3-D world point

to its image point IR = x˜, IR ∈ V, where V is the image space. F () is parametrized by the
camera imaging constants and the pose q˜. Under the traditional imaging situations (ignoring

lens distortions etc) F (q˜) is a perspective transformation, which may be mapped as a linear

transformation in the homogeneous coordinates space.

Assumption (Visual distinguishability assumption).For any q˜1 6= q˜2, it is not the case that

I(q˜1) is identical to I(q˜2).

Theorem (Visual Manifold Theorem). Under visual distinguishability conditions, the parame-
ter space Q and the robot image space IR ⊂ V are homeomorphic.

Since F (q˜) is linear transformation, every neighbourhood of q˜ maps to a neighbourhood

on IR, that is N(q˜) → N(IR). For the other way to hold that is N(IR) → N(q˜), under the

assumption of “visual distinguishability”, different images must be from differing poses, so the
continuous image neighbourhood must be unique as well, hence the inverse also holds. Since any
neighbourhood has a bijective map in the other space, the parameter space Q is homeomorphic
to the visual space IR.
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A consequence of this theorem is that for a mobile robot camera, since the motion manifold
is R2 × S1, the image manifold must also have the same topology.

In creating our visualizations below, we use these expectations to guide the data-driven
dimensionality reduction methods, since most NLDR methods require a target dimension to be
specified. Also, most NLDR methods generate euclidean topologies, and since an S1 subspace
can only be mapped onto an euclidean R2 space, this necessitates a step up in the target
dimension.

However, we note that in practice, we do not need to obtain the low dimensional embedding
as a set of manifold coordinates. Thus, in order to localize relative to other nearby objects, or
even to navigate, we do not need a set of coordinates; it is sufficient if we construct only the
local tangent spaces - these are done using principal component analysis on the local neighbours
in the images space - they correspond to charts on the manifold, and the set of all charts or the
atlas, is a complete representation of the manifold [4].

We can gain some intuition into the image manifold by noting that although images have a
dimensionality determined by the number of pixels, (320× 240, say) so that each I(q˜) ∈ R80K .

However, assigning arbitrary colours to each of the ≈ 80K pixels will almost never generate
an image as seen from the mobile robot camera, hence the actual image space IR is a much
smaller subspace of V. In fact, what the theorem states is that the images will ideally lie on
a 3-dimensional manifold which is the IR subspace of V, and that it will have the topology
R2 × S1.

Figure 2: Simulated Environment for Experiments(top view)

Figure 3: Sample images
captured during random
exploration

Datasets Description C-space Expected Manifold Images

Rotation Rotation about a single point q˜ = (θ) S1 5000

Cyclic Traveling in a spiral motion q˜ = (x, θ) R× S1 4000

Brownian Random motion in a rectangle q˜ = (x, y, θ) R2 × S1 17000

Table 1: Datasets: The number of images is just an estimate of the number of points. It is not
the case that rotation simulation needs more number of images than cyclic.
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3 Simulation Experiments

We simulated the Turtlebot2[27] robot in an indoor environment(Fig:2) under the well known
ROS (Robot Operating System)[28] with the Gazebo[29] simulation engine, along with a camera
feed.

As mentioned earlier, we report three experiments in this setup. The datasets we have used
in our experiments are listed down in the table 1. We sample a number of images as the robot
moves under various constraints. One important aspect is that the image sample must not be
very near along a path - otherwise the manifold discovery process will fail since close neighbours
of any image will all be along the one-dimensional paths. Interestingly, the same patterns is
observed in rats acquiring place cells; when motion is limited to a path, the place cells are more
one-directional, but wandering randomly in open spaces results in general 2D distribution [2].
In this work, we attempt to emulate an independent distributed sample, by spacing out the
images along the trajectories. Even this does not sample the rotation dimension adequately, so
we introduce a few spin motions every now and then. The visualizations shown are based on
the well-know NLDR method, Isomap [26], but k-PCA or other approaches also give similar
results.

A crucial aspect of constructing image manifold is the choice of an image similarity measure
(or an image distance metric). Euclidean distances do not work too well unless some objects
are overlapping between the images. Earthmover’s distance metrics compute the minimum
transformation needed to map one image onto the other, but are very expensive to compute.
As a effective compromise, we have used here a a Bag of Words (BoW) approach. Here the
term “word” refers to a concept in image processing where local descriptors are obtained for
a large number of images and clustered; each cluster is called a “visual word”, and the set of
such words is the “dictionary”. An image can now be treated as a “document” containing a
bunch of words. Echoing an idea that originated in natural language processing, two images
are considered similar if they contain the same words.

