Randomized Approximation of b-Matching in Hypergraphs

Anand Srivastav
asr@informatik.uni-kiel.de
Department of Computer Science
Kiel University, Germany

Abstract

Let (V, E) be a hypergraph where V is a finite set (set of nodes) and $E \subseteq$ is collection of subsets of V (set of hyperedges) with $|V|=n$ and $|E|=m$. Let $b \in \mathbb{N}_{\geqslant 1}$. We call a set $M \subseteq E$ a b-matching if no node is contained in more than b edges from M. Maximum b-Matching is the problem of finding a b-matching with maximum cardinality, which we denote by $\mathrm{OPT}_{b} . b$-Matching is a classical problem in combinatorics and optimization, and in graphs it has been a driving area in combinatorial optimization. In hypergraphs the problem is NP-hard and tight approximation algorithms are sought. With variants of the randomized rounding scheme of Raghavan and Thompson (1987) several randomized and derandomized constant-factor approximations, that is the construction of a matching of cardinality at least $c \cdot \mathrm{OPT}_{b}$, where $c<1$ is a constant, have been presented (e.g. Srivastav, Stangier 1996 and Srinivasan 1999), provided that b is large, namely $b \geqslant \alpha \log n$, and $\alpha>0$ constant. The question is whether approximations are possible for small b 's. With the FKG correlation inequality approximations of the type $\Omega\left(\alpha(n, b) \mathrm{OPT}_{b}\right)$ were first proved by Srinivasan (1999) (for recent improvements see Bansal, Korula, Nagarajan, Srinivasan 2012), where the approximation factor is of the form $\alpha(n, b)=\left(\mathrm{OPT}_{b} / n\right)^{1 / b}$. Note that $\alpha(n, b)$ is constant for hypergraphs with $\mathrm{OPT}_{b}=\Theta(n)$ for any b. But otherwise if $\mathrm{OPT}_{b} \ll n$ and $b \ll \log n$, it is only $o(1)$ for all instances, thus is negligible.

In this paper we show that a randomized worst-case approximation with a constant-factor independent of the instance is possible for any $b \geqslant \alpha \sqrt{\log n}, \alpha>0$ some constant. The analysis of the randomized algorithm depends on the martingale inequality of Azuma. Furthermore, we present new algorithms of hybrid type, where the randomized rounding is further improved by greedy heuristics. In an experimental study within the framework of Algorithm Engineering we show that such hybrid algorithms outperform all known approximation algorithms.

Joint work with: Mourad El Ouali, Lasse Kliemann, Peter Munstermann (Kiel University)

Bibliography

Prabhakar Raghavan and Clark D. Thompson. "Randomized rounding: a technique for provably good algorithms and algorithmic proofs". In: Combinatorica 7.4 (1987), pp. 365-374. Doi: 10. 1007/BFe2579324

Anand Srivastav and Peter Stangier. "Algorithmic Chernoff-Hoeffding inequalities in integer programming". In: Random Structures and Algorithms 1.8 (1996), pp. 27-58. Dor: 10. 1002/(SICI) 1098-2418(199601) 8: 1<27: : AID-RSA2>3.0.C0;2-T

Aravind Srinivasan. "Improved approximation guarantees for packing and covering integer programs". In: SIAM Journal on Computing 29.2 (1999), pp. 648-670. Doi: 10.1137/50097539796314240

Nikhil Bansal, Nitish Korula, Viswanath Nagarajan, and Aravind Srinivasan. "Solving packing integer programs via randomized rounding with alterations". In: Theory of Computing 8.1 (2012), pp. 533-565. Dor: 10.4086/toc. 2012. v008a024