In our case, the BoW distance measure, uses a dictionary of visual SIFT[30] features
and color descriptors[31]. Then each image Ii can be represented as a binary vector Ii =
{u1, u2, . . . , uV }, V being the number of clusters (size of vocabulary, 1000 in our case), ui = 1
meaning that the ith feature of the vocabulary is present in the image. We modified the feature
vector to account for relevance of features, as used in [32]. For each feature vector, we replace
all uis equal to 1 by its inverse document frequency idf, that is ui = log( N

ni
) where N are the

total number of images in the simulation and ni are the number of images which contain the
ith feature of the vocabulary. We use cosine distance for the distance matrix in Isomap.

3.1 Constrained motion: One and Two DOFs

In the experiment reported in Fig: 1 we have considered a sample of images collected while the
robot was spinning about its own axis. This is a one degree of freedom motion. Each observed
image is fully determined by the rotation angle, so we expect a one-dimensional manifold. To
discover the bijective map between the configuration space parameters and the generalized
coordinates discovered from the images, we used a backpropagation network which is able to
predict the θ parameter from the generalized coordinates on the manifold for a new image.
We measure the performance of the prediction by the regression correlation between the two
variables. The testing correlation(table: 2) of 0.985 signifies that there exists a robust map
between the θ parameter and the low dimensional embedded space.
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Samples R(Correlation)

Training 1350 0.993
Validation 270 0.993
Testing 180 0.985

Table 2: Neural Network Fitting Results: The fitting correlation so close to 1, shows that there
exists a map between the generalized coordinates and the configuration space θ parameters.

Figure 4: Cyclic Dataset Trajectory

In the next experiment, we demonstrate a two-DOF
system, by giving the robot a large range of motion
in one direction, with a less significant range in the
other, while incorporating spinning motions at many
points. Thus the motions are a cyclic pattern like a
spiral (Fig:4), and the conventional C-space defined
as q˜ = (x, θ). The images are sampled densely along

the line of motion, so that we have sufficient points
to get a good manifold. The results (Fig: 5) depict
a 3D embedding manifold, that is homeomorphic to a
cylinder(R × S1). The θ values are spread across the
curve of cylinder and the translation is along the height
of the cylinder.
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Figure 5: 3-D Embedding of Cyclic dataset. Left: Embedding is color coded based on variation
in θ. The orientation parameter increases towards one direction along the circular fold and
return after 360◦. Right: Embedding is color coded based on the variation along the translation
direction. It increases along the length of the cylindrical manifold.

3.2 Brownian Movements: 3 DOF

In the third experiment, we permit full translation and rotation motions while covering a
rectangular region. This motion has all three degrees of freedom (canonical: x, y, θ). Here we
expect an R2 × S1 topology. In order to discover the map, images sampled from a path must
also have other neighbours sampled from other paths. This requires that the sampling have
comparable density in all dimensions. This reduces to generating a sufficiently large sample
with a sufficient diversity. This is what is achieved by what we call Brownian movement. The
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Figure 6: 3-D Embedding of Brownian Dataset

results show a manifold that seems strangely folded, but its topology is actually that of a filled-
in torus, corresponding to R2 × S1 (Fig: 6). The orientations (θ) are spread across the curve
of torus in rings that are coherent or somatotopic - they do not overlap, and any progression
through them encounters the same sequence of orientations (colours). Thus, each section in
the torus represents differing x, y with similar camera orientations, while the rings represent
differing θ with the same position. Each image maps to a point on the manifold, and thus we
obtain a 3-D representation for each pose in the real world. Coordinates describing a position
on this structure can then act as generalized coordinates for the configurations or poses.

4 Localization and Navigation

By localization here we mean that given its (novel) view, the robot attempts to find its po-
sition relative to other images that it has encountered before. This is done based on a linear
interpolation on the k nearest neighbors of the test image, i.e. on the local tangent space. If
we know the manifold coordinates of these known images, then that for the unknown image
can be determined using the same interpolation weights. Table 3 shows some nearest neighbors
for the query images. The robot is able to build a subspace, where it can localize the visual
scene it perceives, and there exists a mapping from the visual manifold to the configuration
space Q of the system. We show that our model is robust for the environment and is a good
approximation of the robot’s workspace using navigation. Our path planning system using the
manifold works as shown in algorithm 1.

The paths are found based on the nearest neighbours in the image space. We tested the
quality of these paths by comparing them with Probabilistic Roadmap (PRM)[33] as imple-
mented in ROS. We measure the deviation from the straight line joining source and destination
points in (x, y, θ) space, for both PRM and our algorithm. We define the deviation of a path L
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Table 3: Local Neighbors for Query Image along with canonical coordinates (x, y, θ)

Query NN#1 NN#2 NN#3 NN#4 NN#5

(-0.99,-1.06,243.1◦) (-0.99,-1.08, 270.3◦) (-1.00,-1.09,262.5◦) (-0.99,-1.07,268.3◦) (-1.22,-0.98,263.6◦) (-0.98,-1.02,267.3◦)

(-0.82,-0.06,72.1◦) (-0.84,0.31,54.2◦) (-1.31,0.37,60.9◦) (-0.99,0.22,56.4◦) (-1.57,-0.14,58.4◦) (-1.33,0.17,56.4◦)

(-2.15,-2.80,105.8◦) (-0.70,-2.85,87.1◦) (-1.62,-3.13,136.4◦) (-1.77,-3.08,133.3◦) (-0.75,-2.97,91.4◦) (-0.57,-2.88,90.4◦)

(-2.17,-2.05,314.3◦) (-2.16,-2.04,208.5◦) (-2.02,-3.77,226.5◦) (-2.02,-3.77,222.8◦) (-1.88,-4.31,225.7◦) (-2.16,-3.41,209.4◦)

(-1.25,-3.44,44.2◦) (-2.07,-2.28,297.8◦) (-2.17,-2.05,298.1◦) (-2.17,-2.05,301.4◦) (-2.01,-2.30,307.7◦) (-0.66,-1.75,326.9◦)

Algorithm 1: Visual Roadmap Path Planner(VRM)

input : Source Image Isrc, Destination Image Idest and the discovered manifold M̂ and
the neighborhood graph Ĝ

output: I1, I2, . . . , Ik, intermediate images lying on the path between Isrc and Idest

I∗src ←FindNearestNeighbor(M̂, Isrc)

I∗dest ←FindNearestNeighbor(M̂, Idest)

P ←DijkstraPath(Ĝ, I∗src, I
∗
dest)

(L, I)←FindGeneralizedCoordsImages(P )

with intermediate points Li from straight line P as follows:

D =

∑
Li∈LD(Li, P )

|L|

where D is the shortest distance between point Li and line P . We also calculated
variance(D(Li, P )) and max(D(Li, P )). Fig: 7 shows some paths for our algorithm, paths
shown in red are obtained from PRM and blue from our Visual Roadmap motion planner. The
results show that though some of the paths are as good as PRM, some paths are considerably

10



A Visual Sense of Space Bhartiya and Mukerjee

longer. Partly this may be because of the rather small sample size (17K points is about 11 sam-
ples per degree of freedom). But part of the reason, especially for the path traces (Fig. 7:Left)
may also be that the path is being planned in the 3-D (x, y, θ) (or its analog in visual Gener-
alized Coordinates), so it prefers motions where the θ changes gradually from start to end. On
the other hand, since the trace of the path shows only x, y and has no θ information, there may
be big rotations at start and end that distort our understanding of “shortest path”. More than
the quality of path however, the very fact that such allocentric connections can be discovered
with just a sample of egocentric images, is the main result here.

Path# D var(D(Li, P )) max(D(Li, P ))

PRM VRM PRM VRM PRM VRM

1 0.109 0.098 0.007 0.009 0.237 0.344
2 0.187 0.188 0.013 0.105 0.411 1.134
3 0.066 0.076 0.003 0.010 0.147 0.292
4 0.136 0.212 0.011 0.028 0.324 0.634
5 0.204 0.526 0.023 0.461 0.540 3.594
6 0.080 0.653 0.010 0.378 0.265 1.865
7 0.265 0.070 0.038 0.005 0.535 0.254
8 0.198 0.144 0.019 0.012 0.431 0.412
9 0.059 0.596 0.004 0.091 0.207 0.818
10 0.131 0.124 0.013 0.018 0.304 0.353

Figure 7: Paths in x, y space and Evaluation Results

5 Discovering Place Cells

Although we are able to do useful tasks with this visual map, there is a significant difference
from mammalian visual maps, which use place cells - neurons that fire when the organism enters
a particular region in a familiar environment. Our model however, cannot encode such place
cells since the manifold lumps orientation and position in an integrated map. Place cells form
a cognitive “map” of positions in the environment, though they are very different since metric
properties are not strictly adhered to [34]. Now, it is our hypothesis that in order to form place
cells, the organism must have some functional requirement that depends only on position but
not on orientation - e.g. rats have a strong olfactory sense, and smell sources are often agnostic
to orientation (ignoring wind). Thus, an infant rat which has learned to locate its mother based
on smell, would, after it acquires vision, realize that a ring of images correspond to the same
spatial position (x, y). We are not sure if this is indeed how it works, but in the computational
model below, we show that we can use any task that is agnostic to orientation to reveal this
structure and to decompose our integrated manifold into a cartesian product of a position space
R2 and an orientation space S1. The region maps in the position space can then be coded by
the organism into a system of place cells.

To figure out the place cell in our manifold, we equipped the robot with a task that does not
depend on orientation - we talk about a olfactory sense, but it could be some kind of homing or
any positional cue which is omni-directional. We now make the robot move towards such a goal,
in many repetitions, from different initial poses. The robot tries to move towards the increasing
gradient in smell and approaches it from all directions. To accelerate the repetitions, on reaching
the maxima of smell, we destabilize the robot, moving it away in some random direction (imagine
another rat pup pushing out infant away). The robot then tries to stabilize towards the smell
again. We repeat this process many times. In this process, the robot captures different images
in different orientations of the same position, characterized by the goal maxima. These images,
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Figure 8: Discovered place cells for smell locations

when located on the manifold form a ring(Fig: 8). Hence, for each position we can discover a
ring which is a particular region in the x, y space. Thus, this (or a set of these) can be coded as
a “place cell” in our equivalent neural model. Finding similar images (nearest neighbors) across
these rings discovers a orientation invariance - where the image remains roughly the same, while
the positions change. These are like cross-sections of the torus, and can be used to code up
for head orientation cells - which would respond to images corresponding to robot facing in the
same direction. Each orientation cell gives us a section on the torus. Hence we have broken
down our map into a cartesian product of position and orientation, the R2 × S1 topology.

6 Conclusion and Future Work

In this work, we have proposed a visual characterization for the complex motions of an unknown
mobile system. By using images of the external world obtained while the system is moving, we
show that we can construct a map that captures the topological and quasi-metric structure of
the motor space. This image manifold also incorporates an inexact measure for distance, to the
extent that the metrics for image similarity are proportional to metrics in the motor space. We
have shown how the map can be used for robot localization relative to its nearby positions, and
also how it can be used to navigate from one pose to another by traversing the images encoded
in the image manifold.

The key idea here is that coordinates on the visual manifold are generalized coordinates that
describe the motion, since a) they uniquely characterize a particular robot pose, subject to the
visual distinguishability assumption, and b) given an image pose and its manifold coordinate,
there is a single motor pose for it. The idea of generalized coordinates is a very powerful one
and applies to a wide range of kinematics and dynamic tasks. One of the key tasks in the future
would be to extend these coordinates to handle accelerations, forces and torques i.e. to tasks
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in ”visual” dynamics.

In practice, the visual distinguishability assumption has some interesting ramifications. This
may fail in some situations - e.g. for the two diagonal corners in a rectangular room with white
walls. In such a situations, infants and rats are known to confuse between the two locations [35].
In the case where one of the walls is painted blue, turning one’s head just a little (taking a
small step on the image manifold), results in an image which is sufficiently distinct from the
others. This permits the two corners to be distinguished. In practice, violations of visual
distinguishability causes problems for NLDR algorithms (short circuits across different parts
of the manifold), the actual low-dimensional embeddings (coordinates) are not crucial to our
enterprise. Thus, though the images of the manifolds shown here were drawn using standard
NLDR algorithms, we would like to emphasize that a neural implementation would not need to
compute the full embeddings. Also, the computational system for navigation and localization
does not need the embeddings.

Finally, we have presented acquisition of the spatial map at two stages. First, an integrated
visual map, with orientation merged with position, is acquired. For organisms where orientation
differences are always crucial, this may be adequate. However, if there are some tasks that
distinguishing only position but not orientation, then the system can learn maps that encode
only position, by defining an equivalence class over orientations. This results in a system
that has maps for specific regions in a familiar space, which is very similar to the place cell
architecture.

However, though we hope this will be an important idea in this domain, it is only the first
step. Much work remains to show the neural validity of these structures, and also to validate
these on a wider range of robotic applications. Another important task for the future is to test
the capability conferred by having a visual sense of space - the ability to dream or to imagine
motions and to generate expectations - such capabilities have many roles in cognition and also
increasingly, in robotic tasks.
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